WorldWideScience

Sample records for unsaturated organic compound

  1. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  2. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  3. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  4. Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated-unsaturated interface region of an aquifer.

    Science.gov (United States)

    Ronen, Daniel; Lev-Wiener, Hagit; Graber, Ellen R; Dahan, Ofer; Weisbrod, Noam

    2010-04-01

    Concentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of approximately 18m) of a sandy phreatic aquifer were measured in two monitoring wells located 25m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. New methods of arene iodination and functional transformation of multiple bonds in organic compounds

    International Nuclear Information System (INIS)

    Filimonov, V.D.; Chajkovskij, V.K.; Krasnokutskaya, E.A.

    2000-01-01

    The review summarizes the latest results of organic chemistry and technology of organic synthesis department of Tomsk polytechnical university concerning iodination of arenes and chemical transformations of unsaturated compounds. Preparative possibilities of the new reactions and reagents for iodination, oxidation of alkenes and alkynes to 1,2- and bis-1,2-dicarbonyl compounds, iodonitration of alkynes, and reaction of oxidative dimerization of the terminal alkynes to unsaturated δ-sultones are discussed [ru

  6. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  7. Organic Compounds Complexify Transport in the Amargosa Desert—The Case for Phytotritiation

    Science.gov (United States)

    Stonestrom, D. A.; Luo, W.; Andraski, B. J.; Baker, R. J.; Maples, S.; Mayers, C. J.; Young, M. B.

    2014-12-01

    Civilian low-level radioactive waste containing organic compounds was disposed in 2- to 15-m deep unlined trenches in a 110-m deep unsaturated zone at the present-day USGS Amargosa Desert Research Site. Tritium represents the plurality of disposed activity. A plume of gas-phase contaminants surrounds the disposal area, with 60 distinct volatile organic compounds (VOCs) identified to date. The distribution of tritiated water in the unsaturated zone surrounding the disposal area is highly enigmatic, with orders of magnitude separating observed levels from those predicted by multiphase models of mass and energy transport. Peaks of tritium and VOCs are coincidently located in sediments tens of meters below the root zone, suggesting abiotic stratigraphic control on lateral transport at depth. Surprisingly, the highest observed levels of tritium occur at a depth of about 1.5 m, the base of the creosote-bush plant-community root zone, where levels of waste-derived VOCs are low (approaching atmospheric levels). Bulk water-vapor samples from shallow and deep unsaturated-zone profile hot spots were trapped as water ice in cold fingers immersed in dry ice-isopropyl alcohol filled Dewar flasks, then melted and sequentially extracted by purge-and-trap VOC degassing followed by elution through activated carbon solid-phase extraction (SPE) cartridges. Analysis of tritium activities and mass spectrometer results indicate that over 98% of tritium activity at depth is present as water, whereas about 15% of basal root zone tritium activity is present as organic compounds trapped with the water. Of these, the less-volatile compound group removed by SPE accounted for about 85% of the organic tritium activity, with mass spectrometry identifying 2-ethyl-1-hexanol as the principal compound removed. This plant-produced fatty alcohol is ubiquitous in the root zone of creosote-bush communities and represents a family of hydroxyl-containing plant produced compounds that give the plants their

  8. Distribution of nonionic organic compounds (highly volatile chlorinated hydrocarbons) in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Grathwohl, P.

    1988-01-01

    Nonpolar pollutants, e.g. highly volatile chlorinated hydrocarbons (HVCH) are more or less equally distributed among all three soil phases (solids, water, air) in the unsaturated zone. The sorption of HVCH on soil solids depends on the amount and type of organic matter in the soil. For wet material an additional sorption on mineral surfaces can be neglected, since all possible sites for sorption are occupied by water. Provided the partition-coefficients or sorption-constants are known the contamination of the whole system can be evaluated from the pollutant concentration in the soil air; in addition it is possible to estimate a groundwater risk.

  9. Reactions of carbonyl compounds with α,β-unsaturated nitriles as a convenient pathway to carbo- and heterocycles

    International Nuclear Information System (INIS)

    Sharanin, Yu A; Goncharenko, M P; Litvinov, Victor P

    1998-01-01

    Published data on the methods for synthesis of carbo- and heterocyclic compounds based on reactions of α,β-unsaturated nitriles with carbonyl compounds and activated phenols are surveyed. It is demonstrated that all these reactions occur via nucleophilic addition of the carbanion generated from a carbonyl compound to the double bond of an unsaturated nitrile (the Michael reaction). The main routes of transformation of the adducts into carbo- and heterocyclic compounds are considered. The methods for regioselective preparation of fused 4H-pyrans or 1,4-dihydropyridines by varying conditions of cyclisation of Michael adducts are discussed. The bibliography includes 249 references.

  10. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Data.gov (United States)

    U.S. Environmental Protection Agency — We show in the present study that the unsaturated aldehydes, 2-E-pentenal, 2-E-hexenal and 3-Z-hexenal, are biogenic volatile organic compound (BVOC) precursors for...

  11. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    Science.gov (United States)

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  12. Actinic radiation-curable formulations from the reaction product of organic isocyanate, poly(alkylene oxide) polyol and an unsaturated addition-polymerizable monomeric compound having a single isocyanate-reactive hydrogen group

    International Nuclear Information System (INIS)

    Howard, D.D.

    1979-01-01

    Energy-curable compositions which can be cured in the presence of air by exposure to actinic radiation contain at least one unsaturated urethane oligomer. The oligomer comprises the reaction product of at least one poly(alkylene oxide) polyol, at least one polyisocyanate, and at least one unsaturated active hydrogen-containing compound

  13. Chemical Resistance of Ornamental Compound Stone Produced with Marble Waste and Unsaturated Polyester

    Science.gov (United States)

    Ribeiro, Carlos E. Gomes; Rodriguez, Rubén J. Sánchez; Vieira, Carlos M. Fontes

    Ornamental compound stone are produced by industry for decades, however, few published studies describe these materials. Brazil has many deposits of stone wastes and a big potential to produce these materials. This work aims to evaluate the chemical resistance of ornamental compound stones produced with marble waste and unsaturated polyester. An adaptation of Annex H of ABNT NBR 13818:97 standard, with reagents commonly used in household products, was used. The results were compared with those obtained for natural stone used in composite production.

  14. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  15. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  16. FT-IR kinetic and product study of the Br-radical initiated oxidation of α, β-unsaturated organic carbonyl compounds

    Science.gov (United States)

    Sauer, C. G.; Barnes, I.; Becker, K. H.

    Using the relative kinetic technique the kinetics of the gas-phase reactions of Br radicals with acrolein, methacrolein and methylvinyl ketone have been investigated at (301±3) K in 1013 mbar of (N 2+O 2) bath gas at varying proportions. In 1013 mbar of synthetic air the following rate coefficients have been obtained (in units of cm 3 molecule -1 s -1): acrolein (3.21±0.11)×10 -12; methacrolein (2.33±0.08)×10 -11; methyl vinyl ketone (1.87±0.06)×10 -11. This study represents the first determination of the rate coefficients for these compounds. As for other unsaturated hydrocarbons the rate coefficient with Br was found to increase with increasing partial pressure of O 2. From the product studies of the reactions it has been established that addition of Br radicals to the terminal C-atom is the major pathway in all three cases. However, for acrolein H atom abstraction from the -CO-H group is also significant. Mechanisms are proposed to explain the observed products, mainly β-brominated carbonyl compounds.

  17. A numerical solution to three-dimensional multiphase transport of volatile organic compounds in unsaturated soils -- with an application to the remedial method of in-situ volatilization

    International Nuclear Information System (INIS)

    Filley, T.; Tomasko, D.

    1992-04-01

    Part I of this paper presents the development and application of a numerical model for determining the fate and transport of volatile organic compounds (VOCS) in the unsaturated zone resulting from forced volatilization and gaseous advection-dispersion of organic vapor in a multipartitioned three-dimensional environment. The model allows for single-component transport in the gas and water phases. The hydrocarbon is assumed to be in specific retention and, therefore, immobile. Partitioning of the hydrocarbon between the oil, water, gas, and soil is developed as rate-limited functions that are incorporated into sink/source terms in the transport equations. The code for the model was developed specifically to investigate in-situ volatilization (ISV) remedial strategies, predict the extent of cleanup from information obtained at a limited number of measurement locations, and to help design ISV remedial systems. Application of the model is demonstrated for a hypothetical one-dimensional ISV system. Part II of this paper will present the analysis of an existing ISV system using the full three-dimensional capability of the model

  18. Flame retardant synergism between molybdenum and halogen-containing compounds in unsaturated polyesters. [Smoke suppression

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, G.A.; Parker, L.E.; Marshall, P.J.

    1978-01-01

    Oxygen index results for a series of unsaturated polyesters, containing molybdenum oxide and various halogenated compounds, have provided definite evidence for some form of flame retardant synergistic effect between molybdenum and halogen. With the halogenated compounds used, the magnitude of the effect was greater in the presence of bromine but was dependent on the type of compound. When dibromoneopentyl glycol was used as the bromine source, the synergistic effect exhibited by molybdenum oxide was comparable to that shown by antimony oxide. Since molybdenum oxide also acts as a smoke suppressant, it could offer a useful alternative to antimony oxide particularly in the light of probable changes in standards and regulatory control regarding smoke emission. 4 figures, 2 tables.

  19. Emerging site characterization technologies for volatile organic compounds

    International Nuclear Information System (INIS)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters

  20. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Suria, Sabartanty [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  1. Visible-light-induced, Ir-catalyzed reactions of N-methyl-N-((trimethylsilylmethylaniline with cyclic α,β-unsaturated carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Dominik Lenhart

    2014-04-01

    Full Text Available N-Methyl-N-((trimethylsilylmethylaniline was employed as reagent in visible-light-induced, iridium-catalyzed addition reactions to cyclic α,β-unsaturated carbonyl compounds. Typical reaction conditions included the use of one equivalent of the reaction substrate, 1.5 equivalents of the aniline and 2.5 mol % (in MeOH or 1.0 mol % (in CH2Cl2 [Ir(ppy2(dtbbpy]BF4 as the catalyst. Two major reaction products were obtained in combined yields of 30–67%. One product resulted from aminomethyl radical addition, the other product was a tricyclic compound, which is likely formed by attack of the intermediately formed α-carbonyl radical at the phenyl ring. For five-membered α,β-unsaturated lactone and lactam substrates, the latter products were the only products isolated. For the six-membered lactones and lactams and for cyclopentenone the simple addition products prevailed.

  2. A green synthesis of α,β-unsaturated carbonyl compounds from glyceraldehyde acetonide

    Directory of Open Access Journals (Sweden)

    Cláudia O. Veloso

    2011-01-01

    Full Text Available The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

  3. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 8. Constants of spin-spin interaction of /sup 125/Te-/sup 1/o/sup 3/C in nmr spectra of unsaturated organtellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Kushnarev, D.F.; Valeev, R.B. (Irkutskij Gosudarstvennyj Univ. (USSR))

    1981-06-01

    On the basis of /sup 13/C NMR spectra of a series of unsaturated and aromatic tellurium compounds the constants of spin-spin interaction (SSIC) (sup(1.2)J(Te, C)) are measured. A reliable linear relation between /sup 1/J(Te, C) and s-character of a carbon orbitale forming bond with tellurium is found. Correlation of straight SSIC of carbon with selenium and tellurium in isological compounds is established.

  4. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  5. Kinetic study of the degradation of C5 and C6 unsaturated aldehydes and alcohols by ozone

    Science.gov (United States)

    Kalalian, Carmen; Roth, Estelle; Chakir, Abdelkhaleq

    2017-04-01

    Emissions of biogenic volatile organic compounds (VOCs) are higher than those from anthropogenic sources. They are therefore likely to have a great influence on atmospheric chemistry both locally and regionally, through their impact on the HOx balance (HOx = HO + HO2), ozone production and ability to form secondary organic aerosols (SOA). Among the volatile organic compounds of biogenic origin are the family of C5 and C6 unsaturated aldehydes and alcohols. Few information exist regarding the fate of these compounds in the atmosphere especially there reaction with ozone. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans-2-pentenal, trans-2-hexenal and 2-methyl-2-pentenal) and three unsaturated alcohols (1-penten-3-ol, cis-2-penten-1-ol and trans-3-hexen-1-ol) with ozone O3 in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333 and 353 K) and at atmospheric pressure. The rate constants of the ozonolysis reaction of the unsaturated aldehydes and the unsaturated alcohols studied were determined and the following Arrhenius expression was obtained (cm3 molecule -1 s -1): k (Trans -2-pentenal)= (3.83 ± 3.71) x 10-16 exp (- (1706 ± 295) / T) k (Trans-2-hexenal)= (1.43 ± 0.67) x 10-16 exp (- (1369 ± 141) / T) k(2-Methyl-2-pentenal)= (3.62± 0.22) x 10-18 exp (- (121 ± 20) / T) k(1-penten-3-ol) = (1.42 ± 1.24) x 10-16 exp (- (642 ± 250) / T) k(Cis-2-penten-1-ol)= (3.14 ± 0.45) x 10-15 exp (- (1045 ± 40) / T) k(Trans-3-hexen-1-ol)= (6.38 ± 1.75) x 10-16 exp (- (686 ± 89) / T) The obtained data will be discussed in terms of structure-reactivity relationship and compared with the reported reactivity with OH radicals. The atmospheric implications derived from this study are discussed as well.

  6. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  7. A method for hydrogenating and carbonylizing unsaturated compounds in the presence of catalysts based on phosphine and metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J C; Dyer, G

    1982-12-22

    The hydrogenation of unsaturated organic compounds or the attachment to them of CO is accomplished with contact with a synthesis gas in the presence of a stereospecific catalyst (Kt), a compound of a metal of the platinum group (preferably Rhodium, but also Platinum, Palladium, Ruthenium or Iridium) and an asymmetrical bis-phosphine of the formula A-(CH2)n-B, where A and B are phosphine groups. R2P and R'2P or RRhP, where R is an aryl radical, R' is aralkyl, alcarylic or alkyl radical, n = 1 to 10, or an asymmetrical monophosphine of the formula R2-R'P. The complex compound also includes Hydrogen, CO and (or) halogen (preferably Chlorine) as ligands. The physical properties of the obtained complex compounds of the carbonylchlorbisphosphines or Rh are presented: trans-(RhC1-(CO)(Ph2P(CH2)6PPh2))2; trans-(RhC1(CO)(C2H5PhP-(CH2)6PPh2))2; trans-(RhC1(CO)(cycloC6H11PhP(CH2)6-PPh2))2; trans-(RhC1(CO)(C2H5PhP(CH2)4PPh2)2; trans-(RhC1(CO)(C2H5PhP(Ch2))2 and PhC1(CO)4(p-C6H4CH2)2P(Ch2)6PPh2). The isolated complexes are light yellow crystalline substances.

  8. Heterogeneous hydrogenation of unsaturated compounds with catalyst P-2-Ni with turnover numbers up to 90,000

    Energy Technology Data Exchange (ETDEWEB)

    Strohmeier, W; Pfoehler, M; Steigerwald, H [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie

    1977-12-01

    Unsaturated compounds are very rapidly hydrogenated with nickel-boride catalyst P-2-Ni without solvent under mild conditions (70-85/sup 0/C and 10 bar). Turnover numbers UZ up to 90,000 and space-time-yields of 7.440 mmol product per l and 1 mgA Nickel in one hour with a mean catalyst activity a = 124 were observed. This hydrogenation catalyst has a power, which is in the same magnitude of very active noble metal catalysts.

  9. Synthesis of labelled compound of ferulic acid and caffeic acid with tritium

    International Nuclear Information System (INIS)

    Yi Mingguang; Wang Caiyun

    1986-01-01

    Effective components of Chinese traditional herbs consist of many compounds, but some of the compounds usually contain unsaturated carbon-carbon double bonds. The unsaturated organic compounds 3 H-Ferulic acid and 3 H-Caffeic acid are prepared with their tritiated intermediates made by electric-dischange exposure method, which ensures the compounds contaning double bonds not hydrogenated. The 3 H-Ferulic acid is composed of 3 H-vanillin and Malonic acid. The 3 H-Caffeic acid is composed of 3 H-protocatechuyl aldehyde and Malonic acid and the specific activity of the products is 0.2 mCi/mg. The radiochemicaly purity is greater than 90%

  10. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of /sup 13/C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Bzhezovskii, V.M.; Kushnarev, D.F.; Proidakov, A.G. (Irkutskii Gosudarstvennyj Univ. (USSR))

    1981-06-01

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on /sup 13/C chemical shifts in eleven isological series of R/sup 1/-Eh-R/sup 2/ unsaturated compounds are compared. A linear relation between /sup 13/C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on /sup 13/C chemical shifts of R/sup 1/ and R/sup 2/ substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms.

  11. Steam stripping of the unsaturated zone of contaminated sub-soils: the effect of diffusion/dispersion in the start-up phase

    NARCIS (Netherlands)

    Brouwers, Jos; Gilding, B.H.

    2006-01-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in

  12. Chloric organic compound

    International Nuclear Information System (INIS)

    Moalem, F.

    2000-01-01

    Since many years ago, hazardous and toxic refuses which are results of human activities has been carelessly without any Biological and Engineering facts and knowledge discharged into our land and water. The effects of discharging those materials in environment are different. Some of refuse materials shows short and other has long-time adverse effects in our environment, Among hazardous organic chemical materials, chlorine, consider, to be the main element. Organic materials with chlorine is called chlorine hydrocarbon as a hazardous compound. This paper discuss the hazardous materials especially chloric organic compound and their misuse effects in environment and human being

  13. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  14. Synthesis and research of derived oxazol-5-ones based on α,β – unsaturated ketones

    Directory of Open Access Journals (Sweden)

    Сергей Александрович Петров

    2015-11-01

    Full Text Available The article deals with the production of new fluorescent dyes derived oxazol-5-ones based on α, β-unsaturated ketones, as well as confirmation of the structure of the compounds obtained using NMR and IR spectroscopy. The dyes of this series are relevant because one of the important practical problems in organic chemistry and chemical technology is currently seeking new fluorescent dyes for dyeing polyester materials and polymers

  15. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  16. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  17. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  18. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah; Wang, Heng; Sioud, Salim; Raji, Misjudeen; Kohse-Hö inghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.; Sarathy, Mani

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  19. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  20. Method for conversion of .beta.-hydroxy carbonyl compounds

    Science.gov (United States)

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  1. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  2. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  3. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  4. Prediction of boiling points of organic compounds by QSPR tools.

    Science.gov (United States)

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Science.gov (United States)

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  6. Organic electronic devices using phthalimide compounds

    Science.gov (United States)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  7. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  8. Design and testing of a chamber device to measure organic vapor fluxes from the unsaturated zone under natural conditions

    International Nuclear Information System (INIS)

    Tillman, F.D.; Choi, J-W.; Smith, J.A.

    2002-01-01

    As the difficulty and expense of achieving water quality standards at contaminated sites becomes more apparent, the U.S. Environmental Protection Agency is taking a closer look at natural attenuation processes for selected sites. To determine if a site has potential for natural attenuation, all natural processes affecting the fate and transport of volatile organic compounds (VOCs) in the subsurface must be identified and quantified. This research addresses the quantification of air-phase VOCs leaving the subsurface and entering the atmosphere, both through diffusion and soil-gas advection caused by barometric pumping. A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed, constructed and tested both in a controlled laboratory environment and in a natural field setting. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under several flux inputs. The final chamber design performs at greater than 95% efficiency for the simulated cases. Laboratory testing of the flux chamber under both diffusion and advection transport conditions was performed in a device constructed to simulate the unsaturated zone. Results indicate an average flux measurement accuracy of 83% over 3 orders of magnitude for diffusion-only fluxes and 94% for combined advection-diffusion fluxes. A field test of the chamber was performed and results compared with predictions made by a 1-dimensional unsaturated zone flow and transport model whose calibration and parameters were obtained from data collected at the site. Fluxes measured directly by the chamber were generally in good agreement with the fluxes calculated from the calibrated flow-and-transport model. (author)

  9. Modelling flow through unsaturated zones: Sensitivity to unsaturated ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    soil properties are studied by varying the unsaturated parameters α and n over a wide range. ... Keywords. Unsaturated zone; capillary fringe; finite element method. ... and radioactive wastes. Several .... The length (L) of the soil sample is 1 m.

  10. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.

    2002-01-01

    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  11. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    Science.gov (United States)

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  12. Organic halogen compounds in the environment

    International Nuclear Information System (INIS)

    1979-07-01

    There are 20 research reports on selected problems concerning the analysis, the occurence, and the behaviour of a wide spectrum of organic halogen compounds. The work was carried out in the framework of the project 'Organic Halogen Compounds in the Environment', financed by the BMFT, between 1975 and 1978. (orig.) [de

  13. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  14. Air sparging of organic compounds in groundwater

    International Nuclear Information System (INIS)

    Hicks, P.M.

    1994-01-01

    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ''packing''. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel

  15. Radiolysis of other organic compounds

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1986-01-01

    Peculiarities of radiolysis of organic halogen, phosphorus, sulfur and nitrogen (including amines, amides, nitriles et al.) compounds in liquid phase are discussed. Intermediate and stable finish products of radiolysis of the given compounds, properties and radiochemical yields of these products are considered

  16. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  17. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    The parasite resistance and side effects of drugs used to treat protozoal diseases have led to the search for new therapies, both natural and synthetic. Studies have shown that various α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and ...

  18. Unsaturated Mn complex decorated hybrid thioarsenates: Syntheses, crystal structures and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Cheng-Yang [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Lei, Xiao-Wu, E-mail: xwlei_jnu@163.com [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Tian, Ya-Wei; Xu, Jing; Bai, Yi-Qun; Wang, Fei; Zhou, Peng-Fei; Liu, Xiao-Fan [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Yi, Fei-Yan, E-mail: yifeiyan@nbu.edu.cn [Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2016-03-15

    The incorporation of unsaturated [Mn(1,2-dap)]{sup 2+}, [Mn(1,2-dap){sub 2}]{sup 2+}, [Mn(2,2-bipy)]{sup 2+} (1,2-dap=1,2-diaminopropane) complex cations with thioarsenate anions of [As{sup III}S{sub 3}]{sup 3−} and [As{sup V}S{sub 4}]{sup 3−} led to three new hybrid manganese thioarsenates, namely, [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} (1), [Mn(1,2-dap){sub 2}]{[Mn(1,2-dap)]_2As_2S_8} (2) and (NH{sub 4})[Mn(2,2-bipy){sub 2}]AsS{sub 4} (3). In compound 1, the unsaturated [Mn(1,2-dap)]{sup 2+} complexes, [MnS{sub 4}]{sup 6−} tetrahedra and [As{sup III}S{sub 3}]{sup 3−} trigonal-pyramids are condensed to form the 1D [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} chain, whereas compound 2 features 2D layer composed of [Mn(1,2-dap)]{sup 2+} and [Mn(1,2-dap){sub 2}]{sup 2+} complexes as well as [As{sup V}S{sub 4}]{sup 3−} tetrahedral units. For compound 3, two [As{sup V}S{sub 4}]{sup 3−} anions bridge two [Mn(2,2-bipy)]{sup 2+} complex cations into a butterfly like {[Mn(2,2-bipy)]_2As_2S_8}{sup 2−} anionic unit. Magnetic measurements indicate the ferrimagnetic behavior for compound 1 and antiferromagnetic (AF) behaviors for compounds 2–3. The UV–vis diffuse-reflectance measurements and electronic structural calculations based on density functional theory (DFT) revealed the title compounds belong to semiconductors with band gaps of 2.63, 2.21, and 1.97 eV, respectively. The narrow band-gap of compound 3 led to the efficient and stable photocatalytic degradation activity over organic pollutant than N-doped P25 under visible light irradiation. - Highlights: Three new hybrid manganese thioarsenates have been prepared and structurally characterized. These hybrid phases feature interesting magnetic and visible light responding photocatalytic properties.

  19. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Organic mercury compounds have a c-mitotic effect on plant cells that cause polyploidi. Studies were performed on Allium root cells. These investigations involved methyl mercury dicyandiamide, methyl mercury hydroxide, and phenyl mercury hydroxide. The lowest concentration necessary for a cytologically observable effect was about 0.05 ppM Hg for the methyl compounds. For the phenyl compound, the value was lower. Experiments were performed on Drosophila melanogaster. The question was whether the mercury would reach the gonads. Experimental data with mercury treated larvae indicated a chromosome disjunction. Data indicated a preferential segregation at the meiotic division might be involved. Experiments are being performed on mice inbred (CBA) in order to investigate teratogenic effects and dominant lethality caused by organic mercury compounds. The mutagenic effects of these compounds are studied on Neurospora Drosophila. No conclusive data is now available.

  20. Organic compounds in radiation fogs in Davis (California)

    Science.gov (United States)

    Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.

    New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.

  1. Nuclear magnetic resonance and LC/MS characterization of native and new mass-labeled fluorinated telomer alcohols, acids and unsaturated acids

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, G.; Chittim, B.; McAlees, A.; Yeo, B. [Wellington Laboratories Inc., Guelph, ON (Canada); Ellis, D.; Mabury, S.; Stock, N. [Toronto Univ., ON (Canada); Halldorson, T.; Tomy, G. [Dept. of Fisheries and Oceans, Winnipeg, MB (Canada); McCrindle, R. [Guelph Univ., ON (Canada)

    2004-09-15

    A variety of fluorinated compounds are used in a multitude of consumer products because of their ability to repel water and oil, resistance to heat, and chemical inertness. Recently, scientists and regulators have begun raising concerns about the potential health and environmental impact of perfluorinated compounds. Exposure to perfluoroalkyl acids, such as Perfluorooctanoic acid (PFOA), has been identified as a potential human health concern. A study has shown that telomer alcohols such as 2-perfluorooctylethanol can be metabolized by living organisms or biodegrade under environmental conditions to sequentially give the saturated fluorinated telomer acid (2- perfluorooctylethanoic acid), then the unsaturated telomer acid (2H-Perfluorooct-2-enoic acid), and eventually PFOA. Additional experimental work is necessary to determine the extent, if any, to which telomer product degradation may be a source of PFOA. The analysis for fluorinated compounds in environmental samples is performed, primarily, using LC/MS techniques. These analyses have been hindered by the lack of any commercially available mass-labeled fluorinated compounds for use as surrogates and thus may be restricting the amount of research conducted in this area. We have now synthesized the mass-labeled perfluoroalkyl telomer alcohols and the corresponding acids and unsaturated acids. We report in this study their 1H-, 2H-, 19F- and 13C-NMR characterizations along with GC/MS and LC/MS data and evaluation of their use as surrogate standards.

  2. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  3. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Studies on the genetic and developmental effects of organic mercury compounds on lilies, drosophila, and ice were carried out. It was found that chromosomal and developmental abnormalities were correlated with the administration of mercury compounds.

  4. Organic compounds in the Murchison meteorite.

    Science.gov (United States)

    Ponnamperuma, C.

    1972-01-01

    Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.

  5. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  6. Reflectance spectroscopy of organic compounds: 1. Alkanes

    Science.gov (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  7. Highly Functionalised Cyclopentanes by Radical Cyclisation of Unsaturated Bromolactones III. Preparation of Carbaaldohexofuranoses. - Determination of the Relative Configuration at C-4/C-5 of 2,3-Unsaturated heptono-1,4-lactones by Means of 1-H NMR Spectroscopy

    DEFF Research Database (Denmark)

    Lundt, Inge; Horneman, Anne Marie

    1999-01-01

    Two new carbaaldohexofuranoses, carba--D-glucofuranose and carba--L-mannofuranose have been prepared using 5,6-O-isopropylidene-D-glycero-L-galacto-heptono-1,4-lactone (6) as the starting material. The key step was a highly stereoselective intramolecular 5-exo-trig radical cyclisation of C-2......-substituted 2,3-unsaturated 7-bromo-7-deoxy-heptono-1,4-lactones promoted by tributyltin hydride. Assignment of the configuration of the unsaturated lactones was based upon NMR data of related compounds. The starting material, compound 6, was obtained by chain elongation of D-gulose, and a facile method...

  8. Behaviour of organic sulfur compounds in HPLC

    International Nuclear Information System (INIS)

    Freyholdt, T.

    1982-01-01

    The retention behaviour of organic sulfur compounds in the reverse-bonded-phase chromatography is characterized by determining the retention indices according to Kovats. The results of these studies show that the solubility of organic compounds in the eluting agent and the molar sorption surfaces of the solutes are the main factors determining the retention behaviour. Knowledge of the retention indices of above-mentioned compounds allows a quick interpretation of chromatograms obtained through a product analysis of γ-irradiated aqueous solutions of organic sulfur compounds. Dithia compounds of the type CH 3 -S-(CH 2 )sub(n)-S-Ch 3 (1 1. 2,4-Dithiapentane (n = 1) however will yield primarily monothio-S-methyl formate as a stable end product. The formation of oxygenic reaction products proceeds via sulfur-centred radical kations. Spin trapping experiments with nitroxyl radicals show that it is possible to trap radiation-chemically produced radicals of sulfurous substrates, but the thus obtained adducts with half-life periods of 4-5 min. cannot be identified by means of NMR, IR or mass spectroscopy. (orig.) [de

  9. Photochemical Degradation of Petroleum-Derived Water-Soluble Organics into the Background Dissolved Organic Carbon Pool

    Science.gov (United States)

    Podgorski, D. C.; Ray, P. Z.; Roland, N. V.; Corilo, Y. E.; Tarr, M. A.; Guillemette, F.; Spencer, R. G.

    2016-02-01

    Water-soluble organic (WSO) photoproducts produced from Macondo crude oil (MC252) and a heavy fuel oil (HFO), a surrogate for that which was spilled into the San Francisco Bay by the M/V Cosco Busan, were isolated and irradiated with simulated sunlight to examine the photochemical fate of the products in aquatic ecosystems. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals marked transformations in the elemental composition of WSOs at specific irradiation periods across a time series that correspond with shifts in bulk properties determined with optical measurements. Blue shifts in EEMs spectra correlate with an increase in formulas classified as unsaturated, high oxygen while the polyphenols and unsaturated, low oxygen compounds decrease. The characteristic A and C humic- and fulvic-like FDOM signatures begin to appear in the EEM spectra of WSOs that were irradiated for as little as 8 to 12 hours, the equivalent of 2 to 3 days of natural sunlight. The presence of the A and C signatures correlate to elemental compositions that exhibit a further decrease in the unsaturated, low oxygen and subsequent increase of unsaturated, high oxygen and highly oxygenated aliphatic compounds. Furthermore, van Krevelen plots reveal a shift toward the compositional space associated with carboxyl-rich aromatic moieties (CRAM) as a function of irradiation period and the appearance of the humic- and fulvic-like FDOM signatures in the EEM spectra. Although the photodegraded WSO products show similarities in FDOM and elemental composition to representative natural dissolved organic matter from their respective pools, persistent petroleum signatures that are not photoactive are still detected. Future studies are required to examine the bioavailability of these photodegraded WSO products to determine if they degrade or persist in the environment.

  10. Treating contaminated organic compounds using the DETOX process

    International Nuclear Information System (INIS)

    Elsberry, K.; Dhooge, P.M.

    1993-01-01

    Waste matrices containing organic compounds, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent reaction rate orders for organic compounds and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 20 g/kg loading of organic material. Oxidations in 4-L volume, mixed bench-top reactor have given destruction efficiencies of 0.999999+ g/g for common organic compounds. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100+ g of organic material per L-hr. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organic compounds sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing

  11. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  12. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  13. Trace organic compounds in wet atmospheric deposition: an overview

    Science.gov (United States)

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  14. Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT).

    Science.gov (United States)

    Kreiling, R; Hollnagel, H M; Hareng, L; Eigler, D; Lee, M S; Griem, P; Dreessen, B; Kleber, M; Albrecht, A; Garcia, C; Wendel, A

    2008-06-01

    The skin sensitization potential of eight unsaturated and one saturated lipid (bio)chemicals was tested in both the LLNA and the GPMT to address the hypothesis that chemicals with unsaturated carbon-carbon double bonds may result in a higher number of unspecific (false positive) results in the LLNA compared to the GPMT. Seven substances (oleic acid, linoleic acid, linolenic acid, undecylenic acid, maleic acid, squalene and octinol) gave clear positive results in the LLNA (stimulation index (SI)> or = 3) and thus would require labelling as skin sensitizer. Fumaric acid and succinic acid gave clearly negative results. In the GPMT, besides some sporadic skin reactions, reproducible skin reactions indicating an allergic response were found in a few animals for four test substances. Based on the GPMT results, only undecylenic acid would have to be classified and labelled as a skin sensitizer according to the European Dangerous Substance Directive (67/548/EEC) (results for linoleic acid were inconclusive), while the other seven test substances would not require labelling. Possible mechanisms for unspecific skin cell stimulation and lymph node responses are discussed. In conclusion, the suitability of the LLNA for unsaturated compounds bearing structural similarity to the tested substances should be carefully considered and the GPMT should remain available as an accepted test method for skin sensitization hazard identification.

  15. Improving rubber concrete by waste organic sulfur compounds.

    Science.gov (United States)

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  16. Oxidation of volatile organic vapours in air by solid potassium permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hartog, N.; Hassanizadeh, S.M.; Raoof, A.

    2013-01-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far

  17. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  18. Oxygenated gasoline release in the unsaturated zone - Part 1: Source zone behavior.

    Science.gov (United States)

    Freitas, Juliana G; Barker, James F

    2011-11-01

    Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  20. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    International Nuclear Information System (INIS)

    Arnaudet, L.; Folcher, G.

    1985-01-01

    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C 6 H 5 C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example [fr

  1. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  2. Mechanochemical synthesis of organic compounds and composites with their participation

    Energy Technology Data Exchange (ETDEWEB)

    Lyakhov, Nikolai Z; Grigorieva, Tatiana F; Barinova, Antonina P; Vorsina, I A [Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-05-13

    The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.

  3. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Directory of Open Access Journals (Sweden)

    M. S. Shalamzari

    2016-06-01

    Full Text Available We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC precursors for polar organosulfates with molecular weights (MWs 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles (GLVs 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack, and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by epoxidation of the double bond in the gas phase and sulfation of the epoxy group with sulfuric acid in the particle phase through the same pathway as that proposed for 3-sulfooxy-2-hydroxy-2-methylpropanoic acid from the isoprene-related α,β-unsaturated aldehyde methacrolein in previous work (Lin et al., 2013. The MW 230 organosulfates formed from 2-E-pentenal are tentatively explained by a novel pathway, which bears features of the latter pathway but introduces an additional hydroxyl

  4. their use as Accelerator in Curing Process of Rubber Compounds

    Directory of Open Access Journals (Sweden)

    S. taghvaee

    2007-06-01

    Full Text Available In some special cases, rubber compounds with high amounts of unsaturated elastomer are recommended with organic sulfur donors instead of mineral sulfurs. In this condition, activated sulfur is produced in situ and curingprocess is facilitated without accelerators. Organic sulfur donor compounds have low thermal stability and in the vulcanization temperature produce free and activated sulfurs. The advantages of these compounds are:1. High effectiveness of curing agent in low quantities in rubber compounds manufacturing.2. Producing activated sulfurs in controlled condition and avoiding the over curing of rubber compounds.In this report the novel synthesis of some derivatives of diamino-disulfides which can be applied as sulfur donors in vulcanization of special rubber compounds is introduced. The key process is reaction of sulfurmonochloride with amines in petroleum ether as solvent in low temperature. Dithio-dimorpholine(DTDM, dithio-dipipyridyl (DTDP, dithio-bis dibutylamine (DTBDB and dithio-bisdiisopropyl amine (DTBDI were prepared according to this method. All products thus obtained were characterized by 1H and 13C-NMR spectroscopies. The effects of accelerating and sulfur donoring of all prepared agents were detected in rubber compounds with natural and synthetic rubber bases. All physical, chemical, reological and mechanical properties of rubber compounds based on prepared sulfur donors were characterized.

  5. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    Science.gov (United States)

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.

  6. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2012-07-01

    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  7. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity

    OpenAIRE

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-01-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, mono-esterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeab...

  9. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  10. Phosphate incorporation in organic compounds in roots of maize

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, I; Ivanko, S [Vysoka Skola Polnohospodarska, Nitra (Czechoslovakia)

    1976-01-01

    /sup 32/P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of /sup 32/P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of /sup 32/P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The /sup 32/P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time.

  11. Phosphate incorporation in organic compounds in roots of maize

    International Nuclear Information System (INIS)

    Michalik, I.; Ivanko, S.

    1976-01-01

    32 P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of 32 P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of 32 P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The 32 P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time. (author)

  12. Mass spectrometric investigation of vinyl-substituted organic boron compounds

    International Nuclear Information System (INIS)

    Tarielashvili, V.O.; Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.

    1992-01-01

    Mass spectrometric investigation of vinyl-substituted organic compounds was conducted. Ionization was performed by electron shock. Possibility of determining boron isotope content is all analyzed organic boron vinyl-substituted compounds by direct method is shown. This simplifies sufficiently and lowers the price of analysis, improves its accuracy and rapidity

  13. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    The purpose of the study was to find out the effect of stereochemistry models on students' ... consistent with the names given to organic compounds. Some of ... Considering class level, what is the performance of the students in naming organic.

  14. Students' Categorizations of Organic Compounds

    Science.gov (United States)

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  15. Effect Of Intraruminal Infussion Of Saturated And Unsaturated Fatty ...

    African Journals Online (AJOL)

    This study describes the effect of intraruminal infusion of diferent proportions of palmitic (saturated fatty acid) and linolenic (unsaturated fatty acid) on rumen degradability of organic matter fraction of Pennisetium purpureum, total volatile fatty acid and total methane productions in West African Dwarf sheep. Five combination ...

  16. Organic compounds in PM 2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species

    Science.gov (United States)

    Gonçalves, Cátia; Alves, Célia; Fernandes, Ana Patrícia; Monteiro, Cristina; Tarelho, Luís; Evtyugina, Margarita; Pio, Casimiro

    2011-09-01

    The aim of this study is the further characterisation of PM 2.5 emissions from the residential wood combustion of common woods grown in Portugal. This new research extends to eight the number of biomass fuels studied and tries to understand the differences that the burning appliance (fireplace versus woodstove) and the combustion temperature (cold and hot start) have on emissions. Pinus pinaster (Maritime pine), Eucalyptus globulus (eucalypt), Quercus suber (cork oak), Acacia longifolia (Golden wattle), Quercus faginea (Portuguese oak), Olea europea (Olive), Quercus ilex rotundifolia (Holm oak) and briquettes produced from forest biomass waste were used in the combustion tests. Determinations included fine particle emission factors, carbonaceous content (OC and EC) by a thermal-optical transmission technique and detailed identification and quantification of organic compounds by gas chromatography-mass spectrometry. Fine particle emission factors from the woodstove were lower than those from the fireplace. For both combustion appliances, the OC/EC ratio was higher in "cold start" tests (1.56 ± 0.95 for woodstove and 2.03 ± 1.34 for fireplace). These "cold start" OC/EC values were, respectively, for the woodstove and the fireplace, 51% and 69% higher than those obtained in "hot start" experiments. The chromatographically resolved organics included n-alkanes, n-alkenes, PAHs, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl esters of acids. The smoke emission rate and composition varied widely depending on fuel type, burning appliance and combustion temperature.

  17. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  18. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.

    2007-01-01

    Single crystals of [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 (H 2 O)](H 2 SeO 4 ) 0.85 (H 2 O) 2 (1), [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 ] (H 2 SeO 4 ) 0.50 (H 2 O) (2), and [C 8 H 20 N] 2 [(UO 2 )(SeO 4 ) 2 (H 2 O)] (H 2 O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO 7 and SeO 4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO 2 (SeO 4 ) 2 (H 2 O)] 2- chains are separated by mixed organic-inorganic layers comprising from [NH 3 (CH 2 ) 10 NH 3 ] 2+ molecules, H 2 O molecules, and disordered electroneutral (H 2 SeO 4 ) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO 2 (SeO 4 ) 2 ] 2- sheet. The structure of 3 does not contain disordered (H 2 SeO 4 ) groups but is based upon alternating [UO 2 (SeO 4 ) 2 (H 2 O)] 2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH 3 (CH 2 ) 7 CH 3 ] + . The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into

  19. Biogenic volatile organic compounds in the Earth system.

    Science.gov (United States)

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  20. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  1. Comparison of the neurotoxicities between volatile organic compounds and fragrant organic compounds on human neuroblastoma SK-N-SH cells and primary cultured rat neurons

    Directory of Open Access Journals (Sweden)

    Yasue Yamada

    2015-01-01

    Full Text Available These are many volatile organic compounds (VOCs that are synthesized, produced from petroleum or derived from natural compounds, mostly plants. Fragrant and volatile organic compounds from plants have been used as food additives, medicines and aromatherapy. Several clinical and pathological studies have shown that chronic abuse of VOCs, mainly toluene, causes several neuropsychiatric disorders. Little is known about the mechanisms of neurotoxicity of the solvents. n-Octanal, nonanal, and 2-ethyl-1-hexanol, which are used catalyzers or intermediates of chemical reactions, are released into the environment. Essential oils have the functions of self-defense, sterilization, and antibiosis in plants. When volatile organic compounds enter the body, there is the possibility that they will pass through the blood–brain barrier (BBB and affect the central nervous system (CNS. However, the direct effects of volatile organic compounds on neural function and their toxicities are still unclear. We compared the toxicities of n-octanal, nonanal and 2-ethyl-1-hexanol with those of five naturally derived fragrant organic compounds (FOCs, linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and n-phenethyl alcohol. MTT assay of human neuroblastoma SK-N-SH cells showed that the IC50 values of linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and phenethyl alcohol were 1.33, 2.3, >5, >5, and 2.39 mM, respectively, and the IC50 values of toluene, n-octanal, nonanal and 2-ethyl-1-hexanol were 850, 37.2, 8.31 and 15.1 μM, respectively. FOCs showed lower toxicities than those of VOCs. These results indicate that FOCs are safer than other compounds.

  2. Removal of chlorinated organic compounds from gas phase using electron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Bulka, S.; Zimek, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2011-07-01

    Selected chlorinated organic compounds (Cl-HC), which are emitted from coal fired power plants, waste incinerators, chemical industry etc., are very harmful to the environment and human’s health. Some of them are listed as carcinogenic compounds by USA EPA. Recent studies show that some chlorinated organic compounds are suspected to be precursors for dioxins formation. Chlorinated organic compounds decomposition in air in an electron beam (EB) generated plasma reactor technology was studied. We selected cis-dichloroethylene (cis-DCE), 1,4-dichlorobenznene(1,4-DCB), 1-chloronaphthalene as studied objects. It is found that chlorinated organic compounds can be decomposed in an electron beam generated plasma reactor. The order of decomposition efficiency of these compounds are: cis-DCE > 1,4-DCB> 1-chloronaphthalene. (author)

  3. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  4. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new

  5. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  6. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    Science.gov (United States)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  7. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  8. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  9. Preliminary study on the occurrence of brominated organic compounds in Dutch marine organisms

    NARCIS (Netherlands)

    Kotterman, M.J.J.; Veen, van der I.; Hesselingen, van J.M.; Leonards, P.E.G.; Osinga, R.; Boer, de J.

    2003-01-01

    The extracts of three marine organisms; the ascidian Ciona intestinalis, the brown seaweed Sargassum muticum and the sponge Halichondria panicea, all elicited a number of brominated compounds, some of which were tentatively identified. Tribromophenol was observed in all species. This compound, also

  10. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  11. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    that the detections reported for ground-water samples represented low-level field or laboratory contamination, and it would appear that coliphage were effectively attenuated to less than 1 PFU/100 mL over distances of several feet of transport in the La Pine aquifer and (or) overlying unsaturated zone. Organic wastewater compounds were frequently detected in onsite wastewater. Of the 63 organic wastewater compounds in the analytical schedule, 45 were detected in the 21 samples of onsite wastewater. Concentrations of organic wastewater compounds reached a maximum of 1,300 ug/L (p-cresol). Caffeine was detected at concentrations as high as 320 ug/L. Fourteen of the 45 compounds were detected in more than 90 percent of onsite wastewater samples. Fewer (nine) organic wastewater compounds were detected in ground water, despite the presence of nitrate and chloride likely from onsite wastewater sources. The nine organic wastewater compounds that were detected in ground-water samples were acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), caffeine, cholesterol, hexahydrohexamethyl-cyclopentabenzopyran, N,N-diethyl-meta-toluamide (DEET), tetrachloroethene, tris (2-chloroethyl) phosphate, tris (dichloroisopropyl) phosphate, and tributyl phosphate. Frequent detection of household-chemical type organic wastewater compounds in onsite wastewater provides evidence that some of these organic wastewater compounds may be useful indicators of human waste effluent dispersal in some hydrologic environments. The occurrence of organic wastewater compounds in ground water downgradient from onsite wastewater treatment systems demonstrates that a subgroup of organic wastewater compounds is transported in the La Pine aquifer. The consistently low concentrations (generally less than 1 ug/L) of organic wastewater compounds in water samples collected from wells located no more than 19 feet from drainfield lines indicates that the reactivity (sorption, degradation) of this suite of organic waste

  12. Charge-density matching in organic-inorganic uranyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krivovichev, S.V. [Saint Petersburg State Univ., Dept. of Crystallography, Faculty of Geology (Russian Federation); Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F. [Russian Academy of Sciences, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow (Russian Federation)

    2007-10-15

    Single crystals of [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}SeO{sub 4}){sub 0.85}(H{sub 2}O){sub 2} (1), [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}] (H{sub 2}SeO{sub 4}){sub 0.50}(H{sub 2}O) (2), and [C{sub 8}H{sub 20}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (H{sub 2}O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO{sub 7} and SeO{sub 4} polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} chains are separated by mixed organic-inorganic layers comprising from [NH{sub 3}(CH{sub 2}){sub 10}NH{sub 3}]{sup 2+} molecules, H{sub 2}O molecules, and disordered electroneutral (H{sub 2}SeO{sub 4}) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO{sub 2}(SeO{sub 4}){sub 2}]{sup 2-} sheet. The structure of 3 does not contain disordered (H{sub 2}SeO{sub 4}) groups but is based upon alternating [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH{sub 3}(CH{sub 2}){sub 7}CH{sub 3}]{sup +}. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in

  13. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    International Nuclear Information System (INIS)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J.

    2002-01-01

    New developments in molecular-level 14 C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14 C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ( 14 C-free) and natural compounds should have 'modern' or 'contemporary' 14 C levels. As a baseline study, we measured, for the first time, the 14 C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14 C-free except for the pesticide toxaphene, which had a modern 14 C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14 C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock

  14. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  15. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    Santoyo O, E.L.; Lizama S, B.E.; Vazquez A, O.; Luna C, P.C.; Arredondo H, S.

    1999-01-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m 3 and for xylene between 218-870 mg/m 3 . In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO 2 and H 2 O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  16. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.

    1993-01-01

    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  17. Organic astatine compounds, their preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasaros, L; Berei, K

    1985-01-01

    Aromatic astatine compounds of possible medical application were prepared by high energy substitutions, by astatine-halogen, and by electrophil astatine-hydrogen substitutions at the Joint Institute of Nuclear Researches, Dubna. Physico-chemical properties of organic astatine compounds such as boiling point and evaporation heat, and the refraction and dissociation energy of carbon-astatine bonds were determined experimentally by gas chromatography. The results are compared with extrapolated data. (V.N.). 41 refs.; 7 figs.; 5 tables.

  18. Detection of organic compounds with whole-cell bioluminescent bioassays.

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  19. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three

  20. Sono-catalytic degradation of organic compounds

    International Nuclear Information System (INIS)

    Navarro, N.

    2012-01-01

    Unlike aqueous effluents from the PUREX process, aqueous effluents from advanced separation processes developed to separate the minor actinides (Am, Cm) contain organic reagents in large amounts. To minimize the impact of these organic compounds on the next steps of the process, and to respect standard discharges, it is necessary to develop new techniques of degradation of organic compounds. Sono-chemistry appears as a very promising solution to eliminate organic species in aqueous nuclear effluents. Indeed, the propagation of an ultrasonic wave in a liquid medium induces the appearance of cavitation bubbles which will quickly grow and implode, causing local conditions and extreme temperatures and pressures. Each cavitation bubble can then be considered as a microreactor at high temperature and high pressure able to destroy organic molecules without the addition of specific reagents. The first studies on the effect of ultrasonic frequency on sono-luminescence and sono-lysis of formic acid have shown that the degradation of formic acid occurs at the bubble/liquid interface. The most striking difference between low-frequency and high-frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates secondary reactions not observed at 20 kHz. However, despite a much higher sono-chemical activity at high frequency, highly concentrated carboxylic acids in the aqueous effluents from advanced separation processes cannot be destroyed by ultrasound alone. To increase the efficiency of sono-chemical reactions, the addition of supported platinum catalysts has been studied. In these conditions, an increase of the kinetics of destruction of carboxylic acids such as oxalic acid is observed. (author) [fr

  1. Non-classical structures of organic compounds: unusual stereochemistry and hypercoordination

    International Nuclear Information System (INIS)

    Minkin, Vladimir I; Minyaev, Ruslan M; Hoffmann, Roald

    2002-01-01

    Non-classical structures of organic compounds are defined as molecules containing non-tetrahedral tetracoordinate and/or hypercoordinate carbon atoms. The evolution of the views on this subject is considered and the accumulated theoretical and experimental data on the structures and dynamic transformations of non-classical organic compounds are systematised. It is shown that computational analysis using the methods and the software potential of modern quantum chemistry has now acquired high predictive capacity and is the most important source of data on the structures of non-classical compounds. The bibliography includes 227 references.

  2. Instrument for Analysis of Organic Compounds on Other Planets

    Science.gov (United States)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  3. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    Science.gov (United States)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  4. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  5. Radiation Treatment of Wastewater Containing Pharmaceutical Compounds

    International Nuclear Information System (INIS)

    Takács, E.; Wojnárovits, L.; Homlok, R.; Illés, E.; Csay, T.; Szabó, L.; Rácz, G.

    2012-01-01

    High-energy ionizing radiation induced degradation of maleic acid, fumaric acid and 20 aromatic molecules was investigated in air saturated aqueous solutions. Hydroxyl radicals were generated water radiolysis. The decomposition was followed by chemical oxygen demand (COD) and total organic carbon content (TOC) measurements. Up to ∼50% decrease of COD the dose dependence was linear. By the ratio of the decrease of COD and the amount of reactive radiolysis intermediates introduced into the solution the oxidation efficiencies were calculated. Efficiencies around 0.5-1 (O 2 molecule built in products/OH) found for most of the compounds show that the one-electron-oxidant OH induces 2-4 electron oxidations. The high oxidation rates were explained by OH addition to unsaturated bonds and subsequent reactions of the dissolved O 2 with organic radicals. In amino substituted molecules or in Acid Red 1 azo dye, O 2 cannot compete efficiently with the unimolecular transformation of organic radicals and the efficiency is lower (0.2-0.5). (author)

  6. On the enrichment of hydrophobic organic compounds in fog droplets

    Science.gov (United States)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  7. Reduction of , -Unsaturated Ketones Using a Zn/NiCl System in ...

    African Journals Online (AJOL)

    NJD

    Reduction of , -Unsaturated Ketones Using a Zn/NiCl. 2. System in Aqueous Media in the Presence of Anionic and. Cationic Surfactants. Hocine Ilikti*, Tayeb Benabdallah, Kamel Bentayeb, Adil A. Othman and Zoubir Derriche. Organic Chemistry and Electrochemistry Laboratory, Department of Chemistry, Faculty of Science, ...

  8. Source apportionment of airborne particulate matter using organic compounds as tracers

    Science.gov (United States)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  9. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    Science.gov (United States)

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  12. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  13. The unsaturated bistable stochastic resonance system.

    Science.gov (United States)

    Zhao, Wenli; Wang, Juan; Wang, Linze

    2013-09-01

    We investigated the characteristics of the output saturation of the classical continuous bistable system (saturation bistable system) and its impact on stochastic resonance (SR). We further proposed a piecewise bistable SR system (unsaturated bistable system) and developed the expression of signal-to-noise ratio (SNR) using the adiabatic approximation theory. Compared with the saturation bistable system, the SNR is significantly improved in our unsaturated bistable SR system. The numerical simulation showed that the unsaturated bistable system performed better in extracting weak signals from strong background noise than the saturation bistable system.

  14. Preparation of radioactive labelled compounds Pt.1. 82Br labelled organic bromine compounds

    International Nuclear Information System (INIS)

    Otto, R.

    1988-05-01

    A simple method allowing the preparation of 82 Br labelled organic bromine compounds from olefins with chemical and radiochemical yields between 75 and 95% and the specific activities required, is described [fr

  15. Multiple QSAR models, pharmacophore pattern and molecular docking analysis for anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues

    Science.gov (United States)

    Masand, Vijay H.; El-Sayed, Nahed N. E.; Bambole, Mukesh U.; Quazi, Syed A.

    2018-04-01

    Multiple discrete quantitative structure-activity relationships (QSARs) models were constructed for the anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues with a variety of substituents like sbnd Br, sbnd OH, -OMe, etc. at different positions. A big pool of descriptors was considered for QSAR model building. Genetic algorithm (GA), available in QSARINS-Chem, was executed to choose optimum number and set of descriptors to create the multi-linear regression equations for a dataset of sixty-nine compounds. The newly developed five parametric models were subjected to exhaustive internal and external validation along with Y-scrambling using QSARINS-Chem, according to the OECD principles for QSAR model validation. The models were built using easily interpretable descriptors and accepted after confirming statistically robustness with high external predictive ability. The five parametric models were found to have R2 = 0.80 to 0.86, R2ex = 0.75 to 0.84, and CCCex = 0.85 to 0.90. The models indicate that frequency of nitrogen and oxygen atoms separated by five bonds from each other and internal electronic environment of the molecule have correlation with the anticancer activity.

  16. Some methods for labelling organic compounds by deuterium

    International Nuclear Information System (INIS)

    Moustapha, C.

    1988-01-01

    The rapid growth of knowledge in the fields of biochemistry, physiology, and molecular biology reflects to a considerable degree the utilization of stable isotopes (specially deuterium) in the study of chemical reactions and fragmentation mechanisms in mass spectrometry, as well as in the pharmacological and biological studies. Organic compounds maybe labelled by deuterium through classic organic reactions by using special deuterated solvents and reagents. This article discusses some reactions, with examples on how to prepare labelled compounds with high isotopic purety. These reactions are: exchange reactions in acid and alkaline media (the exchange in the chromatographic column in liquid and gas phases, the exchange in homogenous medium), reduction reactions of functional groups as well as saturation of the double bounds by deuterium using hydrogenation catalystes, electrochemical reactions using KOLBE, and photochemical reactions. This article also deals with spectroscopic properties of deuterium and the methods which are used to identify its compounds such as infrared, nuclear magnetic resonance, and mass spectroscopy. 37 refs., 2 figs

  17. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  18. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  19. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  20. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-03

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  1. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  2. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef

    2016-01-01

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  3. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    Mroueh, U.M.

    1988-01-01

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  4. Screening of Chlorinated Paraffins and Unsaturated Analogues in Commercial Mixtures: Confirmation of Their Occurrences in the Atmosphere.

    Science.gov (United States)

    Li, Tong; Gao, Shixiong; Ben, Yujie; Zhang, Hong; Kang, Qiyue; Wan, Yi

    2018-02-20

    Characterizing the detailed compositions of chlorinated paraffins (CPs) commercial mixtures is crucial to understand their environmental sources, fates, and potential risks. In this study, dichloromethane (DCM)-enhanced UPLC-ESI-QTOFMS analysis combined with characteristic isotope chlorine peaks is applied to screen all CPs and their structural analogues in the three most commonly produced CP commercial mixtures (CP-42, CP-52, and CP-70). Mass fractions of total short-chain CPs (SCCPs), medium-chain CPs (MCCPs) and long-chain CPs (LCCPs) ranged from 0.64 to 31.9%, 0.64 to 21.8%, and 0.04 to 43.9%, respectively, in the three commercial mixtures. 113 unsaturated SCCPs, MCCPs, and LCCPs were identified in the commercial mixtures. The detailed mass percentages of saturated and unsaturated CPs with carbon numbers of 10-30, chlorine numbers of 5-28, and unsaturated degrees of 0-7 were characterized in all commercial mixtures. Occurrences of the predominant saturated and unsaturated CPs were further confirmed in air samples collected in Guangdong Province, one of the major CP production areas in China, over one year. The profiles of the detected compounds indicated that LCCPs in air samples might come mainly from the production and usage of CP-52, and unsaturated C 24-29 -LCCPs were specifically originated from CP-70 used in the area.

  5. Semivolatile organic compounds in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W.W.

    2008-01-01

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame ret...... remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients....

  6. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  7. Sequential derivatization of polar organic compounds in cloud water using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride, N,O-bis(trimethylsilyl)trifluoroacetamide, and gas-chromatography/mass spectrometry analysis.

    Science.gov (United States)

    Sagona, Jessica A; Dukett, James E; Hawley, Harmonie A; Mazurek, Monica A

    2014-10-03

    Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks. Here, we discuss a dual derivatization method with PFBHA and BSTFA which targets only organic compounds that contain functional groups reacting with both reagents. The method also reduced potential contamination by minimizing the amount of sample processing from the field through the GCMS analysis steps. Once derivatized only gas chromatographic separation and selected ion monitoring (SIM) are needed to identify and quantify the polar organic compounds of interest. Concentrations of the detected total keto-acids in individual cloud water samples ranged from 27.8 to 329.3ngmL(-1) (ppb). Method detection limits for the individual HPOC ranged from 0.17 to 4.99ngmL(-1) and the quantification limits for the compounds ranged from 0.57 to 16.64ngmL(-1). The keto-acids were compared to the total organic carbon (TOC) results for the cloud water samples with concentrations of 0.607-3.350mgL(-1) (ppm). GCMS analysis of all samples and blanks indicated good control of the entire collection and analysis steps. Selected ion monitoring by GCMS of target keto-acids was essential for screening the complex organic carbon mixtures present at low ppb levels in cloud water. It was critical for ensuring high levels of quality assurance and

  8. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Science.gov (United States)

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  9. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  10. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  12. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M

    2018-01-01

    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  13. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  14. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)

    S. LAPPALAINEN

    2008-12-01

    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  15. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  16. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  17. Synthesis, characterization and biological evaluation of novel α, β unsaturated amides.

    Science.gov (United States)

    Esmailzadeh, K; Housaindokht, M R; Moradi, A; Esmaeili, A A; Sharifi, Z

    2016-05-15

    Three derivatives of α,β unsaturated amides have been successfully synthesized via Ugi-four component (U-4CR) reaction. The interactions of the amides with calf thymus deoxyribonucleic acid (ct-DNA) have been investigated in the Tris-HCl buffer (pH=7.4) using viscometric, spectroscopic, thermal denaturation studies, and also molecular docking. By UV-Vis absorption spectroscopy studies, adding CT-DNA to the compound solution caused the hypochromism indicates that there are interactions between the compounds and DNA base pairs. In competitive fluorescence with methylene blue as an intercalator probe, adding compounds to DNA-MB solution caused an increase in emission spectra of the complex. This could be because of compound replacing, with similar binding mode of MB, between the DNA base pairs due to release of bonded MB molecules from DNA-MB complex. Thermal denaturation studies and viscometric experiments also indicated that all three investigated compounds bind to CT-DNA by non-classical intercalation mode. Additionally, molecular docking technique predicted partial intercalation binding mode for the compounds. Also, the highest binding energy was obtained for compound 5a. These results are in agreement with results obtained by empirical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    Science.gov (United States)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  19. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  20. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  1. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  2. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  3. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong

    2018-01-01

    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  4. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  5. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    Science.gov (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  6. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  7. Biokinetics and dosimetry of radioactively labelled organic C-14 compounds

    International Nuclear Information System (INIS)

    Krins, A.; Sahre, P.; Schoenmuth, T.

    2003-12-01

    The report starts with summarising research work and the resulting scientific information in connection with the dosimetry of C-14 labelled organic compounds. Biokinetic models are developed for compounds such as benzene, phenol, aniline, nitrobenzene, and a selection of pharmaceuticals, in order to show the radioactivity distribution after administration of the C-14 labelled substances. Based on the those models, dose coefficients and excretion rates are derived. The following synoptic view of the available data library leads on to a discussion of various aspects, as eg. the question of whether and how monitoring for detection of incorporation of C-14 administered with labelled organic compounds is possible. None of the questions and aspects arising in connection with this subject can be adequately dealt with in the present document, but concepts and methods are presented which permit an interpretation of radioactivity excretion data measured after incorporation of C-14 labelled organic substances. (orig./CB) [de

  8. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Science.gov (United States)

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  9. Environmental recovery by destruction of toxic organic compounds using electron beam accelerator

    International Nuclear Information System (INIS)

    Duarte, C.L; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.

    2001-01-01

    The oxidation process has attracted many researchers because of the capacity to mineralise organic compounds. The most efficient oxidation is the use of OH radicals. There are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet (AOP - Advanced Oxidation Process). The most simple and efficient method for generating OH radicals in situ is the interaction of ionizing radiation with water. The reactive species formed by the water irradiation are the reducing radical's solvated electron and H atoms and the oxidising radical hydroxyl OH. The reactive species will react with organic compounds in the water inducing their decomposition. The use of ionizing radiation has great ecological and technologies advantages, especially when compared to physical-chemical and biological methods. It degrades organic compounds, generating substances that are easily biodegraded without the necessity of adding chemical compounds. The purpose of the radiation treatment is the conversion of these substances to biodegradable compounds; sometimes the complete decomposition is not necessary for this conversion

  10. One-Pot Synthesis of 2-Acylindole-3-acetylketones via Domino Aza-alkylation/Michael Reaction Using o-Aminophenyl α,β-Unsaturated Ketones Followed by Desulfonative Dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Reum; Yu, Mi Rim; Sim, Jong Tack; Kim, Sung Gon [Kyonggi Univ., Suwon (Korea, Republic of)

    2016-09-15

    The development of novel and practical synthetic methods with a minimum number of operations for the construction of bioactive structurally complex compounds is a major challenge in synthetic organic chemistry. Recently, we reported an efficient method for the stereoselective synthesis of 2,3-disubstituted indoline derivatives; cis-2,3-disubstituted indolines were obtained by the aza-alkylation/Michael cascade reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones in good yields and with excellent diastereoselectivities (Scheme 2, Eq. (1)). Among the available synthetic strategies, domino or cascade reactions have received wide acceptance as highly efficient and powerful methods for the synthesis of molecules with a high structural complexity. An efficient synthesis of 2,3-disubstituted indoles was developed by the domino aza-alkylation/intramolecular Michael reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones, followed by desulfonative dehydrogenation with DBU. The reaction afforded structurally diverse and highly functionalized 2,3-disubstituted indoles in moderate to excellent yields (up to 99%). The synthesis of 2,3-disubstituted indoles without desulfonation through DDQ-induced oxidative dehydrogenation was also achieved.

  11. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2004-11-26

    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  12. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  13. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  14. Radiation Treatment of Wastewater Containing Pharmaceutical Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Takács, E.; Wojnárovits, L.; Homlok, R.; Illés, E.; Csay, T.; Szabó, L.; Rácz, G. [Centre for Energy Research, Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary)

    2012-07-01

    High-energy ionizing radiation induced degradation of maleic acid, fumaric acid and 20 aromatic molecules was investigated in air saturated aqueous solutions. Hydroxyl radicals were generated water radiolysis. The decomposition was followed by chemical oxygen demand (COD) and total organic carbon content (TOC) measurements. Up to ∼50% decrease of COD the dose dependence was linear. By the ratio of the decrease of COD and the amount of reactive radiolysis intermediates introduced into the solution the oxidation efficiencies were calculated. Efficiencies around 0.5-1 (O{sub 2} molecule built in products/OH) found for most of the compounds show that the one-electron-oxidant OH induces 2-4 electron oxidations. The high oxidation rates were explained by OH addition to unsaturated bonds and subsequent reactions of the dissolved O{sub 2} with organic radicals. In amino substituted molecules or in Acid Red 1 azo dye, O{sub 2} cannot compete efficiently with the unimolecular transformation of organic radicals and the efficiency is lower (0.2-0.5). (author)

  15. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    Science.gov (United States)

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and

  16. Investigation of second-order hyperpolarizability of some organic compounds

    Science.gov (United States)

    Tajalli, H.; Zirak, P.; Ahmadi, S.

    2003-04-01

    In this work, we have measured the second order hyperpolarizability of some organic materials with (EFISH) method and also calculated the second order hyperpolarizability of 13 organic compound with Mopac6 software and investigated the different factors that affect the amount of second order hyperpolarizability and ways to increase it.

  17. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  18. Coordination compounds of rare-earth metals with organic ligands for electroluminescent diodes

    International Nuclear Information System (INIS)

    Katkova, M A; Bochkarev, Mikhail N; Vitukhnovsky, Alexey G

    2005-01-01

    Data on lanthanide coordination compounds with organic ligands used in the design of electroluminescent diodes are summarised and systematically represented. The molecular and electronic structures and spectroscopic characteristics of these compounds are considered. A comparative analysis of the properties of organic electroluminescent diodes with different compositions of emitting and conductive layers is presented.

  19. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  20. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  1. A review on chemistry of a powerful organic electron acceptor 7, 7, 8, 8, tetracynoquinodimethane (TCNQ)

    Science.gov (United States)

    Singh, Yadunath

    2018-05-01

    Organic semiconductors have so far found extensive practical applications similar to inorganic semiconductors. Interest in these compounds has been stimulated by the synthesis of several powerful electron acceptors, such as tetracynoethylene (TCNE), 7, 7, 8, 8, tetracynoquinodimethane (TCNQ) and cyno-p-benzoquinone. In this connection TCNQ is of particular interest, due to presence of four powerful electron accepting groups in its molecule. Nucleophillic addition reactions, which are rarely encountered among unsaturated compounds, as well as addition reactions proceeding via a one electron transfer stage are characteristic of this substance.

  2. Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea

    Science.gov (United States)

    Choi, A.; Lee, J.; Shin, H. J.; Lee, M.; Jin seok, H.; Lim, J.

    2016-12-01

    Organic aerosols contain thousands of organic compounds and contribute to 20%-90% of the total fine aerosol mass (Kanakidou et al., 2005). These organic aerosols originate from anthropogenic and natural (biogenic and geologic) sources and alter physical and chemical properties in the atmosphere depending on the atmospheric and meteorological conditions. About one hundred individual organic compounds in PM2.5 at Seoul (urban area) and Baengnyeong Island (remote area) were identified and quantified using gas chromatography/mass spectrometry (GC/MS) in order to understand the characteristics of organic compounds in PM2.5 at these areas. Further, major factors to determine their concentrations in the atmosphere were investigated. Organic compounds analyzed in this study were classified into six groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, fatty acids (FA), dicarboxylic acids (DCAs), and sugars. Daily variation of organic compounds concentrations at Seoul were not high, while, the concentrations of organic compounds at Baengnyeong Island showed high daily variation. This is might due to frequent change of source strength and/or SOA formation in this region. Through correlations of organic compounds with other air pollutants and factor analysis at both sites, it found that major factors (or source) for the determination of organic compounds concentrations at Seoul and Baengnyeong Island were different. The major sources at Seoul were anthropogenic sources such as vehicular emission and coal combustions, while, SOA formation and biomass burning were more attributed more to the organic compounds concentrations at Baengnyeong Island.References Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E

  3. End-group-directed self-assembly of organic compounds useful for photovoltaic applications

    Science.gov (United States)

    Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.

    2016-05-31

    The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.

  4. Halogenated organic compounds in archived whale oil: A pre-industrial record

    International Nuclear Information System (INIS)

    Teuten, Emma L.; Reddy, Christopher M.

    2007-01-01

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s

  5. Halogenated organic compounds in archived whale oil: A pre-industrial record

    Energy Technology Data Exchange (ETDEWEB)

    Teuten, Emma L. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: emma.teuten@plymouth.ac.uk; Reddy, Christopher M. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: creddy@whoi.edu

    2007-02-15

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s.

  6. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    Science.gov (United States)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  7. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Leachate movement through unsaturated sand at a low-level radioactive-waste disposal site in northwestern Illinois

    International Nuclear Information System (INIS)

    Mills, P.C.; Devries, M.P.

    1988-01-01

    Movement of radionuclides and volatile organic compounds in soil water (leachate) were examined in an unsaturated sand deposit immediately underlying trenches at a low-level radioactive-waste disposal site near Sheffield, Illinois. Physical and hydraulic properties of the 2.0- to 8.0-meter thick sand deposit were defined from core samples. Soil-water samples were collected from 16 gravity lysimeters and 1 vacuum lysimeter from September 1986 through October 1987. Preliminary results include the following: Tritium, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, nonhalogenated aromatic hydrocarbons, and methyl esters were detected in the soil water. Gross alpha and gross beta concentrations were detected at background levels. Tritium flux through the gravity lysimeters ranged from 0.18 to 1.74 microcuries per year and totaled 5.14 microcuries per year. In most locations, soil-water movement occurred as slow, steady, unsaturated flow; more rapid saturated flow occurred along isolated, narrow (less than 1 square millimeter), vertical flow paths. The homogeneous texture and hydraulic properties of the sand deposit imply that the location of flow paths primarily is dependent on the locations of water entry into, and flow paths within, the void-rich trenches. The timing of water movement through the saturated pathways in the sand deposit was influenced, in part, by individual precipitation events and seasonal climatic trends. Changes in tritium concentration were attributable to changes in soil-water flux and to apparent deterioration of waste containers within the trenches

  9. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  10. Influence of organic nitro-compounds and of surface active compounds on the inverse voltametric determination of cadmium, lead and copper

    Energy Technology Data Exchange (ETDEWEB)

    Wahdat, F; Neeb, R

    1983-12-01

    The influence of surface active agents and of organic nitro-compounds alone and in combination on the potentiometric stripping analysis and anodic-stripping differential-pulse-polarography of Cd, Pb and Cu is investigated. In some cases PSA offers advantages for the determination of these elements in the presence of organic nitro-compounds in comparison with differential pulse-polarography.

  11. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  12. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).

    Science.gov (United States)

    Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier

    2016-01-01

    Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. N-doping of organic semiconductors by bis-metallosandwich compounds

    Science.gov (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  14. Using the properties of organic compounds to help design a treatment system

    International Nuclear Information System (INIS)

    Nyer, E.; Boettcher, G.; Morello, B.

    1991-01-01

    The author provides the physical/chemical and treatability properties of 50 organic compounds. The physical/chemical parameters of the compounds can be used to help evaluate data generated during remedial investigations. The treatability parameters can be used as a basis for the preliminary design of a treatment system that will remove organic compounds from ground water. The main physical/chemical properties that should be evaluated prior to design are solubility, specific gravity, and octanol/water coefficient. Based on this determination, the treatability is determined for carbon adsorption and biodegradability

  15. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    OpenAIRE

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-01-01

    A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated vol...

  16. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-12-01

    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  17. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  18. [Research on source profile of aerosol organic compounds in leather plant].

    Science.gov (United States)

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan

    2009-04-15

    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  19. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  20. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    Science.gov (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  1. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  2. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  3. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  4. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  5. A microfluidic device for open loop stripping of volatile organic compounds.

    Science.gov (United States)

    Cvetković, Benjamin Z; Dittrich, Petra S

    2013-03-01

    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  6. Azo compounds as a family of organic electrode materials for alkali-ion batteries.

    Science.gov (United States)

    Luo, Chao; Borodin, Oleg; Ji, Xiao; Hou, Singyuk; Gaskell, Karen J; Fan, Xiulin; Chen, Ji; Deng, Tao; Wang, Ruixing; Jiang, Jianjun; Wang, Chunsheng

    2018-02-27

    Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g -1 at 0.5 C (corresponding to current density of 95 mA g -1 ) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

  7. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  8. Nitrosonium complexes of organic compounds. Structure and reactivity

    International Nuclear Information System (INIS)

    Borodkin, Gennady I; Shubin, Vyacheslav G

    2001-01-01

    Data on the structures and reactivities of nitrosonium complexes of organic compounds are systematised and generalised. The characteristic features of the electronic structure of the NO + cation are responsible for a wide structural variety of nitrosonium complexes. Reactions of nitrosonium complexes are described. The bibliography includes 172 references.

  9. Removal of volatile organic compounds by a high pressure microwave plasma torch

    International Nuclear Information System (INIS)

    Rubio, S.J.; Quintero, M.C.; Rodero, A.; Alvarez, R.

    2004-01-01

    A helium microwave plasma torch was studied and optimised as a destruction system of volatile organic compounds. Attention was focused on trichloroethylene as a prototypical volatile organic compound, which is used technologically and which poses known health risks. The dependence of the destruction efficiency on the plasma conditions was obtained for different values of trichloroethylene concentrations. The results show a destruction and removal efficiency greater than 99.999% (Authors)

  10. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan; Chi, Qijin; Mortensen, Ninell P.; Qu, Di; Molin, Soren; Ulstrup, Jens

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  11. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: ju@kemi.dtu.dk [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-07-15

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  12. Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters.

    Science.gov (United States)

    Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu

    2018-08-01

    There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018

  13. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  14. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  15. Estimation of the vaporization heat of organic liquids. Pt. 3

    International Nuclear Information System (INIS)

    Ducros, M.; Sannier, H.

    1982-01-01

    In our previous publications it has been shown that the method of Benson's group permits the estimation of the enthalpies of vaporization of organic compounds. In the present paper we have applied this method for unsaturated hydrocarbons, thus completing our previous work on acyclic alkenes. For the alkylbenzenes we have changed the values of the groups C-(Csub(b))(C)(H) 2 and C-(Csub(b))(C) 2 (H) previously determined. A more accurate value for the enthalpies of vaporization of the alkylbenzenes of higher molecular weight is obtained. (orig.)

  16. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  17. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  18. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  19. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    Science.gov (United States)

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  20. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Meier, Robert J.; Sin, Gürkan

    2013-01-01

    through better correlation of data. For parameter estimation, a data-set containing 861 experimentally measured values of a wide variety of organic compounds (hydrocarbons, oxygenated compounds, nitrogenated compounds, multi-functional compounds, etc.) is used. The developed property model for Δf...

  1. Destructive hydrogenation; dehydrogenation and dehydrogenation processes; purifying oils; polynuclear organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1934-02-08

    Unitary organic compounds containing four or more nuclei are recovered from the high boiling fractions of destructive hydrogenation products of bituminous, resinous, or ligneous materials. Cooling, precipitation, crystallization, selective dissolution and distillation are some of the techniques discussed. These techniques may also be applied to the recovery of polynuclear compounds.

  2. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.

    1989-01-01

    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  3. Identifying bioaccumulative halogenated organic compounds using a nontargeted analytical approach: seabirds as sentinels.

    Directory of Open Access Journals (Sweden)

    Christopher J Millow

    Full Text Available Persistent organic pollutants (POPs are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS to characterize halogenated organic compounds (HOCs in California Black skimmer (Rynchops niger eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenylmethane (TCPM, tris(4-chlorophenylmethanol (TCPMOH, triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP, as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants.

  4. Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds.

    Science.gov (United States)

    Lee, Hongshin; Kim, Hyoung-Il; Weon, Seunghyun; Choi, Wonyong; Hwang, Yu Sik; Seo, Jiwon; Lee, Changha; Kim, Jae-Hong

    2016-09-20

    This study introduces graphited nanodiamond (G-ND) as an environmentally friendly, easy-to-regenerate, and cost-effective alternative catalyst to activate persulfate (i.e., peroxymonosulfate (PMS) and peroxydisulfate (PDS)) and oxidize organic compounds in water. The G-ND was found to be superior for persulfate activation to other benchmark carbon materials such as graphite, graphene, fullerene, and carbon nanotubes. The G-ND/persulfate showed selective reactivity toward phenolic compounds and some pharmaceuticals, and the degradation kinetics were not inhibited by the presence of oxidant scavengers and natural organic matter. These results indicate that radical intermediates such as sulfate radical anion and hydroxyl radical are not majorly responsible for this persulfate-driven oxidation of organic compounds. The findings from linear sweep voltammetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and electron paramagnetic resonance spectroscopy analyses suggest that the both persulfate and phenol effectively bind to G-ND surface and are likely to form charge transfer complex, in which G-ND plays a critical role in mediating facile electron transfer from phenol to persulfate.

  5. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  6. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  7. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M. [Process Safety and Environmental Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308 (Australia); Dlugogorski, Bogdan Z., E-mail: Bogdan.Dlugogorski@newcastle.edu.au [Process Safety and Environmental Protection Research Group, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2011-03-15

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography ({mu}GC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  8. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    International Nuclear Information System (INIS)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M.; Dlugogorski, Bogdan Z.

    2011-01-01

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography (μGC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  9. Purgeable Organic Compounds in Water At or Near the Idaho National Engineering Laboratory, Idaho, 1992-95

    Energy Technology Data Exchange (ETDEWEB)

    Greene, M.R.; Tucker, B.J.

    1998-06-01

    Water samples from 54 wells and 6 surface-water sites at or near the Idaho National Engineering Laboratory were analyzed for 63 purgeable organic compounds during 1992-95. The samples were collected and analyzed as a continuation of water-quality studies initiated in 1987 and conducted by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. Water from 53 of the wells comes from the Snake River Plain aquifer. The remaining well was completed in a perched water zone above the Snake River Plain aquifer. Water samples from 23 wells completed in the Snake River Plain aquifer contained detectable concentrations of at least 1 of 14 selected purgeable organic compounds. The most commonly detected compounds were carbon tetrachloride, chloroform, 1,1,1-trichloroethane, and trichloroethylene. The concentrations of most compounds were less than the laboratory reporting levels. The water sample from the perched zone contained detectable concentrations of 18 purgeable organic compounds. This report summarizes concentrations of purgeable organic compounds concentrations of purgeable organic compounds detected in water samples collected during 1992-95. A total of 270 water samples were collected from 54 wells and 6 surface-water sites.

  10. Classical endocannabinoid-like compounds and their regulation by nutrients

    DEFF Research Database (Denmark)

    Kleberg, Karen; Hassing, Helle A.; Hansen, Harald S.

    2014-01-01

    Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols......, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role...

  11. Synthesis of polyhydroxylated compounds from Derythrose: enzymatic inhibition studies

    OpenAIRE

    Noro, Jennifer Martins

    2015-01-01

    Dissertação de mestrado em Química Medicinal This thesis is divided into two parts. At first, two starting synthon compounds were obtained: the benzylidene acetal D-erythrose aldehyde and the unsaturated lactone derived from this aldehyde. Both compounds were obtained following methods reported in the literature. The first part of the work focuses on aldehyde reactions with different primary aliphatic amines, yielding the respective imines. These were reduced to afford the ...

  12. Differential effects of organic compounds on cucumber damping-off and biocontrol activity of antagonistic bacteria

    DEFF Research Database (Denmark)

    Li, Bin; Ravnskov, Sabine; Guanlin, X.

    2011-01-01

    The influence of the organic compounds tryptic soy broth, cellulose, glucose and chitosan on cucumber damping-off caused by Pythium aphanidermatum and biocontrol efficacy of the biocontrol agents (BCAs) Paenibacillus macerans and P. polymyxa were examined in a seedling emergence bioassay. Results...... showed that the organic compounds differentially affected both pathogen and BCAs. Tryptic soy broth, glucose and chitosan increased Pythium damping-off of cucumber, compared to the control treatment without organic compounds, whereas cellulose had no effect. Both Paenibacillus species had biocontrol...

  13. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-01-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  14. Method for the detection and isolation of traces of organic fluorine compounds in plants

    Energy Technology Data Exchange (ETDEWEB)

    Wade, R H; Ross, J M; Benedict, H M

    1964-01-01

    A method for the detection and isolation of sub-microgram quantities of organic fluorine compounds from plant materials in the presence of much larger amounts of inorganic fluoride is presented. The procedure consists first of a rapid screening step for use with large numbers of vegetable samples and extracts and, second, of a chromatographic step to isolate and characterize any fluoro-organics found. These methods are developed in light of specific chemical characteristics of organic fluorine compounds as a general class. A modification of SOEP's quantitative sub-micro fluoride analytical method is presented as applicable to these isolation methods. Microgram quantities of organic fluorine compounds were found in the plant materials investigated but at a level too low for isolation and identification.

  15. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  16. Deuterium labelling studies with unsaturated acids and nitriles

    International Nuclear Information System (INIS)

    Desai, U.V.; Mane, R.B.

    1986-01-01

    α-Deuteriated α,β-unsaturated acids have been prepared by Knoevenagel condensation of aldehydes with deuteriated malonic acid. The decarboxylation of α,β-unsaturated cyano acid with pyridine/D 2 O yields α- and γ-labelled nitriles. The deuterium incorporation is studied by pmr spectroscopy. (author). 8 refs

  17. Effect of fouling on removal of trace organic compounds by nanofiltration

    Directory of Open Access Journals (Sweden)

    S. Hajibabania

    2011-12-01

    Full Text Available The fate of chemical of concern is not yet fully understood during treatment of impaired waters. The aim of this paper is to assess the impact of different organic-based fouling layers on the removal of a large range of trace organics. Both model and real water samples (mixed with trace organic contaminants at environmental concentration of 2 μg l−1 were used to simulate fouling in nanofiltration under controlled environment. The new and fouled membranes were systematically characterised for surface charge, hydrophobicity and roughness. It was observed that fouling generally reduced the membrane surface charge; however, the alterations of the membrane hydrophobicity and surface roughness were dependent on the foulants composition. The rejection of charged trace organics was observed to be improved due to the increased electrostatic repulsion by fouled membranes and the adsorption of the trace organic chemicals onto organic matters. On the other hand, the removal of nonionic compounds decreased when fouling occurred, due to the presence of cake enhanced concentration polarization. The fouling layer structure was found to play an important role in the rejection of the trace organic compounds.

  18. Stereo-controlled synthesis of polyheterocycles via the diene-transmissive hetero-Diels-Alder reaction of β,γ-unsaturated α-keto esters.

    Science.gov (United States)

    Otani, Takashi; Tamai, Yumiko; Seki, Kazunori; Kikuchi, Tomohiro; Miyazawa, Taiichiro; Saito, Takao

    2015-06-07

    We describe the stereoselective synthesis of polyring-fused heterocyclic compounds based on diene-transmissive hetero-Diels-Alder reactions utilizing β,γ-unsaturated α-keto esters. This protocol involves the initial endo- or exo-selective Diels-Alder (DA) reactions with electron-rich dienophiles, methylenation of the ester carbonyl groups with the Tebbe reagent, and a stereoselective second DA reaction with electron-deficient dienophiles. The use of enantioselective DA reactions in the initial reaction enables access to chiral polyring-fused heterocyclic compounds with multiple chiral centres.

  19. Vertical hydrochemical profiles in the unsaturated zone of louga ...

    African Journals Online (AJOL)

    Solutions chemistry of the rainwater and the unsaturated zone interstitial water of Louga (Northern Senegal) local aquifer provide valuable ... together with chemical analysis of the interstitial water carried out through the entire unsaturated ...

  20. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  1. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  2. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  3. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    Science.gov (United States)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including

  4. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  5. Application of organic compounds for high-order harmonic generation of ultrashort pulses

    Science.gov (United States)

    Ganeev, R. A.

    2016-02-01

    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  6. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  7. Two new POMOF compounds constructed from polyoxoanions, metals and organic ligands

    Science.gov (United States)

    Xiao, Li-Na; Zhang, Hao; Zhang, Ting-Ting; Zhang, Xiao; Cui, Xiao-Bing

    2018-03-01

    Two new POMOF compounds, namely [PMo12V2O42][Cu3(4,4'-bpy)3]·(DABCO) (1) and [PMo10V4O42][Cu2(4,4'-bpy)2][Cu(phen)2]2 (2) (DABCO = triethylenediamine, bpy = bipyridine, phen = 1,10-phenanthroline)), have been synthesized and characterized by IR, UV-Vis, XRD, elemental analysis and X-ray diffraction analysis. Crystal structure analyses reveal that compounds 1 and 2 exhibit novel 2-D layered framework structures constructed from bi-capped Keggin molybdenum-vanadium polyoxoanions, metals and organic ligands, respectively. The main difference of the two compounds is that compound 2 contains both Cu2+ and Cu+ complexes. In addition, we also investigate the catalytic properties of the two compounds, both compound 1 and 2 are excellent catalysts for the epoxidation of styrene.

  8. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    Science.gov (United States)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on

  9. Special syntheses of certain organic iodine compounds

    International Nuclear Information System (INIS)

    Henry, R.; Debuchy, D.; Junod, E.

    1960-01-01

    The technical difficulties encountered in working on radioactive products force us to choose the simplest methods of chemical synthesis possible. For iodine compounds, two special methods have been chosen: - by using fission recoil, we can prepare simple iodine compounds such as iodobenzene or methyl iodide in high yields and having a good degree of purity. The method consists in the irradiation of mixtures of uranium oxide and benzoic acid or ammonium acetate. The iodised product is separated by distillation, after dissolving the recoil medium in a solvent. - by isotopic exchange between the inorganic iodine of different valencies and complex molecules such as Bengal pink, and diodone, it is also possible to obtain satisfactory labelling yields. These reactions have been adapted so as to give a minimum time for isotopic exchange. In the case of Bengal pink, we have found a yield of 90 per cent after 60 minutes by exchange between Nal and the organic molecule in aqueous solution in presence of hydrogen peroxide. For diodone the method proposed by Liebster has been modified so as to reduce losses during purification. The analytical methods adopted for these different compounds are described. (author) [fr

  10. An Efficient Procedure Based on a MW-Assisted Horner–Wadsworth-Emmons Reaction for the Synthesis of (Z-3,3-Trisubstituted-a,b-unsaturated Esters

    Directory of Open Access Journals (Sweden)

    Ornella Azzolina

    2010-08-01

    Full Text Available A microwave-assisted HWE olefination process of readily accessible aryl-alkyl ketones has been developed to provide a rapid access to (Z-3,3-trisubstituted-α,β-unsaturated methyl esters, key building blocks for the synthesis of biologically active compounds.

  11. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (organic compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  12. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  13. Effects of organic compounds on actinoid transfer in natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Senoo, Muneaki; Nagao, Seiya; Sakamoto, Yoshiaki

    1996-01-01

    For safety evaluation of geological disposal of radioactive wastes, it seems necessary to elucidate the geological transfer of radioactive nuclides in the soil and the undersea sediments. It has been known that there exist various organic compounds highly potential to form a complex with TRU elements, uranium, copper etc. in the soil and the sediments and those compounds may play an important role for geological transfer of nuclides. In this study, fluorescent substances contained in underground and river water were focused as the measures to identify the molecular species of organic compounds in natural water and their interactions with radionuclides and minor metals, and their geological transfers were investigated. Spectrophotometric properties of humic acid obtained in the market were examined. Its fluorescent intensity was strongest at pH 10 and stable for 2 weeks or more. Then, highly polluted river water was taken from Yamato river to determine the contents of humic acid and other fluorescent substances. Further, the effects of the additions of Cu and Fe on the fluorescent intensity were examined. (M.N.)

  14. Seismic response of earth dams considering dynamic properties of unsaturated zone

    Directory of Open Access Journals (Sweden)

    Ariyan M.

    2016-01-01

    Full Text Available It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC. Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

  15. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  16. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  17. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  18. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  19. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218 PoO 2 + ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218 PoO 2 + ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218 PoO 2 + ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  20. Effects and mechanistic aspects of absorbing organic compounds by coking coal.

    Science.gov (United States)

    Ning, Kejia; Wang, Junfeng; Xu, Hongxiang; Sun, Xianfeng; Huang, Gen; Liu, Guowei; Zhou, Lingmei

    2017-11-01

    Coal is a porous medium and natural absorbent. It can be used for its original purpose after adsorbing organic compounds, its value does not reduce and the pollutants are recycled, and then through systemic circulation of coking wastewater zero emissions can be achieved. Thus, a novel method of industrial organic wastewater treatment using adsorption on coal is introduced. Coking coal was used as an adsorbent in batch adsorption experiments. The quinoline, indole, pyridine and phenol removal efficiencies of coal adsorption were investigated. In addition, several operating parameters which impact removal efficiency such as coking coal consumption, oscillation contact time, initial concentration and pH value were also investigated. The coking coal exhibited properties well-suited for organics' adsorption. The experimental data were fitted to Langmuir and Freundlich isotherms as well as Temkin and Redlich-Peterson (R-P) models. The Freundlich isotherm model provided reasonable models of the adsorption process. Furthermore, the purification mechanism of organic compounds' adsorption on coking coal was analysed.

  1. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  2. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  3. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  4. EFFECT OF COMPLEX ORGANIC COMPOUNDS ON GROWTH PLANLET OF DENDROBIUM ORCHID

    Directory of Open Access Journals (Sweden)

    Sitti Raodah Garuda

    2015-01-01

    Full Text Available Uniqueness of stunning Dendrobium variety such as shapes, colors, and sizes are main attraction of this plant. Germination oforchid seeds can be carried out in a laboratory with in vitro techniques.Medium used for germination of orchid seeds are Vacin and Went medium. Researcher stried to add other substances that may increase growth explants, such as complex organic compounds. Study aims to determine effect of complex organic compounds into growth medium VW Dendrobium plantlets. Research used complete randomized design consist five treatment:VW medium without extract (control, VW medium+banana extract, VW medium+ melon extrac, VW medium+guava extract and VW medium+pepaya extract, with three replications, each replication consist two culture bottles.. Each culture bottle planted four planlets. Addition of complex organic compounds such as melon extract gave best vegetative growth of leaves quantity, roots quantity, root length and fresh weight. While guava extract provide best results to plantlet high and saplings. Plant lets with melon extract treatment showed appearance of muscular orchid plantlets is characteristic of plants that can survive during acclimatization. While both guava extract is best used for purpose of orchid plantlets regeneration.

  5. Quantitative prediction of solvation free energy in octanol of organic compounds.

    Science.gov (United States)

    Delgado, Eduardo J; Jaña, Gonzalo A

    2009-03-01

    The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  6. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  7. Microbial degradation of water-insoluble organic compounds

    International Nuclear Information System (INIS)

    Thomas, J.M.

    1985-01-01

    The effect of solubilization on biodegradation of water-insoluble organic compounds was investigated. The effect of particle size on solubilization and degradation of 4-chlorobiphenyl (4-CB) and naphthalene by a microbial mixture was determined. The concentration of soluble compound was determined using gas-liquid chromatography. The rates of solubilization were inversely related to particle size for both compounds. The rates of mineralization of 14 C-labeled palmitic acid, octadecane, di(2-ethylhexyl)phthalate (DEHP), and Sevin (1-naphthyl N-methylcarbamate) by microbial mixtures were determined by trapping the 14 CO 2 formed, and those rates were compared to solubilization rates determined by periodically filtering sterile MS amended with one of the compounds. Mineralization and colonization of the surface of 10 μg palmitic acid per 10 ml MS by Pseudomonas pseudoflava was determined by trapping 14 CO 2 and epifluorescence microscopy. Mineralization began before colonization and was initially exponential, but the rate then declined. The rate of mineralization at the end of the exponential phase approximated the rate of solubilization. The surface was completely covered about the time mineralization stopped. Unbound cells grew exponentially before colonization was detected; however, colonization of the surface was complete after the number of free cells stopped increasing. The data suggest that soluble palmitic acid is utilized before the insoluble phase but colonization is important in the mineralization of palmitic acid when solubilization becomes rate limiting

  8. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  9. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.

    1985-01-01

    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  10. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    Science.gov (United States)

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation of radioactive labelled compounds. Pt. 2. 82Br labelled organic bromine compounds by isotopic exchange

    International Nuclear Information System (INIS)

    Otto, R.

    1988-05-01

    Studies on isotopic exchange between organic bromine compounds and 82 Br labelled dioxane dibromide in the presence of AlCl 3 are described. The results obtained enable to develop a simple and quick preparation method for the labelling with 82 Br [fr

  12. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  13. Determination of organic compounds in water using ultraviolet LED

    Science.gov (United States)

    Kim, Chihoon; Ji, Taeksoo; Eom, Joo Beom

    2018-04-01

    This paper describes a method of detecting organic compounds in water using an ultraviolet LED (280 nm) spectroscopy system and a photodetector. The LED spectroscopy system showed a high correlation between the concentration of the prepared potassium hydrogen phthalate and that calculated by multiple linear regression, indicating an adjusted coefficient of determination ranging from 0.953-0.993. In addition, a comparison between the performance of the spectroscopy system and the total organic carbon analyzer indicated that the difference in concentration was small. Based on the close correlation between the spectroscopy and photodetector absorbance values, organic measurement with a photodetector could be configured for monitoring.

  14. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no later than...

  15. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  16. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    Science.gov (United States)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep

  17. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S....... epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...... air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...

  18. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen, E-mail: xuchen66@tamu.edu [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States); Chen, Hongmei [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Sugiyama, Yuko [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); University of Hyogo, 1-1-12, Shinzaike-honcho, Himeji, Hyogo 670-0092 (Japan); Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Chuang, Chia-ying; Schwehr, Kathleen A. [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Yeager, Chris [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Roberts, Kimberly A. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Hatcher, Patrick G. [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Santschi, Peter H. [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States)

    2013-04-01

    Major fractions of radioiodine ({sup 129}I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios (< 0.2 or < 0.4) and yet some degree of un-saturation close to that of lignin, have multiple important environmental implications concerning possibly less sterically-hindered aromatic ring system for iodine to get access to and a lower hydrophilicity of the molecules thus to retard their migration in the natural aquatic systems. Lastly, ∼ 69% of the identified organo-iodine species contains nitrogen, which is presumably present as -NH{sub 2} or -HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on {sup 129}I migration. Highlights: ► IO{sub 3}{sup

  19. Global simulation of aromatic volatile organic compounds in the atmosphere

    Science.gov (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  20. Publicly available models to predict normal boiling point of organic compounds

    International Nuclear Information System (INIS)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos; Brunel, Damien Bernard; Rivollet, Fabien; Varnek, Alexandre

    2013-01-01

    Quantitative structure–property models to predict the normal boiling point (T b ) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T b varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (http://infochim.u-strasbg.fr/webserv/VSEngine.html)

  1. Crystallization of an organic compound from an ionic liquid using carbon dioxide as anti-solvent

    NARCIS (Netherlands)

    Kroon, M.C.; Toussaint, V.A.; Shariati - Sarabi, A.; Florusse, L.J.; Spronsen, van J.; Witkamp, G.J.; Peters, C.J.

    2008-01-01

    In this paper the anti-solvency behavior of supercritical carbon dioxide (CO2) as a way to recover an organic compound from an ionic liquid by crystallization is explored. As an example, the conditions for crystallization of the organic compound methyl-(Z)-a-acetamido cinnamate (MAAC) from the ionic

  2. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  3. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic

  4. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  5. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    Science.gov (United States)

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  6. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  7. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  8. Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003

    Science.gov (United States)

    Schalk, Charles W.; Tornes, Lan

    2005-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.

  9. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    Science.gov (United States)

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  10. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  11. Separation of polar compounds using a flexible metal-organic framework

    NARCIS (Netherlands)

    Motkuri, R.K.; Thallapally, P.K.; Annapureddy, H.V.R.; Dang, L.X.; Krishna, R.; Nune, S.K.; Fernandez, C.A.; Liu, J.; McGrail, B.P.

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds (propanol isomers) by exploiting the differences in the saturation capacities of the constituents. Transient breakthrough simulations show that these

  12. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs.

    Science.gov (United States)

    Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L

    1999-01-01

    The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.

  13. Formation of highly oxygenated organic molecules from aromatic compounds

    Science.gov (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  14. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni

    2018-02-01

    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  15. The fight against Volatile Organic Compounds (VOC)

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper strikes the balance of the fight against organic volatile compounds emissions in France and in Europe. The first part describes the influence of VOC on production of Ozone in troposphere and gives numerical data on permissive emission values in atmosphere. The second part describes french and european policy and regulations. The third part gives the principle methods and devices for COV measurement in the atmosphere. In the last part, effluents treatment is given: thermal incineration, catalytic incineration, adsorption on active carbon, biologic purification, condensation and separative processes on membrane

  16. MECHANICAL AND THERMAL PROPERTIES OF COMPOSITES FROM UNSATURATED POLYESTER FILLED WITH OIL PALM ASH

    Directory of Open Access Journals (Sweden)

    M.S. Ibrahim

    2012-06-01

    Full Text Available Oil palm ash (OPA is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA composites. The effect of different volume fractions, i.e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA and differential scanning calorimetric (DSC. Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM analysis were the extension of mechanical and thermal tests.

  17. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  18. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  19. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric..., 2009, which excludes these compounds from the regulatory VOC definition. This action is being taken...

  20. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  1. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  2. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B. M.; Hsiao, M. C.; Bardsley, J. N.; Merritt, B. T.; Vogtin, G. E.; Kuthi, A.; Burkhart, C. P.; Bayless, J. R.

    1997-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process.There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non- thermal plasma processing of volatile organic compounds. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the volatile organic compounds. This paper will present results from basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of volatile organic compounds. (authors)

  3. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.

    2009-01-01

    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  4. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  5. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  6. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo

    2001-07-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  7. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  8. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  9. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sílvio Terra Stefanello

    2015-01-01

    Full Text Available Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS, is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are β-selenoamines 1-phenyl-3-(p-tolylselanylpropan-2-amine (C1 and 1-(2-methoxyphenylselanyl-3-phenylpropan-2-amine (C2 and analogs of DPDS 1,2-bis(2-methoxyphenyldiselenide (C3 and 1,2-bisp-tolyldiselenide (C4. Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 μM and heat shock (35 °C. Moreover, we evaluated C. elegans behavior, GST-4::GFP (glutathione S-transferase expression and the activity of acetylcholinesterase (AChE. All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in C. elegans. Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

  10. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  11. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  12. A framework for the behaviour of unsaturated expansive clays

    International Nuclear Information System (INIS)

    Gens, A.; Alonso, E.E.

    1992-01-01

    The paper presents a framework for describing the mechanical behaviour of unsaturated expansive clays. It is an extension of an existing formulation developed for unsaturated soils of low activity. The extended framework is based on the distinction within the material of a microstructural level where the basic swelling of the active minerals takes place, and a macrostructural level responsible for major structural rearrangements. Bu adopting simple assumptions concerning the coupling between the two levels, it is possible to reproduce major features of the behaviour of unsaturated expansive clays. Some selected qualitative comparisons between model predictions and experimental results reported in the literature are presented. Despite the simplified hypotheses made, a very encouraging agreement is obtained

  13. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater

    DEFF Research Database (Denmark)

    Baun, Anders; Eriksson, Eva; Ledin, Anna

    2006-01-01

    The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICHmethod is illustrated as a funnel fitted with different filters...... in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals...... with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks....

  14. Factors Effecting the Total Volatile Organic Compound (TVOC Concentrations in Slovak Households

    Directory of Open Access Journals (Sweden)

    Ľudmila Mečiarová

    2017-11-01

    Full Text Available Thirty five Slovak households were selected for an investigation of indoor environmental quality. Measuring of indoor air physical and chemical factors and a questionnaire survey was performed during May 2017. The range of permissible operative temperature was not met in 11% of objects. Relative humidity met the legislative requirements in all monitored homes. Concentrations of total volatile organic compounds (TVOCs were significantly higher in the apartments than in the family houses. The average TVOC levels in the apartments and family houses were 519.7 µg/m3 and 330.2 µg/m3, respectively. Statistical analysis confirmed the effect of indoor air temperature, relative humidity and particulate matter (PM0.5 and PM1 on the levels of TVOCs. Higher TVOC levels were observed also in homes where it is not a common practice to open windows during cleaning activities. Other factors that had a statistically significant effect on concentrations of volatile organic compounds were heating type, attached garage, location of the apartment within residential building (the floor, as well as number of occupants. Higher TVOC concentrations were observed in indoor than outdoor environment, while further analysis showed the significant impact of indoor emission sources on the level of these compounds in buildings. The questionnaire study showed a discrepancy between objective measurement and subjective assessment in the household environment, and pointed to insufficient public awareness about volatile organic compounds (VOCs.

  15. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  16. Compounds formed by treatment of corn (Zea mays) with nitrous acid.

    Science.gov (United States)

    Archer, M C; Hansen, T J; Tannenbaum, S R

    1980-01-01

    Nitrohexane has been identified as a major product formed following treatment of corn (Zea mays) with nitrous acid. Preliminary evidence suggests that another compound isolated from the nitrosated corn is an unsaturated nitrolic acid. As an aid to the analysis of N-nitro compounds, we have characterized the response of a chemiluminescence detector (Thermal Energy Analyzer) as a function of pyrolysis chamber temperature for several nitrosamines and for an aliphatic C-nitroso compound, an aromatic C-nitro compound, a nitramine and an alkyl nitrite. The response-temperature profiles are valuable in distinguishing among the various compounds and in optimizing the sensitivity of the detector for use in chromatography. Other tests, including photolysis and stability toward nitrite-scavenging reagents, further aid in distinguishing among the various compounds.

  17. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  18. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Brault, A.; Chevalier, G.; Kerfanto, M.; Loyer, H.

    1983-04-01

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 850 0 C [fr

  19. Insights into the attenuated sorption of organic compounds on black carbon aged in soil.

    Science.gov (United States)

    Luo, Lei; Lv, Jitao; Chen, Zien; Huang, Rixiang; Zhang, Shuzhen

    2017-12-01

    Sorption of organic compounds on fresh black carbons (BCs) can be greatly attenuated in soil over time. We examined herein the changes in surface properties of maize straw-derived BCs (biochars) after aged in a black soil and their effects on the sorptive behaviors of naphthalene, phenanthrene and 1,3-dinitrobenzene. Dissolved fulvic and humic acids extracted from the soil were used to explore the role of dissolved organic carbon (DOC) in the aging of biochars. Chromatography analysis indicated that DOC molecules with relatively large molecular weight were preferentially adsorbed on the biochars during the aging processes. DOC sorption led to blockage of the biochar's micropores according to N 2 and CO 2 adsorption analyses. Surface chemistry of the biochars was also substantially modified, with more O-rich functional groups on the aged biochars compared to the original biochars, as evidenced by Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The changes in both the physical and chemical surface properties of biochars by DOC led to significant attenuation of the sorption capacity and nonlinearity of the nonionic organic compounds on the aged biochars. Among the tested organic compounds, phenanthrene was the most attenuated in its sorption by the aging treatments, possibly because of its relatively large molecular size and hydrophobicity. The information can help gain a mechanistic understanding of interactions between BCs and organic compounds in soil environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Identification of organic compounds migrating from polyethylene pipelines into drinking water

    DEFF Research Database (Denmark)

    Brocca, D.; Arvin, Erik; Mosbæk, Hans

    2002-01-01

    A study of the diffusion of organic additives from four polyethylene (PE) materials into drinking water was conducted. Various structures of organic chemicals were identified in the water extracts by means of gas chromatography–mass spectrometry analysis. Most of them presented a basic common......, in order to investigate the origin of the chemicals detected in the water samples. Consequently, the presence of some of the compounds was attributed to impurities or by-products of typical phenolic additives used as antioxidants in pipeline production. Finally, the occurrence of the identified chemicals...... was tested under field conditions, i.e. in water samples from newly installed pipelines in a distribution system. Here, the presence of three of the compounds identified in vitro was detected. r 2002 Elsevier Science Ltd. All rights reserved....

  1. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review

    Science.gov (United States)

    Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia

    2018-01-01

    Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.

  2. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-01-01

    Full Text Available Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol, small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

  3. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  4. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    Suominen, K.; Verta, M.; Marttinen, S.

    2014-01-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  5. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: kimmo.suominen@evira.fi [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  6. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  7. Investigation of Vertical Migration of Pollutants through the Unsaturated Zone Using Stable Isotopes and Trace Elements

    International Nuclear Information System (INIS)

    Ahmed, M.A.

    2012-01-01

    Vertical migration of pollutants through unsaturated zone is a complicated process and is affected by a number of factors like type of soil, its chemical properties, or organic matter content, in addition to climatic conditions and biological activity of microorganisms in soil. Soil properties that influence water movement through unsaturated zone are important for determining flow paths, reactions between soil and pollutants and the ultimate destination of these pollutants, and may improve the diagnosis of the potential pollution risk. Three soil cores were sampled to a depth up to 100 cm from cultivated clayey soil, sewage irrigated sandy soil and fertilized sandy soil. The samples were collected at intervals of 5 or 10 cm. The δ 13 C signature of the soil shifted significantly towards that of C 3 -type vegetation in soil cores. The general trend toward heavier 13 C enrichment with depth could be due to isotopic fractionation occurring during decomposition of soil organic matters. Increased δ 15 N with depth in the soil cores suggests that microbial mineralization, denitrification, or volatilization processes caused the enriched δ 15 N signatures. Decreasing nitrogen percent and nitrate values with depth also help support the idea of microbiological processes. The results indicate that concentrations of major and trace elements varied widely among the different soil types and decreased with depths in the studied soil profile. The accumulation pattern for these elements in the soil profiles follows the order: Co < Ni < Mo < Ag < Sr < V < Cu < Cr < Zn < Mn < B < Mg < Al < Fe. The relationships between element concentrations against ph and organic matter contents show antithetical relationships and suggest evidence that these elements arise from anthropogenic input. The results of this study show that there exists risk for the environment due to notable migration of pollutants through the unsaturated zone and that the migrations were also observed to be highly

  8. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  9. A statistical approach to evaluate hydrocarbon remediation in the unsaturated zone

    International Nuclear Information System (INIS)

    Hajali, P.; Marshall, T.; Overman, S.

    1991-01-01

    This paper presents an evaluation of performance and cleanup effectiveness of a vapor extraction system (VES) in extracting chlorinated hydrocarbons and petroleum-based hydrocarbons (mineral spirits) from the unsaturated zone. The statistical analysis of soil concentration data to evaluate the VES remediation success is described. The site is a former electronics refurbishing facility in southern California; soil contamination from organic solvents was found mainly in five areas (Area A through E) beneath two buildings. The evaluation begins with a brief description of the site background, discusses the statistical approach, and presents conclusions

  10. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    International Nuclear Information System (INIS)

    Marling, J.B.

    1981-01-01

    A deuterium-enriched material is produced by selective photoinduced dissociation of a gas phase organic carbonyl compound containing at least one hydrogen atom bonded to an atom adjacent to a carbonyl group. Alkyl carbonyl compounds such as acetone, acetaldehyde, trifluoroacetic acid, cyclobutanone, cyclopentanone, methyl acetate, 3,3-dimethyl-2-butanone, 2,4-pentanedione, and 4-methyl-2-pentanone are preferred. The carbonyl compound is subjected to intense infrared radiation from one laser, or two lasers operating at different frequencies, to selectively dissociate the deuterated molecules into stable products. The undissociated compound may be redeuterated by direct aqueous liquid phase H/D exchange, or by indirect liquid phase exchange using an alkanol in an intermediate step

  11. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile

    International Nuclear Information System (INIS)

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo

    2013-01-01

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. -- First experimental determination of the emission factors of biogenic volatile organic compounds in the urban forest of the Metropolitan Region, Chile

  12. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  13. Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds.

    Science.gov (United States)

    Brüggemann, Martin; Hayeck, Nathalie; Bonnineau, Chloé; Pesce, Stéphane; Alpert, Peter A; Perrier, Sébastien; Zuth, Christoph; Hoffmann, Thorsten; Chen, Jianmin; George, Christian

    2017-08-24

    Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O 3 /OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.

  14. Novel collection method for volatile organic compounds (VOCs) from dogs

    Science.gov (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  15. Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010

    Science.gov (United States)

    Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.

    2011-01-01

    A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed

  16. Study of the interactions between uranium and organic compounds in the hydrothermal systems

    International Nuclear Information System (INIS)

    Salze, David

    2008-01-01

    Formers studies on the relations between organic matter and uranium have shown that these interactions go since the complexation and the transport of uranium in organics fluids until its reduction by the organic matter leading to the uranium-bearing mineral precipitation. An experimental study of these reactions to 200 deg. C and 500 bars between experimental compounds (pure organic compounds) such as the n-alkanes (n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, n-tetradecane and n-hexadecane), an n-alkene hydrocarbon (n-dec-1-ene), cycles (butyl-cyclohexane and cyclo-hexane) and the aromatic ones (butyl-benzene and naphthalene), and hexavalent uranium oxides was undertaken. These experiments allowed to show a progressive oxidation of n-alkanes starting from made up C6. The increasing size of the aliphatic chains and the increase in the time of setting in interaction are major factors of the increase in the environment oxidizing capacity in interaction with uranium on the organic compound. The determination of the oxidation step of uranium oxides after experiment made it possible to determine that in aqueous environment the aliphatic model compounds are reducers more powerful than the aromatic compounds. An organic matter from lake or marine origin generally has an aliphatic fraction larger than the organic matter of continental origin and thus will be more likely to reduce uranium. A natural example, the uranium deposits in the sandstones from Arlit, the tectono-lithologic type, was selected in order to apply the results obtained in the experimental part. They are located in fluviatile sandstones rich in organic matter of continental origin (type III) deposited in the paleo-channels. Former authors considered that only this organic matter of type III was responsible for the reduction of U (VI) in U (IV). Work which was undertaken in the present study shows that migrated oils of probable marine origin strongly contributed to the genesis

  17. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  18. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications.

    Science.gov (United States)

    Jehlicka, J; Edwards, H G M; Culka, A

    2010-07-13

    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  19. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  20. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  1. (Semi)volatile organic compounds and microbiological entities in snow during OASIS Barrow 2009

    Science.gov (United States)

    Ariya, P.; Kos, G.

    2009-12-01

    Gregor Kos (1), Nafissa Adechina (2), Dwayne Lutchmann (2) , Roya Mortazavi, and Parisa Ariya* (1), (2) (1) McGill University, Department of Atmospheric and Oceanic Sciences, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada (2) McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada an active medium for the deposition of (semi-)volatile (bio)organic compounds. We collected surface snow samples during the OASIS Barrow campaign in March 2009 for analysis of semi-volatile organic compounds using solid phase microextraction and gas chromatography with mass spectrometric detection (SPME-GC/MS). Additioal gab samples were taken for analysis of non-methane hydrocarbons in air. More over, we analyzed for microbial species in air and snow. Identifed organic compounds covered a wide range of functionalities andmolecular weigts, including oxygenated reactive speces such as aldehydes (e.g., hexanal to decanal), alcohols (e.g., hexanol, octanol) and aromatic species (e.g., methyl- and ethylbenzenes). Quantification data for selected aromatic species are presented with concentrations in the upper ng/L range. We will present our preliminary data on microbiological species, and will discuss the potential mplications of the results for organic snow chemistry.

  2. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Xu, Chen; Chen, Hongmei; Sugiyama, Yuko; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Chuang, Chia-ying; Schwehr, Kathleen A.; Kaplan, Daniel I.; Yeager, Chris; Roberts, Kimberly A.; Hatcher, Patrick G.; Santschi, Peter H.

    2013-01-01

    Major fractions of radioiodine ( 129 I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios ( 2 or -HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on 129 I migration. Highlights: ► IO 3 − reduced by lignin-, tannin-like compounds/carboxylic-rich alicyclic molecules ► Condensed aromatic and lignin-like compounds generated after iodate-iodination ► Aliphatic and less aromatic compounds formed after iodide-iodination ► Organo-iodine identified as unsaturated hydrocarbons, lignin and protein ► Organo-iodine with low O/C ratios imply less environmental mobility

  3. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nitrate radicals and biogenic volatile organic compounds ...

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  5. Stimulated exoelectron emission dosimetry of organic compounds and of ionic crystals

    International Nuclear Information System (INIS)

    Rocca-Serra nee Chevtchenko, Nathalie

    1980-01-01

    The purpose of this work is the dosimetric study of stimulated exoelectron emission from various organic compounds (organic acid salts, amino acids) and ionic crystals (sodium chloride, magnesium oxide, calcium sulfate, lithium fluoride and α/β alumina). Experimental results obtained for α/β alumina leads us to determine physical properties of this material such as activation energies and frequency factors of traps involved in the exo-emission process. (author) [fr

  6. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation.

    Science.gov (United States)

    Postigo, Cristina; Barceló, Damià

    2015-01-15

    Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Prediction of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    OA fund TU Delft Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Car-bontetrachloride, Carbontetrabromide) by NF

  8. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  9. Activation energies for iodine-exchange systems containing organic iodine compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, N. (Takyo Univ. of Education (Japan). Faculty of Science) Takahashi, Yasuko

    1976-01-01

    In studies on the nonequilibrium isotopic exchange method for determining iodine in organic iodine compounds, activation energies have been measured to find systems having appropriate rate of exchange reactions. Activation energies are discussed by considering the effect of the structure of organic iodine compounds, the concentrations of reactants and solvent, etc. In homogeneous systems, activation energy is found to become larger in the order of CH/sub 3/Iorganic iodine is a predominant factor in determining the rate of the exchange reaction.

  10. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-08-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 42-57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire

  11. Evaluation of supercritical fluid extraction/gas chromatography/matrix isolation-infrared spectrometry for analysis of organic compounds

    International Nuclear Information System (INIS)

    Bopari, A.S.; Bierma, D.R.; Applegate, D.V.

    1991-01-01

    Analysis of soil samples for organic compounds typically first requires Soxhlet extraction or sonication. These processes are time consuming and generate large amounts of waste solvent. Supercritical fluid extraction (SFE), which uses a supercritical fluid such as carbon dioxide, has recently been shown to extract organic compounds from soil samples in good yields. Moreover, SFE does not generate waste solvent and can be performed rapidly. Gas Chromatography/Matrix Isolation-Infrared Spectrometry (GC/MI-IR) has been used in our laboratories for determining organic compounds present in extracts from various matrices. The authors have interfaced an SFE extraction apparatus to GC/MI-IR instruments. In this paper the utility of SPE/GC/MI-IR instrumentation is discussed

  12. Effect of organic complexing compounds and surfactants on coprecipitation of cesium radionuclides with nickel ferrocyanide precipitate

    International Nuclear Information System (INIS)

    Milyutin, V.V.; Gelis, V.M.; Ershov, B.G.; Seliverstov, A.F.

    2008-01-01

    One studied the effect of the organic complexing compounds and of the surfactants on the coprecipitation of Cs trace amounts with the nickel ferrocyanide precipitate. The presence of the oxalate- and ethylenediamin-tetraacetate-ions in the solutions is shown to result in the abrupt reduction of Cs coprecipitation degree. The effect of the various surfactants manifested itself not so explicitly. To reduce the negative effect of the organic compounds on the intimacy of Cs coprecipitation one tried out the procedure of their chemical destruction by ozon. Pre-ozonization of the solutions enabled to prevent the negative effect of the organic complexing compounds and of the surfactants on Cs coprecipitation with nickel ferrocyanide precipitate [ru

  13. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  14. Unsaturated zone leaching models for assessing risk to groundwater of contaminated sites

    DEFF Research Database (Denmark)

    Troldborg, Mads; Binning, Philip John; Nielsen, Signe

    2009-01-01

    and aqueous phase contaminant transport equation. The equation has the same general form as the standard advection-diffusion equation for which many analytical solutions have been derived. Four new analytical solutions are developed using this approach: a three-dimensional solution accounting for infiltration......, lateral gas diffusion, sorption and degradation; a simple one-dimensional screening model, and two one-dimensional radial gas diffusion models for use in simulating volatile organic contaminant diffusion in unsaturated soils with an impermeable cover. The models show that both degradation and diffusion...

  15. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and

  16. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  17. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    Science.gov (United States)

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  18. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  19. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  20. Interactions between radionuclides and organic colloids. Structure and reactivity of humic compounds

    International Nuclear Information System (INIS)

    Plancque, G.

    2001-09-01

    Humic compounds are the main organic colloids present in natural waters. These compounds can significantly modify the speciation of metals and control their properties, like migration, toxicity or bio-availability. It is thus important to study their speciation in conditions representative to those encountered in the natural environment. The aim of this work is to analyze the reactivity of these humic compounds. Two spectroscopic techniques have been used: the time-resolution laser spectro-fluorimetry, limited to the study of fluorescent elements, and the electro-spray source mass spectroscopy which requires the development of specific protocols for all elements of the periodic classification system. Europium, a fluorescent element analogue to trivalent actinides, has been chosen as test-metal for the intercomparison of both spectroscopic techniques. The first technique has permitted to determine the inorganic and organic speciation (spectra and lifetime of europium hydroxides and carbonates, and constants of interaction with humic acids, respectively). The limitations of this technique in the study of inorganic speciation has been evidenced. Humic compounds have a badly defined structure. The use of high-resolution mass spectroscopy has permitted to propose in a direct and experimental way, a molecular structure of aquatic fulvic acids in agreement with their known physico-chemical properties. (J.S.)

  1. Chemical compositions and characteristics of organic compounds in propolis from Yemen

    Directory of Open Access Journals (Sweden)

    Ahmad A. Al-Ghamdi

    2017-07-01

    Full Text Available Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS. The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%. The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates, n-alkenes (145 ± 89 mg g−1, n-alkanes (65 ± 29 mg g−1, n-alkanoic acids (40 ± 26 mg g−1, long chain wax esters (38 ± 25 mg g−1, n-alkanols (8 ± 3 mg g−1 and methyl n-alkanoates (6 ± 4 mg g−1. The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.

  2. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  3. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries

    International Nuclear Information System (INIS)

    Zeng, Ronghua; Xing, Lidan; Qiu, Yongcai; Wang, Yating; Huang, Wenna; Li, Weishan; Yang, Shihe

    2014-01-01

    Highlights: • Quinonyl compounds containing –OH groups are reported as cathode of sustainable Li-ion battery. • Lithiation potential of these compounds is positively correlated to -OH group number on them. • These compounds exhibit a discharge plateau of 3 V and deliver a capacity of over 180 mAh g -1 at 20 mA g -1 . - Abstract: Suitably designed organic compounds are promising renewable electrode materials for lithium ion batteries (LIBs) with minimal environmental impacts and no CO 2 release. Herein we report a series of polycarbonyl organic compounds with different number of hydroxyl groups, which can be obtained from renewable plants, as cathode materials for LIBs. Density functional theory (DFT) calculations based on the natural bond orbital (NBO) reveal a positive correlation between the reduction potentials and the number of hydroxyl groups, which is borne out experimentally. Anthraquinone (AQ) with three or four -OH groups has the structural advantages for improving the discharge plateaus. Mechanistic studies show that AQ containing neighbouring carbonyl groups and hydroxyl groups facilitates the formation of six or five-membered rings with lithium ion. Charge/discharge tests show that AQ, 1,5-DHAQ, 1,2,7-THAQ, and 1,2,5,8-THAQ can achieve initial discharge capacities of 215, 190, 186 and 180 mAh g -1 at a current density of 20 mA g -1 , corresponding to 84%, 85%, 89% and 91% of their theoretical capacities, respectively

  4. High-efficiency THz modulator based on phthalocyanine-compound organic films

    International Nuclear Information System (INIS)

    He, Ting; Zhang, Bo; Shen, Jingling; Zang, Mengdi; Chen, Tianji; Hu, Yufeng; Hou, Yanbing

    2015-01-01

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl 2 Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface

  5. Identification of Organic Iodine Compounds and Their Transformation Products in Edible Iodized Salt Using Liquid Chromatography-High Resolution Mass Spectrometry.

    Science.gov (United States)

    Yun, Lifen; Peng, Yue'e; Chang, Qing; Zhu, Qingxin; Guo, Wei; Wang, Yanxin

    2017-07-05

    The consumption of edible iodized salt is a key strategy to control and eliminate iodine deficiency disorders worldwide. We herein report the identification of the organic iodine compounds present in different edible iodized salt products using liquid chromatography combined with high resolution mass spectrometry. A total of 38 organic iodine compounds and their transformation products (TPs) were identified in seaweed iodine salt from China. Our experiments confirmed that the TPs were generated by the replacement of I atoms from organic iodine compounds with Cl atoms. Furthermore, the organic iodine compound contents in 4 seaweed iodine salt samples obtained from different manufacturers were measured, with significant differences in content being observed. We expect that the identification of organic iodine compounds in salt will be important for estimating the validity and safety of edible iodized salt products.

  6. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  7. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  8. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  9. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  10. Chemical and Isotopes study of pollutants transport through unsaturated zone in Damascus oasis (Syria)

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2011-08-01

    The primary objectives of this study were to determine the hydrochemical and isotopic characteristics of groundwater and to study vertical transport processes for trace elements through the unsaturated zone, from the surface water into the groundwater system. A third objective is to identifying the importance of the unsaturated zone in protecting groundwater from contamination. Distribution of trace elements, including Cu, Pb, Cr, Cd, Zn and As in the soil with depth were studied. Mineralogy was investigated using X-Ray diffraction techniques and granulometry in three drilled soil profile (KA, KB and KS) in Damascus Oasis, which indicated that the soil consists mainly of calcite, a mineral that has the ability to bind some of the trace elements. Measurement of nitrate concentrations in groundwater permitted an investigation of the urban, industrial and agricultural pollution in the Oasis, in particular, in the eastern part of Damascus city and in the north of Oasis where the irrigation by treated wastewater is applied. Depending on the chemical characteristics of the studied trace elements and soil conditions, these elements have high concentrations in the upper part of the soil (20-30 cm depth), due to absorption by clay minerals and organic matter. These high concentrations represent pollution by leather industries (tannery) in the area. The trace element concentrations decrease towards the east in parallel with river flow direction. The lower part of profiles show low trace element concentrations, below the international permitted limit. The low concentrations of trace elements in groundwater which are also below the international limit, indicates no pollution is presented. The isotopic composition of shallow groundwater indicates the underground recharge, originated from the Anti-Lebanon Mountain, is more significant than the direct recharge through unsaturated zone. It is concluded the unsaturated zone and the decrease of groundwater levels have played an

  11. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    Science.gov (United States)

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  12. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  13. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  14. Distribution of enantiomers of volatile organic compounds in selected fruit distillates.

    Science.gov (United States)

    Vyviurska, Olga; Zvrškovcová, Helena; Špánik, Ivan

    2017-01-01

    The enantiomer ratios of chiral volatile organic compounds in fruit distillates were determined by multidimensional gas chromatography using solid-phase microextraction (SPME) as a sample treatment procedure. Linalool and its oxides, limonene, α-terpineol, and nerolidol, were present at the highest concentration levels, while significantly lower amounts of β-citronellol and lactones were found in the studied samples. However, almost all terpenoids mainly occur as a racemic or near-racemic mixture; enantiomer distribution of some chiral organic compounds in fruit distillates correlated to a botanical origin. In particular, a significant enantiomeric excess of (R)-linalool and (S)-α-terpineol was found only for pear brandy, and likewise the dominance (R)-limonene and the second eluted enantiomer of nerolidol for Sorbus domestica and strawberry, respectively. The distribution of γ-lactones stereoisomers was more nonspecific, with a general excess of the R-enantiomer. © 2016 Wiley Periodicals, Inc.

  15. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  16. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  17. Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C; Magnusson, J

    1969-01-01

    The genetic effect of organic mercury compounds on the fruit fly, Drosophila melanogaster was investigated. Treatments of larvae with methyl and phenyl mercury gave rise to development disturbances. Chromosomal abnormalities were noted.

  18. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    Science.gov (United States)

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  19. Screening Some Plants for their Antiproliferative Compounds

    Directory of Open Access Journals (Sweden)

    Ufuk Kolak

    2012-03-01

    Full Text Available This paper covers the screening of the secondary plant products to find a cure against cancer which were piled up during the years. In early stages of these studies highly active antitumor glycoproteins were obtained from native Arizona (USA plants. Later smaller molecules were isolated showing antitumor activity in different test systems. Among these compounds sesquiterpene lactones with an exo-methylene group in the lactone ring, unsaturated diterpenoids and some triterpenoids exhibited activity in vivo and in vitro test systems. A few Colchicum alkaloids showed high activity against murine lymphocytic leukemia (P388. Activity also established in some flavonoidal compounds. Today all around the world research on Natural Products is still going on.

  20. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela

    2010-04-01

    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  1. Exposure to organic compounds during heat treatment of cooking oils

    Directory of Open Access Journals (Sweden)

    Marzena Zaciera

    2012-09-01

    Full Text Available Fumes from cooking oils were found to be genotoxic in several short-term tests. Epidemiological research among Taiwanese and Chinese women has shown high incidence of lung cancer. These women were not smoking or rarely smoking , but they cooked meals every day. A lot of organic compounds have been identified from cooking oils including PAH.

  2. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    Science.gov (United States)

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  3. Total Oxidation of Model Volatile Organic Compounds over Some Commercial Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Jirátová, Květa; Šolcová, Olga

    2012-01-01

    Roč. 443, NOV 7 (2012), s. 40-49 ISSN 0926-860X R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : volatile organic compounds * oxidation * ethanol Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.410, year: 2012

  4. Removal of organic nitrogen compounds in LCO reduces the hydrodesulphurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2006-07-01

    Canada and the United States committed to reducing diesel sulphur from 500 to 15 part per million by 2006. Refineries could benefit from a better understanding of the effects of feed matrix on sulphur removal by hydrodesulphurization (HDS) in selecting the right feed or feed pre-treatment options for their existing HDS units and achieve the required sulphur level at minimum cost. This paper presented a study that examined the influence of nitrogen compounds on the HDS activities of substituted dibenzothiophenes in light oil cycle over a nitrogen/molybdenum on alumina oxide (Al{sub 2}O{sub 3}) commercial catalyst using five light cycle oil feeds with different concentrations of organic nitrogen compounds. The paper discussed experiments that were conducted under conditions close to industrial HDS processes. The paper addressed feed preparation; the nitrogen effect on HDS reactivity of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyl dibenzothiophene; sulphur composition analysis; hydrodenitrogenation; and kinetic modeling. It was concluded that organic nitrogen compounds have more of an inhibition effect on sulphur removal by the hydrogenation pathway than by the hydrogenolysis pathway. Nitrogen removal by feed pre-treatment was found to be an attractive alternative to achieve the ultra-low sulphur goal. 26 refs., 3 tabs., 9 figs.

  5. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    Science.gov (United States)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  6. Measurement of in-vehicle volatile organic compounds under static conditions.

    Science.gov (United States)

    You, Ke-wei; Ge, Yun-shan; Hu, Bin; Ning, Zhan-wu; Zhao, Shou-tang; Zhang, Yan-ni; Xie, Peng

    2007-01-01

    The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 microg/m3 in the new vehicle A, 1240 microg/m3 in used vehicle B, and 132 microg/m3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h(-1) to 0.67 h(-1), and in-vehicle TVOC concentration decreases from 1780 to 1201 microg/m3.

  7. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  8. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Science.gov (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  9. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  10. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  11. Identification of the sources of organic compounds that decalcify cement concrete and generate alcohols and ammonia gases

    Energy Technology Data Exchange (ETDEWEB)

    Tomoto, Takashi [Technical Research Institute, Obayashi Road Corporation, 4-640 Shimokiyoto, Kiyose, Tokyo, 204-0011 (Japan); Moriyoshi, Akihiro [Material Science Laboratory, Hokkaido University, 2-1-9-10 Kiyota, Kiyota-ku, Sapporo, 004-0842 (Japan); Sakai, Kiyoshi [Department of Environmental Health, Nagoya City Public Health Research Institute, 1-11 Hagiyama-cho, Mizuho-ku, Nagoya, 467-8615 (Japan); Shibata, Eiji [Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute-cho, Aichi, 480-1195 (Japan); Kamijima, Michihiro [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 (Japan)

    2009-09-15

    This study identifies the emission sources of various types of airborne organic compounds, which deteriorate cement concrete by penetrating into the concrete together with moisture. The study used high-performance liquid chromatography and gas chromatograph mass spectrometry. The results show that the types of organic compounds contained in decalcified cement concrete were very similar to those found in the total suspended compounds in the air, and that the source of the emissions was particles of exhaust from diesel vehicles and radial tires used in summer. Such organic compounds include substances suspected of having endocrine disrupting properties. Hydrolysis occurs when these substances penetrate into highly alkaline cement concrete, and leads to deterioration of the cement concrete and the release of alcohols and ammonia gases which pollute indoor air and may be a cause of the sick building syndrome. (author)

  12. Distribution of Organic Compounds from Municipal Solid Waste in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1995-01-01

    , and xylenes as dominating. No pesticides were identified, but some phenoxy acids, which could be metabolites of known pesticides, were found. In a distance of approximately 60 m from the landfill, most of the specific organic compounds were no longer detectable. Since dilution and sorption apparently cannot......The distribution of organic compounds in the leachate plume downgradient of the Grindsted Landfill was mapped along two 300 m long transects (285 groundwater samples). At the border of the landfill, elevated concentrations of dissolved organic matter 30-1 10 mg of C L-' (measured as nonvolatile...... organic carbon, NVOC) were found. In a distance of 130 m downgradient of the landfill, the NVOC had decreased to background level, which is 1-3 mg of C L-l. More than 15 organic compounds were identified in the groundwater at the downgradient border of the landfill with benzene, toluene, ethylbenzene...

  13. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  14. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  15. The scent of colorectal cancer: detection by volatile organic compound analysis

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; de Meij, Tim G. J.; Oort, Frank A.; Ben Larbi, Ilhame; Mulder, Chris J. J.; van Bodegraven, Adriaan A.; van der Schee, Marc P.

    2014-01-01

    The overall metabolic state of an individual is reflected by emitted volatile organic compounds (VOCs), which are gaseous carbon-based chemicals. In this review, we will describe the potential of VOCs as fully noninvasive markers for the detection of neoplastic lesions of the colon. VOCs are

  16. Organic compounds assessed in Neuse River water used for public supply near Smithfield, North Carolina, 2002-2005

    Science.gov (United States)

    Moorman, Michelle C.

    2012-01-01

    Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.

  17. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  18. A Reconnaissance of selected organic compounds in streams in tribal lands in Central Oklahoma, January-February 2009

    Science.gov (United States)

    Becker, Carol J.

    2010-01-01

    The U.S. Geological Survey worked in cooperation with the U.S. Environmental Protection Agency and the Kickapoo Tribe of Oklahoma on two separate reconnaissance projects carried out concurrently. Both projects entailed the use of passive samplers as a sampling methodology to investigate the detection of selected organic compounds at stream sites in jurisdictional areas of several tribes in central Oklahoma during January-February 2009. The focus of the project with the U.S. Environmental Protection Agency was the detection of pesticides and pesticide metabolites using Semipermeable Membrane Devices at five stream sites in jurisdictional areas of several tribes. The project with the Kickapoo Tribe of Oklahoma focused on the detection of pesticides, pesticide metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyl compounds, and synthetic organic compounds using Semipermeable Membrane Devices and Polar Organic Chemical Integrative Samplers at two stream sites adjacent to the Kickapoo tribal lands. The seven stream sites were located in central Oklahoma on the Cimarron River, Little River, North Canadian River, Deep Fork, and Washita River. Extracts from SPMDs submerged at five stream sites, in cooperation with the U.S. Environmental Protection Agency, were analyzed for 46 pesticides and 6 pesticide metabolites. Dacthal, a pre-emergent herbicide, was detected at all five sites. Pendimethalin, also a pre-emergent, was detected at one site. The insecticides chlorpyrifos and dieldrin were detected at three sites and p,p'-DDE, a metabolite of the insecticide DDT, also was detected at three sites. SPMDs and POCIS were submerged at the upstream edge and downstream edge of the Kickapoo tribal boundaries. Both sites are downstream from the Oklahoma City metropolitan area and multiple municipal wastewater treatment plants. Extracts from the passive samplers were analyzed for 62 pesticides, 10 pesticide metabolites, 3 polychlorinated biphenyl compounds, 35

  19. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  20. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  1. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Eduardo J. Delgado

    2009-03-01

    Full Text Available The free energy of solvation, ΔGS0 , in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about –50 to 0 kJ·mol-1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol-1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  2. Identification of organic compounds migrating from polyethylene pipelines into drinking water.

    Science.gov (United States)

    Brocca, D; Arvin, E; Mosbaek, H

    2002-09-01

    A study of the diffusion of organic additives from four polyethylene (PE) materials into drinking water was conducted. Various structures of organic chemicals were identified in the water extracts by means of gas chromatography-mass spectrometry analysis. Most of them presented a basic common structure characterised by a phenolic ring typically substituted with hindered alkyl groups in positions 2 and 6 on the aromatic ring. The structures attributed to some of the chemicals have been confirmed using commercial or purposely synthesised standards. Unprocessed granules of raw PE were also analysed, in order to investigate the origin of the chemicals detected in the water samples. Consequently, the presence of some of the compounds was attributed to impurities or by-products of typical phenolic additives used as antioxidants in pipeline production. Finally, the occurrence of the identified chemicals was tested under field conditions, i.e. in water samples from newly installed pipelines in a distribution system. Here, the presence of three of the compounds identified in vitro was detected.

  3. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and hea...... (6 pages). Detailed summary in English (15 pages). Background (23 pages). Objective and hypotheses (2 pages). Methods and materials (20 pages). Results (26 pages). Discussion (12 pages). Conclusion (3 pages). References (14 pages). Appendices (95 pages)....... on sorption equilibrium and kinetics of temperature, relative humidity, VOC concentrations and air velocity past the surface of the building product. Four common building materials were carefully selected for the sorption/desorption experiments: Painted gypsum board, lacquered beechwood parquet, PVC flooring...

  4. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  5. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  6. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States

    Science.gov (United States)

    Nolan, Bernard T.; Puckett, Larry J.; Ma, Liwang; Green, Christopher T.; Bayless, E. Randall; Malone, Robert W.

    2009-01-01

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn–soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan Creek, Maryland. We used inverse modeling with a new version of the Root Zone Water Quality Model (RZWQM2) to estimate soil hydraulic and nitrogen transformation parameters throughout the unsaturated zone; previous versions were limited to 3-m depth and relied on manual calibration. The overall goal of the modeling was to derive unsaturated zone N mass balances for the four sites. RZWQM2 showed promise for deeper simulation profiles. Relative root mean square error (RRMSE) values for predicted and observed nitrate concentrations in lysimeters were 0.40 and 0.52 for California (6.5 m depth) and Nebraska (10 m), respectively, and index of agreement (d) values were 0.60 and 0.71 (d varies between 0 and 1, with higher values indicating better agreement). For the shallow simulation profile (1 m) in Maryland, RRMSE and d for nitrate were 0.22 and 0.86, respectively. Except for Nebraska, predictions of average nitrate concentration at the bottom of the simulation profile agreed reasonably well with measured concentrations in monitoring wells. The largest additions of N were predicted to come from inorganic fertilizer (153–195 kg N ha−1 yr−1 in California) and N fixation (99 and 131 kg N ha−1 yr−1 in Maryland and Nebraska, respectively). Predicted N losses occurred primarily through plant uptake (144–237 kg N ha−1 yr−1) and deep seepage out of the profile (56–102 kg N ha−1 yr−1). Large reservoirs of organic N (up to 17,500 kg N ha−1 m−1 at Nebraska) were predicted to reside in the unsaturated zone, which has implications for potential future transfer of nitrate to groundwater.

  7. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  8. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Jayarathne, Thilina; Laskin, Alexander; Laskin, Julia; Lin, Peng; Sultana, Camile M.; Lee, Christopher; Moore, Kathryn A.; Cappa, Christopher; Bertram, Timothy; Prather, Kimberly; Grassian, Vicki H.; Stone, Elizabeth

    2016-02-01

    The inclusion of organic compounds in freshly emitted sea spray aerosol (SSA) has been shown to be size-dependent, with an increasing organic fraction in smaller particles. Defining the molecular composition of sea spray aerosol has proven challenging, due to the mix of continental and background particles even in remote marine environments. Here we have used electrospray ionization-high resolution mass spectrometry in negative ion mode to identify organic compounds in nascent sea spray collected throughout a 25-day mesocosm experiment. Over 280 organic compounds from ten major homologous series were identified. These compounds were operationally defined as molecules containing a hydrophobic alkyl chain with a hydrophilic head group making them surface active. The most abundant class of molecules detected were saturated (C8–C24) and unsaturated (C12–C22) fatty acids. Fatty acid derivatives (including saturated oxo-fatty acids (C5–C18) and saturated hydroxy-fatty acids (C5–C18) were also identified. Interestingly, anthropogenic influences on SSA from the seawater were observed in the form of sulfate (C2–C7, C12–C17) and sulfonate (C16–C22) species. During the mesocosm, the distributions of molecules within each homologous series were observed to respond to variations among the levels of phytoplankton and bacteria in the seawater, indicating an important role of biological processes in determining the composition of SSA.

  9. Colloid suspension stability and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media

  10. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    Science.gov (United States)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the

  11. Labelling of some iodinated organic compounds by halogen exchange in organic media

    International Nuclear Information System (INIS)

    Hallaba, E.; Suhybani, A.Al-; Khowaiter, S.Al-; Abdel-Wahid, M.

    1983-01-01

    Describes a general method for labelling Rose Bengal in an organic medium. An isotopic exchange technique with interactive iodine as carrier for radioiodine is used. The effect of temperature, carrier, pH of the solvent and solvent are investigated. The optimum conditions for maximum yield of exchange are: .0.2 micro mole carrier inactive iodine per one micro mole of Rose Bengal, reaction mixture is 10ml ethyl alcohol 96% as a solvent for Rose Bengal and 3ml of ether or carbon tetrachloride containing the inactive and radioiodine. In case of ether, the reaction is slow and is completed in two hours with maximum yield of 90% at boiling temperature. Addition of 175 λ of 1 M acetate buffer with carbon tetrachloride gave a yield of 90% in one hour. This method can be applied successfully to label any iodinated organic compound, such as hypuran, thyroxine, tyrosine or aliphatic fatty acids, for application in nuclear medicine. 10 Ref

  12. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  13. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds...

  14. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  15. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no...

  16. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.

    Science.gov (United States)

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz

    2017-10-01

    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  17. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  18. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice

    Science.gov (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C.F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero

    2018-01-01

    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  19. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice

    Science.gov (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C. F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero

    2018-03-01

    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  20. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  1. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  3. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  4. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  5. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  6. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  7. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens

    2002-01-01

    hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...

  8. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  9. Method development for the determination of volatile organic compounds in mixed waste

    International Nuclear Information System (INIS)

    Sandoval, W.F.; Rogers, Y.C.; Schappert, M.F.; Boland, K.S.; Spall, W.D.; Wilkerson, C.W. Jr.

    1993-01-01

    While analytical methods exist for the determination of Resource Conservation and Recovery Act (RCRA) listed organic and inorganic compounds in hazardous materials, equivalent methods suitable for the characterization of radioactively contaminated samples are not at the same level of maturity. The Mixed Waste Methods Development Lab. has been established at Los Alamos National Lab. to address the need for such procedures. This presentation will focus on the efforts that have been directed toward the determination of volatile organic compounds (VOCs) in mixed waste matrices. The capabilities of the Mixed Waste Methods Development Lab. will be outlined. Modifications to the containment boxes and analytical instrumentation required for the analyses will be described, as will experimental procedures and system performance benchmarks. Preliminary results from surrogate and real mixed waste matrices will be presented, and future directions for our method development effort will be discussed

  10. Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems

    OpenAIRE

    Aleksandrs Kovalcuks

    2015-01-01

    Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this stud...

  11. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  12. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  13. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    Science.gov (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  14. Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents.

    Science.gov (United States)

    Lan, Xianmin; Xie, Dandan; Yin, Limin; Wang, Zhenzhen; Chen, Jin; Zhang, Awei; Song, Baoan; Hu, Deyu

    2017-09-15

    Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC 50 ) values of 284.67μg/mL and 216.30μg/mL, which were obviously superior to that of Ningnanmycin (352.08μg/mL and 262.53μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group

    International Nuclear Information System (INIS)

    Nakatani, Hisayuki; Kurniawan, Dodik; Taniike, Toshiaki; Terano, Minoru

    2008-01-01

    In this work, the relationship between the unsaturated chain end group content and the thermal oxidative degradation rate was systematically studied with binary polymer blends of isotactic polypropylene (iPP) with and without the unsaturated chain end group. The iPPs with and without the unsaturated chain end group were synthesized by a metallocene catalyst in the absence of hydrogen and by a Ziegler catalyst in the presence of one, respectively. The thermal oxidative degradation rate of the binary iPP blends was estimated from the molecular weight and the apparent activation energy (ΔE), which were obtained through size exclusion chromatography (SEC) and thermogravimetric analysis (TGA) measurements, respectively. These values exhibited a negative correlation against the mole content of the unsaturated chain end group. The thermal oxidative degradation rate apparently depends on the content of the unsaturated chain end group. This tendency suggests that the unsaturated chain end acts as a radical initiator of the iPP degradation reaction.

  16. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  17. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  18. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    Science.gov (United States)

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  19. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-08-01

    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C

  20. Isotopic Constraints on the Sources and Associations of Organic Compounds in Marine Sediments

    National Research Council Canada - National Science Library

    White, Helen K

    2006-01-01

    .... The main objective has been to determine the significance of these associations, and to assess how they affect the transport, bioavailability, preservation and residence times of organic compounds in the environment...

  1. Determination of Polybutadiene Unsaturation Content in Thermal and Thermo-Oxidative Degradation Processes by NMR

    Directory of Open Access Journals (Sweden)

    Farshid Ziaee

    2013-01-01

    Full Text Available The unsaturation content of various polybutadiene (PBD types of 1,4-cis, 1,4-trans and 1,2-vinyl isomers with different molecular weights was investigated. An important parameter for unsaturation content of polybutadiene would be the determination of olefnic and aliphatic contents for three types of isomers. For this purpose, proton and carbon nuclear magnetic resonance spectroscopy methods were employed for determination of 1,4-cis, 1,4-trans and 1,2-vinyl contents. A change of adjustable parameter of NMR software was made for accurate integrals giving better results. The accuracy in calculation of low molecular weight PBD, surface area of chain end group decreased in aliphatic region. Furthermore, the changing of unsaturation content versus time was considered for 1,2-PBD and 1,4-PBD in thermal degradation conditions at 250°C. NMR results showed that during heating, the unsaturation content decreased for 1,2-PBD and was not changed for 1,4-PBD. In fact, the basic factor responsible for changing of unsaturation content in thermal degradation of PBD may be due to the presence of 1,2-vinyl isomer. Finally, changing in unsaturation content versus time was observed for 1,2-PBD and 1,4-PBD in thermo-oxidative degradation conditions at 100°C. The NMR results showed that at extended time, the unsaturation content decreased for 1,4-PBD and was not changed for 1,2-PBD. Moreover, the basic factor for changes in unsaturation content in thermo-oxidative degradation of PBD is due to the presence of 1,4-cis and 1,4-trans isomers.

  2. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  3. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  4. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  5. Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Changtao; Li, Shuyuan [China Univ. of Petroleum, Beijing (China); Song, He [Research Institute of Petroleum Engineering of CNPC, Tianjin (China)

    2014-07-15

    Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and MgSO{sub 4} at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, S{sub 1}, N{sub 1}S{sub 1}, O{sub 1}S{sub 1} and O{sub 2}S{sub 1}, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the S{sub 1} class species was dominant. The most abundant S{sub 1} class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without MgSO{sub 4}. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and MgSO{sub 4} are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

  6. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  7. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  8. Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka City air pollution.

    Science.gov (United States)

    Hussam, A; Alauddin, M; Khan, A H; Chowdhury, D; Bibi, H; Bhattacharjee, M; Sultana, S

    2002-08-01

    A solid phase microextraction (SPME) technique was applied for the sampling of volatile organic compounds (VOCs) in ambient air polluted by two stroke autorickshaw engines and automobile exhausts in Dhaka city, Bangladesh. Analysis was carried out by capillary gas chromatography (GC) and GC-mass spectrometry (MS). The methodology was tested by insitu sampling of an aromatic hydrocarbon mixture gas standard with a precision of +/-5% and an average accuracy of 1-20%. The accuracy for total VOCs concentration measurement was about 7%. VOC's in ambient air were collected by exposing the SPME fiber at four locations in Dhaka city. The chromatograms showed signature similar to that of unburned gasoline (petrol) and weathered diesel containing more than 200 organic compounds; some of these compounds were positively identified. These are normal hydrocarbons pentane (n-C5H2) through nonacosane (n-C29H60), aromatic hydrocarbons: benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, 1,3,5-trimethylbenzene, xylenes, and 1-isocyanato-3-methoxybenzene. Two samples collected near an autorickshaw station contained 783000 and 1479000 microg/m3 of VOCs. In particular, the concentration of toluene was 50-100 times higher than the threshold limiting value of 2000 microg/m3. Two other samples collected on street median showed 135000 microg/m3 and 180000 microg/m3 of total VOCs. The method detection limit of the technique for most semi-volatile organic compounds was 1 microg/m3.

  9. The identification of polar organic compounds found in consumer products and their toxicological properties.

    Science.gov (United States)

    Cooper, S D; Raymer, J H; Pellizzari, E D; Thomas, K W

    1995-01-01

    Exposure to volatile organic compounds (VOCs) in the indoor environment has received substantial research attention in the past several years, with the goal of better understanding the impact of such exposures on human health and well-being. Many VOCs can arise from consumer products used within the indoor environment. The VOCs emitted from five representative consumer products were collected onto Tenax-GC and subjected to thermal desorption and analysis by gas chromatography, in combination with low-resolution mass spectrometry (MS), high-resolution MS, and matrix-isolation Fourier transform infrared spectroscopy for structural characterization. An emphasis was placed on the polar organic compounds often used to provide fragrance in these products. The structures of a number of these compounds were confirmed, and an electronic literature search was carried out on them to determine any known toxic properties. The search revealed that many of the VOCs possess toxic properties when studied at acute, relatively high-level exposures. In addition, toxic effects were reported for a few of the chemicals, such as benzaldehyde, alpha-terpineol, benzyl acetate, and ethanol, at relatively low dose levels of 9-14 mg/kg. In general, the data were unclear as to the effect of chronic, low-level exposures. The widespread use of such chemicals suggests that the health effects of chronic exposures need to be determined. Validated analytical methods for the quantitative characterization of polar organic compounds at low concentrations will be required to make such work possible.

  10. New global fire emission estimates and evaluation of volatile organic compounds

    Science.gov (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja

    2010-01-01

    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  11. A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters.

    Science.gov (United States)

    Pratt, Gregory C; Bock, Don; Stock, Thomas H; Morandi, Maria; Adgate, John L; Ramachandran, Gurumurthy; Mongin, Steven J; Sexton, Ken

    2005-05-01

    Concurrent field measurements of 10 volatile organic compounds (VOCs) were made using passive diffusion-based organic vapor monitors (OVMs) and the U.S. Federal Reference Method, which comprises active monitoring with stainless steel canisters (CANs). Measurements were obtained throughout a range of weather conditions, repeatedly over the course of three seasons, and at three different locations in the Minneapolis/St. Paul metropolitan area. Ambient concentrations of most VOCs as measured by both methods were low compared to those of other large metropolitan areas. For some VOCs a considerable fraction of measurements was below the detection limit of one or both methods. The observed differences between the two methods were similar across measurement sites, seasons, and meteorological variables. A Bayesian analysis with uniform priors on the differences was applied, with accommodation of sometimes heavy censoring (nondetection) in either device. The resulting estimates of bias and standard deviation of the OVM relative to the CAN were computed by tertile of the canister-measured concentration. In general, OVM and CAN measurements were in the best agreement for benzene and other aromatic compounds with hydrocarbon additions (ethylbenzene, toluene, and xylenes). The two methods were not in such good agreement for styrene and halogenated compounds (carbon tetrachloride, p-dichlorobenzene, methylene chloride, and trichloroethylene). OVMs slightly overestimated benzene concentrations and carbon tetrachloride at low concentrations, but in all other cases where significant differences were found, OVMs underestimated relative to canisters. Our study indicates that the two methods are in agreement for some compounds, but not all. We provide data and interpretation on the relative performance of the two VOC measurement methods, which facilitates intercomparisons among studies.

  12. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.

    1976-01-01

    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  13. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  14. Diffuse reflectance infrared Fourier-Transform spectra of selected organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S.H.; Caton, J.E.

    1982-05-01

    Diffuse reflectance infrared spectra of a variety of different organic compounds have been determined. Profiles of the spectra along with the location and relative intensity of the principal bands have been included for each compound studied. In addition both diffuse reflectance and transmittance infrared spectra were obtained for the same samples, and the spectral results were compared. Although some minor variations are observed between a diffuse reflectance spectrum and the corresponding transmittance spectrum, the diffuse reflectance is quite useful and may be a superior technique for the study of many samples because it possesses an inherently higher signal-to-noise response, requires less sample preparation and allows a very wide range of samples (solids, liquids of low volatility, neat sample, or sample diluted in a reflecting medium) to be studied under very similar conditions.

  15. Modelling the effects of pore-water chemistry on the behaviour of unsaturated clays

    Directory of Open Access Journals (Sweden)

    Lei Xiaoqin

    2016-01-01

    Full Text Available Due to their various applications in geo-environmental engineering, such as in landfill and nuclear waste disposals, the coupled chemo-hydro-mechanical analysis of expansive soils has gained more and more attention recently. These expansive soils are usually unsaturated under field conditions; therefore the capillary effects need to be taken into account appropriately. For this purpose, based on a rigorous thermodynamic framework (Lei et al., 2014, the authors have extended the chemo-mechanical model of Loret el al. (2002 for saturated homoionic expansive soils to the unsaturated case (Lei, 2015. In this paper, this chemo-mechanical unsaturated model is adopted to simulate the chemo-elastic-plastic consolidation process of an unsaturated expansive soil layer. Logical tendencies of changes in the chemical, mechanical and hydraulic field quantities are obtained.

  16. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    B. Svenningsson

    2006-01-01

    Full Text Available The organic fraction of atmospheric aerosols contains a multitude of compounds and usually only a small fraction can be identified and quantified. However, a limited number of representative organic compounds can be used to describe the water-soluble organic fraction. In this work, initiated within the EU 5FP project SMOCC, four mixtures containing various amounts of inorganic salts (ammonium sulfate, ammonium nitrate, and sodium chloride and three model organic compounds (levoglucosan, succinic acid and fulvic acid were studied. The interaction between water vapor and aerosol particles was studied at different relative humidities: at subsaturation using a hygroscopic tandem differential mobility analyzer (H-TDMA and at supersaturation using a cloud condensation nuclei spectrometer (CCN spectrometer. Surface tensions as a function of carbon concentrations were measured using a bubble tensiometer. Parameterizations of water activity as a function of molality, based on hygroscopic growth, are given for the pure organic compounds and for the mixtures, indicating van't Hoff factors around 1 for the organics. The Zdanovskii-Stokes-Robinson (ZSR mixing rule was tested on the hygroscopic growth of the mixtures and it was found to adequately explain the hygroscopic growth for 3 out of 4 mixtures, when the limited solubility of succinic acid is taken into account. One mixture containing sodium chloride was studied and showed a pronounced deviation from the ZSR mixing rule. Critical supersaturations calculated using the parameterizations of water activity and the measured surface tensions were compared with those determined experimentally.

  17. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D.; Roedder, Edwin

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T h ) up to ∼80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ 18 O values, and depositional timing is constrained by the 207 Pb/ 235 U ages of chalcedony or opal in the deposits. Fluid inclusion T h from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 deg. C. Calcite δ 18 O values range from ∼0 to ∼22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T h and the lowest δ 18 O values are found in the older calcite. Calcite T h and δ 18 O values indicate that most calcite precipitated from water with δ 18 O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two 207 Pb/ 235 U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ∼9.5 to 1.9 Ma. New and published 207 Pb/ 235 U and 230 Th/Uages coupled with the T h values and estimates of temperature from calcite δ 18 O values indicate that maximum unsaturated zone temperatures probably predate ∼10 Ma and that the unsaturated zone had cooled to near-present-day temperatures

  18. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  19. Concentration and distribution of dioxins and related compounds in various human organs

    Energy Technology Data Exchange (ETDEWEB)

    Iida, T.; Hirakawa, H.; Hori, T.; Tobiishi, K.; Matsueda, T. [Fukuoka Inst. of Health and Environmental Sciences, Dazaifu, Fukuoka (Japan); Todaka, T. [Japan Food Hygiene Association, Tokyo (Japan); Watanabe, S. [Tokyo Univ. of Agriculture, Tokyo (Japan); Yamada, T. [Keio Univ. School of Medicine, Tokyo (Japan)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and non-ortho coplanar polychlorinated biphenyls (Non-Co-PCBs) and mono-ortho coplanar polychlorinated biphenyls (Mono-Co-PCBs) accumulate in the human body due to their highly lipophilic properties. In recent years, there has been some concern about the potential health effects of dioxins and related chemicals for the general population of humans. Although there exists an enormous amount of data on this subject, most of it is from breast milk and blood, due to ease of collection; information concerning concentrations and distribution in various human organs hardly exists. Therefore, new data concerning various human tissues is required to evaluate the pathophysiological significance of dioxins and related compounds in humans. The aim of this study was to investigate the concentration levels and distribution of dioxins and related compounds in various human organ tissues. We previously reported on the concentration levels in the human liver and adipose tissues from 28 donors. In this paper, we determined the concentrations of dioxin-like isomers in 8 organs, including blood, lungs, liver, bile, spleen, pancreas, kidney and mesentery fat from 20 donors.

  20. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.

    Science.gov (United States)

    Watson, Susan B; Jüttner, Friedrich

    2017-03-01

    Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.

  1. A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds

    Science.gov (United States)

    Bouvier-Brown, Nicole C.; Carrasco, Erica; Karz, James; Chang, Kylee; Nguyen, Theodore; Ruiz, Daniel; Okonta, Vivian; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost A.

    2014-09-01

    Volatile organic compounds (VOCs) and intermediate volatility VOCs (IVOCs) are gas-phase organic compounds which may participate in chemical reactions affecting air quality and climate. The development of an inexpensive, field-portable quantification method for higher molecular weight VOCs and IVOCs utilizing commercially available components could be used as a tool to survey aerosol precursors or identify and monitor air quality in various communities. We characterized the performance characteristics for the HayeSep-Q adsorbent with a representative selection of anthropogenic and biogenic VOC standards and optimized experimental conditions and procedures for field collections followed by laboratory analysis. All VOCs were analyzed using gas chromatography coupled with mass spectrometry. Precision (average 22%) and accuracy were reasonable and the limit of detection ranged from 10 to 80 pmol/mol (ppt) for the studied compounds. The method was employed at the Los Angeles site during the CalNex campaign in summer 2010 and ambient mixing ratios agreed well (slope 0.69-1.06, R2 0.67-0.71) with measurements made using an in-situ GC-MS - a distinctly different sampling and quantification method. This new technique can be applied to quantify ambient biogenic and anthropogenic C8-C15 VOCs and IVOCs.

  2. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  3. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening

    Science.gov (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David

    2018-02-01

    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  4. Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations

    Energy Technology Data Exchange (ETDEWEB)

    Wingender, R J; Harrison, W; Raphaelian, L A

    1981-02-01

    Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

  5. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  6. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  7. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  8. Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; McGhee, Gordon

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).

  9. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  10. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  11. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  12. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  13. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  14. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  15. Organic halogen compounds and surface water pollution; Composti organoalogenati alifatici e contaminazione delle acque superficiali

    Energy Technology Data Exchange (ETDEWEB)

    Cocchioni, M.; Pellegrini, M. G.; Grappasonni, I.; Nacciarriti, L.; Bernacchia, G. [Camerino, Univ. (Italy). Dipt. di Scienze Igienistiche e Sanitarie-Ambientali

    1997-03-01

    A brief review of the effects of halogenated organic compounds on the fluvial ecosystem is followed by results from a detailed monitoring of these substances in all the Marches Region rivers. The results show generally modest concentrations, except for sporadic peaks for chloroform. Sites revealing significant concentrations of halogenated organic compounds also manifested a worsening of the biological quality of the waters with lessening of E.B.I. Attention is drawn to the negative effects of indiscriminate chlorination of purification plant outputs, as this practice often fails to resolve infective problems and in itself adds toxicity to the watercourse.

  16. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  17. Flow modelling and radionuclide transport research and development in saturated and unsaturated soils

    International Nuclear Information System (INIS)

    Carvalho Filho, Carlos Alberto de; Branco, Otavio Eurico de Aquino; Loureiro, Celso de Oliveira

    1996-01-01

    The Engenho Nogueira Hydrogeological Project, PROHBEN, was idealized with the goal of implementing an Experimental Hydrogeological basin within its limits, in order to permit the development of hydrogeological studies and techniques, mainly in the modeling of flow and transport of contaminants (radionuclides) in the saturated and unsaturated porous media. The PROHBEN is located in Belo Horizonte, Minas Gerais, amounting a 5 km 2 area. The local porous-granular, heterogeneous and anisotropic, water-table aquifer reaches 40 meters of thickness, and is compound mainly by alluvial deposits and alteration rocks products, with a sandy texture. The flow and transport modeling are being done using the Modflow and MT3D codes. Three master degree researches are being done in the PROHBEN area and one expects is that more researchers come to use this experimental site. (author)

  18. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...

  19. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    International Nuclear Information System (INIS)

    Jiang, B.; Liu, Y.

    2014-01-01

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  20. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Márcio S. Silva

    2017-02-01

    Full Text Available Nuclear magnetic resonance (NMR is a powerful tool for the elucidation of chemical structure and chiral recognition. In the last decade, the number of probes, media, and experiments to analyze chiral environments has rapidly increased. The evaluation of chiral molecules and systems has become a routine task in almost all NMR laboratories, allowing for the determination of molecular connectivities and the construction of spatial relationships. Among the features that improve the chiral recognition abilities by NMR is the application of different nuclei. The simplicity of the multinuclear NMR spectra relative to 1H, the minimal influence of the experimental conditions, and the larger shift dispersion make these nuclei especially suitable for NMR analysis. Herein, the recent advances in multinuclear (19F, 31P, 13C, and 77Se NMR spectroscopy for chiral recognition of organic compounds are presented. The review describes new chiral derivatizing agents and chiral solvating agents used for stereodiscrimination and the assignment of the absolute configuration of small organic compounds.

  1. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  2. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  3. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions

    Science.gov (United States)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.

    2010-08-01

    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  4. Measurement and estimated health risks of volatile organic compounds and polychlorinated biphenyls in air at the Hanford Site

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Blanton, M.L.

    1994-10-01

    A variety of radioactive and nonradioactive chemicals have been released in effluent streams and discharged to waste disposal facilities during the nuclear materials production period at the Hanford Site. Extensive environmental surveillance for radioactive materials has occurred at Hanford; however, only limited information is available on the types and concentrations of organic pollutants potentially present. This report describes work performed to provide the Hanford Site Surface Environmental Surveillance Project with representative air concentration data for volatile organic compounds and polychlorinated biphenyls (PCBs). US Environmental Protection Agency (USEPA) volatile organic compound sampling methods evaluated for Hanford Site use were carbon-based adsorbent traps (TO-2) and Summa air canisters (TO-14). Polychlorinated biphenyls were sampled using USEPA method (TO-4), which uses glass fiber filters and polyurethane foam adsorbent beds to collect the PCBS. This report also presents results for environmental surveillance samples collected for volatile organic compound and PCB analyses from 1990 to 1993. All measured air concentrations of volatile organic compounds and PCBs were well below applicable maximum allowable concentration standards for air contaminants. Because of the lack of ambient air concentration standards, a conservative estimate is provided of the potential human health impacts from exposure to the ambient air concentrations measured on the Hanford Site

  5. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  6. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  7. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    Science.gov (United States)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  8. The Impact and Oxidation Survival of Selected Meteoritic Compounds: Signatures of Asteroid Organic Material on Planetary Surfaces

    Science.gov (United States)

    Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood

    2013-01-01

    Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.

  9. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    International Nuclear Information System (INIS)

    Reed, D.T.; Armstrong, S.C.; Krause, T.R.

    1993-01-01

    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several additional low-level radioactive waste sites being considered throughout the United States. The production of chlorinated volatile organic compounds due to the interaction of ionizing radiation with chloro-plastic materials has been well-established in both this work and past studies. This occurs as a result of gamma, beta, and alpha particle interactions with the plastic material. The assemblage of organic compounds generated depends on the type of plastic material, the type of ionizing radiation, the gaseous environment present and the irradiation temperature. In the authors' experiments, gas generation data were obtained by mounting representative plastics near (3 mm) an alpha particle source (Am-241 foil). This assembly was placed in an irradiation vessel which contained air, nitrogen, or a hydrogen/carbon dioxide mixture, at near-atmospheric pressures, to simulate the range of atmospheres likely to be encountered in the subsurface. The gas phase in the vessels are periodically sampled for net gas production. The gas phase concentrations are monitored over time to determine trends and calculate the radiolytic yield for the various gaseous products

  10. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Joseph F. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States)], E-mail: jfwhelan@usgs.gov; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States); Roedder, Edwin [Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 (United States)

    2008-05-15

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T{sub h}) up to {approx}80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite {delta}{sup 18}O values, and depositional timing is constrained by the {sup 207}Pb/{sup 235}U ages of chalcedony or opal in the deposits. Fluid inclusion T{sub h} from 50 samples of calcite and four samples of fluorite range from {approx}35 to {approx}90 deg. C. Calcite {delta}{sup 18}O values range from {approx}0 to {approx}22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T{sub h} and the lowest {delta}{sup 18}O values are found in the older calcite. Calcite T{sub h} and {delta}{sup 18}O values indicate that most calcite precipitated from water with {delta}{sup 18}O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two {sup 207}Pb/{sup 235}U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from {approx}9.5 to 1.9 Ma. New and published {sup 207}Pb/{sup 235}U and {sup 230}Th/Uages coupled with the T{sub h} values and estimates of temperature from calcite {delta}{sup 18}O values indicate

  11. Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05

    Science.gov (United States)

    Lathrop, Tim; Moran, Dan

    2011-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).

  12. A study on heterogeneous photocatalytic degradation of various organic compounds using N-Tio2 under Uv-light irradiation

    Science.gov (United States)

    Srujana, Dhegam; Sailu, Chinta

    2018-04-01

    The aim of this work is to determine the photocatalytic degradation of mixture of four selected organic compounds are Congo Red (CR), Methylene Blue (MB), Diclofenaec (DC), 4-Chlorophenol (4-CP) have been subjected to Photo catalytic degradation by Ultraviolet (λ=254nm) radiation in presence of Nitrogen-doped Titanium dioxide (N-TiO2) catalyst. This paper focused on the enhancement of photo catalysis by modification of TiO2 employing non-metal ion (Nitrogen) doping. Experiments are conducted with a mixture of equal proportions of organic compounds (CR, MB, DC, and 4-CP) with combined concentrations of 10, 20, 30, 40 and 50 mg/l in water in a batch reactor in presence of N-TiO2catalyst with UV light (λ=254nm). The rate of degradation of each compound is determined by using spectrophotometer. The kinetics of degradation of the selected organic compounds is followed first order rate.

  13. The effect of the controlled oxygen on the incineration of radio contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Hoshino, Akira.

    1982-02-01

    It is very important to resolve the method of safety storage and the reduction of volume of radio contaminated waste for utilization of atomic energies. Presently, the amounts of radio contaminated organic compounds such as ion exchange resin, vinyl chloride resin and so on are increased year by year. These compounds are very difficult to burning because of the occurrence of soot or flying ash, so that the waste are solidified using with cement or asphalt. But the burning of these compounds are most efficient method for reduction of volume of the wastes. The present work is an attempt to evaluate the effect of controlled oxygen on the incineration of these compounds, using by differential thermoelectrobalance. The given off gas from these compounds are mixture of hydrocarbon and free carbon examined by mass spectrography. As the result of this study, these compounds are decomposed perfectly under 5 - 10% of oxygen gas flow at about 650 0 C and the off gas from the compounds is disappeared contact with heated copper oxide without soot or flying ash. (author)

  14. Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers

    International Nuclear Information System (INIS)

    Arditsoglou, Anastasia; Voutsa, Dimitra

    2008-01-01

    Two types of polar organic chemical integrative samplers (pharmaceutical POCIS and pesticide POCIS) were examined for their sampling efficiency of selected endocrine disrupting compounds (EDCs). Laboratory-based calibration of POCISs was conducted by exposing them at high and low concentrations of 14 EDCs (4-alkyl-phenols, their ethoxylate oligomers, bisphenol A, selected estrogens and synthetic steroids) for different time periods. The kinetic studies showed an integrative uptake up to 28 days. The sampling rates for the individual compounds were obtained. The use of POCISs could result in an integrative approach to the quality status of the aquatic systems especially in the case of high variation of water concentrations of EDCs. The sampling efficiency of POCISs under various field conditions was assessed after their deployment in different aquatic environments. - Calibration and field performance of polar organic integrative samplers for monitoring EDCs in aquatic environments

  15. Energy dependence of radiation interaction parameters of some organic compounds

    Science.gov (United States)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan

    2018-04-01

    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using Win

  16. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  17. Experimental investigation of the auto-ignition characteristics of oxygenated reference fuel compounds

    Science.gov (United States)

    Walton, Stephen Michael

    The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the

  18. Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method

    Directory of Open Access Journals (Sweden)

    Thomas Maciej

    2017-12-01

    Full Text Available The possibility of removing organic compounds from wastewater originating from the photochemical production of printed circuit boards by use of waste acidification and disposal of precipitated photopolymer in the first stage and the UV-Fenton method in a second stage has been presented. To optimize the process of advanced oxidation, the RSM (Response Surface Methodology for three independent factors was applied, i.e. pH, the concentration of Fe(II and H2O2 concentration. The use of optimized values of individual parameters in the process of wastewater treatment caused a decrease in the concentration of the organic compounds denoted as COD by approx. 87% in the first stage and approx. 98% after application of both processes. Precipitation and the decomposition of organic compounds was associated with a decrease of wastewater COD to below 100 mg O2/L whereas the initial value was 5550 mg O2/L. Decomposition of organic compounds and verification of the developed model of photopolymers removal was also carried out with use of alternative H2O2 sources i.e. CaO2, MgO2, and Na2CO3·1,5H2O2.

  19. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  20. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    Science.gov (United States)

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.