WorldWideScience

Sample records for unrefined polyethylene oxide

  1. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    Breen, J.

    1987-01-01

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1 H-PEO and 13 C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  2. Poly(ethylene oxide) functionalization

    Science.gov (United States)

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  3. 21 CFR 172.260 - Oxidized polyethylene.

    Science.gov (United States)

    2010-04-01

    ... to 19. (b) The additive is used or intended for use as a protective coating or component of protective coatings for fresh avocados, bananas, beets, coconuts, eggplant, garlic, grapefruit, lemons, limes... Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may be safely...

  4. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  5. Poly(ethylene oxide) surfactant polymers

    OpenAIRE

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; MARCHANT, ROGER E.

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  6. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  7. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  8. A thermoelectric voltage effect in polyethylene oxide

    CERN Document Server

    Martin, B; Kliem, H

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depen...

  9. A thermoelectric voltage effect in polyethylene oxide

    International Nuclear Information System (INIS)

    Martin, Bjoern; Wagner, Achim; Kliem, Herbert

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depends on the energy-barrier heights in the multi-well potential

  10. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.

    2010-01-01

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients

  11. Optimization of process and solution parameters in electrospinning polyethylene oxide

    CSIR Research Space (South Africa)

    Jacobs, V

    2011-11-01

    Full Text Available This paper reports the optimization of electrospinning process and solution parameters using factorial design approach to obtain uniform polyethylene oxide (PEO) nanofibers. The parameters studied were distance between nozzle and collector screen...

  12. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  13. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  14. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    Science.gov (United States)

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2012-01-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene

  16. Influence of different factors on the destruction of films based on polylactic acid and oxidized polyethylene

    Science.gov (United States)

    Podzorova, M. V.; Tertyshnaya, Yu. V.; Pantyukhov, P. V.; Shibryaeva, L. S.; Popov, A. A.; Nikolaeva, S.

    2016-11-01

    Influence of different environmental factors on the degradation of film samples based on polylactic acid and low density polyethylene with the addition of oxidized polyethylene was studied in this work. Different methods were used to find the relationship between degradation and ultraviolet, moisture, oxygen. It was found that the addition of oxidized polyethylene, used as a model of recycled polyethylene, promotes the degradation of blends.

  17. Poly(ethylene oxide)–Poly(propylene oxide)-Based Copolymers for ...

    African Journals Online (AJOL)

    Amphiphilic poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO)-based copolymers are thermoresponsive materials having aggregation properties in aqueous medium. As hydrosolubilizers of poorly water-soluble drugs and improved stability of sensitive agents, these materials have been investigated for improvement ...

  18. Deformation of confined poly(ethylene oxide) in multilayer films.

    Science.gov (United States)

    Lai, Chuan-Yar; Hiltner, Anne; Baer, Eric; Korley, LaShanda T J

    2012-04-01

    The effect of confinement on the deformation behavior of poly(ethylene oxide) (PEO) was studied using melt processed coextruded poly(ethylene-co-acrylic acid) (EAA) and PEO multilayer films with varying PEO layer thicknesses from 3600 to 25 nm. The deformation mechanism was found to shift as layer thickness was decreased between 510 and 125 nm, from typical axial alignment of the crystalline fraction, as seen in bulk materials, to nonuniform micronecking mechanisms found in solution-grown single crystals. This change was evaluated via tensile testing, wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). With the commercially relevant method of melt coextrusion, we were able to overcome the limitations to the testing of solution-grown single crystals, and the artifacts that occur from their handling, and bridged the gap in knowledge between thick bulk materials and thin single crystals.

  19. Radiation synthesis of superabsorbent polyethylene oxide/tragacanth hydrogel

    Science.gov (United States)

    Khoylou, F.; Naimian, F.

    2009-03-01

    A new superabsorbent hydrogel has been prepared from tragacanth and polyethylene oxide (PEO) by gamma radiation at room temperature. Tragacanth solutions with different concentrations (1%, 3% and 5%) have been blended with 5% aqueous solution of PEO at a ratio of 1:1 and irradiated at doses 5-20 kGy. The properties of the prepared composite hydrogels were evaluated in terms of the gel fraction and the swelling behavior. An unexpected growth of the gel fraction was observed in PEO/tragacanth hydrogels irradiated at 5 kGy. Incorporation of 5% tragacanth into the aqueous PEO increased significantly the swelling percent of the hydrogels to more than 14,000% and thus makes it a superabsorbent material.

  20. Radiation synthesis of superabsorbent polyethylene oxide/tragacanth hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Khoylou, F. [Nuclear Science and Technology Research Institute, Radiation Applications Research School, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of)], E-mail: fkhoylou@aeoi.org.ir; Naimian, F. [Nuclear Science and Technology Research Institute, Radiation Applications Research School, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of)

    2009-03-15

    A new superabsorbent hydrogel has been prepared from tragacanth and polyethylene oxide (PEO) by gamma radiation at room temperature. Tragacanth solutions with different concentrations (1%, 3% and 5%) have been blended with 5% aqueous solution of PEO at a ratio of 1:1 and irradiated at doses 5-20 kGy. The properties of the prepared composite hydrogels were evaluated in terms of the gel fraction and the swelling behavior. An unexpected growth of the gel fraction was observed in PEO/tragacanth hydrogels irradiated at 5 kGy. Incorporation of 5% tragacanth into the aqueous PEO increased significantly the swelling percent of the hydrogels to more than 14,000% and thus makes it a superabsorbent material.

  1. Radiation synthesis of superabsorbent polyethylene oxide/tragacanth hydrogel

    International Nuclear Information System (INIS)

    Khoylou, F.; Naimian, F.

    2009-01-01

    A new superabsorbent hydrogel has been prepared from tragacanth and polyethylene oxide (PEO) by gamma radiation at room temperature. Tragacanth solutions with different concentrations (1%, 3% and 5%) have been blended with 5% aqueous solution of PEO at a ratio of 1:1 and irradiated at doses 5-20 kGy. The properties of the prepared composite hydrogels were evaluated in terms of the gel fraction and the swelling behavior. An unexpected growth of the gel fraction was observed in PEO/tragacanth hydrogels irradiated at 5 kGy. Incorporation of 5% tragacanth into the aqueous PEO increased significantly the swelling percent of the hydrogels to more than 14,000% and thus makes it a superabsorbent material

  2. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing

    2010-10-14

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  3. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    International Nuclear Information System (INIS)

    Lisboa, Patricia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, Francois

    2007-01-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy

  4. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  5. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.

    Science.gov (United States)

    Vallejos, María Evangelina; Felissia, Fernando Esteban; Area, María Cristina; Ehman, Nanci Vanesa; Tarrés, Quim; Mutjé, Pere

    2016-03-30

    Nanofibrillated cellulose has been obtained from the cellulosic fraction of eucalyptus sawdust. The fractionation process involved the partial removal of hemicelluloses and lignin. CNF was obtained using TEMPO oxidation with NaOCl in basic medium followed by mechanical homogenization. The obtained CNF was subsequently used as a dry strength agent on unbleached unrefined eucalyptus pulp. The addition of 3, 6 and 9 wt.% of CNF increased lineally the tensile index of handsheets to about 55 N mg(-1) at 35°SR, compatible with papermachine runnability. The other mechanical properties also increased substantially, and porosity decreased moderately. The estimated specific surface and average diameter of these CNF were 60 m(2)g(-1), and of 41.0 nm, respectively. The addition of 9 wt.% of CNF produced an increase in mechanical strength, equivalent to that produced by PFI refining at 1600 revolutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

    OpenAIRE

    Chen, Alfred Yuen-Wei

    2013-01-01

    Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-...

  7. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    Colin, E.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  8. Stability of β-carotene in polyethylene oxide electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, I., E-mail: irpeipar@upvnet.upv.es [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Mason, M.; Romano, A. [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Biasioli, F. [Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all ‘Adige, TN (Italy); Scampicchio, M., E-mail: matteo.scampicchio@unibz.it [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy)

    2016-05-01

    Highlights: • β-carotene was incorporated into PEO-nanofibers by electrospinning. • Properties of the fibers were analyzed by SEM, color analysis, and DSC. • TGA coupled to PTR–ms resulted promising to online-monitoring thermal degradation. • Thermal stability of βc increased after encapsulation into the PEO-nanofibers. - Abstract: β-carotene (βc) was successfully incorporated into electrospun nanofibers of poly-(ethylene oxide) (PEO) with the aim of prolonging its shelf life and thermal stability. The physical and thermal properties of the βc-PEO-nanofibers were determined by scanning electron microscopy (SEM), color analysis, and differential scanning calorimetry (DSC). The nanofibers of PEO and βc-PEO exhibited average fiber diameters of 320 ± 46 and 230 ± 21 nm, with colorimetric coordinates L* = 95.7 ± 2.4 and 89.4 ± 4.6 and b* = −0.5 ± 0.1 and 6.2 ± 3.0 respectively. Thermogravimetric analysis coupled with Proton Transfer–Mass Spectroscopy (TGA/PTR–ms) demonstrated that coated βc inside PEO nanofibers increased thermal stability when compared to standard βc in powder form. In addition, β-carotene in the membranes showed higher stability during storage when compared with β-carotene in solution with a decrease in concentration of 57 ± 4% and 70 ± 2% respectively, thus should extend the shelf life of this compound. Also, TGA coupled with PTR–MS resulted in a promising technique to online-monitoring thermal degradation.

  9. Characterization of ureasil-polyethylene oxide/chitosan hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Zaldivar, M.; Pulcinelli, S.H.; Peniche Covas, C.; Santilli, C.V. [Universidad de la Habana, Havana (Cuba); Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Siloxane-polyether hybrids are an interesting and versatile family of multifunctional organic-inorganic hybrid materials, also named ureasils. Ureasils have been the object of intensive studies in the last years due to their versatility and wide range of applications. Polyethylene oxide (PEO) and chitosan are biocompatible and low toxicity polymers that were used as organic phase while the inorganic phase was siloxane. Therefore, the aim of this work was the characterization of these hybrids that were prepared by the sol–gel route. Hydrochloric and acetic acids were used as catalysts. Due to the insolubility of chitosan in ethanol and organic solvents, water was used in the hydrolysis solution as the main component or alone. The obtained materials were transparent, rubbery, flexible and water-insoluble. They were characterized by different physicochemical techniques such as FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), TG (Thermogravimetric Analysis), XRD (X-Ray Diffraction), SAXS (Small Angle X-ray Scattering) and NMR (Nuclear Magnetic Resonance Spectroscopy). Results showed that chitosan addition did not provoke appreciable changes in the thermal properties but modifies the polycondensation degree and the nanoscopic structure of the materials. Significant changes were not found neither by the hydrolysis solution nor by the type of acid, except in the thermal stability. It depended on the type of acid catalyst, being higher in hybrids prepared with HCl. We can conclude that these materials can be synthesized just with water as the hydrolysis solution and that any of the two acids can be used as catalyst without significantly affect its final properties. (author)

  10. Synthesis and morphology of hydroxyapatite/polyethylene oxide nanocomposites with block copolymer compatibilized interfaces

    Science.gov (United States)

    Lee, Ji Hoon; Shofner, Meisha

    2012-02-01

    In order to exploit the promise of polymer nanocomposites, special consideration should be given to component interfaces during synthesis and processing. Previous results from this group have shown that nanoparticles clustered into larger structures consistent with their native shape when the polymer matrix crystallinity was high. Therefore in this research, the nanoparticles are disguised from a highly-crystalline polymer matrix by cloaking them with a matrix-compatible block copolymer. Specifically, spherical and needle-shaped hydroxyapatite nanoparticles were synthesized using a block copolymer templating method. The block copolymer used, polyethylene oxide-b-polymethacrylic acid, remained on the nanoparticle surface following synthesis with the polyethylene oxide block exposed. These nanoparticles were subsequently added to a polyethylene oxide matrix using solution processing. Characterization of the nanocomposites indicated that the copolymer coating prevented the nanoparticles from assembling into ordered clusters and that the matrix crystallinity was decreased at a nanoparticle spacing of approximately 100 nm.

  11. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    International Nuclear Information System (INIS)

    Martínez-Romo, A; Mota, R González; Bernal, J J Soto; Candelas, I Rosales; Reyes, C Frausto

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation

  12. Behaviour of electroinsulating polyethylene and polyvinil-chloride-based materials in the contact with nitrogen oxides

    International Nuclear Information System (INIS)

    Korolev, V.M.; Koroleva, G.N.; Il'yukhina, Ya.A.

    1987-01-01

    The compatibility of electric cable sheaths on polyethylene and polyvinylchloride base with nitrogen tetroxide has been studied. It is shown, that the cables with polyethylene sheaths are compatible with N 2 O 4 and can be used in the conditions of the contact with it within 5 hours. Polyvinylchloride is incompatible with nitrogen oxide and polyvinylchloride based cables can be used only with oxides concentraton don't exceeding 0,5 g/l. Under the effect of high concentrations before dismounting or conducting works after accidents, these cables need special treatment for eliminating impact sensitivity acquired in the conditions of contamination

  13. The influence of modification of elastomer compositions in polyethylene oxides on their resistance to mineral oils

    Directory of Open Access Journals (Sweden)

    E. P. Uss

    2017-01-01

    Full Text Available The influence of modifying of elastomer compositions based on nitrile rubber in the medium of low molecular weight polyethylene oxide on resistance of rubbers to liquid aggressive mediawas studied. Standard hydrocarbon oils – oil ASTM №1 and ASTM №3, having a constant chemical composition and properties, were used as aggressive fluids. Resistance of elastomer compositions to standard oil was evaluated by change in weight, volume and relative compression set after keeping the samples in these oils at elevated temperatures. The influence of aggressive environment on the degree of swelling and the value of compression set of compositions modified in polyethylene oxides medium was established. It has been shown that the mass/volume of modified rubbers during aging in oil ASTM №1 reduced to a lesser degree compared to unmodified samples, which is probably due to the influence of low molecular weight polyethylene oxides for the formation of vulcanizates structure. At the same time exposure to oil ASTM №3 of elastomer compositions increases the degree of swelling of modified rubber more than unmodified, which can be due to destruction by the action of aggressive medium additional intermolecular bonds between macromolecules of polyethylene oxide and rubber, resulting in increased flexibility of the elastomeric matrix segments. It revealed that modification of rubbers in low molecular weightpolyethylene oxides facilitates preparation of rubber with low compression set after aging in standard oils at elevated temperatures.

  14. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    Science.gov (United States)

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.

  15. Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    This paper reports the gas-permeation properties of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) segmented multiblock copolymers. These block copolymers allow a precise structural modification by the amount of PBT and the PEO segment length, enabling a systematic study of the

  16. CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers

    NARCIS (Netherlands)

    Husken, D.; Visser, Tymen; Wessling, Matthias; Gaymans, R.J.

    2010-01-01

    This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide

  17. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor; Karunakaran, Madhavan

    2015-01-01

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  18. Unconventional, amphiphilic polymers based on chiral polyethylene oxide derivatives I. Synthesis and Characterization.

    NARCIS (Netherlands)

    Janssen, H.M.; Peeters, E.; Zundert, van M.F.; Genderen, van M.H.P.; Meijer, E.W.

    1997-01-01

    The first representatives of a new class of synthetic, amphiphilic polymers based on poly(ethylene oxide) are introduced. These polymers are constituted in a similar way to that for coiled-coil-forming peptides: the polymers possess a regular repeat of apolar (A) residues in a polar (P) sequence of

  19. On the structure of polymeric composite of metallacarborane with poly(ethylene oxide)

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Brus, Jiří; Jigounov, Alexander; Pleštil, Josef; Uchman, M.; Procházka, K.; Gradzielski, M.

    2011-01-01

    Roč. 44, č. 10 (2011), s. 3847-3855 ISSN 0024-9297 R&D Projects: GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer * metallacarborane * poly(ethylene oxide) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.167, year: 2011

  20. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  1. Nanofibrous web quality in dependence on the preparation of poly(ethylene oxide) aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Peer, Petra; Filip, Petr

    2017-01-01

    Roč. 108, č. 12 (2017), s. 2021-2026 ISSN 0040-5000 R&D Projects: GA ČR GA17-26808S Institutional support: RVO:67985874 Keywords : nanofibrous web * poly(ethylene oxide) solution * magnetic stirring * vibrational shaking Subject RIV: BK - Fluid Dynamics OBOR OECD: Polymer science Impact factor: 1.007, year: 2016

  2. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  3. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  4. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, Astrid; de Vries, Jacob; van der Mei, HC; Norde, W; Busscher, HJ

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  5. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, A.; Vries, de J.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2005-01-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  6. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios; Giannelis, Emmanuel P.

    2011-01-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay

  7. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites

    OpenAIRE

    Szymczyk, Anna; Paszkiewicz, Sandra; Pawelec, Iwona; Lisiecki, Slawomir; Jotko, Marek; Spitalsky, Zdenko; Mosnácek, Jaroslav; Roslaniec, Zbigniew

    2015-01-01

    Poly(ethylene terephthalate) nanocomposites with low loading (0.1–0.5 wt%) of graphene oxide (GO) have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for ...

  8. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  9. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  10. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media.

    Science.gov (United States)

    Kloser, Elisabeth; Gray, Derek G

    2010-08-17

    Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-TOF MS, SEC MALLS, and AFM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.

  11. Dynamic mechanical properties of hydroxyapatite/polyethylene oxide nanocomposites: characterizing isotropic and post-processing microstructures

    Science.gov (United States)

    Shofner, Meisha; Lee, Ji Hoon

    2012-02-01

    Compatible component interfaces in polymer nanocomposites can be used to facilitate a dispersed morphology and improved physical properties as has been shown extensively in experimental results concerning amorphous matrix nanocomposites. In this research, a block copolymer compatibilized interface is employed in a semi-crystalline matrix to prevent large scale nanoparticle clustering and enable microstructure construction with post-processing drawing. The specific materials used are hydroxyapatite nanoparticles coated with a polyethylene oxide-b-polymethacrylic acid block copolymer and a polyethylene oxide matrix. Two particle shapes are used: spherical and needle-shaped. Characterization of the dynamic mechanical properties indicated that the two nanoparticle systems provided similar levels of reinforcement to the matrix. For the needle-shaped nanoparticles, the post-processing step increased matrix crystallinity and changed the thermomechanical reinforcement trends. These results will be used to further refine the post-processing parameters to achieve a nanocomposite microstructure with triangulated arrays of nanoparticles.

  12. Magnetorheological behaviour and electrospinning of poly(ethylene oxide) suspensions with magnetic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Peer, Petra; Stěnička, M.; Sedlačík, M.; Filip, Petr; Pavlínek, V.

    2016-01-01

    Roč. 27, č. 7 (2016), s. 898-903 ISSN 1045-389X R&D Projects: GA ČR(CZ) GAP105/11/2342 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : magnetorheological * electrospinning * poly(ethylene oxide) * nanofibres * sedimentation * rheology Subject RIV: BK - Fluid Dynamics Impact factor: 2.255, year: 2016

  13. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  14. Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Verreault, D.; Diesner, M. O.; Proks, Vladimír; Heissler, S.; Rypáček, František; Koelsch, P.

    2012-01-01

    Roč. 28, č. 40 (2012), s. 14273-14283 ISSN 0743-7463 R&D Projects: GA ČR GAP108/11/1857; GA ČR GPP108/12/P624 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : poly(ethylene oxide) * polydopamine * biomaterials Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.187, year: 2012

  15. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    Science.gov (United States)

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  16. The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats

    Czech Academy of Sciences Publication Activity Database

    Peer, Petra; Filip, Petr; Polášková, M.; Kucharczyk, P.; Pavlínek, V.

    2016-01-01

    Roč. 126, April (2016), s. 101-106 ISSN 0141-3910 Institutional support: RVO:67985874 Keywords : electrospinning * nanofibres * poly(ethylene oxide) * sonication * degradation Subject RIV: BK - Fluid Dynamics Impact factor: 3.386, year: 2016

  17. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  18. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    Science.gov (United States)

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  19. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C.T.; Haraveen, K.J.S.; Tee, Tiam-Ting; Rahmat, A.R.

    2015-01-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  20. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  1. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  2. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Asriza, Ristika O.; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132 (Indonesia)

    2015-09-30

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  3. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Science.gov (United States)

    Asriza, Ristika O.; Arcana, I. Made

    2015-09-01

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  4. pH responsiveness of dendrimer-like poly(ethylene oxide)s.

    Science.gov (United States)

    Feng, Xiaoshuang; Taton, Daniel; Borsali, Redouane; Chaikof, Elliot L; Gnanou, Yves

    2006-09-06

    Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively

  5. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for Synthesis of Poly(ethylene oxide)

    KAUST Repository

    Xia, Yening

    2017-08-24

    We herein report a case study on the toxicity of residual catalyst in metal-free polymer. Eight-arm star-like poly(ethylene oxide)s were successfully synthesized via phosphazene-catalyzed ring-opening polymerization of ethylene oxide using sucrose as an octahydroxy initiator. The products were subjected to MTT assay using human cancer cell lines (MDA-MB-231 and A2780). Comparison between the crude and purified products clearly revealed that the residual phosphazenium salts were considerably cytotoxic regardless of the anionic species, and that the cytotoxicity of more bulky t-BuP4 salt was higher than that of t-BuP2 salt. Such results have therefore put forward the necessity for removal of the catalyst residues from PEO-based polymers synthesized through phosphazene catalysis for bio-related applications, and for the development of less or non-toxic organocatalysts for such polymers.

  6. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for Synthesis of Poly(ethylene oxide)

    KAUST Repository

    Xia, Yening; Shen, Jizhou; Alamri, Haleema; Hadjichristidis, Nikolaos; Zhao, Junpeng; Wang, Yucai; Zhang, Guangzhao

    2017-01-01

    We herein report a case study on the toxicity of residual catalyst in metal-free polymer. Eight-arm star-like poly(ethylene oxide)s were successfully synthesized via phosphazene-catalyzed ring-opening polymerization of ethylene oxide using sucrose as an octahydroxy initiator. The products were subjected to MTT assay using human cancer cell lines (MDA-MB-231 and A2780). Comparison between the crude and purified products clearly revealed that the residual phosphazenium salts were considerably cytotoxic regardless of the anionic species, and that the cytotoxicity of more bulky t-BuP4 salt was higher than that of t-BuP2 salt. Such results have therefore put forward the necessity for removal of the catalyst residues from PEO-based polymers synthesized through phosphazene catalysis for bio-related applications, and for the development of less or non-toxic organocatalysts for such polymers.

  7. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles.

    Science.gov (United States)

    Geng, Yan; Discher, Dennis E

    2005-09-21

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation-induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly(ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by polycaprolactone hydrolysis, with distinct mechanism and kinetics from that which occurs in bulk material.

  8. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas

    2012-01-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed...... polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333–20 000 Da PEG coatings that resulted in larger hydrodynamic size...

  10. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  11. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    Science.gov (United States)

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p zirconium group versus 0.05 mm/year (range, -0.39 to 0.11 mm/year) in the metal group (difference of medians 0.03, p

  12. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  13. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    Science.gov (United States)

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  14. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  15. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  16. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  17. ZPPR-20 phase D : a cylindrical assembly of polyethylene moderated U metal reflected by beryllium oxide and polyethylene.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R.; Grimm, K.; McKnight, R.; Shaefer, R.; Nuclear Engineering Division; INL

    2006-09-30

    The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration. Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a rhenium

  18. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  19. Effect of Zinc Oxide Nanoparticles and Sodium Hydroxide on the Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2017-12-01

    Full Text Available In this study, the synthesis of zinc oxide nanoparticles was carried out, together with the hydrolysis of polyethylene terephthalate, using sodium hydroxide to increase surface activity and enhance nanoparticle adsorption. Polyester fabrics were treated with zinc acetate and sodium hydroxide in an ultrasonic bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confi rmed using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The self-cleaning property of treated fabrics was evaluated through discolouring using methylene blue stain under solar irradiation. The antibacterial activities of the samples against common pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound-treated polyethylene terephthalate improved significantly.

  20. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  1. Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte

    International Nuclear Information System (INIS)

    Gupta, Ravindra Kumar; Rhee, Hee-Woo

    2012-01-01

    Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I 2 redox-couple solid polymer electrolyte is reported for the first time. For the poly(ethylene oxide)-succinonitrile blend-based electrolyte electrical conductivity was noted as high as ∼3 × 10 −4 S cm −1 at 25 °C, which is an order of magnitude higher than that of pure poly(ethylene oxide)-based electrolyte. It also exhibited relatively better pseudo-activation energy (∼0.08 eV). X-ray diffractometry, polarized optical microscopy, and differential scanning calorimetry studies revealed that succinonitrile is helpful in reducing the poly(ethylene oxide) crystallinity due to its plasticizing property. FT-IR study showed significant modification of the poly(ethylene oxide) chain conformation due to the succinonitrile.

  2. A comparison of the efficacy of various antioxidants on the oxidative stability of irradiated polyethylene.

    Science.gov (United States)

    Hope, Natalie; Bellare, Anuj

    2015-03-01

    Ultrahigh-molecular-weight polyethylene (UHMWPE) is subjected to radiation crosslinking to form highly crosslinked polyethylene (HXLPE), which has improved wear resistance. First-generation HXLPE was subjected to thermal treatment to reduce or quench free radicals that can induce long-term oxidative degeneration. Most recently, antioxidants have been added to HXLPE to induce oxidative resistance rather than by thermal treatment. However, antioxidants can interfere with the efficiency of radiation crosslinking. We sought to identify (1) which antioxidant from among those tested (vitamin E, β-carotene, butylated hydroxytoluene, or pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) causes the least reduction of crosslinking; (2) which promotes the greatest oxidative stability; and (3) which had the lowest ratio of oxidation index to crosslink density. Medical-grade polyethylene (PE) resin was blended with 0.1 weight % of the following stabilizers: alpha tocopherol (vitamin E), β-carotene, butylated hydroxytoluene (BHT), and pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (a hindered phenol antioxidant [HPAO]). These blends were compression-molded into sheets and subjected to electron beam irradiation to a dose of 100 kGy. Equilibrium swelling experiments were conducted to calculate crosslink density. Each PE was subjected to accelerated aging for a period of 2 weeks and Fourier transform infrared spectroscopy was used to measure the maximum oxidation. Statistical analysis was conducted using analysis of variance with Fisher's protected least significant difference in which a p value of tested (1.49, ES = 1.94; 95% CI, 1.32-1.66) followed by HPAO-PE (1.70, ES = 1.52; 95% CI, 1.61-1.80), vitamin E-PE (2.21, ES = 0.52; 95% CI, 2.05-2.38), and β-carotene-PE (2.69, ES = -0.43; 95% CI, 2.46-2.93) compared with control PE (2.47, 95% CI, 2.07-2.88) with β-carotene (p = 0.208) and vitamin E (p = 0

  3. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    Science.gov (United States)

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  4. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  5. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    Science.gov (United States)

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  6. Thermo-oxidative degradation study of melt-processed polyethylene and its blend with polyamide using time-resolved rheometry

    CSIR Research Space (South Africa)

    Salehiyan, Reza

    2017-05-01

    Full Text Available Time-resolved mechanical spectroscopy (TRMS) was conducted to study the thermo-oxidative degradation of linear low density polyethylene (LLDPE) samples with different thermal histories and their blends with a polyamide (PA6) in the melt state. Neat...

  7. High-efficiency synthesis of dendrimer-like poly(ethylene oxide) via “arm-first” approach

    KAUST Repository

    Zhu, Saisai; Xia, Ru; Chen, Peng; Yang, Bin; Miao, Jibin; Zheng, Zhengzhi; Su, Lifeng; Qian, Jiasheng; Cao, Ming; Feng, Xiaoshuang

    2017-01-01

    In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO

  8. Synthesis of α-hydroxy-ω-amino poly(ethylene oxide) and its use in reaction injection moulding (RIM)

    NARCIS (Netherlands)

    Loontjens, Ton J.A.; Scholtens, Boudewijn J.R.; Belt, Wil J.W.; Frisch, Kurt C.; Wong, Shaio-wen

    1993-01-01

    Computer simulations show that oligomers with two different terminal groups with dissimilar reactivities for isoeyanates give a delayed viscosity rise in polyurethanes. This is a desired behaviour for RIM processes. Therefore, an α-hydroxy-ω-amino poly(ethylene oxide) (HAPEO) has been prepared. The

  9. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  10. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S

    2018-01-01

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing

    2012-03-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene oxide) oligomers were also simulated to clarify the effect of grafting on the dynamics of nanoparticles and chains. The model approximates nanoparticles as solid spheres and uses a united-atom representation for chains, including torsional and bond-bending interactions. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental data but show a smaller activation energy relative to real NOHMs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted ones at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of particles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that NOHMs have liquidlike behavior in the absence of a solvent. For both grafted and ungrafted systems at low temperatures, increasing chain length reduces the volume fraction of nanoparticles and accelerates the dynamics. However, at high temperatures, longer chains slow down nanoparticle diffusion. From the Stokes-Einstein relationship, it was determined that the coarse-grained treatment of nanoparticles leads to slip on the nanoparticle surfaces. Grafted systems obey the Stokes-Einstein relationship over the temperature range simulated, but ungrafted systems display deviations from it. © 2012 American Chemical Society.

  12. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    Science.gov (United States)

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  13. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  14. Oxidized Polyethylene Wax as a Potential Carbon Source for PHA Production

    Directory of Open Access Journals (Sweden)

    Iza Radecka

    2016-05-01

    Full Text Available We report on the ability of bacteria to produce biodegradable polyhydroxyalkanoates (PHA using oxidized polyethylene wax (O-PEW as a novel carbon source. The O-PEW was obtained in a process that used air or oxygen as an oxidizing agent. R. eutropha H16 was grown for 48 h in either tryptone soya broth (TSB or basal salts medium (BSM supplemented with O-PEW and monitored by viable counting. Study revealed that biomass and PHA production was higher in TSB supplemented with O-PEW compared with TSB only. The biopolymers obtained were preliminary characterized by nuclear magnetic resonance (NMR, gel permeation chromatography (GPC, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The detailed structural evaluation at the molecular level was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS. The study revealed that, when TSB was supplemented with O-PEW, bacteria produced PHA which contained 3-hydroxybutyrate and up to 3 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units. The ESI-MS/MS enabled the PHA characterization when the content of 3-hydroxybutyrate was high and the appearance of other PHA repeating units was very low.

  15. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    Science.gov (United States)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  16. Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2017-11-01

    In this review, the latest updates in poly (ethylene oxide) based electrolytes are summarized. The ultimate goal of researchers globally is towards the development of free-standing solid polymeric separators for energy storage devices. This single free-standing solid polymeric separator may replace the liquid and separator (organic/inorganic) used in existing efficient/smart energy technology. As an example, polyethylene oxide (PEO) consists of an electron donor-rich group which provides coordinating sites to the cation for migration. Owing to this exclusive structure, PEO exhibits some remarkable properties, such as a low glass transition temperature, excellent flexibility, and the ability to make complexation with various metal salts which are unattainable by another polymer host. Hence, the PEO is an emerging candidate that has been most examined or is currently under consideration for application in energy storage devices. This review article first provides a detailed study of the PEO properties, characteristics of the constituents of the polymer electrolyte, and suitable approaches for the modification of polymer electrolytes. Then, the synthesization and characterizations techniques are outlined. The structures, characteristics, and performance during charge-discharge of four types of electrolyte/separators (liquid, plasticized, and dispersed and intercalated electrolyte) are highlighted. The suitable ion transport mechanism proposed by researchers in different renowned groups have been discussed for the better understanding of the ion dynamics in such systems.

  17. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  18. Extent of Microbial Contamination of Refined and Unrefined Vegetable oils sold in South-west Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwafemi Flora

    2018-04-01

    Full Text Available Oils constitute a major source of plant-based protein. A major limitation to optimal oil consumption in sub-tropical region is fungal infestation and consequent mycotoxin contamination. Ten refined and eight unrefined vegetable oils were randomly purchase from open markets and screened for microbial contamination using standard microbial procedures. Twenty six fungi isolates were obtained from the vegetable oil samples, the isolates were identified as Aspergillus fumigatus (43.0%, Mucor (17.9%, Saccharomyces cerevisiae (10.7%, Aspergillus niger (7.1%, Aspergillus flavus (7.1%, Penicillium spp (7.1%, Aspergillus oryzae (3.6%, Mucor (17.9% and Rhizopus spp (3.6%. Five out of the ten refined vegetable oil samples had no fungal contamination. A. flavus and A. oryzae were absent in all the refined oil samples while A. niger was absent in all the unrefined oil samples. Isolation of mycotoxigenic fungi such as Aspergillus spp. is of vital importance in the food industry. Education and training of processors and consumers is recommended.

  19. Adsorption of Poly(ethylene oxide)-Poly(lactide) Copolymers. Effects of Composition and Degradation.

    Science.gov (United States)

    Muller, Dries; Carlsson, Fredrik; Malmsten, Martin

    2001-04-01

    The effect of chemical degradation of two diblock copolymers of poly(ethylene oxide) (E) and poly(lactide) (L), E(39)L(5) and E(39)L(20), on their adsorption at silica and methylated silica was investigated with in situ ellipsometry. Steric stablization of polystyrene dispersions was investigated in relation to degradation. Hydrolysis of the poly(lactide) block of the copolymers was followed at different temperatures and pH by using HPLC to measure the occurrence of lactic acid in solution. The block copolymers were quite stable in pH-unadjusted solution at low temperature, whereas degradation was facilitated by increasing temperature or lowering of the pH. Lower degradation rates of E(39)L(20) where observed at low temperature in comparison with those of E(39)L(5), whereas the degradation rates of the copolymers were quantitatively similar at high temperature. The adsorption of the copolymers at methylated silica substrates decreased with increasing degree of degradation due to the reduction in the ability of hydrophobic block to anchor the copolymer layer at the surface. At silica the adsorption initially increased with increasing degradation, particularly for E(39)L(20) due to deposition of aggregates onto the surface. After extensive degradation the adsorption of the copolymers at both silica and methylated silica resembled that of the corresponding poly(ethylene oxide) homopolymer. Overall, it was found that the eventual reduction in adsorption occurred at a lower degree of degradation for E(39)L(5) than for E(39)L(20). Mean-field calculations showed a reduced anchoring for the block copolymers with decreasing poly(lactide) block length at hydrophobic surfaces. In accordance with this finding, it was observed that polystyrene dispersions were stabilized by E(39)L(20) or E(39)L(5) in a way that depended on both the lactide block length and the degree of degradation. Upon degradation of the hydrophobic block, stabilization of the polystyrene dispersions was

  20. Crystallinity and order of poly(ethylene oxide)/lithium triflate complex confined in nanoporous membranes

    International Nuclear Information System (INIS)

    Bishop, Christina; Teeters, Dale

    2009-01-01

    The confinement of poly(ethylene oxide), PEO, electrolyte in pores of 13, 35, 55 and 100 nm in diameter in nanoporous alumina membranes was seen to have effects on the ionic conduction properties. Specific conductivity values for the PEO/lithium triflate complex in the 13 and 35 nm pores, for temperatures below the melt temperatures, were increased by a factor of four compared to the non-confined polymer and the 55 and 100 nm pore systems. Thermal analysis data indicate the melting temperature for the PEO electrolyte in the pores is directly proportional to the pore size such that as the pore size of confinement is decreased, the T m decreases as well. The same behavior is seen for the amount of crystallinity, with less crystallinity being observed as the pores become smaller. Perhaps the observed conduction behavior could be attributed to less crystallinity. However, it is known that confinement of polyethers in pores results in stretching and ordering of the backbone and that such ordering can increase ion conduction. This ordering would seem to be the major factor involved in these results. The enhanced conduction only being seen in the 13 and 35 nm pores and not the 55 and 100 nm pores is attributed to the larger size for the latter which allows a more bulk-like behavior with less ordering.

  1. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    Science.gov (United States)

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    International Nuclear Information System (INIS)

    Ejder-Korucu, Mehtap; Gürses, Ahmet; Karaca, Semra

    2016-01-01

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  3. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    Science.gov (United States)

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  4. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios

    2011-05-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay surface modifier was synthesized and characterized. Incorporation of organoclays with polar (MMT-OH) or aromatic groups (MMT-Ar) suppresses the crystallization of polymer chains in low MW PEO, but does not significantly affect the crystallization of high MW matrices. In addition, the relative complex viscosity of the nanocomposites based on low MW PEO increases significantly, but the effect is less pronounced at higher MWs. The viscosity increases in the series MMT-Alk < MMT-OH < MMT-Ar. In contrast to the neat PEO which exhibits a monotonic decrease of viscosity with temperature, all nanocomposites show an increase after a certain temperature. This is the first report of such dramatic enhancements in the viscoelasticity of nanocomposites, which are reversible, are based on a simple polymer matrix and are true in a wide temperature range. © 2011 Elsevier Ltd. All rights reserved.

  5. Metal adsorption of gamma-irradiated carboxymethyl cellulose/polyethylene oxide blend films

    Science.gov (United States)

    El-Naggar, Amal A.; Magida, M. M.; Ibrahim, Sayeda M.

    2016-03-01

    Blend films of different ratios of carboxymethyl cellulose (CMC)/polyethylene oxide (PEO) were prepared by the solution casting method. To investigate the effect of irradiation on all properties of prepared blend, it was exposed to different gamma irradiation doses (10, 20, and 30 kGy). Physical properties such as gel fraction (GF) (%) and swelling (SW) (%) were investigated. It was found that the GF (%) increases with increasing irradiation dose up to 20 kGy, while SW (%) decreases with an increase in the irradiation doses for all blend compositions. Moreover, the structural and mechanical properties of the prepared films were studied. The results of the mechanical properties obtained showed that there is an improvement in these properties with an increase in both CMC and irradiation dose up to 20 kGy. The efficiency of metal ions uptake was measured using a UV spectrophotometer. The prepared films showed good tendency to absorb and release metal ions from aqueous media. Thus, the CMC/PEO film can be used in agricultural domain.

  6. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  7. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide).

    Science.gov (United States)

    Duan, Bin; Dong, Cunhai; Yuan, Xiaoyan; Yao, Kangde

    2004-01-01

    Electrospinning of chitosan solutions with poly(ethylene oxide) (PEO) in an aqueous solution of 2 wt% acetic acid was studied. The properties of the chitosan/PEO solutions, including conductivity, surface tension and viscosity, were measured. Morphology of the electrospun chitosan/PEO was observed by using scanning electron micrographs. Results showed that the ultrafine fibers could be generated after addition of PEO in 2:1 or 1:1 mass ratios of chitosan to PEO from 4-6 wt% chitosan/PEO solutions at 15 kV voltage, 20 cm capillary-collector distance and flow rate 0.1 ml/h. During electrospinning of the chitosan/PEO solutions, ultrafine fibers with diameters from 80 nm to 180 nm were obtained, while microfibers with visually thicker diameters could be formed as well. Results of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and differential scanning calorimeter exhibited the larger electrospun microfibers were almost entirely made from PEO, while the electrospun ultrafine fibers mainly contained chitosan.

  8. Characterization of Polyethylene Oxide and Sodium Alginate for Oil Contaminated-Sand Remediation

    Directory of Open Access Journals (Sweden)

    Jongwon Jung

    2017-01-01

    Full Text Available Biopolymers have been employed in many soil applications, such as oil-contaminated soil remediation, due to their environmentally friendly characteristics. This study focused on changes in the wettability and viscosity of polyethylene oxide (PEO and sodium alginate (SA, according to the variation in concentration and their impact on oil-contaminated soil remediation using biopolymer-decane displacement tests. The contact angle and interfacial tension vary with concentration by adding biopolymer to water; however both parameters yield relatively constant values within the range of 2–10 g/L for the concentration of PEO and SA. In this study, their influence on fluid invasion patterns is insignificant compared to viscosity and flow rate. Viscosity increases with the concentration of PEO and SA, within the range of 0–10 g/L, which causes the biopolymer-decane displacement ratio to increase with concentration. Biopolymer-decane displacement increases with injected fluid velocity. At low flow rates, the effect of the biopolymer concentration on the displacement ratio is prominent. However the effect decreases with an increase in flow rate. Thus both biopolymer concentration and injection velocity should be considered to achieve the economic efficiency of soil remediation. The experimental results for the distribution of soils with different grain sizes indicate that the displacement ratio increases with the uniformity of the coefficient of soils.

  9. Effect of Nanodiamonds on Structure and Durability of Polyethylene Oxide-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rossella Arrigo

    2016-01-01

    Full Text Available Polymer-based nanocomposites containing nanodiamonds (NDs are attractive multifunctional materials with a growing range of applications. In this work, in the frame of developing completely biocompatible systems, nanocomposites based on polyethylene oxide (PEO and different amount of NDs have been formulated through melt mixing and fully characterized. In particular, the reinforcement effect of NDs in PEO has been probed through tensile tests, and the rheological response of PEO-based nanocomposites as a function of the nanoparticles amount has been investigated and discussed. The obtained results show that the presence of well-distributed NDs strengthens the mechanical performance of the nanocomposites and brings about an increase of the PEO crystallinity, suggesting a strong adhesion between NDs and polymer matrix. Furthermore, as a result of NDs adding, alterations of the rheological behaviour of neat PEO can be noticed, as NDs are able to significantly influence the long-range dynamics of PEO chains. Besides, accelerated aging tests demonstrate that NDs show a remarkable protective ability against PEO photodegradation, due to their ability to attenuate efficiently UV radiation. The latter opens up new avenues for the use of NDs as multifunctional nanofillers for polymer-based nanocomposites with enhanced photooxidative resistance.

  10. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  11. Insights on Li-TFSI diffusion in polyethylene oxide for battery applications

    Science.gov (United States)

    Molinari, Nicola; Mailoa, Jonathan; Kozinsky, Boris; Robert Bosch LLC Collaboration

    Improving the energy density, safety and efficiency of lithium-ion (Li-ion) batteries is crucial for the future of energy storage and applications such as electric cars. A key step in the research of next-generation solid polymeric electrolyte materials is understanding the diffusion mechanism of Li-ion in polyethylene oxide (PEO) in order to guide the design of electrolytes materials with high Li-ion diffusion while, ideally, suppress counter-anion movement. In this work we use computer simulations to investigate this long-standing problem at a fundamental level. The system under study has Li-TFSI concentration and PEO chain length that are representative of practical application specifications; the interactions of the molecular model are described via the PCFF+ all-atom force-field. Validation of the model is performed by comparing trends against experiments for diffusivity and conductivity as a function of salt concentration. The analysis of Li-TFSI molecular dynamics trajectories reveals that 1. for high Li-TFSI concentration a significant fraction of Li-ion is coordinated by only TFSI and consistently move less than PEO-coordinated Li-ion, 2. PEO chain motion is key in enabling Li-ion movement. Robert Bosch LLC.

  12. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids.

    Science.gov (United States)

    Roosjen, Astrid; de Vries, Joop; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2005-05-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum. (c) 2005 Wiley Periodicals, Inc.

  13. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  14. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, L.; Gal, O.; Markovic, V.; Stannett, V.T.

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author)

  15. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene. 2. Combined antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, L; Gal, O; Markovic, V; Stannett, V T

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author).

  16. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  17. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  18. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  19. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  20. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  1. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim

    2011-11-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully to the cross-linking of poly(ethylene oxide) (PEO10,000) in either aqueous medium or at the solid state, thus, we demonstrated the potential of these bis(PFPA) molecules as promising coupling agents in surface engineering. © 2011 Elsevier Ltd. All rights reserved.

  2. Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: stability and resistance to protein adsorption

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Popelka, Štěpán; Houska, Milan; Chvostová, Dagmar; Proks, Vladimír; Rypáček, František

    2011-01-01

    Roč. 12, č. 9 (2011), s. 3232-3242 ISSN 1525-7797 R&D Projects: GA AV ČR KJB400500904; GA ČR GAP108/11/1857; GA ČR GPP207/10/P569 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100522 Keywords : dopamine -melanin * polydopamine * poly(ethylene oxide) Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.479, year: 2011

  3. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    Science.gov (United States)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN

  4. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. The formation and growing properties of poly(ethylene terephthalate) fiber growing media after thermo-oxidative treatment

    International Nuclear Information System (INIS)

    Chang, C.P.; Lin, S.M.

    2007-01-01

    This research uses three kinds of recycled synthetic fibers that all possess excellent thermal plasticity property as raw material to develop a new firm cultivation media: polyethylene terephthalate, polyamide and polypropylene. One can not only freely control plants cultivation growing condition by changing bulk density of the media, but also solve disposal problem after usage by applying thermal oxidative treatment during manufacturing processes. The water content, air permeability and formation conditions of these fiber growing media that are required in plants growing habitat were discussed, and compared the fallout with rockwool (RW) growing media that is commonly used at present days. The results indicated that the polyethylene terephthalate fiber media could attain best formation characteristics among these fibers at the same bulk density range. Furthermore, the fiber media that were thermo-oxidative treated at 240-260 deg. C could obtained above 90% total porosity, 23-49% air capacity and 48-68% water availability, water contents raised from 1735-1094 to 2145-1156% under bulk densities of 0.03-0.09 g/cm 3 , which conforms to the common plant growing habitat conditions. Its performance well surpasses the rockwool growing media. We also discovered that the thermo-oxidative treated polyethylene terephthalate (PET) fiber media could be easily broken down and become powdery by exerting pressure, thus greatly reduce its volume and effectively improve disposal processes that are difficult presently for the huge refuse create by rockwool

  7. Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate

    International Nuclear Information System (INIS)

    Han, H.; Adams, Daniel; Mayer, J.W.; Alford, T.L.

    2005-01-01

    Indium tin oxide (ITO) thin films, on polyethylene napthalate (PEN) of both good electrical and optical properties were obtained by radio-frequency sputtering. The optoelectronic properties of the ITO films on PEN substrate were evaluated in terms of the oxygen content and the surface morphology. Rutherford backscattering spectrometry analysis was used to determine the oxygen content in the film. Hall-effect measurements were used to evaluate the dependence of electrical properties on oxygen content. The results showed that the resistivity of the ITO film increases with increasing oxygen content. For an oxygen content of 1.6x10 18 -2.48x10 18 atoms/cm 2 , the resistivity varied from 0.38x10 -2 to 1.86x10 -2 Ω cm. Typical resistivities were about ∼10 -3 Ω cm. UV-Vis spectroscopy and atomic force microscopy measurements were used to determine the optical transmittance and surface roughness of ITO films, respectively. Optical transmittances of ∼85% were obtained for the ITO thin films. Our results revealed that substrate roughness were translated onto the deposited ITO thin layers. The ITO surface roughness influences both the optical and electrical properties of the thin films. For a 125 μm PEN substrate the roughness is 8.4 nm, whereas it is 3.2 nm for 200 μm substrate thicknesses. The optical band gap is about 3.15 eV for all ITO film and is influenced by the polymer substrate. A model is proposed that the optical transmittance in the visible region is governed by the carrier concentration in the ITO thin films

  8. Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes

    International Nuclear Information System (INIS)

    Guilherme, L.A.; Borges, R.S.; Moraes, E. Mara S.; Silva, G. Goulart; Pimenta, M.A.; Marletta, A.; Silva, R.A.

    2007-01-01

    The ionic conductivity and phase arrangement of solid polymeric electrolytes based on the block copolymer polyethylene-b-poly(ethylene oxide) (PE-b-PEO) and LiClO 4 have been investigated. One set of electrolytes was prepared from copolymers with 75% of PEO units and another set was based on a blend of copolymer with 50% PEO units and homopolymers. The differential scanning calorimetry (DSC) results, for electrolytes based on the copolymer with 75% of PEO units, were dominated by the PEO phase. The PEO block crystallinity dropped and the glass transition increased with salt addition due to the coordination of the cation by PEO oxygen. The conductivity for copolymers 75% PEO-based electrolyte with 15 wt% of salt was higher than 10 -5 S/cm at room temperature and reached to 10 -3 S/cm at 100 deg. C on a heating measurement. The blend of PE-b-PEO (50% PEO)/PEO/PE showed a complex thermal behavior with decoupled melting of the blocks and the homopolymers. Upon salt addition the endotherms associated with PEO domains disappeared and the PE crystals remained untouched. The conductivity results were limited at 100 deg. C to values close to 10 -4 S/cm and at room temperature values close to 3 x 10 -6 S/cm were obtained for the 15 wt% salt electrolyte. Raman study showed that the ionic association of the highly concentrated blend electrolytes at room temperature is not significant. Therefore, the lower values of conductivity in the case of the blend with 50% PEO can be assigned to the higher content of PE domains leading to a morphology with lower connectivity for ionic conduction both in the crystalline and melted state of the PE domains

  9. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    Science.gov (United States)

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  10. High-efficiency synthesis of dendrimer-like poly(ethylene oxide) via “arm-first” approach

    KAUST Repository

    Zhu, Saisai

    2017-04-14

    In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO with one alkynyl group and two bromo groups, was synthesized by AROP of ethylene oxide followed by functionalization with propargyl bromide and esterified with 2-bromopropionic bromide. Second, a star PEO carrying three azide groups was synthesized though AROP of ethylene oxide used 1,1,1-tris(hydrosymethyl) ethane as initiator followed esterificated with 2-bromopropionic acid and azidation. By azide–alkyne click reactions between the azide-terminated PEO star polymer and linear PEO with functionalization alkynyl group, a three generation dendrimer-like PEO, G3-PEO-24Br, was successfully synthesized. The resulting polymers were observed to have precisely controlled molecular weights and compositions with narrow molecular weight distributions.

  11. Theoretical consideration on phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF3SO3 systems in lithium battery

    International Nuclear Information System (INIS)

    Ko, Sung Jin; Kim, Sun Joon; Kong, Sung Ho; Bae, Young Chan

    2004-01-01

    A new thermodynamic model is developed based on the extended perturbed hard sphere chain (PHSC) model and melting point depression theory to describe the phase behaviors of copolymer electrolyte/salt systems. The phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF 3 SO 3 systems are investigated by thermo-optical analysis (TOA) technique. Quantitative descriptions according to the proposed model are in good agreement with experimental data. The obtained results show that monomer ratio and sequence type of copolymers play a great role in determining eutectic points of the given systems

  12. Degradation of low-density polyethylene in the presence of water and deuterium oxide

    International Nuclear Information System (INIS)

    Sedgwick, R.D.; Al-Sultan, Y.Y.; Abushihada, A.M.

    1981-01-01

    The degradation of low-density polyethylene in the presence of water as the degradative agent was studied at a temperature of 450 0 C and a pressure greater than 160 atm. The experimental work was conducted in an autoclave of 333-mL capacity. The results indicate the presence of paraffins, olefines, dienes, and aromatics in the degradation products. The occurrence of aromatics in the products demonstrates the importance of this degradation procedure for obtaining these valuable materials. The present work (Part 1) is believed to be the first publication to discuss the production of aromatics from polyethylenes degradation

  13. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  14. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene.

    Science.gov (United States)

    Petis, Stephen M; Vasarhelyi, Edward M; Lanting, Brent A; Howard, James L; Naudie, Douglas D R; Somerville, Lyndsay E; McCalden, Richard W

    2016-02-01

    The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan-Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0-10.6) years for cobalt-chrome and 7.8 (range 2.1-10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%-97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%-99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%-98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%-99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up.

  15. Surface morphology and dewettability of self-organized thermosets involving epoxy and POSS-capped poly(ethylene oxide) telechelics

    International Nuclear Information System (INIS)

    Wang, Lei; Zheng, Sixun

    2012-01-01

    A heptaphenyl polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) (POSS-capped PEO) telechelics was synthesized via the Huisgen 1,3-dipolar cycloaddition between 3-azidopropylheptaphenyl POSS and α,ω-dialkynyl-terminated poly(ethylene oxide). The organic–inorganic amphiphile was incorporated into epoxy to obtain the organic–inorganic nanocomposites. The morphology of the nanocomposites was investigated by means of atomic force microscopy (AFM) and dynamic mechanical thermal analysis (DMTA). It was found that the epoxy thermosets containing POSS-capped PEO telechelics were microphase-separated. The formation of the nanophases in the thermosets followed a self-assembly mechanism. The static contact angle measurements show that the nanocomposites displayed a significant enhancement in surface hydrophobicity as well as reduction in surface free energy. The improvement in surface dewettability was ascribed to the enrichment of POSS cages at the surface of the nanocomposites and the formation of the specific surface morphology as evidenced by X-ray photoelectron spectroscopy (XPS) and surface atomic force microscopy (AFM). -- Highlights: ► POSS-capped PEO telechelics was synthesized via click chemistry approach. ► The organic–inorganic amphiphile can be self-assembled into the nanophases in epoxy. ► The hybrid nanocomposites were successfully prepared via a self-assembly approach. ► The nanocomposites displayed a significant enhancement in surface hydrophobicity.

  16. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  17. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection

    Directory of Open Access Journals (Sweden)

    Li B

    2014-10-01

    Full Text Available Bo Li,1,2 Xiao-Yong Zhang,1 Jian-Zhong Yang,1 Yu-Jie Zhang,1 Wen-Xin Li,1 Chun-Hai Fan,1 Qing Huang1 1Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 2Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China Abstract: In this study, we assessed the in vivo behavior and toxicology of nanoscale graphene oxide (NGO in mice after intravenous injection. The influence of a polyethylene glycol (PEG coating on the distribution and toxicity of the NGO was also investigated. The results show that NGO is mainly retained in the liver, lung, and spleen. Retention in the lung is partially due to NGO aggregation. The PEG coating reduces the retention of NGO in the liver, lung, and spleen and promotes the clearance of NGO from these organs, but NGO and NGO-PEG are still present after 3 months. The PEG coating effectively reduces the early weight loss caused by NGO and alleviates NGO-induced acute tissue injuries, which can include damage to the liver, lung, and kidney, and chronic hepatic and lung fibrosis. Keywords: graphene oxide, biodistribution, toxicity, polyethylene glycol

  18. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    Science.gov (United States)

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  19. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  20. Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition

    Science.gov (United States)

    Pang, Wenchao; Ni, Zifeng; Wu, JiaLiang; Zhao, Yongwu

    2018-03-01

    A range of ultrahigh molecular weight polyethylene (UHMWPE)/graphene oxide (GO) nanocomposites were fabricated using liquid-phase ultrasonication mixing followed by hot-pressing. The wettability, water absorption and corrosion resistance of composites were studied to prove the composites were suitable for application in liquid environment. The tribological properties of composites under dry, deionized water and seawater lubricating condition were investigated. The results showed that the incorporation of GO decreased the wear rate of UHMWPE under different lubricating conditions and with the increase of GO addition, the wear rate of UHMWPE/GO composites decreased. UHMWPE/GO composites exhibited better tribological behaviors under seawater lubricating condition than other conditions, because good corrosion resistance and excellent wear resistance of UHMWPE/GO composites, and the lubricating effect of seawater is also indispensable.

  1. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  2. Electrospun Poly(L-Lactide-co-ε-Caprolactone/Polyethylene Oxide/Hydroxyapaite Nanofibrous Membrane for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2010-01-01

    Full Text Available A series of poly(L-lactide-co-ε-caprolactone/polyethylene oxide/hydroxyapaite (PLCL/PEO/HA composite fibrous membranes were prepared by elecrospinning technology for guided bone regeneration. The morphology, water permeability and mechanical properties of the membranes were investigated. The HA nanocrystals can be well distributed in the PLCL/PEO matrix. And the diameter of composite nanofiber is larger than that of pure PLCL. The fibers with uniform size and large diameter were obtained when the contents of PEO and HA were 0.4% and 0.03%, respectively. In this condition, the obtained membrane presents the best water permeability. Furthermore, the nanofibrous membrane with largest tensile strength was obtained when the contents of PEO and HA were 0.5% and 0.03%, respectively.

  3. Hybrid nanospheres formed by intermixed double-hydrophilic block copolymer poly(ethylene oxide)-block-poly(2-ethyloxazoline) with high content of metallacarboranes

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Procházka, K.; Zhigunov, Alexander; Pleštil, Josef; Nykänen, A.; Ruokolainen, J.; Matějíček, P.

    2013-01-01

    Roč. 46, č. 17 (2013), s. 6881-6890 ISSN 0024-9297 Institutional support: RVO:61389013 Keywords : poly(ethylene oxide)-block-poly(2-ethyloxazoline) * metallacarboranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.927, year: 2013

  4. Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to

  5. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior

    NARCIS (Netherlands)

    Deschamps, A.A.; Grijpma, Dirk W.; Feijen, Jan

    2001-01-01

    In this study, the influence of copolymer composition on the physical properties and the degradation behavior of thermoplastic elastomers based on poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) segments is investigated. These materials are intended to be used in medical

  6. Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures

    Science.gov (United States)

    Xuezhu Xu; Haoran Wang; Long Jiang; Xinnan Wang; Scott A. Payne; J.Y. Zhu; Ruipeng Li

    2014-01-01

    Poly(ethylene oxide) (PEO) nanofiber mats were produced by electrospinning. Biobased cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) as reinforcement nanofillers were also added to the polymer to produce composite nanofiber mats. The effects of the two cellulose nanofillers on the rheological properties of the PEO solutions and the microstructure,...

  7. Water-soluble building blocks for terpyridine-containing supramolecular polymers : synthesis, complexation, and pH stability studies of poly(ethylene oxide) moieties

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Schubert, U.S.

    2003-01-01

    Poly(ethylene oxide) of various molecular weights ([bar M ]n = 3 000, 5 200, 10 000, 16 500 g · mol-1) has been modified with terpyridine end groups as building blocks for water-soluble metallo-supramolecular polymers. Metallo-supramolecular A-A homopolymers have been prepared and characterized by

  8. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    Polyethylene microencapsulation physically homogenizes and incorporates mixed waste particles within a molten polymer matrix, forming a solidified final waste form upon cooling. Each individual particle of waste is embedded within the polymer block and is surrounded by a durable, leach-resistant coating. The process has been successfully applied for the treatment of a broad range of mixed wastes, including evaporator concentrate salts, soil, sludges, incinerator ash, off-gas blowdown solutions, decontamination solutions, molten salt oxidation process residuals, ion exchange resins, granular activated carbon, shredded dry active waste, spill clean-up residuals, depleted uranium powders, and failed grout waste forms. For waste streams containing high concentrations of soluble toxic metal contaminants, additives can be used to further reduce leachability, thus improving waste loadings while meeting or exceeding regulatory disposal criteria. In this configuration, contaminants are both chemically stabilized and physically solidified, making the process a true stabilization/solidification (S/S) technology. Unlike conventional hydraulic cement grouts or thermosetting polymers, thermoplastic polymers such as polyethylene require no chemical. reaction for solidification. Thus, a stable, solid, final waste form product is assured on cooling. Variations in waste chemistry over time do not affect processing parameters and do not require reformulation of the recipe. Incorporation of waste particles within the polymer matrix serves as an aggregate and improves the mechanical strength and integrity of the waste form. The compressive strength of polyethylene microencapsulated waste forms varies based on the type and quantity of waste encapsulated, but is typically between 7 and 17.2 MPa (1000 and 2500 psi), well above the minimum strength of 0.4 MPa (160 psi) recommended by the U.S. Nuclear Regulatory Commission (NRC) for low-level radioactive waste forms in support of 10 CFR 61

  9. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  10. Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles: in vitro characterization and in vivo behaviour

    International Nuclear Information System (INIS)

    Kaufner, L; Cartier, R; Wuestneck, R; Fichtner, I; Pietschmann, S; Bruhn, H; Schuett, D; Thuenemann, A F; Pison, U

    2007-01-01

    Positively charged superparamagnetic iron oxide (SPIO) particles of maghemite were prepared in aqueous solution and subsequently stabilized with poly(ethylene oxide)-block-poly(glutamic acid) (PEO-PGA) at a hydrodynamic diameter of 60 nm. Depending on the amount of PEO-PGA used, this is accompanied by a switching of their zeta potentials from positive to negative charge (-33 mV). As a prerequisite for in vivo testing, the PEO-PGA coated maghemite nanoparticles were evaluated to be colloidally stable in water and in physiological salt solution for longer than six months as well in various buffer systems under physiological pH and salt conditions (AFM, dynamic light scattering). We excluded toxic effects of the PEO-PGA coated maghemite nanoparticles. We demonstrated by in vivo MR-imaging and 111 In measurements a biodistribution of the nanoparticles into the liver comparable to carboxydextran coated superparamagnetic iron oxide nanoparticles (Resovist[reg]) as a reference nanoscaled MRI contrast medium. This was enforced by a detailed visualization of our nanoparticles by electron microscopy of liver tissue sections. Furthermore, our results indicate that 15% of the injected PEO-PGA coated maghemite nanoparticles circulate in the blood compartment for at least 60 min after i.v. application

  11. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  12. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  13. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  14. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan; Zhu Baoku; Zhu Liping

    2011-01-01

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10 -3 S cm -1 while the electrochemically stable window reach 5.0 V (vs. Li/Li + ). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  15. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Baoku, E-mail: zhubk@zju.edu.c [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Liping [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10{sup -3} S cm{sup -1} while the electrochemically stable window reach 5.0 V (vs. Li/Li{sup +}). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  16. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Directory of Open Access Journals (Sweden)

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  17. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    Science.gov (United States)

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations.

  18. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    Science.gov (United States)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  19. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    International Nuclear Information System (INIS)

    Li, Li; Liu, Honglin; Zou, Lin; Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2013-01-01

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  20. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Liu, Honglin; Zou, Lin [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ding, Wanyu, E-mail: dwysd_2000@163.com [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116028 (China); Ju, Dongying [Department of Material Science and Engineering, Saitama Institute of Technology, Fukaya 369-0293 (Japan); Chai, Weiping [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2013-10-31

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  1. Flexible AMOLED display on polyethylene napthalate (PEN) foil with metal-oxide TFT backplane

    NARCIS (Netherlands)

    Tripathi, A.K.; Putten, B. van der; Steen, J.L. van der; Tempelaars, K.; Cobb, B.; Ameys, M.; Ke, T.H.; Myny, K.; Steudel, S.; Nag, M.; Schols, S.; Vicca, P.; Smout, S.; Genoe, J.; Heremans, P.; Yakimets, I.; Gelinck, G.H.

    2012-01-01

    We present a top emitting monochrome AMOLED display with 85dpi resolution using an amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFT backplane on PEN-foil. Maximum processing temperature was limited to 150 °C in order to ensure an overlay accuracy < 3μm on PEN foil. The backplane process flow is based

  2. Processing of Micro and Nanofibers of Polypyrrole/Polyethylene Oxide/Nylon-6 by the Technique of Electrospinning

    Directory of Open Access Journals (Sweden)

    Olvera-Gracia Manuel

    2013-10-01

    Full Text Available Micro and nano-fibers from polymers in solution can be easily obtained by using the so called electrospinning technique. The principle of this technique relies on apply- ing a positive voltage to the polymer solution and a negative voltage to a collector. By increasing voltage, the surface tension will be overcome and will eject some kind of fiber deposited on the collector. The continuous fibers production will be formed like a membrane. The fibers provide a large surface area due to their small diameter, therefore, their application is considered of commercial and scientific interest. In this study, fibers from a solution made of nylon-6, polyethylene oxide and polypyrrole were obtained. Chloroform and formic acid were used as solvents for these polymers. The fibers obtained were characterized by scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction and electrical conductivity. These results indicate that the diameters of the composite fibers are on the micro and nanometric range, and the conductivity thereof is that of a semiconductor material.

  3. Preparation of reinforced poly(ethylene oxide) blend hydrogel films containing a drug and assessment of their properties

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin

    1999-01-01

    Reinforced poly(ethylene oxide) blend hydrogen films containing mafenide acetate were prepared by using two freezing-thawing cycles and the irradiation crosslinking technique, and their properties and the drug release were assessed. The results showed that the tensile strength of the reinforced PEO blend hydrogel films increased significantly (p < 0.01), the gel fraction and the elongation at break of the films increased slightly as compared with those formed by the irradiation without the freezing-thawing treatment, indicating that the mechanical properties of the PEO blend hydrogel films can be improved by the freezing-thawing cycles. The reinforced films possessed an ideal flexibility, crosslinking density and elasticity as wound dressings. Swelling studies showed that the equilibrium water content of the hydrogel films expressed in the degree of swelling decreased significantly (p < 0.01), suggesting that a significant structural rearrangement of the films occurred during the freezing process. The structural densification resulted in the increase of the mechanical strength of the hydrogel films. The hydrogels formed by the irradiation at doses of 40 kGy were comparatively stronger. Release studies were run on the reinforced hydrogels with mafenide acetate which was incorporated before the freezing-thawing treatment. Release was followed over seven days. The drug transport was controlled by a regular diffusion model

  4. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2016-05-01

    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  5. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Yang Bingxing; Shi Jiahua; Pramoda, K P; Goh, Suat Hong

    2007-01-01

    Phenoxy (poly(hydroxyether of bisphenol-A), also known as poly(bisphenol-A-co-epichlorohydrin)) was grafted onto multiwalled carbon nanotubes (MWNTs) by a reactive blending process. Reactions between terminal glycidyl groups of phenoxy and carboxylic acid groups of acidified MWNTs resulted in the grafting of phenoxy chains onto MWNTs. The mechanical properties of composites of poly(ethylene oxide) (PEO) and phenoxy-grafted MWNTs were studied. The miscibility between PEO and phenoxy enabled the good dispersion of nanotubes in the PEO matrix as evidenced by polarized optical microscopy and transmission electron microscopy. The spherulite size of PEO progressively decreased with increasing amount of phenoxy-grafted MWNTs added. At an optimal MWNT content of 1.5 wt%, the addition of phenoxy-grafted MWNTs led to increases of storage modulus, Young's modulus, yield stress, tensile strength, ultimate strain, and toughness of PEO by 113, 228, 166, 442, 1240, and 4080%, respectively. Such simultaneous increases in stiffness, strength, ductility and toughness of a polymer by an additive are rather uncommon

  6. Preparation of protein- and cell-resistant surfaces by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide).

    Science.gov (United States)

    Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R

    2011-05-01

    The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.

  7. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    Science.gov (United States)

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  8. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.

    Science.gov (United States)

    Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin

    2014-07-01

    A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3)  S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation

    Directory of Open Access Journals (Sweden)

    H. Kamal

    2014-04-01

    Full Text Available Cellulose acetate (CA, polyethylene oxide (PEO copolymer blend was prepared using γ-rays as initiator. PEO as an additive was added with different concentrations (0 – 5% based on cellulose acetate. As the PEO is water soluble, some portions of them were extracted into aqueous solution. To overcome this, the PEO additives were crosslinked with N,N′Methylene bis-acrylamide (MBAAm to be stably entrapped in the CA matrix. The efficiency was calculated to be 100%. Morphological changes using scanning electron microscope (SEM and the bulk properties such as water sorption, electrical conductivity, and chemical stability were investigated. The thermal stability of the developed copolymer blend has also been studied using thermogravimetric analysis (TGA, and differential scanning calorimeter (DSC. Different variations of the copolymerization were studied such as crosslinker concentration and ratio of PEO to cellulose acetate. It was observed that the addition of small amounts of PEO 3 weight % as an additive resulted in a considerable change of the thermal characteristics.

  11. A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements

    Directory of Open Access Journals (Sweden)

    Carl Bergeron

    2012-01-01

    Full Text Available The calorimetric and infrared (IR spectroscopy measurements of polyethylene oxide (PEO are used to evaluate the deformation and relaxation that films experience during a temperature cycle (30°C–90°C–30°C. After melting, the intensity of some bands decreases by 10 to 70%. During the temperature cycle, the C–O band in the 1100 cm−1 region and the C–C–O deformation bands at 650 and 500 cm−1 show some new features. A network of cooperative oxygen-hydrogen interactions between the PEO chains form in films with special history, namely, in thermally treated films, in thin films prepared from gel forming solutions, and in thick films after aging. The interchain interaction network is suggested from the IR absorption bands in the 1200 and 900 cm−1 region and also from small bands at 1144 and 956 cm−1. The network seems absent or reduced in thin films. IR spectroscopy appears a sensitive technique to study chain conformations in PEO films and in other materials where order, disorder, and the formation of intermolecular interactions coexist.

  12. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation

    Science.gov (United States)

    Barba, Bin Jeremiah D.; Aranilla, Charito T.; Relleve, Lorna S.; Cruz, Veriza Rita C.; Vista, Jeanina Richelle; Abad, Lucille V.

    2018-03-01

    Uncontrolled hemorrhage remains a persistent problem especially in anatomical areas where compression and tourniquet cannot be applied. Hemostatic agents are materials which can achieve control of bleeding in acute, life-threatening traumatic coagulopathy. In this study, we prepared biocompatible hydrogel-based hemostat crosslinked by ionizing radiation. Granules made from carboxymethyl cellulose and dressing from kappa carrageenan and polyethylene oxide were characterized by FT-IR, SEM, and gel analysis. Gamma radiation with a dose of 25 kGy was used for sterilization process. Stability studies indicate that the products remain effective with a shelf life of up to 18 months based on accelerated aging. Both hemostatic agents were demonstrated to be effective in vitro blood clotting assays showing a low blood clotting index, high platelet adhesion capacity and accelerated clotting time. Hemostat granules and dressing were also used in a femoral artery rat bleeding model where hemorrhage control was achieved in 90 s without compression and resulted in 100% survival rate after a 7 and 14-day observation.

  13. Nanofibrous Chitosan-Polyethylene Oxide Engineered Scaffolds: A Comparative Study between Simulated Structural Characteristics and Cells Viability

    Directory of Open Access Journals (Sweden)

    Mohammad Kazemi Pilehrood

    2014-01-01

    Full Text Available 3D nanofibrous chitosan-polyethylene oxide (PEO scaffolds were fabricated by electrospinning at different processing parameters. The structural characteristics, such as pore size, overall porosity, pore interconnectivity, and scaffold percolative efficiency (SPE, were simulated by a robust image analysis. Mouse fibroblast cells (L929 were cultured in RPMI for 2 days in the presence of various samples of nanofibrous chitosan/PEO scaffolds. Cell attachments and corresponding mean viability were enhanced from 50% to 110% compared to that belonging to a control even at packed morphologies of scaffolds constituted from pores with nanoscale diameter. To elucidate the correlation between structural characteristics within the depth of the scaffolds’ profile and cell viability, a comparative analysis was proposed. This analysis revealed that larger fiber diameters and pore sizes can enhance cell viability. On the contrary, increasing the other structural elements such as overall porosity and interconnectivity due to a simultaneous reduction in fiber diameter and pore size through the electrospinning process can reduce the viability of cells. In addition, it was found that manipulation of the processing parameters in electrospinning can compensate for the effects of packed morphologies of nanofibrous scaffolds and can thus potentially improve the infiltration and viability of cells.

  14. Development of CO2 Selective Poly(Ethylene Oxide-Based Membranes: From Laboratory to Pilot Plant Scale

    Directory of Open Access Journals (Sweden)

    Torsten Brinkmann

    2017-08-01

    Full Text Available Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2 from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide-containing block copolymers such as Pebax® or PolyActive™ polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActive™ polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m3(STP·(m2·h·bar−1 (1 bar = 105 Pa at a carbon dioxide/nitrogen (CO2/N2 selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into flat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActive™ polymer as a membrane material for industrial-scale gas processing.

  15. Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(.epsilon.-caprolactone) blocks in aqueous solutions: an NMR study

    Czech Academy of Sciences Publication Activity Database

    Konefal, Rafal; Spěváček, Jiří; Jäger, Eliezer; Petrova, Svetlana

    2016-01-01

    Roč. 294, č. 11 (2016), s. 1717-1726 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA15-13853S; GA MŠk(CZ) 7F14009 Institutional support: RVO:61389013 Keywords : thermoresponsive polymer * terpolymer containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(epsilon-caprolactone) blocks * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  16. One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms.

    Science.gov (United States)

    Lapienis, Grzegorz; Penczek, Stanislaw

    2005-01-01

    Synthesis of fully hydrophilic star-shaped macromolecules with different kinds of arms (A(x)B(y)C(z)) based on polyglycidol (PGL, A(x)) and poly(ethylene oxide) (PEO, C(z)) arms and diepoxy compounds (diglycidyl ethers of ethylene glycol (DGEG) or neopentyl glycol (DGNG) in the core, B(y)) forming the core is described. Precursors of arms were prepared by polymerization of glycidol with protected -OH groups. The first-generation stars were formed in the series of consecutive-parallel reactions of arms A(x) with diepoxy compounds (B). These first-generation stars (A(x)B(y)), having approximately O-, Mt+ groups on the cores, were used as multianionic initiators for the second generation of arms (C(z)) built by polymerization of ethylene oxide. The products with M(n) up to 10(5) and having up to approximately 40 arms were obtained. The number of arms (f) was determined by direct measurements of M(n) of the first-generation stars (M(n) of arms A(x) is known), compared with f calculated from the branching index g, determined from R(g) measured with size-exclusion chromatography (SEC) triple detection with TriSEC software. The progress of the star formation was monitored by 1H NMR and SEC. These novel water-soluble stars, having a large number of hydroxyl groups, both at the ends of PEO arms as well as within the PGL arms, can be functionalized and further used for attaching compounds of interest. This approach opens, therefore, a new way of "multiPEGylation".

  17. EFFECTS OF ω-ACRYLOYL POLY(ETHYLENE OXIDE) MACROMONOMER ON EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE AND n-BUTYL ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macromonomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxide with diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction terminating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emulsion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containing various concentrations of PEO-A was studied. In all cases stable emulsion coplymerizations of MMA and BA were obtained. The stabilizing effect was found to be dependent on the molecular weight and the feed amount of the macromonomer.

  18. Degradation of polyethylene induced by plasma in oxidizing atmospheres; Degradacion de polietileno inducido por plasma en atmosferas oxidantes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, E.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, Av. Tollocan y Colon, 50000 Toluca (Mexico)

    2002-07-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  19. Self-assembly of Polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) Triblock Terpolymers

    KAUST Repository

    Musteata, Valentina-Elena; Sutisna, Burhannudin; Polymeropoulos, Georgios; Avgeropoulos, Apostolos; Meneau, Florian; Peinemann, Klaus-Viktor; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2017-01-01

    Polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) terpolymer is a versatile polymer to form isoporous films and membranes, due to the possibility of self-assembly control and the properties of the different blocks, such as the P2VP ability of complexation, and H-bond formation, and the PEO biocompatibility. Copolymers with different block ratios and sizes were synthesized. The correlation between their equilibrium bulk morphology, the self-assembly in dilute and semi-dilute solutions and the non-equilibrium porous structures of membranes, obtained by non-solvent induced phase separation, was investigated and discussed in detail. The characterization was performed by small-angle X-ray scattering (SAXS), scanning (SEM) and transmission electron microscopy (TEM). Hexagonal, cubic and lamellar arrangements were observed. The preparation conditions were optimized and a regular, isoporous morphology, suitable for membrane application, was successfully obtained with PS80.5k-b-P2VP64.4k-b-PEO16.1k.

  20. Self-assembly of Polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) Triblock Terpolymers

    KAUST Repository

    Musteata, Valentina-Elena

    2017-11-08

    Polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) terpolymer is a versatile polymer to form isoporous films and membranes, due to the possibility of self-assembly control and the properties of the different blocks, such as the P2VP ability of complexation, and H-bond formation, and the PEO biocompatibility. Copolymers with different block ratios and sizes were synthesized. The correlation between their equilibrium bulk morphology, the self-assembly in dilute and semi-dilute solutions and the non-equilibrium porous structures of membranes, obtained by non-solvent induced phase separation, was investigated and discussed in detail. The characterization was performed by small-angle X-ray scattering (SAXS), scanning (SEM) and transmission electron microscopy (TEM). Hexagonal, cubic and lamellar arrangements were observed. The preparation conditions were optimized and a regular, isoporous morphology, suitable for membrane application, was successfully obtained with PS80.5k-b-P2VP64.4k-b-PEO16.1k.

  1. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.

    Science.gov (United States)

    Imani, Rana; Prakash, Satya; Vali, Hojatollah; Faghihi, Shahab

    2018-05-29

    The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.

  2. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  3. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  4. Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol

    Science.gov (United States)

    Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang

    2018-05-01

    Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.

  5. Lactosylated poly(ethylene oxide)-poly(propylene oxide) block copolymers for potential active targeting: synthesis and physicochemical and self-aggregation characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cuestas, Maria L.; Glisoni, Romina J. [University of Buenos Aires, Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina); Mathet, Veronica L. [National Science Research Council (CONICET) (Argentina); Sosnik, Alejandro, E-mail: alesosnik@gmail.com [University of Buenos Aires, The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina)

    2013-01-15

    Aiming to develop polymeric self-assembly nanocarriers with potential applications in active drug targeting to the liver, linear and branched poly(ethylene oxide)-poly(propylene oxide) amphiphiles were conjugated to lactobionic acid (LA), a disaccharide of galactose and gluconic acid, by the conventional Steglich esterification reaction. The conjugation was confirmed by ATR/FT-IR, {sup 1}H-NMR, and {sup 13}C-NMR spectroscopy. Elemental analysis and MALDI-TOF mass spectrometry were employed to elucidate the conjugation extent and the final molecular weight, respectively. The critical micellar concentration (CMC), the size and size distribution and zeta potential of the pristine and modified polymeric micelles under different conditions of pH and temperature were characterized by dynamic light scattering (DLS). Conjugation with LA favored the micellization process, leading to a decrease of the CMC with respect to the pristine counterpart, this phenomenon being independent of the pH and the temperature. At 37 Degree-Sign C, micelles made of pristine copolymers showed a monomodal size distribution between 12.8 and 24.4 nm. Conversely, LA-conjugated micelles showed a bimodal size pattern that comprised a main fraction of relatively small size (11.6-22.2 nm) and a second one with remarkably larger sizes of up to 941.4 nm. The former corresponded to single micelles, while the latter would indicate a secondary aggregation phenomenon. The spherical morphology of LA-micelles was visualized by transmission electron microscopy (TEM). Finally, to assess the ability of the LA-conjugated micelles to interact with lectin-like receptors, samples were incubated with concanavalin A at 37 Degree-Sign C and the size and size distribution were monitored by DLS. Findings indicated that regardless of the relatively weak affinity of this vegetal lectin for galactose, micelles underwent agglutination probably through the interaction of a secondary site in the lectin with the gluconic acid

  6. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    Science.gov (United States)

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  7. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  8. Release of Bacteriocins from Nanofibers Prepared with Combinations of Poly(D,L-lactide (PDLLA and Poly(Ethylene Oxide (PEO

    Directory of Open Access Journals (Sweden)

    Leon Dicks

    2011-03-01

    Full Text Available Plantaricin 423, produced by Lactobacillus plantarum, and bacteriocin ST4SA produced by Enterococcus mundtii, were electrospun into nanofibers prepared from different combinations of poly(D,L-lactide (PDLLA and poly(ethylene oxide (PEO dissolved in N,N-dimethylformamide (DMF. Both peptides were released from the nanofibers with a high initial burst and retained 88% of their original antimicrobial activity at 37 °C. Nanofibers have the potential to serve as carrier matrix for bacteriocins and open a new field in developing controlled antimicrobial delivery systems for various applications.

  9. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  10. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  11. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sayantan; Alford, T. L. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  12. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil.

    Science.gov (United States)

    Tribedi, Prosun; Dey, Samrat

    2017-11-09

    Polyethylene represents nearly 64% of all the synthetic plastics produced and are mainly used for domestic and industrial applications. Their extensive use poses a serious environmental threat because of their non-biodegradable nature. Among all the polyethylene remediation strategies, in situ bioremediation happens to be the safest and efficient one. In the current study, efforts had been given to compare the extent of LDPE degradation under UV-treated and UV-untreated conditions by soil microcosm. Landfill soil was collected and UV-treated and UV-untreated LDPE were added separately to the soil following incubation under similar conditions. Electron microscopic images as well as the weight loss and the tensile strength results clearly revealed that UV-treated LDPE showed better degradation than the non-treated ones in soil. To elucidate the mechanism of this enhanced biodegradation, the bond spectra of differentially treated LDPE were analyzed by FTIR. The results obtained from bond spectra studies revealed that UV treatment increases both carbonyl and terminal double-bond index of the LDPE, thereby making it highly susceptible for microbial degradation. Moreover, incubation of UV-treated LDPE with soil favors better adherence of metabolically active and significantly higher number of microorganisms on it. Taken together, all these results demonstrate the higher microbial association and their better metabolic potential to the UV-treated LDPE that lead to enhanced degradation of the LDPE by the soil microorganisms.

  13. A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) in shotcrete

    Energy Technology Data Exchange (ETDEWEB)

    Pickelmann, J.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    In shotcrete, a combination of polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) is commonly applied to reduce rebound. Here, the mechanism for the synergistic viscosity increase resulting from this admixture combination was investigated via x-ray diffraction (XRD), infrared and nuclear magnetic resonance (NMR) spectroscopy. It was found that the electron-rich aromatic rings present in BNS donate electrons to the alkyl protons of PEO and thus increase the electron density there. This rare interaction is known as CH-{pi} interaction and leads to the formation of a supramolecular structure whereby PEO chains bind weakly to BNS molecules. Through this mechanism a polymer network exhibiting exceptionally high molecular weight and thus viscosity is formed. Among polycondensates, sulfanilic acid-phenol-formaldehyde (SPF) provides even higher synergy with PEO than BNS while melamine (PMS), acetone (AFS) or polycarboxylate (PCE) based superplasticizers do not work at all. Effectiveness of lignosulfonates is dependent on their degree of sulfonation.

  14. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  15. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  16. Oxidized zirconium head on crosslinked polyethylene liner in total hip arthroplasty: a 7- to 12-year in vivo comparative wear study.

    Science.gov (United States)

    Karidakis, George K; Karachalios, Theofilos

    2015-12-01

    Osteolysis resulting from wear debris production from the bearing surfaces is a major factor limiting long-term survival of hip implants. Oxidized zirconium head on crosslinked polyethylene (XLPE) is a modern bearing coupling. However, midterm in vivo wear data of this coupling are not known. The purpose of this study was to investigate in vivo whether the combination of an oxidized zirconium femoral head on XLPE produces less wear than a ceramic head on XLPE or a ceramic head on conventional polyethylene (CPE) couplings and whether any of these bearing combinations results in higher hip scores. Between 2003 and 2007, we performed 356 total hip arthroplasties in 288 patients; of those, 199 (69.1%) patients (199 hips) were enrolled in what began as a randomized trial. Unfortunately, after the 57(th) patient, the randomization process was halted because of patients' preference for the oxidized zirconium bearing instead of the ceramic after (as they were informed by the consent form), and after that, alternate allocation to the study groups was performed. Hips were allocated into four groups: in Group A, a 28-mm ceramic head on CPE was used; in Group B, a 28-mm ceramic head on XLPE; in Group C, a 28-mm Oxinium head on XLPE; and in Group D, a 32-mm Oxinium head on XLPE. The authors prospectively collected in vivo wear data (linear wear, linear wear rate, volumetric wear, and volumetric wear rate) using PolyWare software. Preoperative and postoperative clinical data, including Harris and Oxford hip scores, were also collected at regular intervals. Of those patients enrolled, 188 (95%) were available for final followup at a minimum of 7 years (mean, 9 years; range, 7-12 years). All bearing surfaces showed a varying high bedding-in effect (plastic deformation of the liner) up to the second postoperative year. At 5 years both oxidized zirconium on XLPE groups showed lower (p zirconium on XLPE groups also showed lower (p zirconium groups were compared, no differences were

  17. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  18. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  19. Determination of 2-Propenal Using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography–Time-of-Flight Mass Spectrometry as a Marker for Authentication of Unrefined Sesame Oil

    Directory of Open Access Journals (Sweden)

    Ahmad Rois Mansur

    2017-01-01

    Full Text Available Ascertaining the authenticity of the unrefined sesame oil presents an ongoing challenge. Here, the determination of 2-propenal was performed by headspace solid-phase microextraction (HS-SPME under mild temperature coupled to gas chromatography with time-of-flight mass spectrometry, enabling the detection of adulteration of unrefined sesame oil with refined corn or soybean oil. Employing this coupled technique, 2-propenal was detected in all tested refined corn and soybean oils but not in any of the tested unrefined sesame oil samples. Using response surface methodology, the optimum extraction temperature, equilibrium time, and extraction time for the HS-SPME analysis of 2-propenal using carboxen/polydimethylsiloxane fiber were determined to be 55°C, 15 min, and 15 min, respectively, for refined corn oil and 55°C, 25 min, and 15 min, respectively, for refined soybean oil. Under these optimized conditions, the adulteration of unrefined sesame oil with refined corn or soybean oils (1–5% was successfully detected. The detection and quantification limits of 2-propenal were found to be in the range of 0.008–0.010 and 0.023–0.031 µg mL−1, respectively. The overall results demonstrate the potential of this novel method for the authentication of unrefined sesame oil.

  20. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    Science.gov (United States)

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  1. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  2. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Joao Batista V.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Lechuga, Fernanda C.; Lucas, Elizabete F., E-mail: elucas@ima.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2010-07-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  3. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    International Nuclear Information System (INIS)

    Ramalho, Joao Batista V.S.; Lechuga, Fernanda C.; Lucas, Elizabete F.

    2010-01-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  4. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Directory of Open Access Journals (Sweden)

    João Batista V. S. Ramalho

    2010-01-01

    Full Text Available Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent. No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.

  5. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  6. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  7. Dextran and Polymer Polyethylene Glycol (PEG Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    Directory of Open Access Journals (Sweden)

    Alisa Morss Clyne

    2012-05-01

    Full Text Available Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG. Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  8. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl

    Science.gov (United States)

    Mahmoud, Ghada A.; Ali, Amr El-Hag; Raafat, Amany I.; Badawy, Nagwa A.; Elshahawy, Mai. F.

    2018-06-01

    A series of mucoadhesive nanocomposites with self disinfection properties composed of acrylic acid, polyethylene glycol and ZnO nanoparticles (AAc/PEG)-ZnO were developed for localized buccal Propranolol HCl delivery. γ-irradiation as a clean tool for graft copolymerization process was used for the preparation of (AAc/PEG) hydrogels. In suite precipitation technique was used for ZnO nanoparticles immobilization within (AAc/PEG) hydrogels. The developed (AAc/PEG)-ZnO nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) to confirm the success of ZnO nanoparticles formation within the (AAc/PEG) matrices. The presence of ZnO nanoparticles improves the thermal stability as indicated using thermogravimetric analysis (TGA). The mucoadhesion characteristics such as hydration degree, surface pH, and mucoadhesive strength were evaluated in artificial saliva solution. The self disinfection property of the developed (AAc/PEG)-ZnO nanocomposites was investigated by examining their resistance to pathogenic microorganisms such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli using disc diffusion method. The release of Propranolol -HCl drug in artificial saliva was found to obey a non-Fickian diffusion mechanism. The obtained results suggests that (AAc/PEG)-ZnO nanocomposites could be used as mucoadhesive carrier for buccal drug delivery with efficient antibacterial properties.

  9. The effect of gamma irradiation and shelf aging in air on the oxidation of ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Al-Ma'adeed, M.A.; Al-Qaradawi, I.Y.; Madi, N.; Al-Thani, N.J.

    2006-01-01

    This study has investigated the effect of shelf aging, for up to one year in air, on the properties of gamma-irradiated ultra-high molecular weight polyethylene (UHMWPE). A variety of techniques were used to characterize the properties of treated samples. Differential scanning calorimetery (DSC) was used to characterize the morphology. The extent of cross-linking in a polymer network was detected by swelling measurements. The durometer hardness test was used to measure the relative hardness of this material, and changes in density were also measured. Results from all these measurements were combined to explain the changes in the microstructure of the aged, irradiated UHMWPE. This study shows that crystallinity is increased with radiation dose and with aging due to chain scission, which leads to a reduction in the molecular weight of the material. This allows the chains to rearrange to form crystalline regions. Positron annihilation lifetime spectroscopy confirms these conclusions. Fractional free volumes have been deduced from lifetime parameters, which correlate with the data obtained by the other techniques

  10. First detection of lamella-gyroid-cylinder phase transition of neat polyethylene-poly(ethylene oxide) diblock copolymers on the basis of synchrotron WAXD/SAXS and infrared/Raman spectral measurements

    International Nuclear Information System (INIS)

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-01-01

    The phase transition behaviour of polyethylene-b-poly(ethylene oxide) (PE-b-PEO) diblock copolymer with relatively short chain lengths has been studied on the basis of temperature dependent infrared and Raman spectral measurements and synchrotron WAXD/SAXS simultaneous measurements, from which the concrete structural changes were deduced successfully from the various levels of molecular chain conformation, chain packing mode and higher-order structure. The higher-order structure has been found to transform between lamella, perforated lamella, gyroid, cylinder and sphere structures. The inner structural changes occurring in the polyethylene and poly(ethylene oxide) parts have been related with these morphological changes. The morphological transition from lamella to gyroid occurs with keeping the crystalline state of polyethylene parts. This apparently curious transition can be interpreted reasonably by assuming the thermally-activated chain motion in the crystal lattice, which may play an important role as a trigger to induce the morphological change from lamella to gyroid. This idea was supported by the measurement of half-width of Raman anti-symmetric CH 2 stretching band sensitive to the thermal mobility of alkyl chains.

  11. Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation

    International Nuclear Information System (INIS)

    Richaud, Emmanuel

    2014-01-01

    This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with P · and POO · whereas 2,6-di-tert-butyl phenols only react with POO · . Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness. - Highlights: • Radio-thermal oxidation of PE+phenolic antioxidants. • Comparison of Vitamin E and 2,6-di-tert-butylphenols. • Kinetic modeling for predicting practical cases

  12. The Influence of Irradiation and Accelerated Aging on the Mechanical and Tribological Properties of the Graphene Oxide/Ultra-High-Molecular-Weight Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guodong Huang

    2016-01-01

    Full Text Available Graphene oxide/ultra-high-molecular-weight polyethylene (GO/UHMWPE nanocomposite is a potential and promising candidate for artificial joint applications. However, after irradiation and accelerated aging, the mechanical and tribological behaviors of the nanocomposites are still unclear and require further investigation. GO/UHMWPE nanocomposites were successfully fabricated using ultrasonication dispersion, ball-milling, and hot-pressing process. Then, the nanocomposites were irradiated by gamma ray at doses of 100 kGy. Finally, GO/UHMWPE nanocomposites underwent accelerated aging at 80°C for 21 days in air. The mechanical and tribological properties of GO/UHMWPE nanocomposites have been evaluated after irradiation and accelerated aging. The results indicated that the incorporation of GO could enhance the mechanical, wear, and antiscratch properties of UHMWPE. After irradiation, these properties could be further enhanced, compared to unirradiated ones. After accelerated aging, however, these properties have been significantly reduced when compared to unirradiated ones. Moreover, GO and irradiation can synergistically enhance these properties.

  13. Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation

    International Nuclear Information System (INIS)

    Nho, Y.C.; Mook Lim, Youn; Moo Lee, Young

    2004-01-01

    pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by γ-ray irradiation, and then grafting by AAc monomer onto the PEO hydrogels with the subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/VIS spectrophotometer. Insulin was loaded into freeze-dried hydrogels (7 mmx3 mmx2.5 mm) and administrated orally to healthy and diabetic Wistar rats. The oral administration of insulin-loaded hydrogels to Wistar rats decreased the blood glucose levels obviously for at least 4 h due to the absorption of insulin in the gastrointestinal tract

  14. Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: a prerequisite for a pH-triggered targeting system.

    Science.gov (United States)

    Van Butsele, K; Morille, M; Passirani, C; Legras, P; Benoit, J P; Varshney, S K; Jérôme, R; Jérôme, C

    2011-10-01

    Evaluation of the biocompatibility of pH-triggered targeting micelles was performed with the goal of studying the effect of a poly(ethylene oxide) (PEO) coating on micelle stealth properties. Upon protonation under acidic conditions, pH-sensitive poly(2-vinylpyridine) (P2VP) blocks were stretched, exhibiting positive charges at the periphery of the micelles as well as being a model targeting unit. The polymer micelles were based on two different macromolecular architectures, an ABC miktoarm star terpolymer and an ABC linear triblock copolymer, which combined three different polymer blocks, i.e. hydrophobic poly(ε-caprolactone), PEO and P2VP. Neutral polymer micelles were formed at physiological pH. These systems were tested for their ability to avoid macrophage uptake, their complement activation and their pharmacological behavior after systemic injection in mice, as a function of their conformation (neutral or protonated). After protonation, complement activation and macrophage uptake were up to twofold higher than for neutral systems. By contrast, when P2VP blocks and the targeting unit were buried by the PEO shell at physiological pH, micelle stealth properties were improved, allowing their future systemic injection with an expected long circulation in blood. Smart systems responsive to pH were thus developed which therefore hold great promise for targeted drug delivery to an acidic tumoral environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Frequency selectivity in pulse responses of Pt/poly(3-hexylthiophene-2,5-diyl/polyethylene oxide +Li+/Pt hetero-junction.

    Directory of Open Access Journals (Sweden)

    Fei Zeng

    Full Text Available Pt/poly(3-hexylthiophene-2,5-diyl/polyethylene oxide + Li+/Pt hetero junctions were fabricated, and their pulse responses were studied. The direct current characteristics were not symmetric in the sweeping range of ±2 V. Negative differential resistance appeared in the input range of 0 to 2 V because of de-doping (or reduction in the side with the semiconductor layer. The device responded stably to a train of pulses with a fixed frequency. The inverse current after a pulse was related to the back-migrated ions. Importantly, the weight calculated based on the inverse current strength, was depressed during low-frequency stimulations but was potentiated during high-frequency stimulations when pulses were positive. Therefore, frequency selectivity was first observed in a semiconducting polymer/electrolyte hetero junction. Detailed analysis of the pulse response showed that the input frequency could modulate the timing of ion doping, de-doping, and re-doping at the semiconducting polymer/electrolyte interface, which then resulted in the frequency selectivity. Our study suggests that the simple redox process in semiconducting polymers can be modulated and used in signal handling or the simulation of bio-learning.

  16. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  17. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    Science.gov (United States)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  18. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Sung-Ryong; Choudhury, Moinul Haque; Kim, Won-Ho; Kim, Gon-Ho

    2010-01-01

    Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O 2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m 2 /day and was decreased after depositing the silicon oxide (SiO x ) coatings. The minimum WVTR, 0.47 g/m 2 /day, was observed at Ar and O 2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm -1 and Si-O-Si stretching at 1000-1150 cm -1 varied depending on the Ar and O 2 flow rates. The contact angle of the SiO x coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O 2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiO x morphology and the water vapor barrier performance with the Ar and O 2 flow rates. The roughness of the deposited coatings increased when either the O 2 or Ar flow rate was increased.

  19. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.

    Science.gov (United States)

    Lam, HiuFung; Gong, Xiangjun; Wu, Chi

    2007-02-22

    A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.

  20. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs.

    Science.gov (United States)

    Fazli, Yousef; Shariatinia, Zahra; Kohsari, Iraj; Azadmehr, Amirreza; Pourmortazavi, Seied Mahdi

    2016-11-20

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofibrous mats containing ZnO nanoparticles (NPs) and hydrocortisone-imipenem/cilastatin-loaded ZnO NPs were produced by electrospinning technique. The FE-SEM images displayed that the spherical ZnO NPs were ∼70-200nm in size and the CS-PEO nanofibers were very uniform and free of any beads which had average diameters within the range of ∼20-130nm. For all of the nanofibrous mats, the water uptakes were the highest in acidic medium but they were decreased in the buffer and the least swellings were obtained in the alkaline environment. The drug incorporated mat preserved its bactericidal activity even after it was utilized in the release experiment for 8days in the PBS buffer. The hydrocortisone release was increased to 82% within first 12h while the release rate of imipenem/cilastatin was very much slower so that 20% of the drug was released during this period of time suggesting this nanofibrous mat is very suitable to inhibit inflammation (by hydrocortisone) and infection (using imipenem/cilastatin antibiotic and ZnO NPs) principally for the wound dressing purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

    Science.gov (United States)

    Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel

    2018-06-01

    Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.

  2. Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry.

    Science.gov (United States)

    Girod, Marion; Phan, Trang N T; Charles, Laurence

    2008-08-01

    Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only beta ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS(3) experiments.

  3. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    International Nuclear Information System (INIS)

    Wen-Juan, Hu; Fen-Yan, Xie; Qiang, Chen; Jing, Weng

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films

  4. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  5. Synthesis and shape control of uniform polymer microparticles by tailored adsorption of poly(ethylene oxide)-b-Poly(ε-caprolactone) copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Acter, Shahinur; Cho, Jang Woo; Kim, Jeong Won; Byun, Aram; Park, Kyoung Ho; Kim, Jin Woong [Hanyang University, Ahnsan (Korea, Republic of)

    2015-05-15

    This paper introduces a straightforward and robust polymerization method for the synthesis of uniform polymer microparticles having controlled surface chemistry as well as tailored particle shapes. Uniform polystyrene (PS) microparticles are produced by dispersion polymerization, in which amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) copolymers anchor on to the growing polymer particles and stabilize them by steric repulsion. We have observed that, when PEO-b-PCL copolymers are incorporated at the proper concentration range, the total number of particles remains unchanged after the formation of primary particles, which is essential for maintaining size uniformity. Otherwise, nonuniform PS microparticles are produced mainly as a result of the coagulation or secondary formation of particles. To show the diversity of our particle synthesis technology, shape-controlled microparticles, such as dimples and Janus particles, are also produced by using temperature-mediated swelling and phase separation. Finally, we show that PEO-b-PCL copolymers play a key role in regulating the surface wettability of the seed particles, thereby facilitating the formation of anisotropic microparticles.

  6. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  7. To immobilize polyethylene glycol-borate ester/lithium fluoride in graphene oxide/poly(vinyl alcohol for synthesizing new polymer electrolyte membrane of lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Y. F. Huang

    2017-01-01

    Full Text Available Polymer electrolyte membranes (PEMs are potentially applicable in lithium-ion batteries with high safety, low cost and good performance. Here, to take advantages of ionic conductivity and selectivity of borate ester-functionalized small molecules as well as structural properties of polymer nanocomposite, a strategy of immobilizing as-synthesized polyethylene glycol-borate ester/lithium fluoride (B-PEG/LiF in graphene oxide/poly(vinyl alcohol (GO/PVA to prepare a PEM is put forward. Chemical structure of the PEM is firstly characterized by 1H-, 11B- and 19F-nuclear magnetic resonance spectra, and Fourier transform infrared spectroscopy spectra, respectively, and then is further investigated under consideration of the interactions among PVA, B-PEG and LiF components. The immobilization of B-PEG/LiF in PVA-based structure is confirmed. As the interactions within electrolyte components can be further tuned by GO, ionic conductivity (~10–3 S·cm–1, lithium-ion transfer number (~0.49, and thermal (~273 °C/electrochemical (>4 V stabilities of the PEM can be obtained, and the feasibility of PEMs applied in a lithium-ion battery is also confirmed. It is believed that such PEM is a promising candidate as a new battery separator.

  8. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film.

    Science.gov (United States)

    Chang, C T; Zeng, F; Li, X J; Dong, W S; Lu, S H; Gao, S; Pan, F

    2016-01-07

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  9. Importance of poly(ethylene oxide)-modification and chloride anion for the electron transfer reaction of cytochrome c in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    Ohno, Hiroyuki; Suzuki, Chiiko; Fujita, Kyoko

    2006-01-01

    Horse heart cytochrome c (cyt c) was chemically modified with poly(ethylene oxide) (PEO) to dissolve it in room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim][TFSI]). The redox response of the modified cyt c, hereafter PEO-cyt c, was analyzed in [emim][TFSI]. PEO modification to the surface of cyt c, which exceeded 60% of the total mass of the PEO-cyt c, was an effective method to solubilize the cyt c. In spite of the high ion density and sufficient ionic conductivity of [emim][TFSI], no redox response of pure PEO-cyt c was detected. However, a reversible redox response of PEO-cyt c was observed after adding a simple electrolyte such as KCl to [emim][TFSI]. The redox response of PEO-cyt c was sensitive to the anion radius of the added salt, and the chloride anion was found to be the best anion species to produce a redox response of PEO-cyt c in [emim][TFSI]. However, above a certain salt concentration, the resulting increase in solution viscosity would suppress the redox reaction. The results strongly indicate that the chloride anions, because of their mobility in the polypeptide matrix, compensate the charge change of heme during the electron transfer reaction. Larger anions did not show such an effect due to sterical restrictions on the migration through the protein shell to the heme pocket of cyt c

  10. Design and characterisation of a polyethylene oxide matrix with the potential use as a teat insert for prevention/treatment of bovine mastitis.

    Science.gov (United States)

    Bhattarai, Sushila; Alany, Raid G; Bunt, Craig R; Abdelkader, Hamdy; Rathbone, Michael J

    2015-01-01

    This manuscript reports (for the first time) on antibiotic-free polymeric inserts for the prevention and/or treatment of bovine mastitis. Polyethylene oxide (PEO)-based inserts were prepared using different concentrations of various hydrophilic polymers and water-soluble and water-insoluble drug-release-modifying excipients. A simple and scalable melt-extrusion method was employed to prepare the inserts. The prepared inserts were characterised for their dimension, rheological and mechanical properties. The in vitro release of a model bacteriostatic drug (salicylic acid) from the prepared inserts was studied to demonstrate the effectiveness and reproducibility of the melt-extrusion manufacturing method. Further, the in vitro stability of the inserts was evaluated using gel permeation chromatography (GPC) to monitor any change in molecular weight under real-time and accelerated storage conditions. The investigated inserts were stable at accelerated storage conditions over a period of 6 months. PEO inserts have the potential to serve a dual purpose, act as a physical barrier against pathogens invading the teat canal of cows and possibly control the release of a drug.

  11. Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces.

    Science.gov (United States)

    Miyazaki, Celina M; Mishra, Rohit; Kinahan, David J; Ferreira, Marystela; Ducrée, Jens

    2017-10-01

    Antibody immobilization on polymeric substrates is a key manufacturing step for microfluidic devices that implement sample-to-answer automation of immunoassays. In this work, a simple and versatile method to bio-functionalize poly(methylmethacrylate) (PMMA), a common material of such "Lab-on-a-Chip" systems, is proposed; using the Layer-by-Layer (LbL) technique, we assemble nanostructured thin films of poly(ethylene imine) (PEI) and graphene oxide (GO). The wettability of PMMA surfaces was significantly augmented by the surface treatment with (PEI/GO) 5 film, with an 81% reduction of the contact angle, while the surface roughness increased by 600%, thus clearly enhancing wettability and antibody binding capacity. When applied to enzyme-linked immunosorbent assays (ELISAs), the limit of detection of PMMA surface was notably improved from 340pgmL -1 on commercial grade polystyrene (PS) and 230pgmL -1 on plain PMMA surfaces to 130pgmL -1 on (PEI/GO) 5 treated PMMA. Furthermore, the accelerated antibody adsorption kinetics on the LbL films of GO allowed to substantially shorten incubation times, e.g. for anti-rat IgG adsorption from 2h down to 15min on conventional and treated surfaces, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Crystallization and melting behavior of poly(ethylene oxide) and its blend with styrene-based ionomer using time-resolved SAXS/WAXS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Slusarczyk, CzesLaw, E-mail: cslusarczyk@ath.bielsko.pl [Institute of Textile Engineering and Polymer Materials, University of Bielsko-BiaLa, ul. Willowa 2, 43-309 Bielsko-BiaLa (Poland)

    2011-10-15

    Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate the crystallization behavior and microstructure development of neat poly(ethylene oxide) (PEO) and its 50/50 blend with ionomer containing 6.4 mol% of sodium acrylate. The apparent lateral crystal sizes D{sub (120)} and D{sub (112)/(004)} were derived from the WAXS profiles. It was found that D{sub (120)} and D{sub (112)/(004)} of PEO in the blend are almost independent of temperature and are smaller when compared to those of neat PEO sample. The evolution of morphological parameters extracted from time-resolved SAXS profiles such as the long period L, the lamellar crystal thickness l{sub C} and the amorphous layer thickness l{sub A}, shows that the crystallization process of neat PEO follows the nucleation theory. The lamellar crystal thickness l{sub C} shows a single linear dependence on inverse supercooling, over the whole temperature range investigated. In contrast, the crystallization process of PEO in the blend (i.e. in the presence of interactions with the ionomer) follows the nucleation theory only in the narrow supercooling range. It was found also that the morphology of the blend consists of a broad population of lamellar crystal thicknesses. During heating lamellae melt in the reversed sequence of their formation.

  13. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    Science.gov (United States)

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-resolution Kendrick Mass Defect Analysis of Poly(ethylene oxide)-based Non-ionic Surfactants and Their Degradation Products.

    Science.gov (United States)

    Fouquet, Thierry; Shimada, Haruo; Maeno, Katsuyuki; Ito, Kanako; Ozeki, Yuka; Kitagawa, Shinya; Ohtani, Hajime; Sato, Hiroaki

    2017-09-01

    Matrix assisted laser desorption ionization (MALDI) high-resolution mass spectrometry (HRMS) and the recently introduced high-resolution Kendrick mass defect (HRKMD) analysis are combined to thoroughly characterize non-ionic surfactants made of a poly(ethylene oxide) (PEO) core capped by esters of fatty acids. A PEO monostearate surfactant is first analyzed as a proof of principle of the HRKMD analysis conducted with a fraction of EO as the base unit (EO/X with X being an integer) in lieu of EO for a regular KMD analysis. Data visualization is greatly enhanced and the distributions detected in the MALDI mass spectrum are assigned to a pristine (H, OH)-PEO as well as mono- and di-esterified PEO chains with palmitate and stearate end-groups in HRKMD plots computed with EO/45. The MALDI-HRMS/HRKMD analysis is then successfully applied to the more complex case of ethoxylated hydrogenated castor oil (EHCO) found to contain a large number of hydrogenated ricinoleate moieties (up to 14) in its HRKMD plot computed with EO/43, departing from the expected triglyceride structure. The exhaustiveness of the MALDI-HRMS/HRKMD strategy is validated by comparing the so-obtained fingerprints with results from alternative techniques (electrospray ionization MS, size exclusion and liquid adsorption chromatography, ion mobility spectrometry). Finally, aged non-ionic surfactants formed upon hydrolytic degradation are analyzed by MALDI-HRMS/HRKMD to easily assign the degradation products and infer the associated degradation routes. In addition to the hydrolysis of the ester groups observed for EHCO, chain scissions and new polar end-groups are observed in the HRKMD plot of PEO monostearate arising from a competitive oxidative ageing.

  15. Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation

    Science.gov (United States)

    Richaud, Emmanuel

    2014-10-01

    This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with Prad and POOrad whereas 2,6-di-tert-butyl phenols only react with POOrad. Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness.

  16. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  17. Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study

    International Nuclear Information System (INIS)

    Genix, A.-C.; Arbe, A.; Alvarez, F.; Colmenero, J.; Willner, L.; Richter, D.

    2005-01-01

    In this paper, we have addressed the question of the dynamic miscibility in a blend characterized by very different glass-transition temperatures, T g , for the components: poly(ethylene oxide) and poly(methyl methacrylate) (PEO/PMMA). The combination of quasielastic neutron scattering with isotopic labeling and fully atomistic molecular dynamics simulations has allowed us to selectively investigate the dynamics of the two components in the picosecond--10 nanoseconds scale at temperatures close and above the T g of the blend. The main focus was on the PEO component, i.e., that of the lowest T g , but first we have characterized the dynamics of the other component in the blend and of the pure PEO homopolymer as reference. In the region investigated, the dynamics of PMMA in the blend is strongly affected by the α-methyl rotation; an additional process detected in the experimental window 65 K above the blend-T g can be identified as the merged αβ process of this component that shows strong deviations from Gaussian behavior. On the other hand, pure PEO displays entropy driven dynamics up to very large momentum transfers. Such kind of motion seems to freeze when the PEO chains are in the blend. There, we have directly observed a very heterogeneous and moreover confined dynamics for the PEO component. The presence of the hardly moving PMMA matrix leads to the creation of little pockets of mobility where PEO can move. The characteristic size of such confined islands of mobility might be estimated to be of ≅1 nm. These findings are corroborated by the simulation study, which has been an essential support and guide in our data analysis procedure

  18. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    Science.gov (United States)

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  19. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization – A mass spectrometry, ion mobility and molecular modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Tintaru, Aura [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France); Chendo, Christophe [Aix-Marseille Université – CNRS, FR 1739, Fédération des Sciences Chimiques de Marseille, Spectropole, Marseille (France); Wang, Qi [Aix-Marseille Université – CNRS, UMR 6114, Centre Interdisciplinaire de Nanosciences de Marseille, Marseille (France); Viel, Stéphane [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France); Quéléver, Gilles; Peng, Ling [Aix-Marseille Université – CNRS, UMR 6114, Centre Interdisciplinaire de Nanosciences de Marseille, Marseille (France); Posocco, Paola [University of Trieste, Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste (Italy); National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste (Italy); Pricl, Sabrina, E-mail: sabrina.pricl@di3.units.it [University of Trieste, Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste (Italy); National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste (Italy); Charles, Laurence, E-mail: laurence.charles@univ-amu.fr [Aix-Marseille Université – CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille (France)

    2014-01-15

    Graphical abstract: -- Highlights: •ESI-MS/MS, IMS and molecular modeling were combined to study PEO-PAMAM conformation. •Protonated and lithiated molecules were studied, with charge states from 2 to 4. •Protonation mostly occurred on PAMAM, with PEO units enclosing the protonated group. •Lithium adduction on PEO units lead to more expanded conformations. •Charge location strongly influenced PEO-PAMAM dissociation behavior. -- Abstract: Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H{sup +}vs Li{sup +}). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li{sup +} cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (M{sub n} = 1500 g mol{sup −1}), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton.

  20. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery.

    Science.gov (United States)

    Shahin, Mostafa; Lavasanifar, Afsaneh

    2010-04-15

    Poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) copolymers bearing paclitaxel (PTX) side groups on PCL (PEO-b-P(CL-PTX) were synthesized and assembled to particles of 123 nm average diameter. At 20% (w/w) PTX to polymer conjugation, PEO-b-P(CL-PTX) demonstrated only 5.0 and 6.7% PTX release after 72 h incubation at pH 7.4 and 5.0, respectively, but revealed signs of chain cleavage at pH 5.0. The cytotoxicity of PEO-b-P(CL-PTX) against MDA-MB-435 cancer cells increased as incubation time was raised from 72 to 96 h (IC(50) of 680 and 475 ng/mL, respectively), but it was still significantly lower than the cytotoxicity of free PTX (IC(50) of 3.5 ng/mL at 72 h). In further studies, micelles of PEO-b-PCL and those bearing benzyl or PTX on PCL were used for physical encapsulation of PTX, where maximum level of loading was achieved by PEO-b-P(CL-PTX) (2.22%, w/w). The release of PTX from this carrier was rapid; however. The in vitro cytotoxicity of physically loaded PTX was independent of carrier and similar to that of free PTX. This was attributed to the low concentration of polymers which fell below their critical micellar concentration in the cytotoxicity study. The results point to the potential of chemically tailored PEO-b-PCL for optimum PTX solubilization and delivery. Copyright 2010 Elsevier B.V. All rights reserved.

  1. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    Science.gov (United States)

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  2. Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects

    Directory of Open Access Journals (Sweden)

    Asgar Emamgholi

    2015-09-01

    Full Text Available Objective(s:Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Methods: In this study, the solution of chitosan-nanohydroxyapatite-polyethylene oxide (PEO Nanofibers was produced by electrospinning method, and then the BMSCs were cultured on this solution. A piece of chitosan-nanohydroxyapatite Nanofibers with BMSCs was placed in a hole with the diameter of 1 mm at the distal epiphysis of the rat femur. Then the biomechanical and radiographic studies were performed. Results: Biomechanical testing results showed that bone strength was significantly higher in the Nanofiber/BMSCs group in comparison with control group. Also the bone strength in nanofiber/BMSCs group was significant, but in nanofiber group was nearly significant. Radiographic studies also showed that the average amount of callus formation (radio opacity in nanofiber and control group was not significantly different. The callus formation in nanofiber/BMSCs group was increased compared to the control group, and it was not significant in the nanofiber group. Conclusion: Since chitosan-nanohydroxyapatite nanofibers with BMSCs increases the rate of bone repair, the obtained cell-nanoscaffold shell can be used in tissue engineering and cell therapy, especially for bone defects.

  3. Preparation and Property Evaluation of Conductive Hydrogel Using Poly (Vinyl Alcohol/Polyethylene Glycol/Graphene Oxide for Human Electrocardiogram Acquisition

    Directory of Open Access Journals (Sweden)

    Xueliang Xiao

    2017-06-01

    Full Text Available Conductive hydrogel combined with Ag/AgCl electrode is widely used in the acquisition of bio-signals. However, the high adhesiveness of current commercial hydrogel causes human skin allergies and pruritus easily after wearing hydrogel for electrodes for a long time. In this paper, a novel conductive hydrogel with good mechanical and conductive performance was prepared using polyvinyl alcohol (PVA, polyethylene glycol (PEG, and graphene oxide (GO nanoparticles. A cyclic freezing–thawing method was employed under processing conditions of −40 °C (8 h and 20 °C (4 h separately for three cycles in sequence until a strong conductive hydrogel, namely, PVA/PEG/GO gel, was obtained. Characterization (Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy results indicated that the assembled hydrogel was successfully prepared with a three-dimensional network structure and, thereafter, the high strength and elasticity due to the complete polymeric net formed by dense hydrogen bonds in the freezing process. The as-made PVA/PEG/GO hydrogel was then composited with nonwoven fabric for electrocardiogram (ECG electrodes. The ECG acquisition data indicated that the prepared hydrogel has good electro-conductivity and can obtain stable ECG signals for humans in a static state and in motion (with a small amount of drift. A comparison of results indicated that the prepared PVA/PEG/GO gel obtained the same quality of ECG signals with commercial conductive gel with fewer cases of allergies and pruritus in volunteer after six hours of wear.

  4. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourdanesh, Fereydoun [Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 8916733754 (Iran, Islamic Republic of); Jebali, Ali, E-mail: alijebal2011@gmail.com [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hekmatimoghaddam, Seyedhossein [Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of); Allaveisie, Azra [Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of)

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca{sub 3}(PO{sub 4}){sub 2}, hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property.

  5. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    International Nuclear Information System (INIS)

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-01-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca 3 (PO 4 ) 2 ) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca 3 (PO 4 ) 2 , hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property

  6. Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

    Science.gov (United States)

    Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed

    2017-09-01

    Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  7. Toxicity evaluation of methoxy poly(ethylene oxide-block-poly(ε-caprolactone polymeric micelles following multiple oral and intraperitoneal administration to rats

    Directory of Open Access Journals (Sweden)

    Ziyad Binkhathlan

    2017-09-01

    Full Text Available Methoxy poly(ethylene oxide-block-poly(ɛ-caprolactone (PEO-b-PCL copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  8. LDL oxidation, antioxidant capacity and growth of cultured grey mullet ( Mugil cephalus ) fed dietary sorghum distillery residue pretreated with polyethylene glycol.

    Science.gov (United States)

    Lee, Shin Mei; Cheng, Hui Ling; Pan, Bonnie Sun

    2009-09-09

    Dietary sorghum distillery residue (SDR) showed antioxidant and blood thinning effects on grey mullet during winter, but inhibited their growth. The objective of this study was to establish a preliminary treatment of the dietary SDR with polyethylene glycol (PEG), a tannin-binding agent, to enhance growth and blood antioxidant capacity of grey mullet ( Mugil cephalus ) feed. The feeding trial was carried out from June to November. The water temperature was between 25 and 30 degrees C; the specific growth rate of mullet was reduced significantly by feeding diet containing 20% SDR in comparison to fish fed the control diet or diet containing 20% SDR and PEG. In the period of October-November, the water temperature decreased to 19-25 degrees C; the specific growth rates of the 20% SDR-PEG group and the 20% SDR group were 0.13 and 0.19% day(-1), respectively, significantly higher than those fed the control diet (0.07% day(-1)). Feeding with 20% SDR or 20% SDR-PEG diets resulted in prolonged lag phase of low-density lipoprotein (LDL) oxidation compared to fish fed the control diet. The total antioxidant capacity of the plasma of the grey mullet fed 20% SDR-PEG was 1.24 mmol/L, significantly higher than those in the fish fed 20% SDR diet (0.84 mmol/L) or the control (0.72 mmol/L). In vivo observations found that preliminary treatment of SDR with PEG eliminated the endogenous undesirable growth inhibitory factors but maintained its protective effects against LDL oxidation in blood and improved the total antioxidant capacity and cold adaptation of grey mullet. The ethanol extract of SDR contained 31.9 +/- 7.8 mg/g gallic acids equivalent. The concentration needed to scavenge 50% of the DPPH radicals (IC(50)) was 0.86 mg/mL. Increased gallic acid equivalent and decreased IC(50) of DPPH scavenging activity of SDR fed to fish increased the total antioxidant capacity in blood plasma of grey mullet significantly.

  9. 1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: Comparison of unrefined and refined structure sets with the crystal structure

    International Nuclear Information System (INIS)

    Blanco, Francisco J.; Ortiz, Angel R.; Serrano, Luis

    1997-01-01

    The assignment of the 1 H and 15 Nnuclear magnetic resonance spectra of the Src-homology region 3 domain of chicken brain α-spectrin has been obtained. A set of solution structures has been determined from distance and dihedral angle restraints,which provide a reasonable representation of the protein structure in solution, as evaluated by a principal component analysis of the global pairwise root-mean-square deviation (rmsd) in a large set of structures consisting of the refined and unrefined solution structures and the crystal structure. The solution structure is well defined, with a lower degree of convergence between the structures in the loop regions than in the secondary structure elements. The average pairwise rmsd between the 15 refined solution structures is 0.71 ± 0.13 A for the backbone atoms and 1.43 ± 0.14 A for all heavy atoms. The solution structure is basically the same as the crystal structure. The average rmsd between the 15 refined solution structures and the crystal structure is 0.76 A for the backbone atoms and 1.45 ± 0.09 A for all heavy atoms. There are, however, small differences probably caused by intermolecular contacts in the crystal structure

  10. Preparation of pH-sensitive poly(ethylene oxide) hydrogels grafted by γ-ray irradiation and their applications for drug delivery system

    International Nuclear Information System (INIS)

    Nho, Y.-C.; Kang, P.-H.; Lim, Y.-M.; Kuk, I.-H.

    2006-01-01

    undesirable. Oral delivery of peptides, proteins and other drugs to the gastrointestinal (GI) tract is one of the most challenging issues, and thus, under much investigation. There are many hurdles, including protein inactivation by digestive enzymes in the GI tract, and the poor epithelial permeability of these drugs. Certain hydrogels may overcome some of these problems by appropriate molecular design or formulation approaches. In this study, pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. Hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by gamma-ray irradiation (radiation dose: 50 kGy, does rate: 7.66 kGy/h), and then grafting by either MAA or AAc monomers onto the PEO hydrogels with subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/vis spectrophotometer. The equilibrium swelling measurements of these hydrogels, which were carried out in simulated gastrointestinal fluids, showed a pH-sensitive nature. The in vitro release profiles of the drugs were obtained in both a simulated gastric fluid and simulated intestinal fluid. The release behavior of the pH-sensitive PEO-g-MAA and PEO-g-AAc hydrogels indicated that these gels could be applied successfully for oral drug delivery to the gastrointestinal tract. . (authors)

  11. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability

    OpenAIRE

    Sandra Paszkiewicz; Anna Szymczyk; Daria Pawlikowska; Jan Subocz; Marek Zenker; Roman Masztak

    2018-01-01

    In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along wi...

  12. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  13. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  14. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability

    Directory of Open Access Journals (Sweden)

    Sandra Paszkiewicz

    2018-04-01

    Full Text Available In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE/multi-walled carbon nanotubes (MWCNTs + graphene nanoplatelets (GNPs hybrid nanocomposites (HNCs have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM. The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

  15. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability.

    Science.gov (United States)

    Paszkiewicz, Sandra; Szymczyk, Anna; Pawlikowska, Daria; Subocz, Jan; Zenker, Marek; Masztak, Roman

    2018-04-22

    In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

  16. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    Science.gov (United States)

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  17. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  18. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  19. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  20. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    S. Shylaja

    2013-01-01

    Full Text Available Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN, hypoxanthine (HXAN, caffeine (CAF, theophylline (TPL, and theobromine (TBR, have been studied with ceric ammonium nitrate (CAN using poly ethylene glycols (PEG as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures are enhanced in presence PEGs (PEG-200, -300, -400, -600. An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2n–O–NH4Ce(NO34(CH3CN] (PEG bound CAN species, is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.

  1. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  2. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data.

    Science.gov (United States)

    Lee, Hoyoung; Kim, Dae Hwan; Witte, Kevin N; Ohn, Kimberly; Choi, Je; Akgun, Bulent; Satija, Sushil; Won, You-Yeon

    2012-06-21

    By use of a combined experimental and theoretical approach, a model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated. The polymer segment density profiles of the PEO brush in the direction normal to the air-water interface under various grafting density conditions were determined by using the neutron reflectivity (NR) measurement technique. To achieve a theoretically sound analysis of the reflectivity data, we used a data analysis method that utilizes the self-consistent field (SCF) theoretical modeling as a tool for predicting expected reflectivity results for comparison with the experimental data. Using this data analysis technique, we discovered that the effective Flory-Huggins interaction parameter of the PEO brush chains is significantly greater than that corresponding to the θ condition in Flory-Huggins solutions (i.e., χ(PEO-water)(brush chains)/χ(PEO-water)(θ condition) ≈ 1.2), suggesting that contrary to what is more commonly observed for PEO in normal situations (χ(PEO-water)(free chains)/χ(PEO-water)(θ condition) ≈ 0.92), the PEO chains are actually not "hydrophilic" when they exist as polymer brush chains, because of the many body interactions that are forced to be effective in the brush situation. This result is further supported by the fact that the surface pressures of the PEO brush calculated on the basis of the measured χ(PEO-water) value are in close agreement with the experimental surface pressure-area isotherm data. The SCF theoretical analysis of the surface pressure behavior of the PEO brush also suggests that even though the grafted PEO chains experience a poor solvent environment, the PEO brush layer exhibits positive surface pressures, because the hydrophobicity of the PEO brush chains (which favors compression) is insufficient to overcome the opposing effect of the chain

  3. Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences.

    Science.gov (United States)

    Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S

    2005-01-01

    The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.

  4. Radiation Chemistry of Polyethylenes for Total Joint Applications

    International Nuclear Information System (INIS)

    Muratoglu, O.K.

    2006-01-01

    Wear and fatigue damage of polyethylene could limit the longevity of total hip and knee reconstructions used to treat end-stage joint diseases. Wear debris causes peri-prosthetic osteolysis, resulting in bone loss and component loosening ultimately necessitating revision surgery. Wear rate of polyethylene can be reduced by radiation crosslinking. Irradiation not only crosslinks the amorphous phase of polyethylene but also creates residual free radicals (RFR), the precursor to long-term oxidation. We used post-irradiation melting to eliminate the RFRs and improve oxidative stability. We determined the molecular weight between crosslinks (M c ) as a function of radiation-dose level and showed the wear rate to scale linearly with M c . Irradiated and melted polyethylene, in clinical use since 1998, show a significant reduction in wear in vivo through radiographic follow-up studies and analysis of surgically explanted acetabular liners. Irradiation and melting reduces the crystallinity and mechanical properties of polyethylene therefore it cannot be used for high demand joint applications, such as posterior stabilized knees. We replaced the post-irradiation melting step with ?-tocopherol (vitamin-E) doping to stabilize the RFRs and prevent long-term stability and at the same time prevent the loss of mechanical properties. 100kGy irradiated polyethylene was soaked in 120 degree vitamin-E followed by a homogenization step at 120degree. The ?-tocopherol doped samples showed no detectable oxidation after accelerating aging at 80degree in air for 5 weeks. The wear rate was comparable to that of 100-kGy irradiated and melted polyethylene with both clean and third body added bovine serum lubrication. The fatigue strength of ?-tocopherol doped polyethylene (ΔKi=0.9MPa.m 1 /2) were higher than that of 100-kGy irradiated and melted polyethylene (ΔKi=0.5 MPa.m 1 /2). Similarly, the ultimate tensile and yield strength of α-tocopherol doped polyethylenes were significantly

  5. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  6. Radiation effects on polyethylenes

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Tanabe, Y.; Ishiyama, M.; Ito, Y.

    1992-01-01

    Radiation effects on four kinds of polyethylenes were studied from the viewpoints of mechanical properties, free radicals and free volumes. The samples were irradiated using a cobalt 60 gamma source to give doses up to 3MGy. The degradation of mechanical strength due to gamma-irradiation was evaluated by the elongation at break and its tensile strength. Radiation induced free radicals were measured by ESR. Free volumes observed by the o-Ps component of the positron annihilation spectrum are normally the large ones located in the amorphous regions and after irradiation these are created in crystalline regions, too. The sizes and the relative numbers of free volumes were evaluated by lifetimes and intensities of a long-lived component of positronium, respectively. Using these data, the properties of polyethylenes before and after irradiation are discussed. (author)

  7. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  8. Study on Optoelectronic Characteristics of Sn-Doped ZnO Thin Films on Poly(ethylene terephthalate) and Indium Tin Oxide/Poly(ethylene terephthalate) Flexible Substrates

    Science.gov (United States)

    Cheng, Chi-Hwa; Chen, Mi; Chiou, Chin-Lung; Liu, Xing-Yang; Weng, Lin-Song; Koo, Horng-Show

    2013-05-01

    Transparent conductive oxides of Sn-doped ZnO (SZO) films with doping weight ratios of 2.0, 3.0, 4.0, and 5.0 wt % have been deposited on indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) and PET flexible substrates at room temperature by pulsed laser deposition (PLD). Resultant films of SZO on ITO/PET and PET flexible substrates are amorphous in phase. It is found that undoped and SZO films on ITO/PET is anomalously better than films on PET in optical transmittance in the range of longer wavelength, possibly due to the refraction index difference between SZO, ITO films, and PET substrates, Burstein-Moss effect and optical interference of SZO/ITO bilayer films and substrate materials, and furthermore resulting in the decrement of reflection. The lowest electrical resistivity (ρ) of 4.0 wt % SZO films on flexible substrates of PET and ITO/PET are 3.8×10-2 and ρ= 1.2×10-2 Ω.cm, respectively. It is found that electrical and optical properties of the resultant films are greatly dependent on various amount of Sn element doping effect and substrate material characteristics.

  9. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation.

    Science.gov (United States)

    Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin

    2018-04-11

    Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.

  10. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  11. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  12. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells.

    Directory of Open Access Journals (Sweden)

    R Doug Wagner

    Full Text Available Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA-polyethylene glycol (PEG could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7 vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose polymerase (PARP cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif ligand 1 (CXCL1, interleukin-1α (IL1A, interleukin-1β (IL1B, calprotectin (S100A8, and tumor necrosis factor α (TNF. GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that

  13. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  14. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  15. Stabilization of aqueous dispersions of poly(methacrylic acid)-coated iron oxide nanoparticles by double hydrophilic block polyelectrolyte poly(ethylene oxide)-block-poly(N-methyl-2-vinylpyridinium iodide)

    Czech Academy of Sciences Publication Activity Database

    Wozniak, E.; Špírková, Milena; Šlouf, Miroslav; Garamus, V. M.; Šafaříková, Miroslava; Šafařík, Ivo; Štěpánek, M.

    2017-01-01

    Roč. 514, 5 February (2017), s. 32-37 ISSN 0927-7757 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 ; RVO:60077344 Keywords : superparamagnetic iron oxide nanoparticles * polyelectrolytes * SAXS Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (BC-A) OBOR OECD: Polymer science; Polymer science (BC-A) Impact factor: 2.714, year: 2016

  16. Process for irradiation of polyethylene

    International Nuclear Information System (INIS)

    White, George.

    1983-01-01

    Irradiation of polyethylene affects its processabiltiy in the fabrication of products and affects the properties of products already fabricated. The present invention relates to a process for the irradiation of polyethylene, and especially to a process for the irradiation of homopolymers of ethylene and copolymers of ethylene and higher α-olefins, in the form of granules, with low levels of electron or gamma irradiation in the presence of an atomsphere of steam

  17. Polyethylene as a possible hvdc cable insulant

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.G.; Body, R.S.; Mason, J.H.

    1966-10-01

    Many cable authorities have expressed the view that polyethylene would be attractive for this application. The dc conductivity of polyethylene is lower than that of impregnated paper, and varies less with temperature and stress. Polyethylene also has higher thermal conductivity and is resistant to moisture and electrochemical deterioration. Furthermore, processing polyethylene cables should ultimately involve lower capital and manufacturing costs. However, polyethylene has a lower limiting short circuit temperature unless it is cross linked.

  18. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  19. Process for molding improved polyethylene

    International Nuclear Information System (INIS)

    Kanai, Masanori; Aine, Norio; Nakada, Shinsaku.

    1962-01-01

    Various configurations in size and shape of polyethylene are molded by: (a) irradiating powders of polyethylene with ionizing radiations in the presence of oxygen to the extent of producing substantially no cross-linking among the molecules of polyethylene, and thereafter (b) molding the thus irradiated powders of polyethylene at 100-250 0 C to cross-link the molding. In this process, a uniform and desirable degree of cross-linking and any desirable configuration are provided for the polyethylene molding. Any extruder and any molding machine producing heat can be employed in this process. In embodiments, the radiation dose units may preferably be 1x10 6 to 1.5x10 7 roentgen. The ionizing radiations may be X-rays, gamma-rays or electron beams, but preferably gamma-rays. The preheating prior to molding may be effected in vacuum, in inert gas, or in oxygen at 100-250 0 C, but preferably in oxygen at 100 0 C. In an example, a polyethylene powder of 100 mesh was irradiated with gamma-rays from a Co-60 source with a dose of 3.1x10 6 r at a dose rate of 5.5x10 4 r/hr in air, then preheated in air at 80 0 C for 1 hr, and finally extruded to form a rod of 5 mm phi at 200 0 C. max. The degree of product cross-linking was 0% after irradiation in step (a), and 38% after heating in step (b). (Iwakiri, K.)

  20. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  1. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  2. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  3. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  4. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1997-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  5. Radiolysis effects on polyethylene terephtalate

    International Nuclear Information System (INIS)

    Zaharescu, Traian; Ciuprina, Florin

    2005-01-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison γ-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented

  6. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  7. Ageing of cable insulators made of polyethylene in nuclear environment

    International Nuclear Information System (INIS)

    Khelidj, N.

    2006-10-01

    This thesis deals with lifetime prediction for polyethylene in nuclear environment. It is mainly characterised by the search for a non empirical solution. We have tried to elaborate a model describing the polymer evolution (including the skin-core heterogeneity due to the kinetic control of oxidation by oxygen diffusion) at any temperature between ambient and the melting point of the polymer, and at any dose rate between 0 and 1 kGy.h-1, with lifetimes extending to several decades of years. The main difficulty was to take into account the dual character of initiation which results from the combination of polymer radiolysis and hydroperoxide thermal decomposition. The problem was resolved considering first the asymptotic regimes where one initiation process can be neglected relatively to the other one. The kinetic parameters specific to those regimes being identified, we have built a numerical model including all the processes. In the case of un-stabilised polyethylene, this model displays excellent predictive qualities, as well in lifetime, as in thickness distribution of oxidation products. The study of stabilised polyethylenes was then initiated with samples respectively stabilised by a hindered phenol, and a thio-diester. In the case of phenol, the study of consumption kinetics reveals the existence of complex mechanisms, especially the existence of a 'reservoir effect' linked to the presence of a separated phase of phenol in excess. A kinetic model has been proposed, but we still do not know how the results can be generalised to other phenolic stabilizers. (author)

  8. Investigation on the effect of formulation and process variables of Polyethylene Foams Production

    International Nuclear Information System (INIS)

    Barikani, H.; Sarai, M.

    2001-01-01

    Polyolefin foams such as polyethylene, polypropylene and their copolymers have been extensively used in packaging, automotive, military, marine, cable industries and sports, due to their unique properties namely: light weight, chemical resistance, thermal insulation, inertness, abrasion resistance, buoyancy and low cost. With regards to domestic mass production of polyethylene, replacement of polyurethane with polyethylene foam is very important in some applications from economical point of view. In this research preparation of high density and low density polyethylene foams were studied and the effect of formulation factors such as blowing agent, cross-linker, calcium carbonate, zinc oxide and processing factors such as heat, pressure and reaction time on density and cell size were investigated

  9. Catalytic thermal decomposition of polyethylene determined by thermogravimetric treatment

    International Nuclear Information System (INIS)

    Nisar, J.; Khan, M.S.; Khan, M.A.

    2014-01-01

    In this study low density polyethylene (LDPE) has been studied by thermogravimetric analysis (TGA) using commercially available oxides as catalysts. TGA experiments were used to evaluate the activity of different catalysts on low density polyethylene (LDPE) degradation and to study the effect in terms of type and amount of catalyst used. All the catalysts used improved the pyrolysis of LDPE. The reaction rates were found to increase with increase in amount of catalyst. Among the catalysts used, alumina acidic active catalyst performed better at all four fractions. Moreover, alumina acidic active reduced weight loss temperature better than others tested catalysts. The effect of alumina neutral catalyst on the pyrolysis of LDPE is less pronounced due to its small surface area and pore size. The effect of these catalysts showed that surface area, number of acidic sites and pore size were found as the key factors for the energy efficient degradation of polymers. (author)

  10. Laser patterned carbon–polyethylene mesh electrodes for wound diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Phair, Jolene; Joshi, Mayank; Benson, John; McDonald, Damian; Davis, James, E-mail: james.davis@ulster.ac.uk

    2014-02-14

    Carbon loaded polyethylene films were selected as the base substrate for a mechanically flexible and conductive sensing material for use wound monitoring technologies. The films were processed using laser ablation of the surface to increase the effective surface area of the electrode and then subject to an oxidative electrochemical etch to improve the electron transfer kinetics. The surface morphology of the resulting films was analysed and the electrode performance in relation to monitoring uric acid, a key wound biomarker, was optimized. A prototype smart bandage was designed, based on interfacing the mesh to a portable potentiostat, and the response to urate and potential interferences assessed. - Highlights: • Innovative use of a carbon–polyethylene mesh for wound sensing applications. • Electroanalytical characterisation of a mechanically flexible conductive film. • Design and preliminary characterisation of an integrated smart bandage.

  11. Laser patterned carbon–polyethylene mesh electrodes for wound diagnostics

    International Nuclear Information System (INIS)

    Phair, Jolene; Joshi, Mayank; Benson, John; McDonald, Damian; Davis, James

    2014-01-01

    Carbon loaded polyethylene films were selected as the base substrate for a mechanically flexible and conductive sensing material for use wound monitoring technologies. The films were processed using laser ablation of the surface to increase the effective surface area of the electrode and then subject to an oxidative electrochemical etch to improve the electron transfer kinetics. The surface morphology of the resulting films was analysed and the electrode performance in relation to monitoring uric acid, a key wound biomarker, was optimized. A prototype smart bandage was designed, based on interfacing the mesh to a portable potentiostat, and the response to urate and potential interferences assessed. - Highlights: • Innovative use of a carbon–polyethylene mesh for wound sensing applications. • Electroanalytical characterisation of a mechanically flexible conductive film. • Design and preliminary characterisation of an integrated smart bandage

  12. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  13. Properties of Polyethylene Naphthalate Track Membranes

    CERN Document Server

    Akimenko, S N; Orelovich, O L; Maekawa, J; Ioshida, M; Apel, P Yu

    2002-01-01

    Basic characteristics of track membranes made of polyethylene naphthalate (which is a polyester synthesized from dimethyl naphthalate and ethylene glycol) are studied and presented. Polyethylene naphthalate possesses some properties (mechanical strength, thermal and chemical stability), which make this polymer a promising material for the production of track membranes. Water flow rate and air flow rate characteristics, burst strength, wettability, and amount of extractables are determined. Surface structure and pore structure are examined using scanning electron microscopy. It is found that the pores in the membranes are cylindrical in shape. The measured water and air flow rates follow known theoretical relations for the transport in narrow capillaries. The burst strength of polyethylene naphthalate membranes is found to be similar to that of polyethylene terephthalate track membranes. Polyethylene naphthalate track membranes can be categorized as moderately hydrophilic. Being treated with boiling water, pol...

  14. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  15. Reuse of polyethylene waste in road construction.

    Science.gov (United States)

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.

  16. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  17. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  18. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  19. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  20. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    Science.gov (United States)

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  1. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  2. Radiation-induced linking reactions in polyethylene

    International Nuclear Information System (INIS)

    Zoepfl, F.J.

    1983-01-01

    Three types of measurements are reported relating to chemical reactions in polyethylene induced by ionizing radiation: 1) viscometric and low-angle laser light scattering measurements to determine the effect of a radical scavenger on the yield of links; 2) calorimetric measurements to determine the effect of radiation-induced linking on the melting behavior of polyethylene; and 3) high-resolution solution carbon 13 nuclear magnetic resonance (NMR) spectrometry measurements to determine the nature of the links and the method of their formation. The NMR results present the first direct detection of radiation-induced long-chain branching (Y links) in polyethylene, and place an apparent upper limit on the yield of H-shaped crosslinks that are formed when polyethylene is irradiated to low absorbed doses. The effect of radiation-induced linking on the melting behavior of polyethylene was examined using differential scanning calorimetry (DSC). It was found that radiation-induced links do not change the heat of fusion of polythylene crystals, but decrease the melt entropy and increase the fold surface free energy per unit area of the crystals. The carbon 13 NMR results demonstrate that long-chain branches (Y links) are formed much more frequently than H-shaped crosslinks at low absorbed doses. The Y links are produced by reactions of alkyl free radicals with terminal vinyl groups in polyethylene

  3. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  4. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  5. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  6. Development of extremely low wear cross-link polyethylene for 30 years

    International Nuclear Information System (INIS)

    Oonishi, Hironobu; Fujita, Hiroshi; Kim, Seok-Cheol; Ito, Shigeru; Masuda, Shingo; Clarke, I.C.

    2003-01-01

    In this report we present our long-term developmental and clinical results with both highly cross-linked and extensively cross-linked polyethylene materials. Beginning in 1970s, we performed wear screening studies on ultra high molecular weight polyethylene (UHMWPE) (GUR412) sterilized by gamma-irradiation in air (range 0 to 10,000 kGy). From these scientific studies the 1,000 kGy dose (100 Mrad) appeared optimal, and so we began clinical use in 1971, and that continued into 1978. The radiographic wear-rates in patients with 1,000 kGy sockets, assessed by radiography, appeared 6-fold reduced compared to our standard UHMWPE sockets. Note also that we had not used any post-sterilization heat treatment for these pioneering extensively cross-linked polyethylene sockets. With clinical use now over 30 years, it was also clear that there was no adverse oxidation created by any free radicals present in our extensively cross-linked polyethylene sockets. With these encouraging clinical results, we further studied laboratory wear results with the modern UHMWPE resins, using the irradiation doses 1,000, 5,000, 10,000 and 15,000 kGy and with both saline and serum lubricants in hip simulators. These more recent studies demonstrated that the wear in extensively cross-linked polyethylene sockets was undetectable, less even than the measurement errors in the simulator techniques. It was unfortunate that the physical properties of such extensively cross-linked polyethylene sockets did not meet the current International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) standards. Thus, despite the excellent wear performance of these materials, we decided to investigate also the properties of the 60 kGy irradiated UHMWPE. The polyethylene sheet (GUR1050) was first irradiated with 35 kGy under N2 and then heat treated to remove free radicals. The socket liners were then machined to shape and resterilized with 25 kGy under N2 gas. The

  7. Exploiting a Simple Method for the Determination of Manganese in Polyethylene Lined Tubing for Petroleum and Natural Gas Industries

    Directory of Open Access Journals (Sweden)

    Shao Xiaodong

    2018-01-01

    Full Text Available The polyethylene lined tubing is the key to enabling the industry to meet some of the energy security challenges that nations face today. It is well known that manganese is an important element in polyethylene lined tubing. In this paper, a simple spectrophotometric method was described for the determination of manganese in polyethylene lined tubing. The method was based on the oxidation-reduction reaction between ammonium persulfate and manganese(II producing manganese(VII in the presence of silver nitrate as a catalyst. The characteristic wavelength of maximum absorption of manganese(VII was obtained locating at 530 nm. Under the optimum reaction conditions the absorption value was proportional to the concentration of manganese in the range of 0.2%~1.9% (R2 = 0.9997, and the relative standard deviation was less than 3.0% (n=5. The proposed method was applied successfully to determine manganese in polyethylene lined tubing real samples.

  8. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  9. Well-Defined Bilayered Molecular Cobrushes with Internal Polyethylene Blocks and ω-Hydroxyl-Functionalized Polyethylene Homobrushes

    KAUST Repository

    Zhang, Hefeng; Hadjichristidis, Nikolaos

    2016-01-01

    Novel well-defined bilayered molecular cobrushes with internal polyethylene blocks, P(PEcore-b-PScorona) (PE: polyethylene; PS: polystyrene), and ω-hydroxyl-functionalized polyethylene homobrushes, P(PE-OH), were synthesized through the macromonomer strategy. Two main steps were involved in the synthesis of the P(PEcore-b-PScorona) bilayered cobrushes: (i) formation of norbornyl-terminated macromonomer (Nor-PE-b-PS) by esterification of PS-b-PE-OH (combination of anionic polymerization, hydroboration, and polyhomologation) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis polymerization (ROMP) of Nor-PE-b-PS. The synthesis of P(PE-OH) was achieved by (i) hydroboration of tert-butyldimethylsilyl-protected allyl alcohol, followed by polyhomologation of dimethylsulfoxoniun methylide with the formed tri[3-(tert-butyldimethylsilyloxyl)propyl]borane initiator, oxidation/hydrolysis, and esterification of the TBDMS-O-PE-OH with 5-norbornene-2-carboxylic acid to afford the macromonomer TBDMS-O-PE-Nor, and (ii) ROMP of TBDMS-O-PE-Nor, followed by deprotection. Nuclear magnetic resonance spectroscopy (1H and 13C NMR) and high temperature gel permeation chromatography (HT-GPC) were used to characterize all macromonomers/molecular brushes and differential scanning calorimetry (DSC) to study the thermal properties. The molecular brush P(PE-b-PS) showed lower melting point (Tm) and better solubility in toluene than the corresponding macromonomer PS-b-PE-Nor. In the case of homobrushes, the thermal properties were strongly affected by the presence of the PE end-groups. © 2016 American Chemical Society.

  10. Well-Defined Bilayered Molecular Cobrushes with Internal Polyethylene Blocks and ω-Hydroxyl-Functionalized Polyethylene Homobrushes

    KAUST Repository

    Zhang, Hefeng

    2016-02-15

    Novel well-defined bilayered molecular cobrushes with internal polyethylene blocks, P(PEcore-b-PScorona) (PE: polyethylene; PS: polystyrene), and ω-hydroxyl-functionalized polyethylene homobrushes, P(PE-OH), were synthesized through the macromonomer strategy. Two main steps were involved in the synthesis of the P(PEcore-b-PScorona) bilayered cobrushes: (i) formation of norbornyl-terminated macromonomer (Nor-PE-b-PS) by esterification of PS-b-PE-OH (combination of anionic polymerization, hydroboration, and polyhomologation) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis polymerization (ROMP) of Nor-PE-b-PS. The synthesis of P(PE-OH) was achieved by (i) hydroboration of tert-butyldimethylsilyl-protected allyl alcohol, followed by polyhomologation of dimethylsulfoxoniun methylide with the formed tri[3-(tert-butyldimethylsilyloxyl)propyl]borane initiator, oxidation/hydrolysis, and esterification of the TBDMS-O-PE-OH with 5-norbornene-2-carboxylic acid to afford the macromonomer TBDMS-O-PE-Nor, and (ii) ROMP of TBDMS-O-PE-Nor, followed by deprotection. Nuclear magnetic resonance spectroscopy (1H and 13C NMR) and high temperature gel permeation chromatography (HT-GPC) were used to characterize all macromonomers/molecular brushes and differential scanning calorimetry (DSC) to study the thermal properties. The molecular brush P(PE-b-PS) showed lower melting point (Tm) and better solubility in toluene than the corresponding macromonomer PS-b-PE-Nor. In the case of homobrushes, the thermal properties were strongly affected by the presence of the PE end-groups. © 2016 American Chemical Society.

  11. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  12. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    International Nuclear Information System (INIS)

    Birnkrant, M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in ∼60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment

  13. Thermal stability of radiation-modified polyethylene

    International Nuclear Information System (INIS)

    Vinogradova, T.B.; Sirota, A.G.; Bal'tenas, R.A.; Stanyavichus, V.I.; Knebel'man, A.M.; Sil'chenko, S.A.

    1989-01-01

    In the work reported here, the authors investigated the thermooxidative resistance, at temperatures from 373 to 473 K, of polyethylene that had been cross-linked by exposure to radiation and formulated with various heat stabilizers. Thus, these studies of the thermooxidative resistance of polyethylene-based compositions that have been cross-linked by the radiation-chemical method have shown that, in this particular series of heat-stabilizers, the greatest effect at temperatures of 373-473 K is given by the FAU-13. The DTPhDMI has the greatest heat-stabilizing effect in the temperature interval 448-473 K, whereas the heat resistance of materials containing Diaphen NN or Phenozan-23 is higher at 373-423 K. These comparative results are in agreement with data for unirradiated and chemically cross-linked polyethylene

  14. Radiation effect on polyethylene tube operational properties

    International Nuclear Information System (INIS)

    Kagan, D.F.; Kantor, L.A.; Sokolov, I.A.; Pogrebetskij, G.E.; Perlova, N.A.; Chumakov, V.V.

    1975-01-01

    The operational properties (stability on prolonged usage and creeping) were determined for pressure pipes made of high-density and low-density polyethylene subjected to γ-radiation. The dependence of the period up to the breaking point on the radiation dosage was extreme in character, with a maximum being near 25 Mrad. With an increase in the irradiation dosage the character of the breaking changes from plastic (at 0-15 Mrad) to brittle (at higher dosages). The plots of creepage, indepent from the amount of radiation, can be described by logarithmic equation epsilon=epsilonsub(0)+K lgt (where, epsilon-deformation of creepage, %; epsilonsub(0)- and K - creepage constants). Therefore creepage can be considered as a criterion determining the carrying capacity of the γ-irradiated polyethylene. It was established that only radiation-grafted high-density polyethylene is suitable for hot water supply pipes

  15. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  16. Gamma irradiation effects in low density polyethylene

    International Nuclear Information System (INIS)

    Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

    2011-01-01

    Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

  17. Degradation of polyethylene glycol by the integration of chemical and biological treatment; Degradacion de polietilenglicos 10.000 mediante tratamiento integrado quimico-biologico

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Mantzavinos, D.; Lebrato, J. [Universidad de Sevilla (Spain)

    2001-07-01

    Biodegradation of polyethylene glycol 10.000 molecular weight or higher presented problems, therefore suggesting that integration of chemical and biological treatments, to achieve complete degradation from these sizes of polyethylene glycol may be advisable. Integration of wet air oxidation and aerobic biological treatments of polyethylene glycol 10.000 was investigated. The organic compound, used as the sole carbon and energy source, was partially oxidized in a high pressure reactor achieving a 7% of total organic carbon removal. Enhanced biodegradability was assessed by comparing total organic carbon removal using an Aerobic Continuous-flow Stirred Reactor fed with untreated original organic or previously oxidized samples. the reactor operated at steady-state at loading rates of total organic carbon of 69 mg L-1 d-1 for untreated polyethylene glycol 10.000, and 520 mg L-1 d-1 for wet air oxidation-treated polyethylene glycol 10.000, reaching yields of 68 % and 82% of total organic carbon removal, respective. Even using a retention time 8-fold shorter, total organic carbon removal from the wet air oxidation-treated sample was higher than that from the untreated one. therefore, previous wet air oxidation treatment may improve efficiency of conventional biological treatment of industrial wastewaters containing this organic compound. (Author) 18 refs.

  18. Heating tubes of cross-linked polyethylene

    International Nuclear Information System (INIS)

    Knoeppler, H.; Hoffmann, M.

    1981-01-01

    Oxygen permeability of plastic tubes for floor heating systems was measured as a function of the reduced oxygen content of water in plastic tubes at a flow rate of 0.5 m/s and a temperature of 30 0 C and as a function of oxygen uptake of low-oxygen water in floor heating tubes. Pipes of VEP, periodically cross-linked polyethylene (Engels process), polypropylene copolymeride, and polybutene were compared. The permeability of periodically cross-linked polyethylene is twice as high as that of VEP. Measurements, results, and consequences for floor heating systems are discussed. (KH) [de

  19. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  20. Estimation of the activation energy for thermooxidative degradation of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1995-01-01

    The results of comparative analysis of the data on thermal and radiation-initiated oxidative aging of polyethylene at 60, 80 and 140 deg C are presented. Thermooxidative aging was studied under usual working conditions employed in practice. Radiation-initiated oxidative aging was performed under the conditions when pure radiation effects on the degradation of material could be ignored. At each particular temperature, the time of attaining the critical level of damage was determined for both aging methods. Comparative analysis of data on radiation-initiated and thermooxidative degradation allowed the activation energy for the initiation of inhibited thermooxidative degradation of polyethylene in the temperature interval 60-140 deg C to be evaluated (E = 60 kJ/mol). It was suggested that this is a universal value characterizing the temperature-dependent effect of surrounding medium. 10 refs., 2 figs., 2 tabs

  1. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  2. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  3. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  4. Real-Time Monitoring of Low-Level Mixed-Waste Loading during Polyethylene Microencapsulation using Transient Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Jones, Roger W.; Kalb, Paul D.; McClelland, John F.; Ochiai, Shukichi

    1999-01-01

    In polyethylene microencapsulation, low-level mixed waste (LLMW) is homogenized with molten polyethylene and extruded into containers, resulting in a lighter, lower-volume waste form than cementation and grout methods produce. Additionally, the polyethylene-based waste form solidifies by cooling, with no risk of the waste interfering with cure, as may occur with cementation and grout processes. We have demonstrated real-time monitoring of the polyethylene encapsulation process stream using a noncontact device based on transient infrared spectroscopy (TIRS). TIRS can acquire mid-infrared spectra from solid or viscous liquid process streams, such as the molten, waste-loaded polyethylene stream that exits the microencapsulation extruder. The waste loading in the stream was determined from the TIRS spectra using partial least squares techniques. The monitor has been demonstrated during the polyethylene microencapsulation of nitrate-salt LLMW and its surrogate, molten salt oxidation LLMW and its surrogate, and flyash. The monitor typically achieved a standard error of prediction for the waste loading of about 1% by weight with an analysis time under 1 minute

  5. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  6. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  7. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  8. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  9. Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces

    Czech Academy of Sciences Publication Activity Database

    Riedel, Tomáš; Riedelová-Reicheltová, Z.; Májek, P.; Rodriguez-Emmenegger, Cesar; Houska, Milan; Dyr, J. E.; Brynda, Eduard

    2013-01-01

    Roč. 29, č. 10 (2013), s. 3388-3397 ISSN 0743-7463 R&D Projects: GA ČR GAP205/12/1702; GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : self-assembled monolayers * polyethylene oxide surfaces * polymer brushes Subject RIV: BO - Biophysics Impact factor: 4.384, year: 2013

  10. Monoblock versus modular polyethylene insert in uncemented total knee arthroplasty

    DEFF Research Database (Denmark)

    Andersen, Mikkel Rathsach; Winther, Nikolaj; Lind, Thomas

    2016-01-01

    Background and purpose - Backside wear of the polyethylene insert in total knee arthroplasty (TKA) can produce clinically significant levels of polyethylene debris, which can lead to loosening of the tibial component. Loosening due to polyethylene debris could theoretically be reduced in tibial...

  11. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  12. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  13. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  14. Surface modification of polyethylene films using atmospheric ...

    African Journals Online (AJOL)

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of polyethylene polymer films. Reduction in contact angle from 94.32 to 58.33 degrees was measured for treatment times of 1 - 5 seconds. Contact angle reductions of PE as a function of treatment time with APPJ and PE surface at various oxygen ...

  15. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    Science.gov (United States)

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  16. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite

    NARCIS (Netherlands)

    Hofste, JM; Pennings, AJ; Schut, J.A.

    1998-01-01

    Surface oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder has an influence on the mixing procedure of chopped fibres and UHMWPE powder. Due to this oxidation hydrogen bonds can be formed between the fibres and powder particles, leading to a more homogeneous fibre-powder mixture.

  17. Solidification of commercial and defense low-level radioactive waste in polyethylene

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, L.H.; Colombo, P.

    1987-08-01

    A process was developed for the solidification of salt wastes, incinerator ash and ion-exchange resins in polyethylene. Of the salt wastes, sodium sulfate and boric acid are representative of the wastes produced at commercial nuclear facilities while sodium nitrate in a typical high-volume waste generated at defense-related facilities. Ease of processibility and high loading efficiencies were obtained through the use of low-density polyethylene with melt indices ranging from 2.0 to 55.0 g/minute. The process utilized a commercially available single-screw extruder to incorporate the wastes into the polyethylene at about 120 0 C to produce a homogeneous mixture. Although present studies utilize dry wastes, wet wastes can also be processed using vented extruders of the type used commercially for the bitumen solidification process. Tests were performed on the waste forms to determine leachability and mechanical properties. To confirm the compatibility of polyethylene and nitrate salt waste at elevated temperatures, the self-ignition temperatures were measured and a differential scanning calorimeter was used to characterize the thermal behavior of oxidizing compounds contained in the simulated waste, as well as the real Savannah River Plant waste. No exothermic reactions were observed over the temperature range studied from 50 0 C to 400 0 C. 18 refs., 7 figs., 8 tabs

  18. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes

    KAUST Repository

    Zhang, Hefeng

    2015-06-09

    Novel well-defined polyethylene-based random, block, and bilayered molecular cobrushes were synthesized through the macromonomer strategy. Two steps were involved in this approach: (i) synthesis of norbornyl-terminated macromonomers of polyethylene (PE), polycaprolactone (PCL), poly(ethylene oxide) (PEO), and polystyrene (PS), as well as polyethylene-b-polycaprolactone (PE-b-PCL), by esterification of the hydroxyl-terminated precursors (PE, PCL, PEO, PS, and PE-b-PCL) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis (co)polymerization of the resulting macromonomers to afford the PE-based molecular cobrushes. The PE-macromonomers were synthesized by polyhomologation of dimethylsulfoxonium methylide, while the others by anionic polymerization. Proton nuclear magnetic resonance spectroscopy (1H NMR) and high-temperature gel permeation chromatography (HT-GPC) were used to imprint the molecular characteristics of all macromonomers and molecular brushes and differential scanning calorimetry (DSC) for the thermal properties. The bilayered molecular cobrushes of P(PE-b-PCL) adopt a wormlike morphology on silica wafer as visualized by atomic force microscopy (AFM). © 2015 American Chemical Society.

  19. Synthesis and characterization of polyethylene oxide based nano ...

    Indian Academy of Sciences (India)

    The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. .... to obtain the Nyquist plots and these plots are shown in figures 5 and 6 for PEO-based ... Cole–Cole plot for PEO electrolyte with 1.2 wt% MMT.

  20. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  1. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  2. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  3. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  4. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  5. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  6. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  7. Híbridos de poli(oxido de etileno-b-amida-6 e ZrO2 sol-gel: preparação, caracterização e aplicação em processos de separação por membranas Hybrids of poly(ethylene oxide-b-amide-6 and ZrO2 sol-gel: preparation, characterization and application in membrane separation processes

    Directory of Open Access Journals (Sweden)

    Rita A. Zoppi

    2000-06-01

    Full Text Available Híbridos constituídos de poli(óxido de etileno-b-amida-6, PEBAX, e óxido de zircônio foram preparados a partir da hidrólise e condensação do tetraisopropóxido de zircônio em solução contendo o polímero orgânico dissolvido. Estes foram caracterizados por termogravimetria, calorimetria diferencial de varredura, espectroscopia na região do infravermelho e microscopia eletrônica. Os resultados obtidos mostraram que a incorporação da fase inorgânica parece promover a degradação do polímero orgânico. Membranas compostas constituídas de um suporte poroso de poli(fluoreto de vinilideno, PVDF, e uma camada filtrante de PEBAX/ZrO2 foram preparadas e caracterizadas por microscopia eletrônica. Foram realizados ensaios de permeação de água e de soluções aquosas contendo poli(etileno glicol de diferentes massas molares. Para determinar a rejeição de fosfato, foram realizados ensaios de permeação de uma solução aquosa de KH2PO4. Independente da composição da camada filtrante, foram obtidos valores de rejeição de fosfato da ordem de 80%.Hybrid films based on poly(ethylene oxide-b-amide-6, PEBAX, and zirconium oxide were prepared by hydrolysis and condensation of zirconium tetraisopropoxide in a 3wt% PEBAX/n-butanol solution. Films were characterized by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy and electron microscopy. The results showed that the incorporation of the inorganic phase promoted the organic polymer degradation. Composite membranes constituted by a porous support of poly(vinylidene fluoride, PVDF, covered with a PEBAX/ZrO2 filter layer were prepared and characterized by electron microscopy. Tests including the permeation of water and aqueous solutions of poly(ethylene glycol with different molecular weight were performed. Phosphate retention was also determined by permeation tests of a KH2PO4 aqueous solution. Regardless of the filter layer composition, phosphate

  8. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  9. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  10. Influence of the irradiation conditions on the effect of radiation on polyethylene

    Directory of Open Access Journals (Sweden)

    BOJANA SECEROV

    2004-12-01

    Full Text Available Two types of polyethylene, low density (LDPE and high density (HDPE, as well as low density polyethylene containing an antioxidant were subjected to g-irradiation in the presence of air and in water. The irradiated polymers were studied using IR spectrophotometric analysis. The radiation induced oxidative degradation was followed through the formation of oxygen containing groups by the development of bands in the 1850–1650 cm-1 region and double bonds formation by the development of bands in the 1050–850 cm-1 region. The crosslinking efficiency was determined by measuring the gel content by extraction with xylene. The radiation induced changes in the molecular structure, evolution of oxygen containing species and formation, of vinyl double bonds as well as of the crosslinking efficiency are discussed in terms of the properties of the polymers in an electric field of low strength.

  11. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De; Zhang, Zhen; Hadjichristidis, Nikolaos

    2017-01-01

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  12. Influence of irradiation conditions on the gamma irradiation effect in polyethylene

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Gal, O.; Novakovic, L.J.; Secerov, B.

    2002-01-01

    Complete text of publication follows. The radiation cross-linking of polyethylene, due to its high cross-linking yield, has resulted in the radiation technology that has found application in radiation production of heat shrinkable structures and in improvement of mechanical and thermo-physical properties of oriented polyethylene objects. It is observed that the cross-linking efficiency decreases when the irradiation is carried out in the presence of oxygen. In order to estimate the conditions that improve cross-linking efficiency, gamma irradiation effect in two types of polyethylene, irradiated in water and air was investigated. The polyethylene samples used were the low density (LDPE) Lotrene CdF 0302 with 45% crystallinity and the high density (HDPE) Hiplex EHM 6003 with 73% crystallinity. Both kinds of samples, fixed in the Pyrex glass tubes, were simultaneously irradiated with 60 Co gamma rays in distilled water and air, at a doses rate of 9,5 kGy/h (determined by the Fricke dosimeter) at room temperature. Radiation induced oxidative degradation was followed through oxygen containing group formation by the carbonyl group band (1720 cm -1 ) and transvinylene group formation by the band at 966 cm -1 in the infrared spectra. Cross-linking efficiency was determined by gel content using the procedure of the extraction in xylene. The monitored effects of gamma irradiation in water and air point to the conclusion that irradiation in water leads to the lower oxidative degradation and higher cross-linking compared with the effects measured after irradiation in air

  13. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  14. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  15. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  16. Investigation of photo-biodegradation of starch-filled polyethylene films under the environment conditions of Tehran

    International Nuclear Information System (INIS)

    Naeimian, F.; Khoylou, F.; Sheikh, N.; Akhavan, A.; Hassanpour, S.; Sohrabpour, M.

    2006-01-01

    In this work biodegradable polymers have been formulated for packaging purposes and with a view to reduce the environmental accumulation of plastic waste. Degradation of the polymers under the specific weathering conditions of Tehran was studied. In this work low-density polyethylene was formulated with two wheat starch concentrations, maleic anhydride, glycerol as well as a pro-oxidant system of oleic acid, benzoyl peroxide and ferric stearate. The formulated master batches were mixed by using a laboratory two-roll mill at 190 d ig C prepared master batches were mixed with the commercial low-density polyethylene to prepare compounds 1 and 2 containing 1.2 and 6.4 percents wheat starch. The low-density polyethylene control films as well as the formulated compounds were compression moulded in a hot press at 130 d ig C films were subjected to three general conditions of atmospheric exposure, buried in soil and combined conditions of soil burial/ atmospheric exposure. The three environmental conditions impact upon the formulated and control films were investigated through tensile strength, elongation-at-break, carbonyl index, water absorption, weight loss as well as SEM analysis. The microbial investigation was followed by growing the Penicillium Asymmetrica, which had the main population in microbial flora of the soil, on formulated and control films. The studies revealed that the incorporation of this pro-oxidant system with the addition of 6.4% wheat starch enhance the degradation rate of commercial low-density polyethylene films to a significant degree

  17. Patterned functional carbon fibers from polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  18. Surface modification of polyethylene by plasma

    International Nuclear Information System (INIS)

    Colin O, E.

    2003-01-01

    The products made of polyethylene (PE) go from construction materials, electric insulating until packing material. The films for bags and pack occupy 83.6% of the distribution of the market of PE approximately. The enormous quantity of PE that is generated by its indiscriminate use brings as consequence a deterioration to the atmosphere, due to the long life that they present as waste. This work is a study on the modification of low density polyethylene films. In this type of thin materials, the changes in the surface meet with largely on the conformation of the rest of the material. To induce changes that modify the surface of PE, plasmas were used with reactive atmospheres of air, oxygen and nitrogen. The experimentation that was carries out went to introduce the PE to a cylindrical reactor where it was generated the plasma of air, oxygen and nitrogen to different times of exposure. After having carried out the exposure to the plasma, it was found that in the polyethylene it modifies their morphology, crystallinity, hydrophobicity, composition and electric conductivity. The analytical techniques that were used to characterize later to the polyethylene of being in contact with the plasma were: X-ray diffraction, Scanning Electron Microscopy, Infrared spectroscopy, Electric conductivity, Angle of contact and finally Thermal Gravimetric Analysis. The content of this work it is presented in five chapters: In the chapter 1 there are presented some general concepts of plasma and of the one polymer in study PE. In the chapter 2 it is made a general revision on modification of surfaces, as well as the properties that were modified in polymeric materials that were exposed to plasma in previous works. In the chapter 3 the experimental part and the conditions used are described in the modification of the PE. Also in this chapter a brief description it is made of the used characterization techniques. The results and discussion are presented in the chapter 4. These results

  19. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  20. Ageing of cable insulators made of polyethylene in nuclear environment; Vieillissement d'isolants de cables en polyethylene en ambiance nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Khelidj, N

    2006-10-15

    This thesis deals with lifetime prediction for polyethylene in nuclear environment. It is mainly characterised by the search for a non empirical solution. We have tried to elaborate a model describing the polymer evolution (including the skin-core heterogeneity due to the kinetic control of oxidation by oxygen diffusion) at any temperature between ambient and the melting point of the polymer, and at any dose rate between 0 and 1 kGy.h-1, with lifetimes extending to several decades of years. The main difficulty was to take into account the dual character of initiation which results from the combination of polymer radiolysis and hydroperoxide thermal decomposition. The problem was resolved considering first the asymptotic regimes where one initiation process can be neglected relatively to the other one. The kinetic parameters specific to those regimes being identified, we have built a numerical model including all the processes. In the case of un-stabilised polyethylene, this model displays excellent predictive qualities, as well in lifetime, as in thickness distribution of oxidation products. The study of stabilised polyethylenes was then initiated with samples respectively stabilised by a hindered phenol, and a thio-diester. In the case of phenol, the study of consumption kinetics reveals the existence of complex mechanisms, especially the existence of a 'reservoir effect' linked to the presence of a separated phase of phenol in excess. A kinetic model has been proposed, but we still do not know how the results can be generalised to other phenolic stabilizers. (author)

  1. Modeling of steel spheres impacting polyethylene; TOPICAL

    International Nuclear Information System (INIS)

    Serduke, F; Gerassimenko, M

    1999-01-01

    The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the Phebus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort

  2. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  3. Degradation of Green Polyethylene by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available We studied the biodegradation of green polyethylene (GP by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.

  4. Degradation of Green Polyethylene by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.

  5. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  6. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  7. Electron-beam-induced conduction in polyethylene terephthalate films

    Energy Technology Data Exchange (ETDEWEB)

    Beckley, L M; Lewis, T J; Taylor, D M [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-06-21

    Measurements are reported of electron-beam-induced conduction in thin polyethylene terephthalate (PET) films for electron energies up to 10 keV. The ratio of induced dielectric current to incident beam current (the gain) is orders of magnitude less than unity over practically the whole range of beam penetration. This result is quite unlike that normally found for inorganic dielectrics where the gain will exceed unity and reach a maximum at or near full penetration. In spite of the very different gain characteristics it is shown that the model recently proposed by Nunes de Oliviera and Gross (J. App. Phys.; 46:3132 (1975)), and by Aris et al (IEE Conf. Publ. No.129.; 267 (1975) and J. Phys. C. Solid State Phys.; 9:797 (1976)) and applied to mica and tantalum oxide respectively is also applicable to PET. Use is made of the known carrier mobility and lifetime data for this polymer and it is shown that very large space-charge distortions of the field can be produced by the beam which may well account for the frequent sample failure experienced during the experiments. The work supports suggestions by earlier workers that the current in unirradiated PET is electrode limited and predicts the maximum (space-charge limited) current likely to occur in this polymer.

  8. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  9. Irradiation of polyethylene in the presence of antioxidants

    Science.gov (United States)

    Jaworska, E.; Kałuska, I.; Strzelczak-Burlińska, G.; Michalik, J.

    The radiation induced reactions in LDPE in the presence of phenolic type antioxidants have been studied. It was shown that various antioxidants can influence the polyethylene network formation and the radical yield in different ways. The dependence of network structure on absorbed doses was determined by gel analysis, hot-set test and extraction of antioxidants for samples irradiated with accelerated electrons. It was found that the antioxidants eluated from polyethylene in higher percentage influence polymer crosslinking to a smaller degree. The ESR studies of γ-irradiated blends of polyethylene with antioxidant indicate the presence of alkyl and phenoxyl radicals. The role of antioxidant molecules on radiation induced reactions in polyethylene-antioxidant systems is considered. The correlation between the network structure and the type of additive in polyethylene is also discussed.

  10. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  11. Polyethylene/hydrophilic polymer blends for biomedical applications.

    Science.gov (United States)

    Brynda, E; Houska, M; Novikova, S P; Dobrova, N B

    1987-01-01

    Polyethylene blends with poly(2-hydroxyethyl methacrylate) [poly(HEMA)] or poly(2,3-dihydroxypropyl methacrylate) [poly(DHPMA)] were prepared by swelling polyethylene with HEMA or 2,3-epoxypropyl methacrylate (EPMA) and by polymerization of the respective monomers. Poly(EPMA) in blends was hydrolysed to poly(DHPMA) with acetic acid. The blends had similar surface and bulk compositions. Swelling with water and surface wettability were proportional to the content of the hydrophilic component; at the same content the polyethylene/poly(DHPMA) blends appeared more hydrophilic than those of polyethylene/poly(HEMA). Thrombus formation in contact with blood examined ex vivo and in vivo was considerably slower on the blends than on unmodified polyethylene. The tests indicated optima in composition; the best biological response was achieved with the blends containing about 14% poly(HEMA) or 16% poly(DHPMA).

  12. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  13. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

    International Nuclear Information System (INIS)

    Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

    2003-01-01

    The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

  14. Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces

    International Nuclear Information System (INIS)

    Niederberger, S.; Gracias, D. H.; Komvopoulos, K.; Somorjai, G. A.

    2000-01-01

    The dynamic friction mechanisms of polyethylene and silicon were investigated for apparent contact pressures and contact areas in the ranges of 8 MPa-18 GPa and 17 nm2-9500 μm2, respectively. Friction force measurements were obtained with a friction force microscope, scanning force microscope, and pin-on-disk tribometer. Silicon and diamond tips with a nominal radius of curvature between 100 nm and 1.2 mm were slid against low- and high-density polyethylene and Si(100) substrates under contact loads in the range of 5 nN-0.27 N. The low friction coefficients obtained with all material systems at low contact pressures indicated that deformation at the sliding interface was primarily elastic. Alternatively, the significantly higher friction coefficients at higher contact pressures suggested that plastic deformation was the principal mode of deformation. The high friction coefficients of polyethylene observed with large apparent contact areas are interpreted in terms of the microstructure evolution involving the rearrangement of crystalline regions (lamellae) nearly parallel to the sliding direction, which reduces the surface resistance to plastic shearing. Such differences in the friction behavior of polyethylene resulting from stress-induced microstructural changes were found to occur over a relatively large range of the apparent contact area. The friction behavior of silicon was strongly affected by the presence of a native oxide film. Results are presented to demonstrate the effect of the scale of deformation at the contact interface on the dynamic friction behavior and the significance of contact parameters on the friction measurements obtained with different instruments. (c) 2000 American Institute of Physics

  15. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    OpenAIRE

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with di...

  16. Commercialization of the polyethylene macroencapsulation process

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Hellstrom, G.W.; Vance, J.K.

    1998-01-01

    With support from the US Department of Energy Office of Science and Technology (DOE OST) and assistance from Brookhaven National Laboratory (BNL), Envirocare of Utah, Inc. (Envirocare) is commercializing the polyethylene macroencapsulation process. Envirocare, currently the only commercially licensed mixed waste disposal facility in the US, will initially demonstrate the process by treating and disposing up to 227,000 kg (500,000 lbs) of radioactively contaminated lead. This waste, considered mixed due to both radioactive and hazardous constituents, is currently being stored at various sites throughout the DOE complex. Following this initial work for DOE, the process will be available for the treatment of other applicable wastes. Throughout commercialization of this process, BNL has provided Envirocare with technical support for engineering and permitting

  17. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  18. Studies on the memory effect in polyethylene

    International Nuclear Information System (INIS)

    Lopez, M.A.; Burillo, G.; Charlesby, A.

    1994-01-01

    Polyethylene films of LDPE, a commercial product of PEMEX Mexico, with three different thicknesses were stretched from 1 cm to various lengths, and irradiated in air and in vacuum, at doses from 0 to 730 kGy. The effect of stretching on the ''memory effect'', % of gel formed, crystallinity, radio-chemical yield of crosslinking G c and scission G d was determined. Maximum shrinking effect is obtained at temperatures above the crystalline melting point, and is almost the same at any irradiation dose, from 0 to 525 kGy; in the case of doses from 713 kGy up, the recovery decreases slightly due to higher density of crosslinking. The increase of draw ratio from 5 to 6.5 has no significant effect on recovery. Preirradiation of 40 kGy in air before stretching has no significant effect on recovery but minimizes possible creep during the stretching and irradiation process. (author)

  19. Synthesis and characterization of deuterated polyethylene

    International Nuclear Information System (INIS)

    Jia Xianbin; Luo Xuan; Chang Guanjun; Du Kai; Zhang Lin; Xie Zhengwei; Li Xinjuan; Lu Zaijun

    2009-01-01

    Due to its remarkable isotope effects, excellent kinetic stability towards C-D bond break, high degree of deuteration, and being non-radioactive, deuterated polyethylene (d-PE) is widely used in many fields, such as in inertially confined fusion (ICF) as target material, in production of low loss plastic optical fibers, and in study of the compatibility of different polymers. For the necessary of ICF, the d-PE was synthesized by the anionic polymerization and palladium-catalyzed hydrogenation. Furthermore, by the method of FTIR, 1H NMR and GPC, the deuterated ratio and structure of d-PE have been characterized. The results show that the d-PE has the high deuterated ratio and molecular weight, narrow molecular-weight distribution, the polymer material fits the basic necessary of ICF. (authors)

  20. Role of polyethylene glycol in childhood constipation.

    Science.gov (United States)

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. © The Author(s) 2013.

  1. Thermal conductivity of electrospun polyethylene nanofibers.

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  2. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  3. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  4. In vivo oxidation in remelted highly cross-linked retrievals.

    Science.gov (United States)

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  5. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  6. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  7. Mechanical Degradation Onset of Polyethylene Oxide Used as a Hydrosoluble Model Polymer for Enhanced Oil Recovery Seuil de dégradation mécanique de solutions de polymères utilisés en récupération assistée des hydrocarbures

    Directory of Open Access Journals (Sweden)

    Dupas A.

    2013-02-01

    Full Text Available Water soluble polymers such as polyacrylamide are used in polymer flooding, which is an advanced technique of Enhanced Oil Recovery (EOR. It aims at improving crude oil displacement in reservoir by pushing it with a viscous injected fluid. Polymer flood is challenged by mechanical degradation of long macromolecules during intense flows. Many studies reported that above a critical extensional rate hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · , polymer chains can break and lose their rheological properties. The molecular weight (M dependence of hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · for dilute solutions in laminar flows was shown to follow a power law: hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · ≈ Mw–k. An experimental study has been performed to investigate the onset of mechanical degradation in both laminar and turbulent flows and for both dilute and semi dilute polyethylene oxide aqueous solutions. It reveals that the exponent k strongly depends on the concentration and flow regimes and also on solvent quality. Results show that mechanical degradation mainly affects long chains, that it is favoured at high concentrations, under poor solvent conditions. They also evidence that the extensional viscosity at low strain rates decreases to the same extent as shear viscosities due to mechanical degradation. However, the decrease of the extensional viscous properties at high strain rates is much more pronounced. Les polymères hydrosolubles comme les polyacrylamides peuvent être utilisés en récupération assistée des hydrocarbures (Enhanced Oil Recovery (EOR par injection de polymère. Cette technique vise à augmenter la production de brut en le poussant du réservoir vers un puits producteur à l’aide d’une solution de polymère suffisamment visqueuse. Les polymères utilisés à cet effet ont des masses moléculaires supérieures à 106 g/mol, ce qui les rend sensibles à la dégradation. En raison

  8. Justification of indirect methods of bending stresses polyethylene pipes evaluation

    Science.gov (United States)

    Serebrennikov, A. A.; Serebrennikov, D. A.; Hakimov, Z. R.

    2017-10-01

    The world and Russian companies have a long experience of the polyethylene pipeline installation and operation. At the same time, the significant attention is paid to the improvement of the relevant machines and the production technology. The polyethylene pipeline installation experience proves that its operation properties (reliability and durability) depend on physical and mechanical characteristics of polyethylene, which should be saved during its installation. Defects can occur, including in cases when the pipe is subjected to the significant bending stresses during installation. To evaluate these stresses, including when exposed to cold weather conditions, an indirect method based on the relationship between strength characteristics and occurred deformations is proposed.

  9. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254

  10. Reinforcement of the Gas Barrier Properties of Polyethylene and Polyamide Through the Nanocomposite Approach: Key Factors and Limitations

    Directory of Open Access Journals (Sweden)

    Picard E.

    2015-02-01

    Full Text Available In this study, polyamide 6 (PA6 and polyethylene (PE nanocomposites were prepared from melt blending and a detailed characterization of the nanocomposite morphology and gas barrier properties was performed. The choice of the organoclay was adapted to each polymer matrix. Exfoliated morphology and improved gas transport properties were obtained by melt mixing the polar PA6 matrix and the organoclay, whereas a microcomposite with poor barrier properties was formed from the binary PE/organomodified clay mixture. Different modified polyethylenes were examined as compatibilizers for the polyethylene/organoclay system. The effect of compatibilizer molar mass, polarity and content was investigated on the clay dispersion and on the gas barrier properties. The optimal compatibilizer to clay weight ratio was found to be equal to 4 whatever the compatibilizer. However, a high degree of clay delamination was obtained with the high molar mass compatibilizer whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. Contrary to the PA based system, the barrier properties of PE nanocomposites were not directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. Oxidized wax was identified as a very promising interfacial agent and a step by step study was performed to optimize the gas transport properties of the systems based on PE, oxidized wax and organoclay. In particular, an interesting combination of oxidized wax and high molar mass maleic anhydride grafted polyethylene allowing dividing the gas permeability by a factor 2 in comparison with neat PE was proposed.

  11. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  12. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  13. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production.

    Science.gov (United States)

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza

    2017-08-28

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

  14. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota

    2007-06-01

    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  15. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  16. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)

    International Nuclear Information System (INIS)

    Cota, S.S.; Vasconcelos, V.; Senne Junior, M.; Carvalho, L.L.; Rezende, D.B.; Correa, R.F.

    2007-01-01

    This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE) samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates. (author)

  17. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  18. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  19. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  20. Fluence behavior of polyethylene films irradiated with high energy electrons

    International Nuclear Information System (INIS)

    Pino, Eddy Segura; Silva, Leonardo G. Andrade e

    1999-01-01

    Polymers are viscoelastic materials at all temperatures, so that mechanical loads induce time dependable deformations. The recovery of these deformations, on load release, take some time and it is not always recovered completely. The main objective of this work was to analyse the creep behavior of electron irradiated polyethylene films. From the experimental results, it was sated that polyethylene creeps less with an increase on irradiation dose and also that creep recovery in this material increases with doses but it is not complete. This behavior can be attributed to the crosslinking effect witch stabilize elements of the molecular structure of the polyethylene, thus reducing their mobility and so inhibiting the creep mechanism. The partial creep recovery could be also attributed to the reticulation effect and to the polyethylene plastic behavior. Additional information on the creep behavior was obtained by fitting the experimental data with exponential functions and evaluating the mathematical parameters with a modified Kelvin-Voigt mechanical model. (author)

  1. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  2. Studies on the biodegradation of natural and synthetic polyethylene ...

    African Journals Online (AJOL)

    Michael Horsfall

    a Orissa University of Agriculture & Technology, Bhubaneswar 751 003, Orissa, India b *School of Bio Sciences ... The initial and final dry weights of plastic bags before and .... The washed polyethylene particles were air-dried and weighed.

  3. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  4. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  5. Highly Enriched Uranium Metal Annuli and Cylinders with Polyethylene Reflectors and/or Internal Polyethylene Moderator

    International Nuclear Information System (INIS)

    Tyler Sumner; J. Blair Briggs; Leland Montierth

    2007-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, experiments of uranium metal annuli with and without polyethylene reflectors and with the central void region either empty or filled with polyethylene were evaluated under ICSBEP Identifier HEU-MET-FAST-076. The outer diameter of the uranium annuli varied from 9 to 15 inches in two-inch increments. In addition, there were uranium metal cylinders with diameters varying from 7 to 15 inches with complete reflection and reflection on one flat surface to simulate floor reflection. Most of the experiments were performed between February 1964 and April 1964. Five partially reflected (reflected on the top only) experiments were assembled in November 1967, but are judged by the evaluators not to be of benchmark quality. Twenty-four of the twenty-five experiments have been determined to have fast spectra. The only exception has a mixed spectrum. Analyses were performed in which uncertainty associated with five different parameters associated with the uranium parts and three associated with the polyethylene parts was evaluated. Included were uranium mass, height, diameter, isotopic content, and impurity content and polyethylene mass, diameter, and impurity content. There were additional uncertainties associated with assembly alignment, support structure, and the value

  6. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Markovic, V; Gal, O; Stannett, V T

    1986-01-01

    The moduli of elasticity at 150/sup 0/C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed.

  7. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Markovic, V.; Gal, O.; Stannett, V.T.

    1986-01-01

    The moduli of elasticity at 150 C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed. (author)

  8. Structural changes in the polyethylene after ion implantation

    International Nuclear Information System (INIS)

    Proskova, K.; Svorcik, V.

    1999-01-01

    This work deals with the study of structural changes of the polyethylene after ion implantation. There were used the polyethylene film with thickness 15 μm, and Ar + ions with energy 63 keV and Xe + ions with energy 156 keV with doses 1·10 13 - 3·10 15 cm -2 for experiments. For the study of structural changes of polymer were used methods UV-VIS spectrometry, ESR, Rutherford back scattering

  9. Observations of radiation damage effects in paraffin and polyethylene crystals

    International Nuclear Information System (INIS)

    Petermann, J.; Gleiter, H.; Bochum Univ.

    1973-01-01

    A report is given on electron microscopic observations on n-paraffin and polyethylene monocrystals after irradiating with electrons. The observations show that the cross-links in n-paraffin monocrystals form agglomerates which preferably occur in the neighbourhood of lattice defects. In polyethylene monocrystals, the cross-links line up in long rows parallel to the [100] or [010] direction. (orig./LH) [de

  10. Confinement-induced vitrification in polyethylene terephthalate

    International Nuclear Information System (INIS)

    Balta Calleja, F. J.; Flores, A.; Di Marco, G.; Pieruccini, M.

    2007-01-01

    Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate (PET), cold crystallized (annealed) in the temperature interval 100-140 deg. C, reveals the presence of marginally glassy domains above the annealing temperature T a . This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a temperature higher than T a to completely defreeze. Differential scanning calorimetry supports this point of view. Analogous investigations on unoriented PET, cold crystallized in the same conditions, do not show the same peculiarities; thus, chain orientation is relevant to vitrification. This phenomenology is first cast in the language of thermodynamics by introducing an excess chemical potential δμ describing the presence of structural constraints in the amorphous domains and the effect of chain orientation. For a first test of this picture, the orientation contribution to δμ is calculated by means of the Gaussian chain model (this implicitly assumes that δμ is related to the density fluctuations). The resulting expression is then used to discuss the structural differences between cold-drawn and unoriented PET samples reported in the literature

  11. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  12. Free radicals trapped in polyethylene matrix

    International Nuclear Information System (INIS)

    Shimada, S.; Maeda, M.; Hori, Y.; Kashiwabara, H.

    1977-01-01

    Two types of alkyl radicals were found to be trapped in irradiated crystals grown from polyethylene solution. One of them corresponds to the broad sextet pattern of the e.s.r. spectrum and the other corresponds to the sharp sextet pattern. The free radicals attributed to the broad sextet began to disappear at a lower temperature than the temperature at which the free radicals attributed to the sharp sextet disappeared. When butadiene molecules were brought into contact with the specimen, the decay of the free radicals corresponding to the broad sextet was accelerated. When the specimen was subjected to fuming nitric acid treatment, no broad sextet was observed. The mat of the crystals was aligned so that the c-axes of its crystallites were perpendicular to its surface. The broad sextet showed no anisotropy when the angle between the direction of applied magnetic field and that of the c-axis of the crystallite was varied. On the other hand, the sharp component of the spectrum showed apparent anisotropy. It can be concluded that the broad component comes from the free radicals trapped in the lamellar surface and the sharp component is attributed to the free radicals trapped in the inner part of the crystallite. (author)

  13. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  14. Theory of the deformation of aligned polyethylene.

    Science.gov (United States)

    Hammad, A; Swinburne, T D; Hasan, H; Del Rosso, S; Iannucci, L; Sutton, A P

    2015-08-08

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.

  15. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  16. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  17. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  18. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  19. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  20. Overnight efficacy of polyethylene glycol laxative.

    Science.gov (United States)

    Di Palma, Jack A; Smith, Julie R; Cleveland, Mark vB

    2002-07-01

    Clinical studies in constipated adult patients have shown that a 17- or 34-g daily dose of polyethylene glycol (PEG) 3350 (MiraLax) is safe and effective for the treatment of constipation, with the best efficacy seen in wk 2 of treatment. The purpose of this study was to determine an optimal dose of PEG to provide satisfactory relief of constipation within 24 h. A total of 24 adult study subjects who met Rome II criteria for constipation were randomized in a double-blind, parallel pilot study to receive a single dose of placebo or PEG laxative at doses of 51, 68, or 85 g in 500 ml of flavored water. Over a 72-h period, subjects rated bowel movements (BM), completeness of evacuation, and satisfaction. The 68-g dose seemed to be most satisfactory. Five of six subjects had a BM within 24 h. The time to first BM was 14.8 h for 68 g versus 27.3 h for placebo (p = NS). The time to second BM was 19.2 h versus 47.2 h for 68 g and placebo, respectively (p = 0.003). Of the subjects receiving 68 g of PEG, 50% and 100% reported complete evacuation for the first and second BM, respectively. The average number of BMs in 24 h for placebo, 51 g, 68 g, and 84 g were 0.5, 2.2, 2.2, and 4.2, respectively (p = 0.004). There were no adverse reactions, and no patient reported incontinence or complained of cramps or diarrhea at any dose. There were no changes in measured electrolytes, calcium, glucose, BUN, creatinine, or serum osmolality. A 68-g dose of PEG laxative seems to provide safe and effective relief in constipated adults within a 24-h period.

  1. Carbide process picked for Chinese polyethylene plant

    International Nuclear Information System (INIS)

    Alperowicz, N.

    1993-01-01

    Union Carbide (Danbury, CT) is set to sign up its eighth polyethylene (PE) license in China. The company has been selected to supply its Unipol technology to Jilin Chemical Industrial Corp. (JCIC) for a 100,000-m.t./year linear low-density PE (LLDPE) plant at Jilin. The plant will form part of a $2-billion petrochemical complex, based on a 300,000-m.t./year ethylene unit awarded to a consortium made up of Samsung Engineering (Seoul) and Linde. A 10,000-m.t./year butene-1 unit will also be built. Toyo Engineering, Snamprogetti, Mitsubishi Heavy Industries, and Linde are competing for the contract to supply the LLDPE plant. The signing is expected this spring. Two contenders are vying to supply an 80,000-m.t./year phenol plant for JCIC. They are Mitsui Engineering, offering the Mitsui Petrochemical process, and Chisso, with UOP technology. Four Unipol process PE plants are under construction in China and three are in operation. At Guangzhou, Toyo Engineering is building a 100,000-m.t./year plant, due onstream in 1995, while Snamprogetti is to finish construction of two plants in the same year at Zhonguyan (120,000 m.t./year) and at Maoming (140,000 m.t./year). The Daquing Design Institute is responsible for the engineering of a 60,000-m.t./year Unipol process PE plant, expected onstream early in 1995. Existing Unipol process PE plants are located in Qilu (60,000 m.t./year LLDPE and 120,000 m.t./year HDPE) and at Taching (60,000 m.t./year HDPE)

  2. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  3. PREPARATION OF ZINC OXIDE AND POLY-ETHYLENE OXIDE COMPOSITE MEMBRANES AND THEIR PHASE RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    JESÚS FABIAN JURADO

    2012-01-01

    Full Text Available El compuesto polimérico tipo membrana de oxido de zinc con el polímero orgánico poly(ethelyneoxide, fue manufacturado para estudiar la correlación de fases. Difracción de rayos-X (XRD, Dispersión Raman (RS calorimetría diferencial de barrido (DSC y espectroscopia de impedancia (EI mostraron que las nano-partículas de ZnO están inmersas homogéneamente en la matriz de PEO dándole un cierto orden cristalino. Las posiciones de los picos de los registros XRD y RS del composito evidenciaron la separación de la fase semi-cristalina de PEO con la fase cristalina del ZnO para todo el rango del contenido. La variación de la conductividad eléctrica dc con la temperatura es tipo Arrhenius para el composito. La conductividad eléctrica dc del PEO (¿10-6 Scm-1 se incremente en cerca de dos órdenes de magnitud con la presencia 30% wt. de ZnO (¿10-4 Scm-1.

  4. A Multicenter Approach Evaluating the Impact of Vitamin E-Blended Polyethylene in Cementless Total Hip Replacement

    Science.gov (United States)

    Jäger, Marcus; van Wasen, Andrea; Warwas, Sebastian; Landgraeber, Stefan; Haversath, Marcel; Group, VITAS

    2014-01-01

    Since polyethylene is one of the most frequently used biomaterials as a liner in total hip arthroplasty, strong efforts have been made to improve design and material properties over the last 50 years. Antioxidants seems to be a promising alternative to further increase durability and reduce polyethylene wear in long term. As of yet, only in vitro results are available. While they are promising, there is yet no clinical evidence that the new material shows these advantages in vivo. To answer the question if vitamin-E enhanced ultra-high molecular weight polyethylene (UHMWPE) is able to improve long-term survivorship of cementless total hip arthroplasty we initiated a randomized long-term multicenter trial. Designed as a superiority study, the oxidation index assessed in retrieval analyses of explanted liners was chosen as primary parameter. Radiographic results (wear rate, osteolysis, radiolucency) and functional outcome (Harris Hip Scores, University of California-Los Angeles, Hip Disability and Osteoarthritis Outcome Score, Visual Analogue Scale) will serve as secondary parameters. Patients with the indication for a cementless total hip arthroplasty will be asked to participate in the study and will be randomized to either receive a standard hip replacement with a highly cross-linked UHMWPE-X liner or a highly cross-linked vitamin-E supplemented UHMWPE-XE liner. The follow-up will be 15 years, with evaluation after 5, 10 and 15 years. The controlled randomized study has been designed to determine if Vitamin-E supplemented highly cross-linked polyethylene liners are superior to standard XLPE liners in cementless total hip arthroplasty. While several studies have been started to evaluate the influence of vitamin-E, most of them evaluate wear rates and functional results. The approach used for this multicenter study, to analyze the oxidation status of retrieved implants, should make it possible to directly evaluate the ageing process and development of the implant

  5. A multicenter approach evaluating the impact of vitamin E-blended polyethylene in cementless total hip replacement

    Directory of Open Access Journals (Sweden)

    Marcus Jäger

    2014-04-01

    Full Text Available Since polyethylene is one of the most frequently used biomaterials as a liner in total hip arthroplasty, strong efforts have been made to improve design and material properties over the last 50 years. Antioxidants seems to be a promising alternative to further increase durability and reduce polyethylene wear in long term. As of yet, only in vitro results are available. While they are promising, there is yet no clinical evidence that the new material shows these advantages in vivo. To answer the question if vitamin-E enhanced ultra-high molecular weight polyethylene (UHMWPE is able to improve long-term survivorship of cementless total hip arthroplasty we initiated a randomized long-term multicenter trial. Designed as a superiority study, the oxidation index assessed in retrieval analyses of explanted liners was chosen as primary parameter. Radiographic results (wear rate, osteolysis, radiolucency and functional outcome (Harris Hip Scores, University of California-Los Angeles, Hip Disability and Osteoarthritis Outcome Score, Visual Analogue Scale will serve as secondary parameters. Patients with the indication for a cementless total hip arthroplasty will be asked to participate in the study and will be randomized to either receive a standard hip replacement with a highly cross-linked UHMWPE-X liner or a highly cross-linked vitamin-E supplemented UHMWPE-XE liner. The follow-up will be 15 years, with evaluation after 5, 10 and 15 years. The controlled randomized study has been designed to determine if Vitamin-E supplemented highly cross-linked polyethylene liners are superior to standard XLPE liners in cementless total hip arthroplasty. While several studies have been started to evaluate the influence of vitamin-E, most of them evaluate wear rates and functional results. The approach used for this multicenter study, to analyze the oxidation status of retrieved implants, should make it possible to directly evaluate the ageing process and development

  6. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia N.S.; Silva, Leonardo G.A., E-mail: lgasilva@ipen.br, E-mail: patricianegrini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ciro, Rosemeire, E-mail: rosemeireciro@msn.com [Faculdades Oswaldo Cruz (FOC), Sao Paulo, SP (Brazil); Viana, Hamilton M., E-mail: hmviana@gmail.com [Centro Universitario Fundacao de Santo Andre (FSA/FAENG), Santo Andre, SP (Brazil)

    2013-07-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO{sub 2}), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  7. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    International Nuclear Information System (INIS)

    Poveda, Patricia N.S.; Silva, Leonardo G.A.; Ciro, Rosemeire; Viana, Hamilton M.

    2013-01-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO 2 ), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  8. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  9. Development of new cross-linked polyethylene for atomic energy

    International Nuclear Information System (INIS)

    Fujimura, Shun-ichi; Ohya, Shingo; Kubo, Masaji; Tsutsumi, Yukihiro; Seguchi, Tadao.

    1988-01-01

    Cross-linked polyethylene is the material which is used most as the insulating material for electric wires and cables, but for the cables for nuclear power stations and the wiring materials within machinery and equipment, the cross-linked polyethylene which is hard to burn by mixing burning-retarding agent is frequently used as the disaster-preventing countermeasures. As the burning-retarding agent for cross-linked polyethylene, bromine system agent that gives high burning retardation, chlorine system agent that can prevent melting and dripping at the time of burning and so on have been used so as to meet the objective. However by the addition of burning-retarding agents, the electrical and mechanical characteristics of cross-linked polyethylene lower, therefore consideration must be given to the use. In this paper, the results of the examination on the application of condensed acenaphthylene bromide as a new burning-retarding agent to cross-linked polyethylene are reported. White lead was effective for catching HBr. It was confirmed that more than 30 parts of this agent ensured burning retardation. By mixing this agent, the tensile strength increased, but the elongation lowered. It was found that the good radiation resistance was obtained by adding this agent. (K.I.)

  10. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  11. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  12. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Directory of Open Access Journals (Sweden)

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  13. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene

    International Nuclear Information System (INIS)

    Ishigaki, I.; Sugo, T.; Senoo, K.; Takayama, T.; Machi, S.; Okamoto, J.; Okada, T.

    1981-01-01

    Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)

  14. Engineering functional nanothin multilayers on food packaging: ice-nucleating polyethylene films.

    Science.gov (United States)

    Gezgin, Zafer; Lee, Tung-Ching; Huang, Qingrong

    2013-05-29

    Polyethylene is the most prevalent plastic and is commonly used as a packaging material. Despite its common use, there are not many studies on imparting functionalities to those films which can make them more desirable for frozen food packaging. Here, commercial low-density polyethylene (LDPE) films were oxidized by UV-ozone (UVO) treatment to obtain a negatively charged hydrophilic surface to allow fabrication of functional multilayers. An increase in hydrophilicity was observed when films were exposed to UVO for 4 min and longer. Thin multilayers were formed by dipping the UVO-treated films into biopolymer solutions, and extracellular ice nucleators (ECINs) were immobilized onto the film surface to form a functional top layer. Polyelectrolyte adsorption was studied and confirmed on silicon wafers by measuring the water contact angles of the layers and investigating the surface morphology via atomic force microscopy. An up to 4-5 °C increase in ice nucleation temperatures and an up to 10 min decrease in freezing times were observed with high-purity deionized water samples frozen in ECIN-coated LDPE films. Films retained their ice nucleation activity up to 50 freeze-thaw cycles. Our results demonstrate the potential of using ECIN-coated polymer films for frozen food application.

  15. Durability of a fin-tube latent heat storage using high density polyethylene as PCM

    Science.gov (United States)

    Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo

    2017-10-01

    Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.

  16. Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding

    International Nuclear Information System (INIS)

    Keith Rule; Paul Kalb; Pete Kwaschyn

    2003-01-01

    Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs

  17. Polyethylene glycol promotes autoxidation of cytochrome c.

    Science.gov (United States)

    Sato, Wataru; Uchida, Takeshi; Saio, Tomohide; Ishimori, Koichiro

    2018-06-01

    Cytochrome c (Cyt c) was rapidly oxidized by molecular oxygen in the presence, but not absence of PEG. The redox potential of heme c was determined by the potentiometric titration to be +236 ± 3 mV in the absence of PEG, which was negatively shifted to +200 ± 4 mV in the presence of PEG. The underlying the rapid oxidation was explored by examining the structural changes in Cyt c in the presence of PEG using UV-visible absorption, circular dichroism, resonance Raman, and fluorescence spectroscopies. These spectroscopic analyses suggested that heme oxidation was induced by a modest tertiary structural change accompanied by a slight shift in the heme position (c, which triggered heme displacement. The primary dehydration site was estimated to be around surface-exposed hydrophobic residues near the heme center: Ile81 and Val83. These findings and our previous studies, which showed that hydrated water molecules around Ile81 and Val83 are expelled when Cyt c forms a complex with CcO, proposed that dehydration of these residues is functionally significant to electron transfer from Cyt c to CcO. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  19. Elaboration of recycled polyethylene foams reticulated by radiation

    International Nuclear Information System (INIS)

    Galicia M, M.

    2000-01-01

    In this work some obtained results are presented to make irradiation tests on recycled polymeric material (polyethylene) as well as mixtures of this with certain additive classes (foaming and reticulating agents) which will be used for the foams elaboration, objective of this work. Two types of foaming basically exist which are elaborated with low density polyethylene base. They are: a) the extruded and, b) the reticulated through ionizing radiation and chemically. Some of the properties that the expanded or foamed polyethylene are: flexibility, resistance, thermal stability, inter medium mechanical properties between the highly flexible foams and rigid among others. All of them determined by the cell type which conform them. Also was carried out the characterization of the obtained material contributing of this manner to diminish the quantity of solid wastes generated. (Author)

  20. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  1. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  2. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  3. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  4. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao

    2016-10-14

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively in-chain anhydride groups are formed by terpolymerization with carbic anhydride. Combined experimental and theoretical DFT studies reveal the key for this direct approach to telechelics to be a match of the comonomers’ different electronics and bulk. Identified essential features of the comonomer are that it is an electron-rich olefin that forms an insertion product stabilized by an additional interaction, namely a π–η3 interaction for the case of VF.

  5. Antimicrobial compounds in polyethylene films - characterization and content measurement techniques

    International Nuclear Information System (INIS)

    Pires, Marcia; Santos, Ramon V.; Perao, Leandro; Ellwangler, Manoela W.; Nonemacher, Regina F.; Moraes, Lilian T. de; Gorski, Sandro; Staub, Simone; Petzhold, Cesar L.

    2009-01-01

    Developments have been done in the packaging market to attend the continuous changes in consumer demands and also to keep safety and shelf life of products during transportation and storage. Active packaging is the most innovative concepts in the market. It has been defined as a packaging that changes its conditions to extend shelf life. The objective of this work is the production and characterization of active polyethylene films with antimicrobial compounds. The initial results show that analytical techniques as RX fluorescence and FTIR can be used to characterize and quantify these compounds in polyethylene films. (author)

  6. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  7. Well-defined triblock copolymers of polyethylene with polycaprolactone or polystyrene using a novel difunctional polyhomologation initiator

    KAUST Repository

    Hadjichristidis, Nikolaos

    2017-08-04

    α,ω-Dihydroxy polyethylene was synthesized by polyhomologation of dimethylsulfoxonium methylide with 9-thexyl-9-BBN (9-BNN: 9-Borabicyclo[3.3.1]nonane), a novel difunctional initiator produced from 9-BBN and 2,3-dimethylbut-2-ene, with two active and one blocked sites, followed by hydrolysis/oxidation. The terminal hydroxy groups were either used directly as initiators, in the presence of 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-BuP2), for the ring opening polymerization of ɛ-caprolactone to afford polycaprolactone-b-polyethylene-b-polycaprolactone (PCL-b-PE-b-PCL) or after transformation to atom transfer radical polymerization initiating sites, for the polymerization of styrene to produce polystyrene-b-polyethylene-b-polystyrene (PSt-b-PE-b-PSt) triblock copolymers. Molecular characterization by 11B, 13C and 1H NMR as well as FTIR, and high temperature GPC (HT-GPC) confirmed the well-defined nature of the synthesized new difunctional initiator and triblock copolymers. Differential scanning calorimetry was used to determine the melting points of PE and PCL.

  8. Equation of State and Damage in Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl Mcelhinney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Carl A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clements, Bradford Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana Mcgraw [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fezzaa, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gustavsen, Richard L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iverson, Adam Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jensen, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Jennifer Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jones, David Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Junghans, Sylvia Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LeBrun, Thomas John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maerzke, Katie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Timothy Henry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramos, Kyle James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rigg, Paulo [Washington State Univ., Pullman, WA (United States); Schilling, Benjamin Fritz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinclair, N. [Washington State Univ., Pullman, WA (United States); Stull, Jamie Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Watkins, Erik Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Paul Michael Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    The dynamic response of polymers differs significantly from those of metals, upon which many of the National Laboratories' deformation, damage, and failure models are based. Their moduli, yield strength, and damage characteristics are highly strain rate-, temperature-, and phase-dependent, requiring models that encompass a wide range of phenomena including some not in equilibrium. Recently, Los Alamos developed the Glassy Amorphous Polymer (GAP)1 model [1] to address limitations in existing models of polymer deformation. GAP captures both volumetric (equation of state) and deviatoric (shear) response, including a non-equilibrium component to the former (a feature determined to be crucial in capturing the low-pressure, viscoelastic response to impact loading). GAP has already been applied to polymers such as PMMA, PTFE, epoxy, and Kel-F 800, but with an emphasis on impact response as opposed to damage or failure. The current effort was launched to address this gap in predictive capability. For reasons that will be made clear, semi-crystalline polyethylene (PE) was chosen to serve as a model system for parameterization and validation. PE (-C2H4-)n is one of the most widely used polymers in industrial and engineering contexts, chiey due to the versatility of its mechanical response. This response can be tuned through network and chain structure, degree of crystallinity, and molecular weight. PE is found in several forms including low density (LDPE), high density (HDPE), and ultra-high molecular weight (UHMWPE). The focus here was on HDPE and UHMWPE, of pedigree described in the following section. Materials were well-characterized prior to study and are representative of semi-crystalline polymers of interest to DOE and DoD. Semi-crystalline PE undergoes a glass transition at low temperature (-35°C) and melts across a range of moderate temperatures (~80-180°C), depending on its structure. It is typically inert chemically, has low

  9. Improvement of radiation resistance of polypropylene by blending with polyethylene and polystyrene

    International Nuclear Information System (INIS)

    Al Aji, Z.

    2001-01-01

    The use of polypropylene in production of medical component and packaging materials makes it an interesting material for applied research. Since the use of ethylene oxide for sterilization of medical components will be forbidden in the next future because of its carcinogens effect. Therefore, another alternative sterilization methods are required. The use of Gamma radiation is already established for sterilization of some medical components, this technique causes change in the physical mechanical properties of polypropylene, which makes the addition of stabilizers necessary. In this work, blends of domestically used polymers, polypropylene, linear low-density polyethylene, and polystyrene/butadiene were prepared in order to improve the radiation resistance of polypropylene; naphthalene was also used as an additive

  10. Thermogravimetric studies of the thermooxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Gal, O.; Novakovic, Lj.; Stannett, V.T.

    1983-01-01

    The addition of antioxidants to polymers increases their thermooxidative stability as indicated by a delay and/or a retardation of degradation. The present paper considers the influence of the nature of the antioxidant (hindered phenols, aromatic amines, and organic compounds containing sulphur atoms) on the thermooxidative behaviour of a low density polyethylene at 200 deg C. The following characteristics have been measured in polymer samples with zero; 0.1; 0.5; and 1.0 wt% content of antioxidant: the induction time of the oxidation process, rate of autoxidation and rate of polymer degradation (up to about 20% weight loss). The difference in thermal stability in radiation crosslinked material and comparative retardation of the thermooxidative degradation is observed up to an absorbed dose of 200 kGy. (author)

  11. Thermogravimetric studies of the thermooxidative stability of irradiated and unirradiated polyethylene. Pt. 1. Effect of antioxidant

    Energy Technology Data Exchange (ETDEWEB)

    Gal, O; Novakovic, Lj [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Stannett, V T [North Carolina State Univ., Raleigh (USA)

    1983-01-01

    The addition of antioxidants to polymers increases their thermooxidative stability as indicated by a delay and/or a retardation of degradation. The present paper considers the influence of the nature of the antioxidant (hindered phenols, aromatic amines, and organic compounds containing sulphur atoms) on the thermooxidative behaviour of a low density polyethylene at 200 deg C. The following characteristics have been measured in polymer samples with zero; 0.1; 0.5; and 1.0 wt% content of antioxidant: the induction time of the oxidation process, rate of autoxidation and rate of polymer degradation (up to about 20% weight loss). The difference in thermal stability in radiation crosslinked material and comparative retardation of the thermooxidative degradation is observed up to an absorbed dose of 200 kGy.

  12. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  13. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  15. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  16. Colorimetry analysis of polypropylene-polyethylene base copoliners

    International Nuclear Information System (INIS)

    Sunol, J. J.; Saurina, J.; Carrasco, F.; Pages, P.

    1998-01-01

    In this paper, crystallisation process study has been performed, from the molten material, in polypropylene-polyethylene (PP-PE) copolymers rich in PP (∼ 95 wgh.%), using different additives. Some samples have been artificially aged. Calorimetric analysis has been performed by different scanning calorimetry (DSC), from which crystallisation kinetics has been studied under dynamic conditions. (Author) 22 refs

  17. Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold

    NARCIS (Netherlands)

    Heffels, W.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    2000-01-01

    Polymer nanocomposites were prepd. by mixing ultrahigh-mol.-wt. polyethylene and gold colloids coated with a self-assembled monolayer of dodecanethiol. Subsequently, these materials were oriented by solid state drawing which induced the formation of uniaxially oriented arrays of gold particles. As a

  18. The improvement of polyethylene prostheses through radiation crosslinking

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Grobbelaar, C.J.; Marais, F.

    1977-01-01

    During the past decade, remarkable progress has been made in the utilization of high-density polyethylene (HDPE) as a material for the manufacture of prostheses used in orthopaedic operations. This polymer contributes largely to the success of total hip replacement. In the case of total knee replacement it was considered imperative that a more hard-wearing polymer should be developed if at all possible, because not only are the cold-flow characteristics of ordinary high-density polyethylene at high pressures a limiting factor, but particle formation from friction can furthermore lead to physiological side-effects which adversely affect the efficacy of joints made from this material, especially so in the case of knee-joints. Bearing in mind the excellent improvements to be obtained through the radiation crosslinking of polyethylene film, the radiation crosslinking of high-density polyethylene prostheses seemed to be a logical avenue to investigate. Experimental details are presented. Gamma radiation was used. Impact strength and tensile strength measurements were made on specimens irradiated over a dose range of 0 to 80 Mrad. The results are discussed. (U.K.)

  19. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers

    DEFF Research Database (Denmark)

    Müller, C.; Goffri, S.; Breiby, Dag Werner

    2007-01-01

    Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3-hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field-effect transistors that show saturated charge carrier mobilities, mu(FET), as high as 2 x...

  20. Ultra strong polymer fibers : Ab initio calculations on polyethylene

    NARCIS (Netherlands)

    Hageman, J.C.L.; Groot, R.A. de; Meier, Robert J.

    1998-01-01

    The Car-Parrinello technique is used to study the electronic structure of orthorhombic polyethylene as well as the elastic modulus. The theoretical band structure and density of states are in very good agreement with experiments. The best experimentally realized elastic modulus is better than 86% of

  1. Morphological study of synthesized chlorinated polyethylene by inductive plasma

    International Nuclear Information System (INIS)

    Olayo, M.G.; Cruz, G.; Carapia, L.; Fernandez, G.; Morales, J.

    2004-01-01

    In this work a morphological study on the synthesis of Chlorinated polyethylene for plasma starting from Trichloroethylene in a polymerization process and ablation simultaneous of metals, where silver atoms and copper are inserted directly during the growth of the polymer from the gas phase to the one solid is presented. (Author)

  2. Gains or Losses of Ultratrace Elements in Polyethylene Containers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    The extent of elimination of losses and reduction of blank values in ultratrace elemental analysis can only be ascertained by comprehensive investigations for each element separately. Different, and partially conflicting precautions are found to be needed in the determination of manganese, copper......, selenium, and mercury by neutron-activation analysis when polyethylene irradiation containers are used....

  3. Effect of coloured polyethylene mulch and harvesting stage on ...

    African Journals Online (AJOL)

    Coloured polyethylene significantly (P < 0.05) increased the stalk length, stalk girth, number of tillers, chewable stalk and yield of NCS 008 for the main, as well as, the ratoon crops. Harvesting stage significantly influenced the stalk length, stalk girth and yield. Plots harvested 12 months after planting performed better than ...

  4. 76 FR 54791 - Polyethylene Terephthalate (PET) Film From Korea

    Science.gov (United States)

    2011-09-02

    ... Terephthalate (PET) Film From Korea Determination On the basis of the record \\1\\ developed in the subject five... order on polyethylene terephthalate (PET) film from Korea would not be likely to lead to continuation or... was given by posting copies of the notice in the Office of the Secretary, U.S. International Trade...

  5. Quality control in manufacture of lead boron polyethylene plate

    International Nuclear Information System (INIS)

    Wu Ying

    2008-01-01

    For the quality assurance management in the manufacture of lead boron polyethylene plate,target shall be defined and planning shall be conducted first; personnel shall be trained to improve the execution force; institutional system shall be continuously upgraded and environment protection shall be strengthened.Quality management has achieved excellent result, with qualification rate for contracts reaches 100%, to ensure successful production. (author)

  6. Characteristics of polyethylene-moderated 252Cf neutron sources

    International Nuclear Information System (INIS)

    Alejnikov, V.E.; Beskrovnaya, L.G.; Florko, B.V.

    2000-01-01

    Polyethylene-moderated 252 Cf neutron sources were designed to produce neutron reference fields' spectra that simulate the spectra observed in the workplaces within nuclear reactors and accelerators. The paper describes the neutron sources and fields. Neutron spectra were calculated by Monte Carlo method and compared with experimental data

  7. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  8. Laboratory tests on fungal resistance of wood filled polyethylene composites

    Science.gov (United States)

    Craig M. Clemons; Rebecca E. Ibach

    2002-01-01

    A standard method for determining the durability of structural wood was modified for testing the fungal resistance of composites made from high density polyethylene filled with 50% wood flour. Moisture content, mechanical properties, and weight loss were measured over 12 weeks exposure to brown-and white-rot fungi. Mechanical properties were decreased, but irreversible...

  9. Thermal Cracking of Low Density Polyethylene (LDPE) Waste into ...

    African Journals Online (AJOL)

    Waste low density polyethylene film (table water sachets) was converted into solid, liquid oil and gaseous products by thermal process in a self- designed stainless steel laboratory reactor. The waste polymer was completely pyrolized within the temperature range of 474 – 520°C and 2hours reaction time. The solid residue ...

  10. Evaluating the toxicity of permeability enhanchers of polyethylene ...

    African Journals Online (AJOL)

    The aim of this study is to evaluate the effect of polyethylene glycol brij ethers surfactants group on red blood cells as a model for biological membranes. Also in this study, physicochemical properties including emulsification index (E24), foam producing activity (Fh) and critical micelle concentration (cmc) were studied.

  11. Extraction of CdS pigment from waste polyethylene

    NARCIS (Netherlands)

    Wanrooij, P.H.P.; Agarwal, U.S.; Meuldijk, J.; Kasteren, van J.M.N.; Lemstra, P.J.

    2006-01-01

    Cadmium sulfide has often been used as a pigment in plastics such as high-density polyethylene (HDPE). Removal of CdS after the useful life of plastics is desired since it poses an environmental hazard in the waste phase of these plastics. In this study, a process is investigated to convert the

  12. Enhanced Ionic Conductivity of Poly(Ethylene Imine) Phosphate

    DEFF Research Database (Denmark)

    Senadeera, G.K.R.; Careem, M.A.; Skaarup, Steen

    1996-01-01

    The conductivity of mixtures of phosphoric acid with poly(ethylene imine) has been studied, and it was found that the conductivity of such mixtures with high acid content can be enhanced by the addition of highly dispersed silica (fumed silica). At the same time, silica addition increases the sti...

  13. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  14. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  15. Biodegradation of low density polyethylene (LDPE) by a new ...

    African Journals Online (AJOL)

    aghomotsegin

    The microbial degradation of LDPE was also analyzed by the change in pH of the culture ... The generation of biodegradable polyethylene requires ...... Use of scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48:171-177. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani ...

  16. Influence of polystryrene and polyethylene packaging materials on food quality

    NARCIS (Netherlands)

    Linssen, J.P.H.

    1992-01-01

    Polystyrene (PS) and polyethylene (PE) used for packaging of food were studied on their effect on product quality. Different types of PS were tested: General purpose polystyrene (GPPS), high impact polystyrene (HIPS, which contains a dispersed rubber phase) and several blends of

  17. Processing and properties of polyethylene/montmorillonite nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Měřínská, D.; Kubisova, H.; Kalendová, A.; Svoboda, P.; Hromádková, Jiřina

    2012-01-01

    Roč. 25, č. 1 (2012), s. 115-131 ISSN 0892-7057 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer nanocomposite * montmorillonite * polyethylene Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.750, year: 2012

  18. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    Science.gov (United States)

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  19. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  20. The influence of the structural characteristics of polyethylene on the release of gas mixtures for extrusion processing

    Directory of Open Access Journals (Sweden)

    V. I. Korchagin

    2017-01-01

    Full Text Available The study of thermal and mechano-thermal effects in the inert and air environment on the evolution of gas formations from high pressure polyethylene (LDPE was carried out on a Smart RHEO 1000 capillary rheometer with the CeastView 5.94.4D software, using capillaries 5 mm in length and 1 mm in diameter . Study of composition Gas formations during the deformation of polyethylenes of different grades through the channel of a capillary viscometer. Which were characterized by structural characteristics, were carried out at shear rates close to production in the range from 50 to 300 s-1 at temperatures of 160, 190 and 220 ° C. The objects of the study were domestic thermoplastics of the following brands: LDPE 10803-020; LDPE 15803020; LPVD F-03020-S; HDPE 293-285-D, characterized by structural characteristics. It is established that the gasification during extrusion processing is promoted by the branching of polyethylene, while the degree of destruction processes increases with increasing temperature and depends on the reaction medium of the working volume of the equipment. Emerging critical shear stresses in the absence of oxidants and impurities contribute to mechano-destruction, accompanied by the formation of free radicals, which recombine to form a more branched structure of the polymer. In turn, the high temperature promotes degradation in the side parts of the polymer to form volatile products that are released from the reaction volume. It should be noted that the gassing due to thermal exposure is promoted by the air environment, but to a lesser extent than with mechano-thermal action. A smaller measure of the impact in the inertial medium is apparently associated with a limited access of oxidants to the destruction centers.

  1. Biodegradation evaluation of recycled polyethylene doped with Moringa oleifera oil

    International Nuclear Information System (INIS)

    Bicalho, Luciana A.; Novack, Katia M.; Melo, Tania M.S.

    2011-01-01

    Chemical modifications and use of additives are some of the mainly ways to obtain polymer materials with especial properties. Vegetable oils incorporated to polymers preserve their structure while make possible a reduction of degradation rate. This work proposed the use of polyethylene, one of the most common polymer commodities, because of its low cost and wide application. In this project it was verified the possibility of making polymer materials with properties of a natural product through the incorporation of Moringa oleifera oil to recycled low density polyethylene (LDPEr) in different proportions. The films were buried for different times and their degradation was evaluated.) Samples were characterized by DSC, TGA and XRD. It was observed that samples doped with Moringa oil showed lower degradation time. (author)

  2. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  3. Investigations of heavy ion tracks in polyethylene naphthalate films

    CERN Document Server

    Starosta, W; Sartowska, B; Buczkowski, M

    1999-01-01

    The heavy ion beam (with fluence 3x10 sup 8 ion/cm sup 2) from a cyclotron has been used for irradiation of thin polyethylene naphthalate (PEN) films. Latent tracks in these polymeric films have been sensitized by UV radiation and then chemically etched in NaOH solution. The etching process parameters have been controlled by the electroconductivity method. After etching, parameters of samples have been examined by SEM and bubble point methods (Coulter[reg] Porometer II instrument). Results have shown good quality of PEN track membranes with pore sizes in the range: 0.1 - 0.5 mu m. The described procedure is known for thin polyethylene terephthalate (PET) films. Taking into consideration that PEN films have got better mechanical, thermal, gas barrier as well as better chemical resistance properties in comparison with PET films, the possibility of application of such membranes is much wider.

  4. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  5. Study of the Auger line shape of polyethylene and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M; Pepper, S V

    1984-03-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account according to the theories of Cini and Sawatzky and Lenselink.

  6. Optimization of permanganic etching of polyethylenes for scanning electron microscopy

    International Nuclear Information System (INIS)

    Naylor, K.L.; Phillips, P.J.

    1983-01-01

    The permanganic etching technique has been studied as a function of time, temperature, and concentration for a series of polyethylenes. Kinetic studies show that a film of reaction products builds up on the surface, impeding further etching, an effect which is greatest for the lowest-crystallinity polymers. SEM studies combined with EDS show that the film contains sulfur, potassium and some manganese. An artifact is produced by the etching process which is impossible to remove by washing procedures if certain limits of time, temperature, and concentration are exceeded. For lower-crystallinity polyethylenes multiple etching and washing steps were required for optimal resolution. Plastic deformation during specimen preparation, whether from scratches or freeze fracturing, enhances artifact formation. When appropriate procedures are used, virtually artifact-free surfaces can be produced allowing a combination of permanganic etching and scanning electron microscopy to give a rapid method for detailed morphological characterization of bulk specimens

  7. Qualitative and Quantitative Control of Wastewater Dual Wall Polyethylene Pipes

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salimi

    2008-09-01

    Full Text Available Pipes are the most important components of wastewater collection systems accounting for considerable costs in constructing such systems. In view of this and regarding the growing trend in design and execution of wastewater collection and transmission lines in recent years, various types of pipes have been introduced into the market. Selection of appropriate pipes and their qualitative and quantitative control, therefore, call for due consideration given their high cost share in collection systems. In this paper, efforts are made to consider various types of pipes used in (urban and rural wastewater collection networks in an attempt to signal the significance of qualitative and quantitative control of different dual wall polyethylene pipes used as sewers. Finally, the relevant issues regarding the methods and conditions for technical control and inspection of polyethylene sewer lines during construction and operation stages are provided.

  8. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  9. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  10. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  11. Thermoluminescence glow curves of irradiated PMMA and low density polyethylene

    International Nuclear Information System (INIS)

    Matsuda, Koji; Nakase, Yoshiaki; Kumakiri, Yasuhito; Tsuji, Yoshio.

    1985-03-01

    Light emission from polymers is observed when polymers preirradiated with ionizing radiation at low temperature are heated gradually. The light emission is supposedly resulted from recombination of electrons with active centers produced in polymers or from some other processes involving charge transfer, but no definite explanation has been given at present on the thermoluminescent centers. This report describes our studies on the effects of impurities contained in polymers and pressure of ambient gases on the thermoluminescent glow curve of PMMA and low density polyethylene, which are often used for plastic film dosimeters. In the glow curve of PMMA, only one peak was observed at 110 K in an H 2 or He atmosphere at 760 Torr, but the intensity of the peak decreased with decreasing the H 2 or He gas pressure. At 10 -5 Torr H 2 or He atmosphere the peak disappered, and two sharp peaks appeared in the temperature range from 200 to 250 K. On the other hand, in the glow curve of low density polyethylene, three peaks were observed at 120 K, 180 K and 250 K in the presence of H 2 or He gas at 760 Torr. The effects of pressure of ambient gases and impurities in the polyethylene on these peaks indicate that the peak at 120 K is due to luminescent center produced on the surface or just below the surface of the matrix by collision of excited atoms or molecules of gases with polymer molecules, the peak at 120 K is originated from impurities in the matrix, and the peak at 250 0 K corresponds to luminescent center produced in polyethylene matrix. (author)

  12. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  13. Constraint effect on the slow crack growth in polyethylene

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Zouhar, Michal; Nezbedová, E.; Sadílek, J.; Žídek, J.; Náhlík, Luboš; Knésl, Zdeněk

    2012-01-01

    Roč. 2, č. 3 (2012), s. 118-126 ISSN 1757-9864 R&D Projects: GA ČR GD106/09/H035; GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional support: RVO:68081723 Keywords : slow crack growth * polyethylene * constraint Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. A liquid nitrogen cooled polyethylene moderator for the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.; Hey, P.D.; Houzego, P.J.; Mack, B.; Mildner, D.F.R.; Sinclair, R.N.

    1978-09-01

    A 40 mm thick polyethylene block has been maintained at a temperature close to 80 K by using a liquid nitrogen cryostat, and used to moderate neutrons from pulsed source. The assembly has been tested with a dummy heat load of 400W. The cryostat and cooling system was installed on the Harwell 45 MeV electron linac, and enabled the production of sharper pulses in the thermal neutron energy range. The design, safety considerations and performance are described. (author)

  15. Warming up human body by nanoporous metallized polyethylene textile

    OpenAIRE

    Cai, Lili; Song, Alex Y.; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B.; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-01-01

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer wi...

  16. Radiation grafting of dimethylaminopropylacrylamide and dimethylaminopropylmethacrylamide onto polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, Guillermina; Oseguera, M.A. [UNAM, Inst. de Ciencias Nucleares, Mexico City (Mexico); Vazquez, Carmen; Castillo, L.P. del [UNAM, Inst. de Investigaciones en Materiales, Mexico City (Mexico)

    1997-11-01

    Radiation-induced grafting of dimethylaminopropylacrylamide and dimethylamino-propylmethacrylamide onto polyethylene films, by direct grafting of the vinyl monomers to a polymer by mutual irradiation, has been investigated. The kinetics of the reaction were studied at different irradiation temperatures, monomer concentration and dose rates of gamma rays, and the appropriate reaction conditions for graft polymerization were determined. The thermal and mechanical behavior of the grafted films by means of DMA, TMA, DSC and TGA were also investigated. (author).

  17. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  18. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    Science.gov (United States)

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  19. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  20. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.