WorldWideScience

Sample records for unmined agricultural soil

  1. Microbial and geochemical assessment of bauxitic un-mined and post-mined chronosequence soils from Mocho Mountains, Jamaica.

    Lewis, Dawn E; Chauhan, Ashvini; White, John R; Overholt, Will; Green, Stefan J; Jasrotia, Puja; Wafula, Denis; Jagoe, Charles

    2012-10-01

    Microorganisms are very sensitive to environmental change and can be used to gauge anthropogenic impacts and even predict restoration success of degraded environments. Here, we report assessment of bauxite mining activities on soil biogeochemistry and microbial community structure using un-mined and three post-mined sites in Jamaica. The post-mined soils represent a chronosequence, undergoing restoration since 1987, 1997, and 2007. Soils were collected during dry and wet seasons and analyzed for pH, organic matter (OM), total carbon (TC), nitrogen (TN), and phosphorus. The microbial community structure was assessed through quantitative PCR and massively parallel bacterial ribosomal RNA (rRNA) gene sequencing. Edaphic factors and microbial community composition were analyzed using multivariate statistical approaches and revealed a significant, negative impact of mining on soil that persisted even after greater than 20 years of restoration. Seasonal fluctuations contributed to variation in measured soil properties and community composition, but they were minor in comparison to long-term effects of mining. In both seasons, post-mined soils were higher in pH but OM, TC, and TN decreased. Bacterial rRNA gene analyses demonstrated a general decrease in diversity in post-mined soils and up to a 3-log decrease in rRNA gene abundance. Community composition analyses demonstrated that bacteria from the Proteobacteria (α, β, γ, δ), Acidobacteria, and Firmicutes were abundant in all soils. The abundance of Firmicutes was elevated in newer post-mined soils relative to the un-mined soil, and this contrasted a decrease, relative to un-mined soils, in proteobacterial and acidobacterial rRNA gene abundances. Our study indicates long-lasting impacts of mining activities to soil biogeochemical and microbial properties with impending loss in soil productivity.

  2. Agriculture: Soils

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  3. Taxation of unmined minerals

    Bremberg, B.P.

    1989-01-01

    This paper reports on the Kentucky Revenue Cabinet which began implementing its controversial unmined minerals tax program. The Revenue Cabinet should complete its first annual assessment under this program in December, 1989. The Revenue Cabinet's initial efforts to collect basic data concerning the Commonwealth's coal bearing lands has yielded data coverage for 5 million of Kentucky's 10 million acres of coal lands. Approximately 1000 detailed information returns have been filed. The returns will be used to help create an undeveloped mineral reserves inventory, determine mineral ownership, and value mineral reserves. This new program is run by the Revenue Cabinet's Mineral Valuation Section, under the Division of Technical Support, Department of Property Taxation. It has been in business since September of 1988

  4. Phosphorus in agricultural soils:

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  5. Soil physics and agriculture

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  6. Food, soil, and agriculture

    Bommer, D.F.R.; Hrabovszky, J.P.

    1981-01-01

    The growing pressures on the world's land resources will result in problems requiring a major research effort.The first group of problems relates to increased soil degradation. The research to alleviate this will have to incorporate not only physical and biological solutions, but also pay much more attention to the socio-economic context in which the conservation programmes need to succeed.The second major area for research on land resource is to make better use of low-capacity or problem soils.This could be by reducing the existing limitations, such as changing physical or chemical characteristics of the soil, or by developing plants and production techniques which reduce the detrimental effects of constraints. Example of these are acidity, salinity, and aluminium toxicity. Finally the broadest and more important area is that of research to enable more intensive use of better-quality land. Research topics here may relate to optimal plant nutrient management, soil moisture management, and developing cultivation techniques with minimum commercial energy requirements. Making plants more productive will involve research aimed at increasing photosynthetic efficiency, nitrogen fixation, disease and pest resistance, improved weed control, and bio-engineering to adjust plant types to maximize production potentials. Improved rotational systems for the achievement of many of the above goals will become increasingly important, as the potential problems or inappropriate cultivation practices become evident. In conclusion, food supplies of the world could meet the rapidly rising demands that are made on them, if agriculture receives sufficient attention and resources. Even with most modern development, land remains the base for agriculture, and optimal use of the world's land resources is thus crucial for future agricultural production

  7. Soil Erosion and Agricultural Sustainability

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  8. VT Data - Agriculturally Important Soil Units

    Vermont Center for Geographic Information — (Link to Metadata) GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages...

  9. Telfaira Occidentalis Aided Rhizoremediation of Agricultural Soils ...

    Rhizoremediation process was undertaken to evaluate the effectiveness of Telfaira occidentalis in the cleanup of a crude oil contaminated soil. The microbial profile of the agricultural soil used in the study was determined before and after crude oil treatment to identify the indigenous flora present in the soil. Microbiological ...

  10. Intensive agriculture reduces soil biodiversity across Europe.

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley

  11. Intensive agriculture reduces soil biodiversity across Europe

    Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.; Ruiter, de P.C.; Putten, van der W.H.; Birkhofer, K.; Hemerik, L.; Vries, de F.T.; Bardgett, R.D.; Brady, M.; Bjornlund, L.; Bracht Jörgensen, H.; Christensen, S.; Herfelt, D' T.; Hotes, S.; Hol, W.H.G.; Frouz, J.; Liiri, M.; Mortimer, S.R.; Setälä, H.; Stary, J.; Tzanopoulos, J.; Uteseny, C.; Wolters, V.; Hedlund, K.

    2015-01-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects

  12. Sustainable agriculture and soil conservation

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  13. Soil biodiversity for agricultural sustainability

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  14. Sustainable agriculture a challenge for soil microbiology

    Nubia Moreno Sarmiento

    2016-01-01

    Full Text Available Soils: a solid foundation for life, was the theme of the celebration of 2015, the General Assembly of the UN, decides to declare as the International Year of Soils, considering that these are the foundation of agricultural development, the essential functions of ecosystems and food security. It is therefore a key to sustaining life on Earth element. During that year several actions that contributed to the awareness of their problems and protection of soil resources were made. One was that FAO, reviewed and published in June 2015, the World Soil Charter (originally developed in 1982. The World Soil Charter of Revised, as a preamble quote: 1. Soils are essential for life on Earth, but pressures on soil resources are reaching critical limits. Careful soil management is an essential factor of sustainable agriculture and also provides a valuable tool to regulate climate and a way to safeguard ecosystem services and biodiversity spring. 2. In the final document of the UN Conference on Sustainable Development, held in Rio de Janeiro (Brazil in June 2012, "The future we want" economic and social importance of good management is recognized land, including land, particularly its contribution to economic growth, biodiversity, sustainable agriculture, food security, poverty eradication, empowerment of women, measures to address climate change and increase water availability.

  15. Intensive agriculture reduces soil biodiversity across Europe

    Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; Van der Putten, W. H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; Bjornlund, L.; Bracht Jorgensen, H.; Christensen, S.; Hertefeldt, T.D.; Hotes, S.; Hol, W.H.G.; Frouz, Jan; Liiri, M.; Mortimer, S. R.; Setälä, H.; Tzanopoulos, J.; Uteseny, K.; Pižl, Václav; Starý, Josef; Wolters, V.; Hedlund, K.

    2015-01-01

    Roč. 21, č. 2 (2015), s. 973-985 ISSN 1354-1013 Institutional support: RVO:60077344 Keywords : agricultural intensification * body mass * ecosystem services * functional groups * soil food web Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  16. Soil Macronutrient Sensing for Precision Agriculture

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  17. Removal of radiocesium from contaminated agricultural soil

    Oishi, Ayumi; Yanaga, Makoto

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident occurred on March 11, 2011, led to emission of a great amount of radionuclides, and caused serious issues of contamination of our living environment. Two major radionuclides found to be widely deposited are Cs-134 and Cs-137. Because the half-lives of Cs-134 and Cs-137 are 2 years and 30 years, respectively, the decontamination of Cs is the crucial issue. Therefore, in the present work, the decontamination of Cs from the agricultural soil was attempted. For this purpose, we performed extractive test with 17 wt.% and 33 wt.% potassium iodide solution for agricultural soil collected on March 2012. The extraction rate was less than 2%, whereas the value of 20% was reported last year. This results might indicate that the cesium with soluble from have flowed or that cesium more strongly tied to soil. (author)

  18. Conservation agriculture effects on soil pore characteristics

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  19. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E

    2013-01-01

    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0...

  20. Sorption of phenanthrene in agricultural soils

    Soares, António Carlos Alves; Minh, Luong Nhat; Vendelboe, Anders Lindblad

    Polycyclic aromatic hydrocarbons (PAH) are among the major contaminants in the terrestrial environment. The background level in normal agricultural land has increased for many years and it is expected to further increase in the future. Because of the very low water solubility and high Kow values......, KD for more than one hundred Danish and European agricultural top and sub soils (122 topsoils and 28 subsoils) as well as the normalized distribution coefficient of the organic carbon content (KOC), through single point isotherm measurements. Possible effect of clay-complexed organic carbon...... models of Abdul et al. and Karickhoff et al. These two models were documented useful to predict maximum and minimum Koc for agricultural topsoils, for example in regard to predicting long-term PAH leaching from cultivated areas. Furthermore, we suggest a new Koc model in between Abdul and Karickhoff...

  1. Agriculture on Mars: Soils for Plant Growth

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  2. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  3. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  4. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  5. Application of machine learning to agricultural soil data

    Sanjay Sirsat, Manisha

    2017-01-01

    Agriculture is a major sector in the Indian economy. One key advantage of classification and prediction of soil parameters is to save time of specialized technicians developing expensive chemical analysis. In this context, this PhD thesis has been developed in three stages: 1. Classification for soil data: we used chemical soil measurements to classify many relevant soil parameters: village-wise fertility indices; soil pH and type; soil nutrients, in order to recommend suitable amounts of ...

  6. Soil fungi for mycoremediation of arsenic pollution in agriculture soils.

    Singh, M; Srivastava, P K; Verma, P C; Kharwar, R N; Singh, N; Tripathi, R D

    2015-11-01

    Soil arsenic (As) contamination of food-chains and public health can be mitigated through fungal bioremediation. To enumerate culturable soil fungi, soils were collected from the As-contaminated paddy fields (3-35 mg kg(-1) ) of the middle Indo-Gangetic Plains. Total 54 fungal strains were obtained and identified at their molecular level. All strains were tested for As tolerance (from 100 to 10,000 mg l(-1) arsenate). Fifteen fungal strains, tolerant to 10,000 mg l(-1) arsenate, were studied for As removal in-vivo for 21 days by cultivating them individually in potato dextrose broth enriched with 10 mg l(-1) As. The bioaccumulation of As in fungal biomass ranged from 0·023 to 0·259 g kg(-1). The biovolatilized As ranged from 0·23 to 6·4 mg kg(-1). Higher As bioaccumulation and biovolatilization observed in the seven fungal strains, Aspergillus oryzae FNBR_L35; Fusarium sp. FNBR_B7, FNBR_LK5 and FNBR_B3; Aspergillus nidulans FNBR_LK1; Rhizomucor variabilis sp. FNBR_B9; and Emericella sp. FNBR_BA5. These fungal strains were also tested and found suitable for significant plant growth promotion in the calendula, withania and oat plants in a greenhouse based pot experiment. These fungal strains can be used for As remediation in As-contaminated agricultural soils. © 2015 The Society for Applied Microbiology.

  7. Burkholderia cordobensis sp. nov., from agricultural soils.

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain. © 2014 IUMS.

  8. Evaluating the effects of agricultural practices on soil conservation ...

    The main crops were maize, ginger, garden pea, cabbage and mulberry. The objective of the study was to contribute a simple method to evaluate the effect of different agricultural practices on the resistance of soil to erosion. Different agricultural practices were studied on similar relief and soil, and under similar weather ...

  9. Sink Potential of Canadian Agricultural Soils

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.

    2004-01-01

    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  10. Heavy metals' data in soils for agricultural activities

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  11. Origin and spatial distribution of metals in agricultural soils

    Mohammadpour, Gh.A.; Karbassi, A.R.; Baghvand, A.

    2016-01-01

    Presence of toxic metals in agricultural soils can impose adverse health impact on consumers. The main purpose of this study was to determine spatial distribution of elements Fe, Sb, Mn in agriculture soils and crops of Hamedan Province in Iran. Soil samples (0-20 cm depth) were collected from an area of 2831 km 2 . Iron, Antimony and Manganese in samples of soil and agricultural crops were extracted and their amount was determined using atomic absorption spectrometer. The spatial distribution map of the studied elements was developed using Kriging method. The main concentration of Fe, Sb and Mn in the soil of the study area is about 3.8%, 2.5 and 403 mg/kg, respectively. According to chemical partitioning studies, the anthropogenic share of Fe, Sb and Mn is about 28.51%, 34.83% and 30.35%, respectively. Results of comparison of heavy metals pollution intensity in the agricultural soil with geoaccumulation index and also pollution index, illustrated that iron and manganese are classified in the Non-polluted class and antimony is in the moderately polluted class. Analysis of zoning map of pollution index showed that Fe, Sb and Mn are of geological sources. In fact, these metals are naturally found in soil. However, anthropogenic activities have led to more accumulation of these metals in the soil. The obtained health risk for metals in agricultural crops is indicative of safe value for consumers.

  12. Understanding Soil Erosion in Irrigated Agriculture

    O' Schwankl, Lawrence J

    2006-01-01

    A soil's physical and chemical properties determine whether it is vulnerable to erosion, which can reduce soil quality and cause other problems besides. Learn the basics of identifying what type of erosion is affecting your land and what's causing it.

  13. Evaluation of physico-chemical parameters of agricultural soils ...

    Evaluation of physico-chemical parameters of agricultural soils irrigated by the waters of the hydrolic basin of Sebou River and their influences on the transfer of trace elements into sugar crops (the case of sugar cane)

  14. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  15. Soil Degradation, Policy Intervention and Sustainable Agricultural Growth

    Sasmal, J.; Weikard, H.P.

    2013-01-01

    Sustainable agricultural growth in developing countries is jeopardized by soil degradation consequent upon intensive cultivation and use of increasing doses of chemical inputs. To pave the way to sustainable agricultural growth we develop a model that incorporates organic fertilizer into the

  16. (maize) to a crude oil polluted agricultural soil

    SERVER

    2007-06-04

    Jun 4, 2007 ... aiding the activities of the large numbers of microbes ... math of crude oil pollution of agricultural soils to forestall the adverse effects induced .... International Institute of Tropical Agriculture (I.I.T.A) manual series. No. 1, Ibadan ...

  17. Soil Quality Impacts of Current South American Agricultural Practices

    Ana B. Wingeyer

    2015-02-01

    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  18. Influence of lokpa cattle market wastes on agricultural soil quality ...

    Influence of lokpa cattle market wastes on agricultural soil quality. ... African Journal of Environmental Science and Technology ... Soil samples were collected from the Central, 3 and 6 m Northwards, Southwards, Eastwards and Westwards of Lokpa cattle market, Umuneochi Local Government Area of Abia State, Nigeria at ...

  19. Heavy metal pollution of agricultural soils

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  20. Nitrate Sorption in an Agricultural Soil Profile

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  1. Enhanced isoproturon mineralisation in a clay silt loam agricultural soil

    El-Sebai , T.; Lagacherie , B.; Cooper , J.F.; Soulas , G.; Martin-Laurent , F.

    2005-01-01

    International audience; 14C-ring-labelled isoproturon mineralisation was investigated in a French agricultural soil previously exposed to isoproturon. 50 different soil samples collected every 2 m along a transect of 100 m in length were treated one or two times with isoproturon under laboratory conditions and analysed by radiorespirometry. 94% of the soil samples showed a high ability to mineralise isoproturon with a relatively low variability in the cumulative percentage of mineralisation r...

  2. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  3. Microbial population changes in tropical agricultural soil ...

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Microbial degradation is known to be an efficient process in the in ..... exhibited a great impact on the ecology of the soil by causing drastic ... city of the soil (Dibble and Bartha, 1979). Hydrocarbon .... Atlas RM (1991). Microbial ...

  4. Microbial population changes in tropical agricultural soil ...

    Impacts of crude petroleum pollution on the soil environment and microbial population dynamics as well as recovery rates of an abandoned farmland was monitored for seven months spanning the two major seasons in Nigeria with a ... The physico-chemistry of the control and contaminated soils differed just significantly (P ...

  5. Soil biota and agriculture production in conventional and organic farming

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  6. About soil cover heterogeneity of agricultural research stations' experimental fields

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  7. Replenishing Humic Acids in Agricultural Soils

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  8. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  9. Neutron moisture gaging of agricultural soil

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  10. Sorption of phenanthrene on agricultural soils

    Soares, Antonio; Møldrup, Per; Minh, Luong Nhat

    2013-01-01

    Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively......, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste...... & Hazardous Materials 4(3):211–222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a KOC of 14,918 L kg−1, closely corresponded to the average measured KOC value for the topsoils, and this model...

  11. Formative pre-Hispanic agricultural soils in northwest Argentina

    Sampietro Vattuone, María Marta; Roldán, Jimena; Neder, Liliana; Maldonado, Mario Gabriel; Vattuone, Marta Amelia

    2011-01-01

    Our study area is from an early agricultural archaeological site named "El Tolar" (1st to 9th century AD), located in Tafí Valley (Tucumán, northwest Argentina). The objective was to identify geochemical signatures generated by the sustained agrarian use of soils. Chemical and pedological studies were made in different archaeological contexts. Physical and chemical features, such as bulk density, pH, organic and inorganic phosphorus, and available copper, manganese and iron, were taken into account. The results suggested that a buried paleosol identified was contemporary with the occupation of the site. It also showed characteristics clearly related to pre-Hispanic agrarian production. The concentrations of organic phosphorus and iron in agricultural soils probably reflect the use of fertilizers. The application of geoscience techniques allowed us to obtain important information on their behaviour and socio-economic development. This paper constitutes the first pedogeochemical approach to the study of Argentinean pre-Hispanic agricultural soils.

  12. Remote sensing of agricultural crops and soils

    Bauer, M. E. (Principal Investigator)

    1982-01-01

    Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.

  13. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  14. The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture

    Ji, Wenjun; Adamchuk, Viacheslav; Chen, Songchao; Biswas, Asim; Leclerc, Maxime; Viscarra Rossel, Raphael

    2017-01-01

    Proximal soil sensing (PSS) is a promising approach when it comes to detailed characterization of spatial soil heterogeneity. Since none of existing PSS systems can measure all soil information needed for implementation precision agriculture, sensor data fusion can provide a reasonable al- ternative to characterize the complexity of soils. In this study, we fused the data measured using a gamma-ray sensor, an apparent electrical conductivity (ECa) sensor, and a commercial Veris MS...

  15. Biological and biochemical soil quality indicators for agricultural management

    Bongiorno, Giulia

    2017-04-01

    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs

  16. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  17. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  18. Bacterial diversity in agricultural soils during litter decomposition

    Dilly, O.; Bloem, J.; Vos, A.; Munch, J.C.

    2004-01-01

    Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band.

  19. Phytoextraction and assisted phytoextraction of metals from agriculture used soil

    Trakal, L.; Neuberg, M.; Száková, J.; Vohník, Martin; Tejnecký, V.; Drábek, O.; Tlustoš, P.

    2013-01-01

    Roč. 44, č. 12 (2013), s. 1862-1872 ISSN 0010-3624 Grant - others:Norwegian Financial Mechanism(CZ) EEA Grants CZ0092 Institutional support: RVO:67985939 Keywords : phytoextraction * heavy metals * agriculture soil Subject RIV: EF - Botanics Impact factor: 0.423, year: 2013

  20. Load-bearing processes in agricultural wheel-soil systems

    Tijink, F.G.J.

    1988-01-01

    In soil dynamics we distinguish between loosening and loadbearing processes. Load-bearing processes which can occur under agricultural rollers, wheels, and tyres are dealt with In this dissertation.

    We classify rollers, wheels, and tyres and treat some general aspects of these

  1. Metal contamination of agricultural soils in the copper mining areas ...

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... Agricultural soil; heavy metals; copper mining areas; multivariate analysis; ... multivariate statistical analysis. 2. ... sieved through standard sieve of 200 mesh size (Giri ... Pearson's correlation is a bivariate correlation ... is a variation reduction technique in which a num- ... Varimax rotation is applied to all the.

  2. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  3. Modelling carbon dioxide emissions from agricultural soils in Canada.

    Yadav, Dhananjay; Wang, Junye

    2017-11-01

    Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  5. Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking

    Korenkova, L.; Urik, M.

    2018-04-01

    This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.

  6. Organic matter and soil structure in the Everglades Agricultural Area

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  7. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  8. Fate of the antiretroviral drug tenofovir in agricultural soil

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  9. Evaluation of Phosphorus Leaching in an Agricultural Soil under Different Soil Amendments

    ERDONA DEMIRAJ; FERDI BRAHUSHI; JAMARBËR MALLTEZI; SULEJMAN SULÇE

    2017-01-01

    The transport of Phosphorus (P) from agricultural soils to surface waters sensitive to eutrophication has long been a world-wide environmental concern. The intensive agricultural activity in the upper Shkodra fields, combined with others point source pollution, probably, intensify eutrophication of the Shkodra Lake. These Clay Loamy soils (calcaric Regosols) are characterized by low organic matter, N and P, with a high water percolation. An experiment was conducted at Greenhouse Research Stat...

  10. Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties

    Kamei-Ishikawa, N.; Uchida, S.; Tagami, K.

    2008-01-01

    In this work, soil-soil solution distribution coefficients (K d ) of Sr and Cs were obtained for 112 Japanese agricultural soil samples (50 paddy soil and 62 upland soil samples) using batch sorption test. The relationships between Sr- or Cs-K d values and soil properties were discussed. Furthermore, the amount of Cs fixed in soil was estimated for 22 selected soil samples using a sequential extraction method. Then, cross effects of some soil properties for Cs fixation were evaluated. (author)

  11. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China

    Kong Shaofei; Ji Yaqin; Liu Lingling; Chen Li; Zhao Xueyan; Wang Jiajun; Bai Zhipeng; Sun Zengrong

    2012-01-01

    The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 μg g −1 , with the median value as 0.32 μg g −1 . Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization. - Highlights: ► PAEs levels in four types of soils in suburban area of Tianjin were studied. ► Vegetable soil and wasteland soil exhibited higher PAEs concentrations. ► PAEs in wasteland soils from suburban area of cities in China should be paid attention. - (1) Vegetable soil and wasteland soil exhibited higher PAEs concentrations; (2) PAEs in wasteland soils from suburban area of cities in China should be paid attention.

  12. Strategies for soil-based precision agriculture in cotton

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  13. Adsorption and degradation of five selected antibiotics in agricultural soil.

    Pan, Min; Chu, L M

    2016-03-01

    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  15. Stocks of C in soils and emissions of CO2 from agricultural soils in the Netherlands

    Kuikman, P.J.; Groot, de W.J.M.; Hendriks, R.F.A.; Verhagen, J.; Vries, de F.

    2003-01-01

    This report presents considerations for the choice of options to calculate and monitor stocks of carbon in all soils and emissions of CO2 from agricultural soils in the Netherlands for the Kyoto 1990 baseline and following years. The objective of the study was to prepare data for a national

  16. Relating results from earthworm toxicity tests to agricultural soil

    Beyer, W.N.; Greig-Smith, P.W.

    1992-01-01

    The artificial soil tests of the European Economic Community and of the Organization for Economic Cooperation produce data relating earthworm mortality to pesticide concentrations in soil under laboratory conditions. To apply these results to agricultural soils it is necessary to relate these concentrations to amounts of pesticide applied per area. This paper reviews the relevant published literature and suggests a simple relation for regulatory use. Hazards to earthworms from pesticides are suggested to be greatest soon after application, when the pesticides may be concentrated in a soil layer a few millimeters thick. For estimating exposure of earthworms, however, a thicker soil layer should be considered, to account for their movement through soil. During favorable weather conditions, earthworms belonging to species appropriate to the artificial soil test have been reported to confine their activity to a layer about 5 cm. If a 5-cm layer is accepted as relevant for regulatory purposes, then an application of 1 kg/ha would be equivalent to 1-67 ppm (dry) in the artificial soil test.

  17. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  18. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  19. Differentiation of nitrous oxide emission factors for agricultural soils

    Lesschen, Jan Peter; Velthof, Gerard L.; Vries, Wim de; Kros, Johannes

    2011-01-01

    Nitrous oxide (N 2 O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N 2 O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N 2 O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach. - Highlights: → We developed an N 2 O emission factor inference scheme for agricultural soils. → This scheme accounts for different N-input sources and environmental conditions. → The derived EF inference scheme performed better than the default IPCC EF. → The use of differentiated EFs allows for better accounting of mitigation measures. - Emission factors for nitrous oxide from agricultural soils are derived as a function of N-input sources and environmental conditions on the basis of empirical information.

  20. Epigeic soil arthropod abundance under different agricultural land uses

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  1. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  2. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  3. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  4. GEMAS: Unmixing magnetic properties of European agricultural soil

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  5. Transmission of vertical soil stress under agricultural tyres

    Keller, Thomas; Berli, M.; Ruiz, S.

    2014-01-01

    and simulate soil stress under defined loads. Stress in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at a water content close to field capacity on five soils (13–66% clay). Stress transmission was then simulated with a semi-analytical model, using vertical stress at 0.1 m depth......The transmission of stress induced by agricultural machinery within an agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). The aim of this paper was to measure...... estimated from tyre characteristics as the upper boundary condition, and v was obtained at minimum deviation between measurements and simulations. For the five soils, we obtained an average v of 3.5 (for stress transmitting from 0.1 to 0.7 m depth). This was only slightly different from v = 3 for which...

  6. Degradation of a chiral nonylphenol isomer in two agricultural soils

    Zhang Haifeng; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian

    2009-01-01

    The degradation of a chiral nonylphenol isomer, 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP 112 ), in two agricultural soils from Monheim and Dortmund, Germany has been studied. The degradation of NP 112 and the formation of a nitro-nonylphenol metabolite were determined by means of GC-MS analysis. The degradation followed bi-exponential order kinetics, with half-life of less than 5 days in both soils. The nitro-metabolite was found at different concentration levels in the two soils. The nitro-metabolite of NP 112 was more persistent than its parent compound. After 150 days about 13% of the initially applied NP 112 remained in the Monheim soil as its nitro-metabolite. Results of the E-screen assay revealed that the nitro-NP 112 has oestrogenic potency of 85% of that of NP 112 . Furthermore, the results of chiral GC-MS analysis revealed that no chiral degradation of NP 112 occurred in this study. - The degradation of a chiral nonylphenol isomer in agricultural soils followed bi-exponential order kinetics resulting in a more persistent nitro-metabolite.

  7. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  8. Agricultural soil fumigation as a source of atmospheric methyl bromide.

    Yagi, K; Williams, J; Wang, N Y; Cicerone, R J

    1993-09-15

    Methyl bromide (MeBr) is used increasingly as a biocidal fumigant, primarily in agricultural soils prior to planting of crops. This usage carries potential for stratospheric ozone reduction due to Br atom catalysis, depending on how much MeBr escapes from fumigated soils to the atmosphere and on details of atmospheric chemical reactions. We present direct field measurements of MeBr escape; 87% of the applied MeBr was emitted within 7 days after a commercial fumigation. Covering the field with plastic sheets retarded MeBr escape somewhat but first-day losses were still 40%; thicker sections of sheets were relatively more effective than thin sections. We also measured gaseous MeBr concentrations versus depth in the soil column; these profiles display diffusion-like evolution. In soil, MeBr is partitioned among gas, liquid, and adsorbed solid phases. Calculated soil inventories agreed only roughly with applied amounts, probably due to nonequilibrium partitioning (during the first 30 min) and to uncertainties in partitioning coefficients. Fumigated fields may release less MeBr if they are covered by more gas-tight plastic films, if injection techniques are improved and injection is deeper, and if soil moistures, organic amounts, and densities are greater than in the soil studied here.

  9. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Paola Adamo

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  10. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Paola Adamo

    2011-02-01

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  11. The effect of drains on the alkalinity of agricultural soils

    Iqbal, M.A.; Butt, T.; Anwar-ul-Haque; Haroon, M.; Haq, I.U.

    2009-01-01

    The purpose of the study was to observe the effect of industrial and domestic drains on the nearby agricultural areas which are either irrigated or not by the waste water but are close to drains. For this purpose 48 soil samples were collected from the selected areas of Faisalabad and were analyzed for alkali metals like Na/sup +/, K/sup +/, Li/sup +/ and some alkaline earth metals like Ba/sup 2+/> Mg/sup 3+/> Na/sup +/> K/sup +/> Li/sup +/ the levels of Ba/sup +2/ and K/sup +/ were found higher than permissible levels in almost all the soil samples. It was also concluded that the agricultural areas near the industrial drain which are either irrigated or not by the industrial waste water are found highly contaminated with mobile alkali metals (K, Na etc.) and higher values of percentage salinity. (author)

  12. Managing Agricultural Soils of Pakistan for Food and Climate

    Rattan Lal

    2018-06-01

    Full Text Available Pakistan; a predominantly arid land region; has a large, growing, urbanizing and increasingly affluent population. Soil and water resources are finite, with per capita arable land area of 0.10 ha by 2050, and prone to degradation by inappropriate management, harsh environments and changing climate. Nonetheless, agriculture productivity increased strongly between 1960 and 2016. Whereas, the population of Pakistan increased by a factor of 4.5 between 1960 and 2018 (from 45 to 201 million, total cereal grain production increased by a factor of 6.5 (from 6.6 to 43.0 million ton. Despite the impressive gains in agricultural production since the Green Revolution era, there is no cause for complacency because even greater challenges lie ahead. Total food production may have to be doubled between 2015 and 2050 because of the growth in population along with rapidly urbanizing and increasingly affluent lifestyle. The national agronomic crop yield (2.8 Mg/ha for wheat, 3.8 Mg/ha for rice, and 4.6 Mg/ha for maize may have to be increased drastically, and that too in a changing and uncertain climate. Important among the challenges are the growing incidence of drought stress and heatwave, and increasing risks of soil degradation and desertification. Further, soil resources must also be managed to advance the Sustainable Development Goals (SDGs of the UN; achieve Land Degradation Neutrality proposed by the UNCCD; implement the “4 per Thousand” program of soil carbon sequestration initiated at COP21 in Paris in 2015; and fulfil the aspirations of better lifestyle for the people of Pakistan. The strategy is to restore degraded soils and desertified ecosystems through sustainable intensification. The goal is to produce more from less by reducing losses (i.e., water, nutrients, soil and enhancing eco-efficiency of inputs (i.e., fertilizer, irrigation water, energy. Vertical increase in agronomic yield, by restoring soil health and adopting best management

  13. Agricultural management explains historic changes in regional soil carbon stocks

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  14. Isolation and Characterization of Aerobic Denitrifiers from Agricultural Soil

    ÇELEN, Ebru; KILIÇ, Mehmet Akif

    2004-01-01

    Denitrification is generally considered an anaerobic process. However, in recent years it has been shown that bacteria can also reduce nitrate to nitrite under aerobic conditions. The characterization of biologically available nitrogen forms and their biological cycling mechanisms is important for ecological and agricultural implications. In this study, aerobic nitrate reducers were isolated from greenhouse soil. Using a nitrate reduction assay, it was found that 39 out of 60 isolates can red...

  15. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  16. Cultural Patterns of Soil Understanding in Organic Agriculture

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  17. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils.

    Rockwell, D L

    2011-02-01

    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  18. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Topp, Edward; Sumarah, Mark W.; Sabourin, Lyne

    2012-01-01

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT 50 ) of 14 C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of 14 C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: ► Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. ► The persistence of 14 C-diphenhydramine was evaluated in soils. ► Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. ► Soil-bound residues was a major sink.

  19. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  20. Agriculture

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  1. Thinking and Countermeasures for Rational Utilization of Soil Fertility in Modern Agriculture Developping

    WENG Bo-qi

    2014-02-01

    Full Text Available Soil is not only an important foundation for agricultural production, but also is the safeguard of human survival. Soil quality is close-ly related with food safety and argo-ecological environment. Soil fertility is the support of modern agricultural development. Multiple disci-plines and specialties are involved in researches of soil cultivating process. Nowadays, the understanding of soil fertility has changed from a-gricultural production to environmental security and resource exploitation, even larger scales to ecological health and global soil change. In this review, the characteristics and inherent link between soil and agriculture were comprehensive expounded from the aspects of long-term fertilization trials, soil cultivation techniques, and modern agriculture development. The challenge and prospect faced in soil science research field were also analyzed. Finally, several suggestions and countermeasures were proposed to the researches of soil science in future.

  2. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  3. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  4. Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils

    Mosquera Losada, J.; Hol, J.M.G.; Rappoldt, C.; Dolfing, J.

    2007-01-01

    Soil compaction stimulates the emission of nitrous oxide (N2O) and methane (CH4) from agricultural soils. N2O and CH4 are potent greenhouse gases, with a global warming potential respectively 296 times and 23 times greater than CO2.. Agricultural soils are an important source of N2O. Hence there is

  5. SOIL CONSERVATION TECHNIQUES IN OIL PALM CULTIVATION FOR SUSTAINABLE AGRICULTURE

    Halus Satriawan

    2017-08-01

    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  6. Iodine transfer from agricultural soils to edible part of crops

    Uchida, S.; Tagami, K.

    2011-01-01

    Information about the distribution and cycling of stable iodine (I) in the environment is useful for dose estimation from its long-lived radioiodisotope, 129 I, which is one of the most critical radionuclides to be managed for the safe disposal of nuclear fuel waste. The soil-to-plant transfer factor (TF) is an important parameter to predict internal radiation exposure pathways through the food chains using mathematical models. Therefore, we have measured stable I and bromine (Br) for comparison, in 142 crop samples and associated agricultural field soil samples collected throughout Japan. The crops were classified into eight groups, i.e. leafy vegetables, white part of leeks, fruit vegetables, tubers, root crops, legumes, wheat and barley (WB), and rice. The results showed that Br and I concentrations were higher in upland field soil samples than in paddy field soil samples. However, when we compared TF values of WB and brown rice, no statistical difference was observed. The highest geometric mean of TF for I, 1.4 x 10 -2 , was obtained for leafy vegetables and fruit vegetables and that for Br, 1.5, was for fruit vegetables. TF for I was much lower than Br, as reported previously, maybe due to their different chemical forms in soil and uptake behaviors by plant roots. (orig.)

  7. The economics of soil C sequestration and agricultural emissions abatement

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2015-04-01

    Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  8. Sorption and leaching of benzalkonium chlorides in agricultural soils.

    Khan, Adnan Hossain; Macfie, Sheila M; Ray, Madhumita B

    2017-07-01

    The adsorption and leaching characteristics of two commonly used benzalkonium chlorides (BACs), benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA) using three agricultural soils with varied proportions of silt, sand, clay, and organic matter were determined. BACs are cationic surfactants used in large quantities for sanitary and personal care products and are abundant in environmental samples. Adsorption isotherm data (aqueous concentration in the range of 25-150 mg L -1 ) fitted the Langmuir model better than the Freundlich model. BDTA with a longer alkyl chain adsorbed more to soil compared to BDDA, and the soil with the highest percentage of clay adsorbed the most. Column tests conducted using soils amended with lime stabilised biosolids and artificial rain water at a flow rate of 0.2 mL min -1 indicate very low leaching of BACs. Less than 1% of the available BDDA leached through sandy loam soil column with a depth of 9 cm. Therefore, the possibility of BACs to become bioavailable through leaching is very low at environmentally relevant concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  10. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  11. Greenhouse gas emissions from agricultural soils in Austria

    Strebl, F.; Gebetsroither, E.; Orthofer, R.

    2002-07-01

    This report documents the calculations of anthropogenic greenhouse gas emissions in Austria of the IPCC-sector 'Agricultural Soils' for the period 1980 to 2001. According to available information, CH 4 emissions from agricultural soils are very small and thus irrelevant. N 2 O emissions were calculated according to the IPCC method; emission sources considered include direct emissions from nitrogen inputs to soils (mineral and organic fertilizers, crop residues, sewage sludge application, biological fixation) as well as indirect emissions (from atmospheric nitrogen deposition and nitrogen leaching) plus emissions from nitrogen input through grazing animal excreta. NH 3 and NO x emissions were calculated according to the CORINAIR method; sources considered were nitrogen inputs through fertilization as well as emissions from unfertilized cultures. In the year 1990 total emissions were 5.680 t N 2 O-N, 24.628 t NH 3 -N and 1.376 t NO x N. In the period 1980-2001 there were considerable fluctuations of emissions, caused by an inter annual variability of crop production and fertilizer consumption data. However, there are no significant emission trends in the past 20 years. Uncertainties were determined through a Monte-Carlo-based simulation; the standard deviation of a normal uncertainty distribution is 24 % for N 2 O, 13 % for NH 3 , and 18 % for NO x . (author)

  12. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  13. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  14. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  15. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  16. Biochar has no effect on soil respiration across Chinese agricultural soils.

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  17. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  18. Use of the phosphogypsum wastes in agriculture soils : radiological impact

    ELMrabet, R.

    2008-01-01

    The phosphate fertilizer industry produce an important amount of phosphogypsum (PG) as a residue of its activity. Its is well known that such wastes contain significant amounts of natural radionuclides from the U, Th and K series. The raw material for the production (phosphate rock) has uranium activity concentrations of around 1 kBq Kg -1 from which about 15 % passes to the PG. At the Huelva industrial area (SW Spain) the wastes produced per year can reach some 3.10 6 Mg, but in spite of the recent scientific efforts its accumulation still being a problem of great concern for the area. In the other hand, reclamation of sodic soils for agriculture users requires a Ca amendment to diminish Na saturation. Then, PG (with a high proportion of CaSO4 -2H2O) is an effective amendment that has been widely used in the saline-sodic marsh soils from SW Spain. Using PG as an amendment dilutes the radionuclides down to background levels, becoming this practice a possible way to eliminate these wastes with a considerable additional value for the agricultural process. However, it is necessary to study the amount of radioisotopes that can move to water and plants to ensure the radiological safety of the amendment. PG has relatively high concentration of 226 Ra and other radionuclides, with an special concern due to the 22Rn emissions. These wastes could be used to improve the fertility of agriculture soils in a large former marsh area of the Guadalquivir river. Thus, it is interesting to study the levels and behaviour of natural radionuclides within this system to evaluate the radioactive impact if this amendment. An agronomical test is being conducted by one of the authors in an experimental farm in Lebrija (Seville). The soils are treated with 13 and 26 t ha-1 of PG, 30 t ha-1 of manure. Each treatment was repeated twice and continued for two years with beetroot and cotton plant production. We are measuring 226Ra (by alpha counting and gamma spectrometry) and U isotopes (by

  19. Heavy Metals in Agricultural Soils in Nigeria: A Review

    J. J. Musa

    2017-10-01

    Full Text Available This review paper presents the health risks of heavy metals such as: lead (Pb, chromium (Cr, zinc (Zn, cadmium (Cd, copper (Cu, mercury (Hg, nickel (Ni and arsenic (As etc contamination in soils. The review reveals the major sources of these metals which are urban and industrial effluents, deterioration of sewage pipe, treatment water works, sewage sludge, fertilizers and pesticides. It also reveals the adopted standard for drinking water (maximum tolerable limit by FAO, JECFA and WHO which are as follows: 0.05mg/L, 0.05mg/L, 1.5mg/L, 0.001mg/L, 0.02mg/L, 15mg/L, 0.3mg/L, 0.5mg/L, 0.01mg/L, 0.05mg/L and 0.05mg/L for Pb, Cr, Cu, Hg, Ni, Zn, Fe, Mn, Se, As and Cd respectively. The accumulation of heavy metals in agricultural soils is of increasing concern because of food safety issues, potential health risks such as neurological disorder, cancer, kidney damage, fragile bone etc and their detrimental effects on soil ecosystem. However, the regular monitoring of levels of these metals from dump sites, effluents and sewages in soil and drinking water is essential to prevent excessive buildup of these metals thereby increasing toxicity and elevating the public health risk.

  20. Soil biota community structure and abundance under agricultural intensification and extensification

    Postma-Blaauw, M.B.; Goede, de R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L.

    2010-01-01

    Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated

  1. Natural radioactivity in Swedish agricultural soils and crops

    Eriksson, Ake; Rosen, K.

    2000-01-01

    In this work we report on investigations in Sweden of the natural radioactivity of 40 K, 226 Ra and 232 Th in the agricultural soils and of 226 Ra in the crops. In addition information is given on factors important for the plant availability of these nuclides to the crop plants. Also, from a number of works, background data on the transfer from soils to plants in different environments are presented. These works show that there is a large variation depending on local conditions and crop type in the accumulation of natural radioactive elements by the plants. Thus, concentration ratios (plant/soil) calculated for fresh crop weight and dry soil weight showed for 238 U in forage crops and in grain a range 0.001-0.005, for 226 Ra a range 0.001-0.03 and for 210 Pb a range 0.0004-0.2. The higher value was limit for vegetative plant parts and the lower value limit for generative parts, seeds and grain. In Swedish early studies, evidence was found that in field crops on the same soils the radium/calcium-ratio in grain was reduced according to the following order winter wheat>spring wheat> barley>oats. Variation among the crops on different soils showed ranges from 1-0.1 to 1-0.4. The radium/calcium-ratio in straw was 4 to 7 times higher than in grain. Also field experiments showed that proper liming on acid soils could reduce the radium/calcium ratio by 40 per cent. Our study shows that the average contents of the nuclides 226 Ra and 232 Th in Bq per kg dry weight is of the same size of order, 40, 50 and 80 Bq per kg in the southern, in the western and in the middle regions of Sweden, respectively. The difference between regions is not occasional. It depends on the type of the mother material and on the different clay contents of the soils, as is indicated also by the potassium content. Considering also the daughters of the nuclide series it is found that the total nuclide activity will reach a sum of 300-600 kBq per square meter of the plough layer. The total activity may

  2. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  3. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Emilie R Kirk

    Full Text Available Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM oxidation and physical compaction. Rice (Oryza sativa production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined. Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1 was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  4. Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial

    Jha, Abhinand

    2010-05-01

    0.0.1 1. Introduction to soil erosion measurement by radionuclides Soil erosion by water, wind and tillage affects both agriculture and the natural environment. Studying this phenomenon would be one of the advancements in science. Soil erosion occurs worldwide and since the last two decades it has been a main topic of discussion all over the world. The use of environmental radionuclides such as 90Sr, 137Cs to study medium term soil erosion (40 yrs) started in the early 1990's. Using these new techniques better knowledge about erosion can be gained and this knowledge can be implemented for erosion risk management. The erosion and sedimentation study by using man-made and natural radioisotopes is a key technique, which has developed over the past 30 years. Fallout 137Cs and Cosmogenic 7Be are radionuclides that have been used to provide independent measurements of soil-erosion and sediment-deposition rates and patterns [1] [2] [3] [4]. Erosion measurements using radionuclides 137Cs, 7Be Caesium-137 from atmospheric nuclear-weapons tests in the 1950s and 1960s (Fig.1) is a unique tracer of erosion and sedimentation, since there are no natural sources of 137Cs. Unique events such as the Chernobyl accident in April 1986 caused regional dispersal of 137Cs that affects the total global deposition budget. This yearly pattern of fallout can be used to develop a chronology of deposition horizons in lakes, reservoirs, and floodplains. 137Cs can be easily measured by gamma spectroscopy. Using 137Cs is a fast and cheap method to study erosion-deposition processes compared to the traditional methods like silt bags. PIC Figure 1: Global 137Cs fallout (Modified from SAAS Bulletin 353, Part E, DDR, 1986) When 137Cs, 7Be reach the soil surface by wet and dry deposition, they are quickly and strongly adsorbed by ion exchange and are essentially non exchangeable in most environments. Each radionuclide is distributed differently in the soil because of differences in half-lives (30 yrs

  5. Nitrification in agricultural soils: impact, actors and mitigation.

    Beeckman, Fabian; Motte, Hans; Beeckman, Tom

    2018-04-01

    Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    Ho, A.; Reim, A.; Kim, S.Y.; Meima-Franke, M.; Termorshuizen, Aad J; De Boer, W.; Van der Putten, W.H.; Bodelier, P.L.E.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even

  7. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  8. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.

    2015-01-01

    Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensifica...

  9. Production and reduction of nitrous oxide in agricultural and forest soils.

    Yu, K; Chen, G; Struwe, S; Kjøller, A

    2000-06-01

    A soil-water slurry experiment was conducted to study the potentials of N2O production and reduction in denitrification of agricultural and beech forest soils in Denmark. The effects of nitrate and ammonium additions on denitrification were also investigated. The forest soil showed a higher denitrification potential than the agricultural soil. However, N2O reduction potential of the agricultural soil was higher than the beech forest soil, shown by the ratio of N2O/N2 approximately 0.11 and 3.65 in the agricultural and the beech forest soils, respectively. Both nitrate and ammonium additions stimulated the N2O production in the two soils, but reduced the N2O reduction rates in the agricultural soil slurries. In contrast to the effect on the agricultural soil, nitrate reduced the N2O reduction rate in the beech forest soil, while ammonium showed a stimulating effect on the N2O reduction activity. After one week incubation, all of the N2O produced was reduced to N2 in the agricultural soil when nitrate was still present. Nitrous oxide reduction in the beech forest soil occurred only when nitrate almost disappeared. The different nitrate inhibitory effect on the N2O reduction activity in the two soils was due to the difference in soil pH. Inhibition of nitrate on N2O reduction was significant under acidic condition. Consequently, soil could serve as a sink of atmospheric N2O under the conditions of anaerobic, pH near neutral and low nitrate content.

  10. Potential of Biological Agents in Decontamination of Agricultural Soil

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  11. Potential of Biological Agents in Decontamination of Agricultural Soil.

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  12. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico

    2014-05-01

    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  13. Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp.

    Yadav, U; Choudhury, P P

    2014-11-01

    demonstrates the novel result that the Trichoderma sp. utilized the sulfosulphuron as a sole carbon source and degraded it by cleaving sulfonyl urea bridge and sulfonylamide linkage. Thus, the application of Trichoderma sp., which is nonphytopathogenic, has the potential to decontaminate agricultural soil from sulfosulphuron load. © 2014 The Society for Applied Microbiology.

  14. World Reference Base | FAO SOILS PORTAL | Food and Agriculture

    > Soil classification > World Reference Base FAO SOILS PORTAL Survey Assessment Biodiversity Management Degradation/Restoration Policies/Governance Publications Soil properties Soil classification World Soil Maps and Databases World Reference Base Dominant soils of the world The World Reference Base (WRB

  15. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  16. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  17. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  18. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  19. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  20. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  1. pH in streams draining small mined and unmined watersheds in the coal region of Appalachia

    Kenneth L. Dyer; Willie R. Curtis

    1983-01-01

    To better evaluate the effects of surface mining for coal in first-order watersheds in Appalachia, a network of 421 water-quality sampling stations was established in 136 counties in nine states in 1977 and sampled on approximately a monthly basis until August 1979. Three categories of watersheds were sampled: (1) unmined, (2) mined after January 1972, and (3) mined...

  2. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Michael Schirrmann

    Full Text Available Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils.Proximal soil sensing data, e.g., soil electrical conductivity (EC, pH, and near infrared absorbance (NIR, were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage and sandy to loam soils. PSS was related to observations from a long-term (11 years earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species.Our findings suggest that PSS contributes to the spatial

  3. Mitigating Soil Moisture Evaporation via Organic Mulch Application in Cultivated Agricultural Environments

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee

    2017-01-01

    Soil evaporation constitutes one of the most significant sources of water loss from agricultural soils around the world, particularly in arid regions. Changing climate and precipitation patterns combined with population growth will drive a need to reduce soil water evaporation for better water resource management. This work represents a preliminary effort to develop simple tools for determining the fate of crop residues, or mulch, when applied to an agricultural field, over the course of a growing season

  4. Hydrological controls on heterotrophic soil respiration across an agricultural landscape

    Water availability is an important determinant of variation in soil respiration, but a consistent relationship between soil water and the relative flux rate of carbon dioxide across different soil types remains elusive. Using large undisturbed soil columns (N = 12), we evaluated soil water controls...

  5. Monitoring of Soil-Borne Pathogens in the Agricultural Soils of the Pestrechinsky District (Tatarstan, Russia)

    Dzhabarova, K. O.; Kuryntseva, P. A.; Galitskaya, P. Y.; Selivanovskaya, S. Y.

    2018-01-01

    A recent agricultural trend is aimed to develop organic farming technologies. Organic farming means no mineral fertilizers, pesticides, antibiotics and other chemical substances not characteristic of natural conditions should be used in farm production. When choosing the regions, where this technology can be successfully realized, it is important to evaluate not only the physical and chemical qualities of soils, but also the degree of their infestation with phytopathogens. The Pestrechinsky District of the Republic of Tatarstan, where transfer to organic farming is being planned, was chosen as such a region. Agricultural lands were marked at the map of the administrative region, 100 sampling site were generated using GIS Technologies. It was found out that soil microbial community was characterized by a typical ratio and count of yeast fungi (3.4·105 - 1.6·106 CFU•g-1), mold fungi (1.0·101 - 1.7·105 CFU·g-1) and bacteria (1.6·106 - 3.1·107 CFU·g-1). In all the selected soil samples plant pathogenic fungi of the Fusarium genus were found (26 to 250 CFU·g-1), and as for another genus of plant pathogenic fungi, Alternaria, their count was rather low (0 to 9 CFU·g-1, herewith in 46 samples out of 100 they were absent.

  6. Biodegradation of Mexican Diesel for a bacteria consortium of an agricultural soil

    Cardona, Santiago; Iturbe, Rosario

    2003-01-01

    The biodegradation of diesel in water was done by means of the microorganisms present in an agriculture soil. The kinetics of biodegradation and adsorption of diesel were determined in order to applying the procedure in soil and water resources contaminated with diesel. The methodology and results of biodegradation and adsorption of diesel in synthetic water is presented with a soil characterization. Degradation takes place using the original microorganisms present in the soil but giving nitrogen as nutrient. As oxygen source the hydrogen peroxide was used. The kinetics of diesel volatility is presented too. Kinetics equations for degradation, adsorption and speed constant were determined with the obtained results biodegradation, diesel, agriculture soil, bacterium group

  7. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  8. Optimum soil frost depth to alleviate climate change effects in cold region agriculture.

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-21

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  9. Optimum soil frost depth to alleviate climate change effects in cold region agriculture

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-01

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  10. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota

    Köhl, L.; Oehl, F.; van der Heijden, Marcellus|info:eu-repo/dai/nl/240923901

    2014-01-01

    It is well established that agricultural practices alter the composition and diversity of soil microbial communities. However, the impact of changing soil microbial communities on the functioning of the agroecosystems is still poorly understood. Earlier work showed that soil tillage drastically

  11. Immobilization of Agricultural Phosphorus in an Illinois Floodplain Soil

    Arenberg, M. R.; Arai, Y.

    2017-12-01

    Nutrient losses from the Mississippi watershed are exacerbating the growth of the hypoxic zone in the Gulf of Mexico. Located within the highly agricultural Piatt County, IL, Allerton Park encompasses a riparian forest that receives an influx of phosphorus (P) via surface runoff and leaching during spring flooding. The purpose of this study is to investigate the ability of a poorly drained Sawmill silty clay loam (fine-silty, mixed, superactive, mesic Cumulic Endoaquolls) and a poorly drained Tice silty clay loam (fine-silty, mixed, superactive, mesic Fluvaquentic Hapludolls), both with an average pH of 7.08, to buffer agricultural P losses through immobilization. If P is effectively sequestered, it may also lead to improved tree growth in woody biomass. The system's response to the seasonal flooding event was assessed by comparing P mineralization-immobilization dynamics within the bottomland and surrounding upland of the forest. Specifically, organic P, microbial P, phosphatase activity, and total P were assessed. First, total P ranged from 338 to 819 mg kg-1, averaging at 580 mg kg-1, in the bottomland and from 113 to 370 mg kg-1, averaging at 245 mg kg-1, in the upland. Next, organic P spanned from 90 to 457 mg kg-1in the bottomland, comprising an average of 45% of total P, and ranged from 42 to 191 mg kg-1in the upland, comprising an average of 36% of total P. Furthermore, microbial P averaged 13.08 mg kg-1 in the bottomland and 6.87 mg kg-1 in the upland. Finally, acidic phosphatase activity averaged 13 μmol p-nitrophenyl phosphate (PNP)/g·hr in the bottomland and 11 μmol PNP/g·hr in the upland while alkaline phosphatase activity averaged 24 μmol PNP/g·hr in the bottomland and 8 μmol PNP/g·hr in the upland. Our preliminary assessment suggests that the concentrations of total P, organic P, and microbial P in the bottomland are greater than that of the upland. This suggests that the floodplain has been effectively immobilizing agricultural P. This

  12. Effects of soil stripping and dressing for decontamination of radioactive materials on soil fertility of agricultural land

    Yoshino, Namiko; Takahashi, Yoshihiko; Kobayashi, Hiroyuki; Saitou, Kunihito

    2015-01-01

    Farms that were highly contaminated with radioactive materials following the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident were decontaminated by removing topsoil and subsequently dressing with fresh soil. We investigated the chemical properties of soils following such decontamination on farms in Iitate village, Fukushima. The nitrogen content of dressed soil was considerably lower than that of the subsoil that was not stripped for decontamination, as a result of which the amount of dressed soil greatly affected the soil fertility of decontaminated farms. The potassium (K) content of soil differs markedly depending on the type of soil dressing material used; accordingly, the type of soil dressing material affected the soil K content on decontaminated farms. On most of the decontaminated farms where sandy soils were used as the soil dressing material, soil exchangeable K contents were less than 25 mg K_2O/100 g, which is the criterion value for inhibiting cesium absorption in rice and soybean cultivation. However, even in the soil dressing material from agricultural land, soil K content after soil dressing was generally lower than that before soil dressing. During fallow management and at the restart of cultivation on decontaminated farms, it is important to know in advance the chemical properties of soil and take the necessary measures based on this information. (author)

  13. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  14. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Radionuclide transfer from soil to agricultural plants: measurements and modelling

    Sabbarese, C; Terrasi, F.; D'Onofrio, A.D.; Stellato, L.; Lubritto, C.; Ermice, A.; Cotrufo, M.F.

    2002-01-01

    To assess the internal doses to humans from ingestion of radionuclides present in agricultural products it is necessary to know the main processes which determine the transport of radionuclides in the environment (Russel, 1966; Peterson, 1983; IAEA, 1995). The available data, generally, do not reflect natural conditions, and the mechanisms of translocation and mobility of radionuclides within the soil-plant system are still not fully understood (Coughtrey and Thorne, 1983; Fresquez et a., 1998; Krouglov et al., 1997; Frissel, 1992; Roca and Vallejo, 1995; Desmet et al., 1990). The knowledge of the contributions of direct contamination of plant fruits and of the process of root to fruit transfer can improve the understanding of exposure through ingestion and of the mechanisms determining sorption and translocation. Several studies on the relations among specific activities of various radionuclides in different environmental compartments have been performed in the last decades (Coughtrey and Thorne, 1983; Fresquez et al., 1998; Krouglov et al., 1997; Howard et al., 1995; Strand et al., 1994; Konshin, 1992; Frissel, 1992; Alexakhin and Korneev, 1992; Desmet et al., 1990)

  16. Finite Element Method Study on Stress State in Soil Induced by Agricultural Traffic

    Adrian Molnar-Irimie

    2016-11-01

    Full Text Available In general, when a tyre is running on a deformable soil, the soil compaction will occur not only on surface layers, but also on soil profile, in deeper layers. This leads to a series of negative effects not only on physical and mechanical properties of soil, but also influences the crops growth and the crop yield. For these reasons, currently are needed solutions to reduce soil compaction, caused mainly by agricultural implements passing on the soil surface in order to aply the specific crop production technologies. From our simulation we can draw the following conclusions: the soil stresses decreased with depth; the soil displacements magnitude increased with soil water content due to lower friction forces between soil particles (water acts like a lubricant between soil particles; decreasing rate for soil displacement is influenced by load magnitude and tyre inflation pressure; the soil particles moved in vertical plain from the top to the bottom, but also in horizontal direction, from the center to the edge in cross section and in longitudinal direction; the dimensions of the geometric shape of the mentioned soil volume is influenced by load and tyre inflation pressure. In this paper the agricultural traffic and its influence on stress state in soil, it was used a software application based on Finite Element Method, that has been proved to be a useful tool for soil compaction assessment in order to find the right decisions for a proper field traffic management.

  17. Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils.

    Huang, Junxing; Liang, Chuanzhou; Zhang, Xu

    2017-06-01

    The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO 2 . The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO 2 . The adsorption of racemic-metalaxyl on SiO 2 decreased to some extent in soil-SiO 2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO 2 in soil-SiO 2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO 2 in the presence of soil. Interactions between SiO 2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO 2 , and the interactions were analyzed by extended Derjaguin-Landau-Verwey-Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  19. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  1. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  2. Transfer Factor of Co-60 and Cs-137 from Agricultural Soil to Agricultural Plant of Rice and Beans

    Suzie, D; Cerdas, T; Susilah, S; Umbara, H

    1996-01-01

    A study to estimate transfer factor of Co-60 and Cs-137 radionuclides from agricultural soil to agricultural plant of beans and rice in Serpong Nuclear Research Center Complex has been carried out. The soil used was that from off site Serpong Nuclear Research Center Complex, the agricultural plant samples were rice with variety of Cisadane, Situgintung, Seratus Malam, and Atomita 4, and for beans were peanut with variety of AH 1781 SI (parent) and A 20 psj (daughter), soybean with variety of Kerinci (parent) and Camar (daughter), and greenbean with variety of Manyar (parent) and Camar (daughter), which obtained from PAIR-BATAN Pasar Jumat. 10 kg of soil was put on the container which layered with plastic. The soil was contaminated with Co-60 and Cs-137 with activity concentration of 10 Bq/kg. Samples were counted with gamma spectrometer. The value of transfer factor was obtained by comparing activity concentration of agricultural plant with that of agricultural soil. The results of transfer factor of Co-60 for rice and beans were 0.12 x 10-2 and 1.05 x 10-2, respectively and the transfer factor of Cs-137 for rice and beans were 0.83 x 10-2 and 2.09 x 10-2, respectively. The gamma emmitter radionuclides counted from the soil of Serpong Nuclear Research Center Complex were Th-228, U-235, Ra-226, Ac-228 and K-40, with activities concentration as background were 35.39 - 101.60; 32.14 - 74.50; 23.37 - 28.57; 20.90 - 31.28 and 5.97 - 8.13 Bq/kg, respectively

  3. Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile

    Moya, Héctor; Verdejo, José; Yáñez, Carolina; Álvaro, Juan E.; Sauvé, Sébastien; Neaman, Alexander

    2017-01-01

    Microbiological bioassays of nitrification and nitrogen mineralization have been used for evaluation of soil quality on metal-contaminated soils. We evaluated the effectiveness of nitrification and nitrogen mineralization bioassays as quality indicators of soil degradation caused by metal contamination. We performed standard tests based on protocols of ISO 14238 (2012) and ISO 15685 (2012) on 90 soil samples collected from agricultural areas in central Chile that were historically contaminate...

  4. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  5. Behaviour of cesium in contaminated soils with and without agricultural practices

    Arapis, G.; Martinez, A.; Millan, R.; Gutierrez, J.

    1992-01-01

    The migration of cesium into affected agricultural soils, five years after the Chernobyl accident, is examined in this study. Samples of soil were taken from an undisturbed non-cultivated rural area in the north of Greece, where an important contamination has been detected. The migration of 137 Cs into these soils was measured by γ spectrometry. Slight movement of 137 Cs was observed during the five year period following the accident. The agricultural practices, used in this area from 1986 up to now, have diluted the contamination into the 0-40 cm horizon and thus only low concentration of cesium in the cultivated soils was detected. (orig.)

  6. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  7. EnviroAtlas - Percent Agriculture on Hydric Soil for the Conterminous United States

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on Agricultural Land Coverage on Hydric Soils for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code (HUC-12)...

  8. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  9. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    Salles, J.F.; Samyn, E.; Vandamme, P.A.; Veen, van J.A.; Elsas, van J.D.

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  10. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  11. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    Robson, T.C.; Braungardt, C.B.; Rieuwerts, J.; Worsfold, P.

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite ( −1 ). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg −1 ) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg −1 ) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y −1 ) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  12. Proximal soil sensors and data fusion for precision agriculture

    Mahmood, H.S.

    2013-01-01

    different remote and proximal soil sensors are available today that can scan entire fields and give detailed information on various physical, chemical, mechanical and biological soil properties. The first objective of this thesis was to evaluate different proximal soil sensors available today and to

  13. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  14. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges

    Goletti, F.; Gruhn, P.; Yudelman, M.

    2000-01-01

    Metadata only record The challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable way. Declining soil fertility and mismanagement of plant nutrients have made this task more difficult. In their 2020 Vision discussion paper, Peter Gruhn, Francesco Goletti, and Montague Yudelman point out that as long as agriculture remains a soil-based industry, major increases in productivity are unlikely to be attained without ensuring that ...

  15. Soils of Agricultural Terraces with Retaining Walls in the Mountains of Dagestan

    Borisov, A. V.; Korobov, D. S.; Idrisov, I. A.; Kalinin, P. I.

    2018-01-01

    Soil-archeological studies of agricultural terraces with retaining walls in the area of construction of the Gotsatlinskaya Hydroelectric Power Station in Khunzakh district of the Republic of Dagestan have been performed. The morphogenetic and chemical properties of the anthropogenic soils (Anthrosols) in different parts of the terrace complex are analyzed. It is argued that slope terracing in the mountains ensures the development of thicker soil profiles with pronounced genetic horizons. The soils of agricultural terraces store important information of the paleoenvironmental history and land use. A characteristic feature of the Anthrosols of agricultural terraces is a relatively even distribution of gravelly material of up to 5 cm in diameter in the plow layer. The soils of terraces are characterized by the high variability in their properties within the entire terrace complex and within the particular terraces.

  16. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2010-01-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14 C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14 C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  17. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  18. Mineralization of soil organic matter in biochar amended agricultural landscape

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  19. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  20. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.

    2006-01-01

    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...... content of silt. Experiments with unplanted soil and pots planted with barley were included. Soil samples were withdrawn during a period of 225 days and analysed for the content of OTA and ZON. The degradation of both toxins consisted of an initial fast degradation followed by a slower transformation step......, whereas the half-lives for OTA were about 0.2-1 day. The slowest degradation was measured in soil rich in clay. After 225 days, neither OTA nor ZON was detected in any of the soil types. Generally, the degradation of ZON and OTA was faster in planted soil than in unplanted soil, probably due to higher...

  1. Agricultural management impact on physical and chemical functions of European peat soils.

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  2. Using machine learning to predict the impact of agricultural factors on communities of soil microarthropods

    Dem?ar, D.; D?eroski, S.; Krogh, P. H.

    2005-01-01

    With the newly arisen ecological awareness in the agriculture the sustainable use and development of the land is getting more important. With the sustainable use of soil in mind, we are developing a decision support system that helps making decisions on managing agricultural systems and is able t...

  3. Lead in urban soils - A real or perceived concern for urban agriculture

    Urban agriculture is growing in cities across the U.S. and it has the potential to provide multiple benefits including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. A review ...

  4. Effect of agricultural management regimes on Burkholderia community structure in soil

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  5. Effect of agricultural management regime on Burkholderia community structure in soil

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  6. Effect of agricultural management regime on Burkholderia community structure in soil

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  7. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco

    2017-04-01

    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  8. Development of methods for remediation of artificial polluted soils and improvement of soils for ecologically clean agricultural production systems

    Bogachev, V.; Adrianova, G.; Zaitzev, V.; Kalinin, V.; Kovalenko, E.; Makeev, A.; Malikova, L.; Popov, Yu.; Savenkov, A.; Shnyakina, V.

    1996-01-01

    The purpose of the research: Development of methods for the remediation of artificial polluted soils and the improvement of polluted lands to ecologically clean agricultural production.The following tasks will be implemented in this project to achieve viable practical solutions: - To determine the priority pollutants, their ecological pathways, and sources of origin. - To form a supervised environmental monitoring data bank throughout the various geo system conditions. - To evaluate the degree of the bio geo system pollution and the influence on the health of the local human populations. - To establish agricultural plant tolerance levels to the priority pollutants. - To calculate the standard concentrations of the priority pollutants for main agricultural plant groups. - To develop a soil remediation methodology incorporating the structural, functional geo system features. - To establish a territory zone division methodology in consideration of the degree of component pollution, plant tolerance to pollutants, plant production conditions, and human health. - Scientific grounding of the soil remediation proposals and agricultural plant material introductions with soil pollution levels and relative plant tolerances to pollutants. Technological Means, Methods, and Approaches Final proposed solutions will be based upon geo system and ecosystem approaches and methodologies. The complex ecological valuation methods of the polluted territories will be used in this investigation. Also, laboratory culture in vitro, application work, and multi-factor field experiments will be conducted. The results will be statistically analyzed using appropriate methods. Expected Results Complex biogeochemical artificial province assessment according to primary pollutant concentrations. Development of agricultural plant tolerance levels relative to the priority pollutants. Assessment of newly introduced plant materials that may possess variable levels of pollution tolerance. Remediation

  9. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  10. Farmers' knowledge and use of soil fauna in agriculture: a worldwide review

    Natasha Pauli

    2016-09-01

    Full Text Available General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers' knowledge of soil organisms in agriculture. The depth of farmers' knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.

  11. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  12. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  13. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  14. Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

    Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; Hotes, S.; Liiri, M.; Mortimer, S.R.; Pavao-Zuckerman, M.; Pouyat, R.; Tsiafouli, M.; Van der Putten, W.H.

    2014-01-01

    [KEYWORDS: Agriculture Ecosystem services Land use Management optimization Soil Urban Trade-off] On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services

  15. A simulation test of the impact on soil moisture by agricultural ...

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  16. Valuing Supporting Soil Ecosystem Services in Agriculture: A Natural Capital Approach

    Brady, M.V.; Hedlund, K.; Cong, R.G.; Hemerik, L.; Hotes, S.; Machado, S.; Mattson, L.; Schulz, E.; Thomsen, I.K.

    2015-01-01

    Soil biodiversity through its delivery of ecosystem functions and attendant supporting ecosystem services—benefits soil organisms generate for farmers—underpins agricultural production. Yet lack of practical methods to value the long-term effects of current farming practices results, inevitably, in

  17. Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation

    Kuráň, P.; Trögl, J.; Nováková, J.; Pilařová, V.; Dáňová, P.; Pavlorková, J.; Kozler, J.; Novák, František; Popelka, J.

    -, č. 642427 (2014) ISSN 1537-744X Grant - others:GA MPO(CZ) FR-TI1/456 Institutional support: RVO:60077344 Keywords : biodegradation * spilled diesel fuel * agricultural soil Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.219, year: 2013 http://dx.doi.org/10.1155/2014/642427

  18. Cesium-137 activity in soil from an agricultural land in West Anatolia

    Aslani, M. A. A.; Yaprak, G.; AYTAS, S.; AKGil, S.; Eral, M.; Yener, G.

    2001-01-01

    Due to the radiocesium derived from the accident at Chernobyl in 1986 deposited on the soil, this study presents experimental data on Cs-137 activity concentrations in soil samples taken from agricultural land of Aegean Region in Turkey in 1997 and 1998. The activity of Cs-137 for these soil samples was found in the range between 0.92±0.15 Bq/kg and 20.75±0.29 Bq/kg. The distribution of Cs-137 in the soil can differ, being dependent on soil properties

  19. The effect of soil biodiversity on soil quality after agricultural reclamation at the eastern coast of China

    Wang, Xiaohan; Yang, Jianghua; Pu, Lijie; Chen, Xinjian

    2017-04-01

    Large area of tidal flats in Chinese coast has been reclaimed to support agriculture and urban development because of rapid population and economic growth. Knowledge of soil development mechanisms is essential for efficient management of land resources in coastal zone. So far, most studies have focused on consequences of soil physico-chemical properties on soil quality evolution after tideland reclamation for cultivation; yet a large part of soil bioprocess drives many soil processes. The effect of organism composition on the performance of soil development remains unclear. The purpose of our work was to reveal the organism composition change and its influence on soil quality impotent. In this study, we choose seven reclamation districts along a chronosequence in eastern coast of China, which were respectively reclaimed in 1956, 1971, 1980, 1997, 2009, 2013 and unenclosed tidal flat. The latest districts reclaimed in 2013 were left to succession fallow which were covered with halophytic vegetation and the rest districts were agriculturally managed. Soil samples at 0-20 cm were collected in each district. Soil physical, chemical and biological properties and wheat yields were measured. The result showed after the transformation from tidal flat to cropland, longer tillage time (>5 year) lead to higher soil clay and silt, SOC contents and lower bulk density, while soil clay and C contents declined within the first 5 years after reclamation. Agricultural reclamation significantly improved SOC contents of 0-20 cm depth form 0.11±0.05% to 0.77±0.10%. It needs about 35 years to achieve stable yield level after reclamation. Meanwhile, the soil community composition changed strongly over time. More significant relationships were found among soil physicochemical properties and bacteria community. And the variation trend of soil community richness (chao1) is similar to soil C contents, dropped at first 5 years and then significantly increased. Our results indicate that the

  20. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian

    2007-01-01

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  1. GEMAS: Geochemical distribution of iodine in European agricultural soil

    Birke, Manfred; Reimann, Clemens; Ladenberger, Anna; Négrel, Philippe; Rauch, Uwe; Demetriades, Alecos; Korte, Frank; Dinelli, Enrico

    2017-04-01

    Iodine concentrations are reported for the climate, soil formation processes, and geology (parent material, in some cases mineralisation). The distribution of anomalous I concentrations is likely a reflection of I input from atmospheric and marine sources, as well as the accumulation of I as a result of sorption on organic material. Across Europe, high I areas correlate well with soil with elevated TOC values. This is particularly evident for the western coastal areas of Ireland, UK, Norway, Galicia and France, where the organic matter content in the soil is generally high. The continuous supply of I from sea spray represents a potential source for high and elevated I concentrations. In the coastal zones of SE Spain, SE Ukraine and SW Croatia the I concentration in Ap samples is usually high. Along the eastern Adriatic coast as well as in South-East Ukraine and in the Crimea the elevated and anomalous I concentrations correspond well with the distribution of terra rossa soils developed on karst and organic-rich soils (black soil). In SE Spain the I enriched soils are most likely related to the occurrence of evaporites. The comparison of I background values (medians) based on the parent materials demonstrates a higher I content in soils over limestone and shale. Iodine-low soil areas (Iberian Peninsula) and glacial and aeolian deposits (NW Ukraine).

  2. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  3. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  4. Soil management and application of agricultural gypsum in a Planosol for soybean cultivation

    Marchesan, Enio; Tonetto, Felipe; Teló, Gustavo Mack; Coelho, Lucas Lopes; Aramburu, Bruno Behenck; Trivisiol, Vinicius Severo

    2017-01-01

    ABSTRACT: This study investigated the effects of soil management systems, tillage, and application of gypsum agricultural to soil, on soybean development in lowland areas. The experiment was carried out on an Alfisol in a randomized complete block design in a factorial arrangement. The two soil tillage practices were without deep tillage and with deep tillage. Gypsum treatments were no gypsum application, 500kg of gypsum ha-1, 1000kg of gypsum ha-1, and 1500kg of gypsum ha-1. Deep tillage res...

  5. Effects of Surfactants on Cryptosporidium parvum Mobility in Agricultural Soils from Illinois and Utah

    Darnault, C. J.; Koken, E.; Jacobson, A. R.; Powelson, D.

    2011-12-01

    The occurence of the parasitic protozoan Cryptosporidium parvum in rural and agricultural watersheds due to agricultural activities and wildlife is inevitable. Understanding the behavior of C. parvum oocysts in the environment is critical for the protection of public health and the environment. To better understand the mechanisms by which the pathogen moves through soils and contaminates water resources, we study their mobility under conditions representative of real-world scenarios, where both C. parvum and chemicals that affect their fate are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and the application of pesticides or soil wetting agents. They affect water tension and, consequently, soil infiltration processes and the air-water interfaces in soil pores where C. parvum may be retained. We investigate the effects of surfactants on the mobility of C. parvum oocysts in agricultural soils from Illinois and Utah under unsaturated flow conditions. As it is critical to examine C. parvum in natural settings, we also developed a quantification method using RT-PCR for monitoring C. parvum oocysts in environmental soil and water samples. We optimized physico-chemical parameters to disrupt C. parvum oocysts and extract their DNA, and developed isolation methods to separate C. parvum oocysts from colloids in natural soil samples. The results of this research will lead to the development of an accurate and sensitive molecular method for the monitoring of C. parvum oocysts in environmental soil and water samples, and will further our understanding of the mechanisms controlling the behavior of C. parvum oocysts in soils, in particular the role of vadose zone processes, sorption to soil and surfactants.

  6. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  7. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  8. Agricultural implications of providing soil-based constraints on urban expansion: Land use forecasts to 2050.

    Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W

    2018-07-01

    Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.

  9. Radiochlorine concentration ratios for agricultural plants in various soil conditions

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-Lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine)

    2007-06-15

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR = concentration of {sup 36}Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6 {+-} 0.4), onions (1.5 {+-} 0.5), potatoes (8 {+-} 1), clover (90 {+-} 26) and ryegrass (158 {+-} 88) hay, oat seeds (36 {+-} 23) and straw (305 {+-} 159), wheat seeds (35 {+-} 10) and straw (222 {+-} 82). These values correlate with the stable chlorine values for the same plants. It was shown that {sup 36}Cl plant/soil CR in radish roots (CR = 9.7 {+-} 1.4) does not depend on the stable chlorine content in the soil (up to 150 mg kg{sup -1}), soil type and thus, that stable chlorine CR values (9.4 {+-} 1.2) can also be used for {sup 36}Cl. Injection of additional quantities of stable chlorine into the soil (100 mg kg{sup -1} of dry soil) with fertilizer does not change the soil-to-plant transfer of {sup 36}Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil.

  10. Radiochlorine concentration ratios for agricultural plants in various soil conditions

    Kashparov, V.; Colle, C.; Levchuk, S.; Yoschenko, V.; Zvarich, S.

    2007-01-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ( 36 Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR = concentration of 36 Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6 ± 0.4), onions (1.5 ± 0.5), potatoes (8 ± 1), clover (90 ± 26) and ryegrass (158 ± 88) hay, oat seeds (36 ± 23) and straw (305 ± 159), wheat seeds (35 ± 10) and straw (222 ± 82). These values correlate with the stable chlorine values for the same plants. It was shown that 36 Cl plant/soil CR in radish roots (CR = 9.7 ± 1.4) does not depend on the stable chlorine content in the soil (up to 150 mg kg -1 ), soil type and thus, that stable chlorine CR values (9.4 ± 1.2) can also be used for 36 Cl. Injection of additional quantities of stable chlorine into the soil (100 mg kg -1 of dry soil) with fertilizer does not change the soil-to-plant transfer of 36 Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil

  11. Value of Soil Organic Carbon in Agricultural Lands

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  12. Soil types and limiting factors in agricultural production in the San Fernando district, Tamaulipas, Mexico

    Espinosa Ramirez, M.; Garza Cedillo, R.; Andrade limas, E.; Belmonte Serrato, F.

    2009-01-01

    The limiting factors in agricultural production, defined as those properties and characteristics of the geographical environment that influence the development of crops, can be diverse and are grouped with the physical environment of soil. They are the result of soil characteristics and soil degradation processes by anthropogenic influence. Due to the above, the objective of this study was to identify and surveying the limitative factors to agricultural production, as well as to define its ability land use capacity in San Fernando district, Tamaulipas. (Author) 7 refs.

  13. Agricultural soils decontamination techniques: methods and results of tests realized near Chernobyl

    Maubert, H.; Jouve, A.; Mary, N.

    1992-01-01

    After a major nuclear accident, decontamination of agricultural soils would be necessary in order to reclaim the land. Specific techniques were studied in the framework of the European program for Rehabilitation of Soils and Surfaces after an Accident (RESSAC). Different ways to remove the top layer of soils are described, and especially the use of Decontaminating Vegetal Network (D.V.N.) combined with spraying of organic polymers. Real scale tests in the 30 km zone around the Chernobyl nuclear power plant showed that it is possible to achieve an excellent decontamination of agricultural fields (decontamination factor greater than 95%. (author)

  14. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Recatala, L.; Sanchez, J.; Arbelo, C.; Sacristan, D.

    2010-01-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC 50 ) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  16. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  17. PHYSICAL AND CHEMICAL DEGRADATION OF AGRICULTURAL SOILS AT SAN PEDRO LAGUNILLAS, NAYARIT

    Gelacio Alejo Santiago

    2012-08-01

    Full Text Available The objective of this study was to evaluate the degradation to propose strategies for remediation and recovery of agricultural soils of San Pedro Lagunillas, Nayarit, Mexico; considering physical and chemical properties. Soils maintained with natural vegetation but slightly grazed and agricultural soils used for more than 20 years for the production of several crops, were compared. Eight sites were studied (four cultivated and four uncultivated, each agricultural lands (cultivated was located at a distance of 30 to 80 m from its counterpart or soil with natural vegetation (uncultivated. Samples were obtained from the following layers: 0 to 10, 10 to 20 and 20 to 30 cm. The variables evaluated were: particles smaller than 2 mm, pH, organic matter, extractable phosphorus, exchangeable potassium, calcium and magnesium; soil texture and water infiltration rate. An analysis of variance and Tukey means test (α = 0.05 was applied. It was concluded that traditional farming practices led to adverse changes in soil chemical properties, in the upper 20 cm soil layer. Physical properties were also affected because infiltration film and water infiltration rate decreased about 50% in cultivated soils. The overall results in this work evident the need to take appropriate measures to prevent the physical and chemical degradation of cultivated soils in order to preserve this resource and maintain their productivity.

  18. Sorption and desorption of indaziflam degradates in several agricultural soils

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  19. evaluation of physico-chemical parameters of agricultural soils

    Benlkhoubi N, Saber S, Lebkiri A, Rifi El and Fahime El

    2016-05-01

    May 1, 2016 ... analysis of source plasma emission (ICP) has identified eight trace elements ... that the interaction between the different physicochemical .... mineral soil), following the low organic matter of the studied soils where .... Copper, Zinc, Arsenic, Lead, Cadmium and Nickel ) developed at the media, were read in.

  20. Characterization and Classification of Soils on an Agricultural ...

    subangular blocky in the surface and changes to angular blocky in .... have angular blocky structure at the surface and changes to ... The soils in TUP 3 were brown in colour (2.5YR 4/6) in ..... erosion and enhance and maintain soil quality and.

  1. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  2. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  3. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve......, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies...

  4. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural so...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste.......From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...

  5. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  6. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca +2 , Mg +2 , and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg +2 than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  7. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  8. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  9. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  10. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.

    2017-01-01

    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.683, year: 2016

  11. The impact of marketing systems on soil sustainability of agriculture in developing countries : a method and an application

    Castaño, J.; Meulenberg, M.T.G.; Tilburg, van A.

    2005-01-01

    This article is concerned with soil-sustainability problems of agriculture in developing countries, in particular with soil erosion. The aim of our study is to develop a comprehensive model that explains the adoption of sustainable agricultural practices with respect to soil conservation. Our

  12. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)

    2017-01-09

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  13. Sustainability of three modified soil conservation methods in agriculture area

    Setiawan, M. A.; Sara, F. H.; Christanto, N.; Sartohadi, J.; Samodra, G.; Widicahyono, A.; Ardiana, N.; Widiyati, C. N.; Astuti, E. M.; Martha, G. K.; Malik, R. F.; Sambodo, A. P.; Rokhmaningtyas, R. P.; Swastanto, G. A.; Gomez, C.

    2018-04-01

    Recent innovations in soil conservation methods do not present any breakthrough. Providing more attractive soil conservation methods from the farmer’s perspective is however still of critical importance. Contributing to this soil research gap we attempt to evaluate the sustainable use of three modified conservation methods, namely JALAPA (Jala Sabut Kelapa - geotextile made of coconut fibres), wood sediment trap, and polybag system compared to traditional tillage without conservation method. This research provides both qualitative and quantitative analysis on the performance of each conservation measures. Therefore, in addition to the total sediment yield value and investment cost – as quantitative analysis, we also evaluate qualitatively the indicator of soil loss, installation, maintenance, and the durability of conservation medium. Those criteria define the sustainability use of each conservation method. The results show that JALAPA is the most effective method for controlling soil loss, but it also requires the most expensive cost for installation. However, our finding confirms that geotextile is sensitive to sun heating by which the coconut fibre can become dry and shrink. Wood sediment trap is the cheapest and easiest to install; however it is easily damaged by termite. Polybag method results in the highest productivity, but requires more time during the first installation. In terms of the farmer’s perspective, soil conservation using polybag system was the most accepted technique due to its high benefits; even if it is less effective at reducing soil loss compared to JALAPA.

  14. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  15. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  16. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities

    N. La Scala Júnior

    Full Text Available Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha-1 year-1. The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha-1 year-1. The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  17. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  18. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  19. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-01-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  20. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Adamo, Paola, E-mail: paola.adamo@unina.it [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Iavazzo, Pietro [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Albanese, Stefano [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy); Agrelli, Diana [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); De Vivo, Benedetto; Lima, Annamaria [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy)

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  1. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R 2 =0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil. Copyright © 2017. Published by Elsevier Inc.

  2. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward

    2013-01-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of 3 H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT 50 ) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent

  3. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI

    Leip, Adrian; Britz, Wolfgang; Weiss, Franz; Vries, Wim de

    2011-01-01

    We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha -1 yr -1 in a soil budget and 65 kg N 2 O-N ha -1 yr -1 and 67 kg N ha -1 yr -1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE. - Highlights: → Farm, land and soil N-budgets are important tools to characterize agricultural systems. → Farm N Use Efficiency (NUE) is lower than soil NUE; farm nitrogen surplus is higher. → On EU27 average, farm NUE is 31%, soil NUE is 63%, N surplus is 55-67 kg N ha -1 yr -1 . → Soil NUE is best explained by the share of imported feedstuff. → Intensive farming and specialization to animal production cause a high NS and low NUE. - Consistent calculations of farm, land and soil N-budgets for agriculture in Europe are presented and discussed at the national level and for EU27.

  4. Soil governance in the agricultural landscapes of New South Wales, Australia

    Ashley A Webb

    2015-03-01

    Full Text Available Soil is a valuable natural resource. In the state of New South Wales, Australia, the governance of soil has evolved since Federation in 1901. Following rapid agricultural development, and in the face of widespread soil degradation, the establishment of the Soil Conservation Service marked a turning point in the management of soil. Throughout the 20th century, advances in knowledge were translated into evolving governance frameworks that were largely reactionary but saw progressive reforms such as water pollution legislation and case studies of catchment-scale land and vegetation management. In the 21st century, significant reforms have embedded sustainable use of agricultural soils within catchment- and landscape-scale legislative and institutional frameworks. What is clear, however, is that a multitude of governance strategies and models are utilised in NSW. No single governance model is applicable to all situations because it is necessary to combine elements of several different mechanisms or instruments to achieve the most desired outcomes. Where an industry, such as the sugar industry, has taken ownership of an issue such as acid sulfate soil management, self-regulation has proven to be extremely effective. In the case of co-managing agricultural soils with other landuses, such as mining, petroleum exploration and urban development, regulation, compliance and enforcement mechanisms have been preferred. Institutional arrangements in the form of independent commissioners have also played a role. At the landscape or total catchment level, it is clear that a mix of mechanisms is required. Fundamental, however, to the successful evolution of soil governance is strategic investment in soil research and development that informs the ongoing productive use of agricultural landscapes while preventing land degradation or adverse environmental effects.

  5. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward, E-mail: ed.topp@agr.gc.ca

    2013-05-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of {sup 3}H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT{sub 50}) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent.

  6. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  7. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  8. Enhanced degradation of metalaxyl in agricultural soils of São Paulo State, Brazil

    Papini Solange

    2001-01-01

    Full Text Available This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.

  9. THEORETICAL PRINCIPLES OF EVALUATION OF EFFICIENCY OF SOIL CONSERVATION MEASURES IN AGRICULTURAL LAND-USE

    Shevchenko O.

    2017-08-01

    Full Text Available In the article modern scientific and theoretical positions concerning determination of the effectiveness of soil protection measures on agricultural lands are investigated. It is analyzed that the protection of land from degradation is one of the most important problems of agriculture, as this process leads to a significant decrease in soil fertility and crop yields. That is why in today's conditions, when the protection of agricultural land became urgent and a priority task, the scientific substantiation of the economic assessment of the damage caused by the degradation of land to agriculture, as well as the development of methods for determining the economic efficiency of the most progressive soil protection measures, technologies and complexes based on their overall Comparative evaluation. It was established that ground protection measures are a system of various measures aimed at reducing the negative degradation effect on the soil cover and ensuring the preservation and reproduction of soil fertility and integrity, as well as increasing their productivity as a result of rational use. The economic essence of soil protection measures is the economic effect achieved by preventing damage caused by land degradation to agriculture, as well as for obtaining additional profit as a result of their action. The economic effectiveness of soil protection measures means their effectiveness, that is, the correlation between the results and the costs that they provided. The excess of the economic result over the cost of its achievement indicates the economic efficiency of soil protection measures, and the difference between the result and the expenditure characterizes the economic effect. Ecological efficiency is characterized by environmental parameters of the soil cover, namely: the weakening of degradation effects on soils; improvement of their qualitative properties; An increase in production without violation of environmental standards, etc. Economic

  10. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Migration of radionuclides in the soil-crop-food product system and assessment of agricultural countermeasures

    Bogdevitch, I.; Ageyets, V.

    1996-01-01

    Studies on dynamics of redistribution of radionuclides through of profile of the different soils on uncultivated agricultural lands of Belarus during the 1986-1995 period show that vertical migration occurs with low rate. In arable soils the radionuclides are distributed in comparatively uniform way through the whole depth of the 25-30 cm cultivated layer. Investigations on migration of radionuclides with wind erosion on the drained series of wet sandy and peat soils and water erosion on sloping lands show that one should take into consideration the secondary contamination of soils while forecasting a possible accumulation of radionuclides in farm products

  12. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  13. Arsenic accumulation in irrigated agricultural soils in Northern Greece.

    Casentini, B; Hug, S J; Nikolaidis, N P

    2011-10-15

    The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation. This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513mg/kg inside to 5-66mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5m, and to 50cm in depth. During simulated rain events in soil columns (pH=5, 0μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH=7.5, 1500μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (500mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25μg/kg in flesh and 0.3-5.6μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Agriculture

    Goetz, B.; Riss, A.; Zethner, G.

    2001-01-01

    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  15. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  16. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  17. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Basuki Wasis

    2012-12-01

    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  18. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  19. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils.

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger

    2013-01-01

    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  1. Avoidance tests with Folsomia candida for the assessment of copper contamination in agricultural soils

    Boiteau, G.; Lynch, D.H.; MacKinley, P.

    2011-01-01

    The feasibility of assessing copper accumulation in agricultural soils using avoidance tests with a Canadian strain of Folsomia candida was investigated under laboratory conditions. The avoidance response to nominal copper sulfate concentrations of 0, 200, 800, 1600 and 3200 mg kg -1 in OECD soil was inconsistent between trials with the standard plastic cup or a modified Petri dish method requiring less soil. However, combined results from three Petri dish trials decreased variability and provided a 75% avoidance level, close to the 80% criterion proposed for avoidance tests. A Copper avoidance EC 50s of 18 mg kg -1 was obtained using the Petri dish method whether tests were conducted with or without light. While Petri dish tests have potential as a cheap tool to distinguish metal contaminated soils from uncontaminated soils they would be unsuitable for tracking or quantifying changes in metal concentrations. throughout remediation. Advantages and limitations of the method have been presented. - Research highlights: → Avoidance cup test using Folsomia candida detects Cu independently of concentration. → Improved avoidance Petri dish test detects Cu in soil in function of concentration. → Cu voidance tests had similar EC50 values whether conducted with or without light. → Combining Cu avoidance test trials in OECD soil reduced the variability of results. - Improved avoidance tests having an EC 50 value similar to the background Cu concentration in uncontaminated agricultural soils can distinguish Cu contaminated and Cu free OECD soil.

  2. Influence of soil and agricultural technique in metal absorption by vegetables

    Cunha, K. Dias da; Cazicava, J.; Coelho, M.; Dalia, K.

    2005-01-01

    The aim of this work is to verify the influence of soil and agricultural techniques in the metal absorption by the vegetables. Metal concentrations were evaluated in soil and vegetable samples from different regions and cultivated by different agricultural techniques. PIXE, 252 Cf-PDMS and Radiochemical techniques were applied. Si, Zr, Ce, Th and Pb, identified in soil samples, were not biologically available. Ga, Ge, As and Br, identified in tubercles, show that spray pesticides used on the vegetable leaves were absorbed by them. 232 Th and 238 U, presented in the soil, were not absorbed by the vegetables. Airborne particles from anthropogenic sources (CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources, presented in soil, (V + , VCO 3 , HPO 4 , Cr + , CrOH + Mn + , FeH, Fe(OH) n ) and bioorganic compounds (N + , Ca(CN) n +, CnH + ) were identified in the vegetables. Metal absorbed by the vegetables is not dependent on metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions, such as the elements presented in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by the vegetables. Absorption by the roots depends on the chemical compound of the elements. Pesticide sprays and air pollution can cause more contamination in the vegetables than in the soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and metal speciation. (author)

  3. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  4. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  5. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  7. Effect of sludges on bacteria in agricultural soil

    Kuntz, Jérôme; Nassr-Amellal, Najat; Lollier, Marc

    2008-01-01

    in the laboratory conditions probably due to the favorable conditions of mineralization. The results observed with soil amended with the same sludges and cultivated or not with carrots in outdoor lysimeters were similar to those observed in the laboratory experiments. Thus, this bioassay allowed predicting...

  8. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  9. Measurement of the open porosity of agricultural soils with acoustic waves

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    The space between agricultural soil aggregates is defined as structural porosity. It plays important roles in soil key functions that an agricultural soil performs in the global ecosystem. Porosity is one of the soil properties that affect plant growth along with soil texture, aggregate size, aeration and water holding capacity (Alaoui et al. 2011). Water supplies regulation of agricultural soil is related to the number of very small pores present in a soil due to the effect of capillarity. Change of porosity also affect the evaporation of the water on the surface (Le Maitre et al. 2014). Furthermore, soil is a habitat for soils organisms, and most living organisms, including plant roots and microorganisms require oxygen. These organisms breathe easier in a less compacted soil with a wide range of pores sizes. Soil compaction by agricultural engine degrades soil porosity. At the same time, fragmentation with tillage tools, creation of cracks due to wetting/drying and freezing/thawing cycles and effects of soil fauna can regenerate soil porosity. Soil compaction increases bulk density since soil grains are rearranged decreasing void space and bringing them into closer contact (Hamza & Anderson 2005). Drainage is reduced, erosion is facilitated and crop production decreases in a compacted soil. Determining soil porosity, giving insight on the soil compaction, with the aim to provide advices to farmers in their soil optimization towards crop production, is thus an important challenge. Acoustic wave velocity has been correlated to the porosity and the acoustic attenuation to the water content (Oelze et al. 2002). Recent studies have shown some correlations between the velocity of acoustic waves, the porosity and the stress state of soil samples (Lu et al. 2004; Lu 2005; Lu & Sabatier 2009), concluding that the ultrasonic waves are a promising tool for the rapid characterisation of unsaturated porous soils. Propagation wave velocity tends to decrease in a high porous

  10. Thermal destruction of organic waste hydrophobicity for agricultural soils application.

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José

    2017-11-01

    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Applications of microwave remote sensing of soil moisture for water resources and agriculture

    Engman, E.T.

    1991-01-01

    There has been significant progress in the application of microwave remote sensing for measuring soil moisture. Both passive and active systems have demonstrated the capability to measure soil moisture, and there have been a number of studies using aircraft and spaceborne data that have demonstrated its usefulness for agricultural and hydrologic applications. However, there are still several unresolved questions regarding the optimal instrument configuration and other target characteristics such as roughness and vegetation. In addition, the most likely disciplines for using these data, agriculture and hydrology, do not currently possess adequate models or procedures to use this new technology

  12. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.

    2017-12-01

    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.

  13. Status and Causes of Soil Salinization of Irrigated Agricultural Lands in Southern Baja California,Mexico

    Endo, T.; Yamamoto, S.; Fujiyama, H.; Honna, T.; Larrinaga, J.A.

    2011-01-01

    Selected farmlands in southern Baja California, Mexico, were surveyed to determine the levels and the causes of salinization/sodication in irrigated agricultural soil. The salt dynamics observed in profiles differed from farm to farm. Low EC and high ph levels were observed in the profiles of sandy fields, because the salt composition of these soils can easily change when salts are leached by irrigation water that contains carbonates of sodium. On the other hand, high levels of salinity and sodicity were observed in the soils of clayey fields. Soil salinization/sodication is complexly interrelated with soil characteristics, the amount and composition of salts in the soil, the quantity and quality of irrigation water applied, and the irrigation methods used. Our findings indicate that irrigation water in Baja California should be supplied at a rate that is sufficient to meet crop requirements without exacerbating salt accumulation.

  14. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  15. Environmental quality of agricultural soils within the Jaguari River Basin - Sao Paulo

    Ruby, Elaine Cristina

    2009-01-01

    Environmental impacts have occurred in various forms and intensities on soil, water and air media. Consequently, several countries have used legal criteria for soil protection, either by means of generic guiding values or through case-by-case risk assessment. The Sao Paulo Environmental Agency (CETESB) pioneered the publication of guiding values for soils and groundwater in 2001. The aim of this study was to evaluate the environmental quality of agricultural soils in comparison to pristine soils (control areas) within the Jaguari river basin, Sao Paulo. The evaluation was carried out through multielement determination by Neutron Activation Analysis Instrumental (INAA) technique. The analyses were also complemented by Optical Emission Spectrometry Coupled Plasma (ICP OES), Atomic Absorption Spectrometry and Graphite Furnace (GFAAS) techniques. The results obtained in the analyzed soil samples were compared to the guiding values established by the Sao Paulo State environmental legislation and revealed that there were no median concentrations above the prevention values. The median concentrations for the elements Sb, As, Cd, Pb, Co, Cu, Cr, Ni, V and Zn were below the reference values, except for Pb. Taking into account the 34 elements determined, there were statistically significant differences (p <0.05) between agricultural and pristine soils only for the elements Ba, As, U and V. Among these elements, Ba presented the highest concentrations in pristine soils. It was concluded, that the environmental quality of agricultural soils within the Jaguari river basin - SP was slightly changed for the given parameters. The results also pointed out for the utilization of U and As as indicators of potential contamination in soils. (author)

  16. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  18. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  19. Adsorption and desorption study of 14C-Chloropyrifos in two Malaysian agricultural soils

    Halimah Muhammad; Nashriyah Mat; Tan Yew Ai; Ismail, B.S.

    2004-01-01

    The adsorption equilibrium time and effects of pH and concentration of 14 C-labeled chloropyrifos 0,0-diethyl 0-(3, 5, 6 tricloro-2-pyridyl)-phosphorothiote in soil were investigated. Two types of Malaysian soil under oil palm were used in this study; namely clay loam and clay soil obtained from the Sungai Sedu and Kuala Lumpur International Airport (KLIA) Estates, respectively. Equilibrium studies of chloropyrifos between the agricultural soil and the pesticide solution were conducted. Adsorption equilibrium time was achieved within 6 and 24 hours for clay loam and clay soil, respectively. It was found that chloropyrifos adsorbed by the soil samples was characterized by an initial rapid adsorption after which adsorption remained approximately constant. The percentage of 14 C-labeled chloropyrifos adsorption on soil was found to be higher in clay loam than in clay soils. Results of the study demonstrated that pH affected the adsorption of chloropyrifos on both clay loam and clay soils. The adsorption of chloropyrifos on both types of soil was higher at low pH with the adsorption reduced as the pH increased. Results also suggest that chloropyrifos sorption by soil is concentration dependent. (Author)

  20. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  1. Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    José Torrent

    2015-12-01

    Full Text Available Soil cation exchange capacity (CEC depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH of 43% (HM43. Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg. Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC.

  2. Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Torrent, J.; Campillo, M.C. del; Barrón, V.

    2015-07-01

    Soil cation exchange capacity (CEC) depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM) in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH) of 43% (HM43). Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg). Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC. (Author)

  3. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil.

    Servin, Alia D; De la Torre-Roche, Roberto; Castillo-Michel, Hiram; Pagano, Luca; Hawthorne, Joseph; Musante, Craig; Pignatello, Joseph; Uchimiya, Minori; White, Jason C

    2017-01-01

    Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO 2  kg -1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO 2  kg -1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and μ-XRF showed Ce association with specific biochar and soil components, while μ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO 2 . The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. How can soil organic carbon stocks in agriculture be maintained or increased?

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  5. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  6. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil.

    Annamalai, Sivasankar; Santhanam, Manikandan; Selvaraj, Subbulakshmi; Sundaram, Maruthamuthu; Pandian, Kannan; Pazos, Marta

    2018-05-15

    The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Soil chemical sensor and precision agricultural chemical delivery system and method

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  8. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  9. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  10. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  11. Soil erosion determinations using 137Cs technique in the agricultural regions of Gediz Basin, Western Turkey

    Sac, M.; Ymurtaci, E.; Yener, G.; Ugur, A.; Ozden, B.; Camgoz, B.

    2004-01-01

    Gediz basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation has long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137 Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137 Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137 Cs inventories of the samples using both Proportional Model (PM) and Simplified Mass Balance Model (SMBM). When Proportional Model was used, erosion and deposition rates varied from -15 to -28 t ha -1 y -1 and from +5 to +41 t ha ha -1 y -1 , respectively, they varied from -16 to -33 t ha -1 y -1 and from +5 to +55 t ha -1 y -1 with Simplified Mass Balance Model. A good agreement was observed between the results of two models up to 30 t ha -1 y -1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137 Cs techniques with the results obtained by Universal Soil Loss Equation (USLE) applied in the area before. (authors)

  12. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties

    Towett, Erick Kibet

    2013-01-01

    Many of today's most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quantify soil properties are needed, especially in developing countries where reliable data on soil properties is sparse, and to take advantage of new opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has already shown promise as a rapid analytical tool and there are new opportunities to include other high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction (XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction of chemical and physical properties of African soils as well as prediction models for soil organic carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were tested in this study. This study has developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using a TXRF (S2 PICOFOX trademark) spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming sufficient calibration measures are followed. The results of the current study have shown that TXRF can provide efficient chemical fingerprinting which could be further

  13. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties

    Towett, Erick Kibet

    2013-12-09

    Many of today's most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quantify soil properties are needed, especially in developing countries where reliable data on soil properties is sparse, and to take advantage of new opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has already shown promise as a rapid analytical tool and there are new opportunities to include other high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction (XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction of chemical and physical properties of African soils as well as prediction models for soil organic carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were tested in this study. This study has developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using a TXRF (S2 PICOFOX trademark) spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming sufficient calibration measures are followed. The results of the current study have shown that TXRF can provide efficient chemical fingerprinting which could be further

  14. Survival and transport of faecal bacteria in agricultural soils

    Bech, Tina Bundgaard

    Today, there is yearly applied 34 million tonnes of animal waste to arable land in Denmark. This waste may contain pathogenic zoonotic bacteria and/or antibiotic resistant bacteria, and when applied to arable land there is a risk of contaminating groundwater, surface water, feeding animals or fresh...... produce. Prediction of faecal bacterial survival and transport in the soil environment will help minimize the risk of contamination, as best management practices can be adapted to this knowledge. The aim of this Ph.D. is to study factors influencing faecal bacteria survival and transport in soil...... – it is based on both field scale and lab scale experiments. The influence of application method and slurry properties has been tested on both survival and transport....

  15. Mineralogical study on agricultural soils using mossbauer spectrometry

    Ceron L, M.L.; Fabian S, J.; Bravo C, J.

    1999-01-01

    Iron (Fe) compounds are very common in nature. In the case of soils, they occur in the form of Fe sesquioxides, such as oxides, hydroxides and oxyhydroxides, as well as substitution cations in clay minerals. These minerals occur in crystalline and amorphous states. The isotopic selective nature of mossbauer spectroscopy (nuclear gamma resonance) allows the indentification of minerals containing Fe even when they are present in low concentrations and in amorphous state. In this work we report the preliminary results of a current study of soil samples collected from the area of Chinchero, Cusco. The experimental data were obtained by mossbauer spectroscopy and x-ray diffraction; these data were complemented with data reported by other workers. Standard procedures were used for sample preparation and the mossbauer spectra were taken at room and liquid nitrogen temperatures

  16. Impact of agricultural practices on selected soil decomposers fauna

    Abdalatif, M. A.; Alrayah, A.; Azar, W. Z.

    2009-01-01

    Soil decomposers fauna i.e. collembolan, mites and nematodes were studied and compared between and within sites in relation to site, treatment and time of collection in Shambat arable and El Rwakeeb dry land. Comparison of results between sites showed that population density/volume of decomposers fauna sampled from Shambat site exceeded their assemblages sampled from El Rawakeeb site. Treatment application in form of cattle manure and neem leaves powder were observed to induce insignificant changes in the three faunal groups between the two sites. Temporal variations showed significant annual variations and insignificant seasonal variations between the two sites. Within each site, population density/volume of each of collembolan, mites and nematodes increased in response to cattle manure application in both sites. Whereas, neem leaves powder application induced a significant decrease in population density/volume of collembola in both sites. These results are generally attributed to variability of soil properties which may add to the suitability of Shambat soil to El Rawakeeb one for the survival of decomposers fauna. Within each site, increase in population density/volume of these fauna upon cattle manure application was attributed to ability of cattle manure to improve soil properties and to provide food. The negative effect of neem leaves powder on mites and nematodes was attributed to neem toxicity, whereas, its positive effects on collembolan was attributed to the ability of collembolan to withstand neem toxicity, collembolan probably physiologically resistant and the neem powder provided food, thus increasing its numbers compared to the central treatment.(Author)

  17. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  18. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  19. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  20. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.

    2016-11-01

    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  1. Active microbial soil communities in different agricultural managements

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  2. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of

  3. Nitrous oxide production and consumption potential in an agricultural and a forest soil

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise

    2008-01-01

    Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from...... measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha-1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under...

  4. Effect of organic amendments on quality indexes in an italian agricultural soil

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils

  5. Response of plant species to coal-mine soil materials

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  6. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  7. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates 0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  9. Alterations in soil microbial community composition and biomass following agricultural land use change.

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-04

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  10. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  11. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  12. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  13. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  14. Microbial Biomarkers for Native and Agricultural Soil Inputs to Atmospheric Particulate Matter

    Fulton, J. M.; Herckes, P.; Fraser, M. P.; Collins, J.; Van Mooy, B. A.

    2017-12-01

    Intense dust storms (haboobs) erode desert soils and cause dramatic short-term increases in particulate matter (PM) concentration in the atmosphere. Background atmospheric PM levels in the southwestern United States also commonly exceed the National Ambient Air Quality Standards, so episodic haboobs and normal weather patterns both contribute to aeolian transport. We analyzed fine (PM2.5) and coarse (PM>2.5) dust fractions sampled in Tempe, Arizona for molecular biomarkers indicative of dust sourced from either native or agricultural soils. We focused on pigments and intact polar lipids (IPLs) that were also in soil crusts collected in the region. The PM samples were taken during two weeks (23 July to 5 August 2014) that included two haboobs during the first week and mostly calm weather with minor rainfall during the second week. We detected scytonemin, a diagnostic pigment biomarker for cyanobacteria, in all PM>2.5 samples, but its concentration was highest in haboob dust. Similarly, scytonemin was only abundant in PM2.5 samples taken during haboobs. Scytonemin is an important component of native biological soil crusts, protecting the crust community from UV radiation, and is ca. two orders of magnitude less abundant in disturbed agricultural soils. In biological soil crusts, scytonemin is associated with extracellular polysaccharides that are produced by cyanobacteria and bind soil into cohesive crusts. The association between scytonemin and haboobs suggests that native soil erosion is facilitated by high energy, episodic events that overcome crust cohesion. IPLs were abundant in agricultural soil crusts and included phosphatidylethanolamine from soil bacteria and a glucosylceramide from fungi. These compounds had similar concentration in haboob and background dust, suggesting agricultural or otherwise disturbed soils contribute more to ambient dust. In this study, we employed a new high resolution mass spectrometric method that produces molecular formulas and

  15. Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?

    Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno

    2016-04-01

    Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce

  16. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  17. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  18. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization

    Meneghine, Aylan K.; Nielsen, Shaun; Thomas, Torsten; Carareto Alves, Lucia Maria

    2017-01-01

    Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem. PMID:29267397

  19. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization.

    Aylan K Meneghine

    Full Text Available Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance and Bacillus (~10% in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38% of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem.

  20. Effect of ploughing-down of grapevine chips on soil structure when using special agricultural machinery

    Barbora Badalíková

    2012-01-01

    Full Text Available Within the period of 2008–2011, changes in soil structure were studied in two selected localities: one of them was situated in vineyards of the University Training Farm of Mendel University in Žabčice near Brno, the other was in vineyards situated in the cadastre of wine-growing municipality Velké Bílovice. Established were altogether three variants of experiments with application of crushed grapevine wood (chips: Variant 1 – control; Variant 2 – crushed grapevine wood ploughed down to the depth of 0.10 m; Variant 3 – crushed grapevine wood + grass spread on the soil surface as a mulch. Grapevine canes were crushed to chips using a special agricultural machinery while the soil in inter-rows was processed using conventional tilling machines. The obtained results showed that the best coefficient of structurality (expressing the degree of destruction of soil structure was recorded in Variants 2 in both localities. Considering values of this coefficient it could be concluded that just this variant showed a positive effect on soil structure. This variant reduced the compaction of soil caused by the movement of agricultural machines in vineyard inter-rows Crushed grapevine waste wood can therefore compensate losses of organic matter in soil. Better values of structurality coefficient were recorded in the locality Žabčice.

  1. Spatial Variability of Physical Soil Quality Index of an Agricultural Field

    Sheikh M. Fazle Rabbi

    2014-01-01

    Full Text Available A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP map. Surface soil samples were collected using 10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS, and aggregate stability (measured as mean weight diameter, MWD were determined. The spatial structures of sand, clay, and KS were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”

  2. Selected monitoring properties of agricultural soil from the Imielin experimental site

    Maja Radziemska

    2016-07-01

    Full Text Available The effects of two types of agricultural practice: (1 Variable Rate Application (VRA and (2 uniform (UNI N dose on selected chemical properties of soil were compared in a field fertilization experiment. Nitrogen, in doses 60 or 80 kgN.ha-1 (UNI, and 55-105 kgN.ha-1 (VRA was applied to soil farmed with winter wheat (Triticum aestivum L.. The research was conducted in the 2012/2013 growing season in Poland on 22 ha of production fields located in the Imielin countryside (central Poland. The soil samples were taken from three depths: 0.0-0.3 m, 0.3-0.6 m, and 0.6-0.9 m, and the pH, HAC, TEB, CEC, and BS were determined. The application of the nitrogen fertilizer in the two types of agricultural practice - Variable Rate Application (VRA and uniform (UNI N dose modified the basic physical and chemical properties of soil. The highest values of pH and hydrolytic acidity were observed at the soil depth of 0.6-0.9 m after the first rate of nitrogen fertilizer was applied. Cation exchange capacity of soils collected after uniform nitrogen rates were characterized by values decreasing with the increasing depth of the soil profile.

  3. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    Tiezhu Shi

    2017-05-01

    Full Text Available This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF, artificial neural network (ANN, radial basis function- and linear function- based support vector machine (RBF- and LF-SVM were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs. The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value. The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%, ANN (OA = 89%, RBF- (OA = 89% and LF-SVM (OA = 87% had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05. These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies.

  4. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field

    Nagy, P.; Bakonyi, G.; Bongers, A.M.T.; Kádár, I.; Fábián, M.; Kiss, I.

    2004-01-01

    Long-term effects of Cd, Cr, Cu, Se and Zn were studied 7 years after artificially contaminating plots of an agricultural field on a calcareous chernozem soil. Effects of three to four different contamination levels (originally 10, 30, 90 and 270 mg kg(-1)) were studied. Nematode density was

  5. Risk indicator for agricultural inputs of trace elements to Canadian soils.

    Sheppard, S C; Grant, C A; Sheppard, M I; de Jong, R; Long, J

    2009-01-01

    Trace elements (TEs) are universally present in environmental media, including soil, but agriculture uses some materials that have increased TE concentrations. Some TEs (e.g., Cu, Se, and Zn) are added to animal feeds to ensure animal health. Similarly, TEs are present in micronutrient fertilizers. In the case of phosphate fertilizers, some TEs (e.g., Cd) may be inadvertently elevated because of the source rock used in the manufacturing. The key question for agriculture is "After decades of use, could these TE additions result in the deterioration of soil quality?" An early warning would allow the development of best management practices to slow or reverse this trend. This paper discusses a model that estimates future TE concentrations for the 2780 land area polygons composing essentially all of the agricultural land in Canada. The development of the model is discussed, as are various metrics to express the risk related to TE accumulation. The elements As, Cd, Cu, Pb, Se, and Zn are considered, with inputs from the atmosphere, fertilizers, manures, and municipal biosolids. In many cases, steady-state concentrations could be toxic, but steady state is far in the future. In 100 yr, the soil concentrations (Century soil concentrations) are estimated to be up to threefold higher than present background, an impact even if not a problematic impact. The geographic distribution reflects agricultural intensity. Contributions from micronutrient fertilizers are perhaps the most uncertain due to the limited data available on their use.

  6. Chemical composition of windblown dust emitted from agricultural soils amended with biosolids

    Biosolids are increasingly being applied to agricultural lands in dry environments, but wind erosion of these lands might transport biosolid particulates offsite and impact environmental quality. Our objective was to use a wind tunnel to measure soil and windblown sediment concentrations of EPA-regu...

  7. Predicting aggregate properties of soil communities vs. comunity structure in an agricultural setting

    Demšar, D.; Džeroski, S.; Debeljak, M.

    2006-01-01

    approach of producing one model for the aggregate target variable is worse than the more complex approach of producing multiple models and then calculating the aggregate variable from the model outputs. We do this by taking a dataset describing the agricultural events and soil biological parameters...

  8. MEASUREMENT OF NITROGEN OXIDE EMISSIONS FROM AN AGRICULTURAL SOIL WITH A DYNAMIC CHAMBER SYSTEM

    Biogenic soil emissions of nitric oxide (NO) were measured from an intensively managed agricultural row crop (corn, Zea mays) during a 4 week period May 15 through June 9, 1995). The site was located in Washington County, near the town of Plymouth, which is in the Lower Coastal P...

  9. Earthworm activity and soil structural changes under conservation agriculture in central Mexico

    Castellanos Navarrete, A.; Rodriguez-Aragonés, C.; Goede, de R.G.M.; Kooistra, M.J.; Sayre, K.D.; Brussaard, L.; Pulleman, M.M.

    2012-01-01

    Crop residue mulching combined with zero tillage and crop rotation, known as conservation agriculture (CA), is being promoted as an alternative system to revert soil degradation in maize-based farming in the central highlands of Mexico. The goal of this paper was to determine the effects of CA vs.

  10. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  11. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil

    Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains largely unknown. In the present study, corn (Zea mays), lettuce (Lactuca sativa), soybean (Glycine max) and zucchini...

  12. Analyses of radionuclides in soil, water, and agriculture products near the Urgeirica uranium mine in Portugal

    Carvalho, F.P.; Oliveira, J.M.; Malta, M.

    2009-01-01

    Analyses of soils, irrigation waters, agriculture products (lettuce), green pasture, and cheese were performed in samples collected in the area of the old Urgeirica uranium mine and milling facilities, Centre-North of Portugal, in order to assess the transfer of uranium series radionuclides in the environment and to man. Soils close to milling tailings display an enhancement of radioactivity. In the drainage basin of the stream Ribeira da Pantanha, receiving drainage from the tailings piles and discharges from the acid mine water treatment plant, there was enhancement of uranium series radionuclide concentrations in water and suspended matter. Agriculture products from kitchen gardens irrigated with water from the Ribeira da Pantanha show an increase of radioactivity, mainly due to uranium isotopes. Agriculture products from other kitchen gardens in this area, irrigated with groundwater, as well pasture and cheese produced locally from sheep milk did not show enhanced radionuclide concentrations. In the Urgeirica area, some soils display radionuclide concentrations higher than soils in reference areas and, in agriculture products grown there, 226 Ra was the radionuclide more concentrated by vegetables. Through ingestion of these products 226 Ra may be the main contributor to the increment of radiation dose received by local population. (author)

  13. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  14. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    Salles, Joanna; Samyn, E.; Vandamme, P.; Van Veen, J.A.; van Elsas, J.D.

    2006-01-01

    Abstract In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  15. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration

    Lahmar, R.; Bationo, B.A.; Lamso, N.D.; Guéro, Y.; Tittonell, P.A.

    2012-01-01

    Low inherent fertility of tropical soils and degradation, nutrient deficiency and water stress are the key factors that hamper rainfed agriculture in semi-arid West Africa. Conservation Agriculture (CA) is currently promoted in the region as a technology to reduce soil degradation, mitigate the

  16. How long does a phosphate ion remain in the solution of agricultural soils?

    Morel, J.L.; Sinaj, S.; Frossard, E.; Fardeau, J.C.

    1993-01-01

    This work was conducted to assess the influences of soil properties and agricultural practices on the mean residence time of phosphate ions in the soil solution (T m ). T m was measured with the isotopic exchange kinetics method on the surface horizon of 213 soils from Albania. Almost 90 per cent of the samples presented a T m value included between 10 4 and 10 -1 minute. T m depended primarily on the soil iron oxide content, and was only slightly affected by current farming practices. As a consequence T m could be inferred from the parent material of the soil. Taking into account this parameter could therefore help in a better management of fertilization. (author)

  17. How long does a phosphate ion remain in the solution of agricultural soils?

    Morel, J.L. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes; Sinaj, S.; Frossard, E.; Fardeau, J.C.

    1993-12-31

    This work was conducted to assess the influences of soil properties and agricultural practices on the mean residence time of phosphate ions in the soil solution (T{sub m}). T{sub m} was measured with the isotopic exchange kinetics method on the surface horizon of 213 soils from Albania. Almost 90 per cent of the samples presented a T{sub m} value included between 10{sup 4} and 10{sup -1} minute. T{sub m} depended primarily on the soil iron oxide content, and was only slightly affected by current farming practices. As a consequence T{sub m} could be inferred from the parent material of the soil. Taking into account this parameter could therefore help in a better management of fertilization. (author). 5 refs.

  18. Influence of fertilizers on the NORM content in agricultural cultivated soils of Villupuram district, Tamilnadu India

    Punniyakotti, J.; Lakshmi, K.S.; Meenakshisundaram, V.

    2017-01-01

    Natural radioactivity content is determined in ten different types of fertilizers and influence of these, if any, in fertilized agricultural cultivated soil samples is investigated and compared with virgin soil samples. Higher amount of "2"3"8U and "4"0K are observed in single super phosphate and potash fertilizers respectively. In all the fertilizers, "2"3"2Th activity was found to be BDL excepting single super phosphate. The average values of radioactivity content of all the three radionuclides are found to be higher in cultivated soils using fertilizers than in the virgin soil samples. However, all the three radionuclides in both virgin and cultivated soil samples are far lesser than the world average value of 33, 45 and 420 Bq.kg"-"1 for "2"3"8U, "2"3"2Th and "4"0K respectively. (author)

  19. Soil heterogeneity and soil fertility gradients in smallholder agricultural systems of the east african highlands

    Tittonell, P.A.; Muriuki, A.; Klapwijk, C.J.; Shepherd, K.D.; Coe, R.; Vanlauwe, B.

    2013-01-01

    Heterogeneity in soil fertility in these smallholder systems is caused by both inherent soil-landscape and human-induced variability across farms differing in resources and practices. Interventions to address the problem of poor soil fertility in Africa must be designed to target such diversity and

  20. Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil

    Richter, A.; Huallacháin, D.O.; Doyle, E.; Clipson, N.; Leeuwen, Van J.P.; Heuvelink, G.B.; Creamer, R.E.

    2018-01-01

    The functional potential of soil ecosystems can be predicted from the activity and abundance of the microbial community in relation to key soil properties. When describing microbial community dynamics, soil physicochemical properties have traditionally been used. The extent of correlations between

  1. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  2. An assessment of alternative agricultural management practice impacts on soil carbon in the corn belt

    Barnwell, T.O. Jr.; Jackson, R.B.; Mulkey, L.A. [Environmental Research Laboratory, Athens, GA (United States)

    1993-12-31

    This impact of alternative management practices on agricultural soil C is estimated by a soil C mass balance modeling study that incorporates policy considerations in the analysis. A literature review of soil C modeling and impacts of management practices has been completed. The models selected for use and/or modification to meet the needs of representing soil C cycles in agroecosystems and impacts of management practices are CENTURY and DNDC. These models share a common ability to examine the impacts of alternative management practices on soil organic C, and are readily accessible. An important aspect of this effort is the development of the modeling framework and methodology that define the agricultural production systems and scenarios (i.e., crop-soil-climate combinations) to be assessed in terms of national policy, the integration of the model needs with available databases, and the operational mechanics of evaluating C sequestration potential with the integrated model/database system. We are working closely with EPA`s Office of Policy and Program Evaluation to define a reasonable set of policy alternatives for this assessment focusing on policy that might be affected through a revised Farm Bill, such as incentives to selectively promote conservation tillage, crop rotations, and/or good stewardship of the conservation reserve. Policy alternatives are translated into basic data for use in soil C models through economic models. These data, including such elements as agricultural practices, fertilization rates, and production levels are used in the soil C models to produce net carbon changes on a per unit area basis. The unit-area emissions are combined with areal-extent data in a GIS to produce an estimate of total carbon and nitrogen changes and thus estimate greenhouse benefits.

  3. Iron: the forgotten driver of nitrous oxide production in agricultural soil.

    Xia Zhu

    Full Text Available In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems. A set of soils from California's main agricultural regions was used to observe N2O emission under conditions representative of typical field scenarios. Results of multivariate analysis showed that in five of the twelve different conditions studied, iron ranked higher than any other intrinsic soil property in explaining observed emissions across soils. Upcoming studies stand to gain valuable information by considering iron among the drivers of N2O emission, expanding the current framework to include coupling between biotic and abiotic reactions.

  4. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  5. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  6. Agriculture

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  7. Soils in an agricultural landscape of Jokioinen, south-western Finland

    M. YLI-HALLA

    2008-12-01

    Full Text Available Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO, and the World Reference Base for Soil Resources system (WRB. The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy, Podzols - Regosols - Cambisols - Histosols (FAO-Unesco, and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB.;

  8. A statistical approach to estimating soil-to-plant transfer factor of strontium in agricultural fields

    Ishikawa, Nao; Tagami, Keiko; Uchida, Shigeo

    2009-01-01

    Soil-to-plant transfer factor (TF) is one of the important parameters in radiation dose assessment models for the environmental transfer of radionuclides. Since TFs are affected by several factors, including radionuclides, plant species and soil properties, development of a method for estimation of TF using some soil and plant properties would be useful. In this study, we took a statistical approach to estimating the TF of stable strontium (TF Sr ) from selected soil properties and element concentrations in plants, which was used as an analogue of 90 Sr. We collected the plant and soil samples used for the study from 142 agricultural fields throughout Japan. We applied a multiple linear regression analysis in order to get an empirical equation to estimate TF Sr . TF Sr could be estimated from the Sr concentration in soil (C Sr soil ) and Ca concentration in crop (C Ca crop ) using the following equation: log TF Sr =-0.88·log C Sr soil +0.93·log C Ca crop -2.53. Then, we replaced our data with Ca concentrations in crops from a food composition database compiled by the Japanese government. Finally, we predicted TF Sr using Sr concentration in soil from our data and Ca concentration in crops from the database of food composition. (author)

  9. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe

    Bhim Bahadur Ghaley

    2018-03-01

    Full Text Available Conventional farming (CONV is the norm in European farming, causing adverse effects on some of the five major soil functions, viz. primary productivity, carbon sequestration and regulation, nutrient cycling and provision, water regulation and purification, and habitat for functional and intrinsic biodiversity. Conservation agriculture (CA is an alternative to enhance soil functions. However, there is no analysis of CA benefits on the five soil functions as most studies addressed individual soil functions. The objective was to compare effects of CA and CONV practices on the five soil functions in four major environmental zones (Atlantic North, Pannonian, Continental and Mediterranean North in Europe by applying expert scoring based on synthesis of existing literature. In each environmental zone, a team of experts scored the five soil functions due to CA and CONV treatments and median scores indicated the overall effects on five soil functions. Across the environmental zones, CONV had overall negative effects on soil functions with a median score of 0.50 whereas CA had overall positive effects with median score ranging from 0.80 to 0.83. The study proposes the need for field-based investigations, policies and subsidy support to benefit from CA adoption to enhance the five soil functions.

  10. Mapping Agricultural Frozen Soil on the Watershed Scale Using Remote Sensing Data

    Khaldoune, J; Bernier, M; Van Bochove, E; Nolin, M.C

    2011-01-01

    This paper presents an empirical model for classifying frozen/unfrozen soils in the entire Bras d Henri River watershed (167 km 2 ) near Quebec City (Quebec, Canada). It was developed to produce frozen soil maps under snow cover using RADARSAT-1 fine mode images and in situ data during three winters. Twelve RADARSAT-1 images were analyzed from fall 2003 to spring 2006 to discern the intra- and inter annual variability of frozen soil characteristics. Regression models were developed for each soil group (parent material-drainage-soil type) and land cover to establish a threshold for frozen soil from the backscattering coefficients (HH polarization). Tilled fields showed higher backscattering signal (+3 db) than the untilled fields. The overall classification accuracy was 87% for frozen soils and 94% for unfrozen soils. With respect to land use, that is, tilled versus untilled fields, an overall accuracy of 89% was obtained for the tilled fields and 92% for the untilled fields. Results show that this new mapping approach using RADARSAT-1 images can provide estimates of surface soil status (frozen/unfrozen) at the watershed scale in agricultural areas.

  11. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  12. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development.

    Ouyang, Wei; Wu, Yuyang; Hao, Zengchao; Zhang, Qi; Bu, Qingwei; Gao, Xiang

    2018-02-01

    Soil erosion exhibits special characteristics in the process of agricultural development. Understanding the combined impacts of land use and soil property changes on soil erosion, especially in the area under long-term agricultural cultivations, is vital to watershed agricultural and soil management. This study investigated the temporal-spatial patterns of the soil erosion based on a modified version of Universal Soil Loss Equation (USLE) and conducted a soil erosion contribution analysis. The land use data were interpreted from Landsat series images, and soil properties were obtained from field sampling, laboratory tests and SPAW (Soil-Plant-Atmosphere-Water) model calculations. Over a long period of agricultural development, the average erosion modulus decreased from 187.7tkm -2 a -1 in 1979 to 158.4tkm -2 a -1 in 2014. The land use types were transformed mainly in the reclamation of paddy fields and the shrinking of wetlands on a large scale. Most of the soils were converted to loam from silty or clay loam and the saturated hydraulic conductivity (K s ) of most soil types decreased by 1.11% to 43.6%. The rapidly increasing area of 49.8km 2 of paddy fields together with the moderate decrease of 14.0km 2 of forests, as well as K s values explained 87.4% of the total variance in soil erosion. Although changes in soil physical and water characteristics indicated that soil erosion loads should have become higher, the upsurge in paddy fields played an important role in mitigating soil erosion in this study area. These results demonstrated that land use changes had more significant impacts than soil property changes on soil erosion. This study suggested that rational measures should be taken to extend paddy fields and control the dry land farming. These findings will benefit watershed agricultural targeting and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Analysis on Cu and Zn Concentrations in Agricultural Soils of Ili District, Xinjiang Autonomous Region, China

    YANG Jing-na

    2015-02-01

    Full Text Available The aim of this work is mainly to investigate the contents of copper(Cuand zinc(Znin agricultural soils to provide basic infor-mation for the establishment of green and organic production base in Ili District, Xinjiang Autonomous Region. 600 topsoil samples of the a-gricultural land were collected from eight counties of Ili District, and the contents of Cu and Zn were determined by AAS after microwave di-gestion. The statistics analysis showed that the mean contents of Cu and Zn in the agricultural soils of Ili District were 28.68 mg·kg-1 and 83.17 mg·kg-1, respectively. The concentrations of Cu in the agricultural soils of Ili District ranged from 11.07 mg·kg-1 to 59.90 mg·kg-1, 85% of which ranged from 20 mg·kg-1 to 40 mg·kg-1; and the concentrations of Zn in the agricultural soils of Ili District ranged from 39.58 mg·kg-1 to 160.40 mg·kg-1, 90%of which ranged from 60 mg·kg-1 to 110 mg·kg-1. Furthermore, compared the Cu and Zn contents of the tested soils among the eight counties, Cu contents in Tekes County were higher than other counties, while Zn contents showed little difference. The con-tents of Cu and Zn in the tested soils were all below the threshold values that were established in the national environmental quality standard for soils(secondary standards, GB 15618-1995, but about 7% and 21% were higher than the Cu and Zn background values of soil in Ili District, respectively. Furthermore, the concentrations of Cu and Zn in soils of Ili District accord with the environmental requirements for or-ganic and green production base regulated by national standard of organic products(GB/T 19630-2011and industrial standard of green food(NY/T 391-2013.

  14. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  15. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  16. Reuse of Sewage Sludge for Agricultural Soil Improvement (Case Study: Kish Island

    Shahnaz Shafieepour

    2011-07-01

    Full Text Available Sludge from wastewater treatment plants is a valuable source of nitrogen, phosphorus and potassium which are necessary for the plants growth. The purpose of this research was to control sludge quality to use it for soil improvement in Kish Island, Iran. Because of soil with low qualified for agricultural activities and high import expenses of fertile soils from outside of the Island, application of sludge as a cheap source of soil amendment is an easy and economical mean to improve the soil in KishIsland. Comparison of laboratory data of domestic sludge with global standard has shown that it has suitable for application on landscapes and agriculture from the point of view of fertility and heavy metals concentration. Biological data has also shown that the sludge was in class A or B of EPA standard, to fecal coliform, based on the ambient conditions such as water, air, temperature, sun radiation and storage time. The soil test data indicated that salinity, sodium and calcium ions were between 5000-7000 mg/kg which cause a decrease in plant's growth. Transplanting of garden petunia in the region has been done in different samples mixed with sludge rate of 0, 25, 50, 75 and 100 ton/ha during December 2008 to March 2009. In the first period of the growth study, the results have shown a decrease in the amended soil with sludge retard in comparison with control plant, but after 5 months probably because of spring rains and decrease in the salinity of amended soil, the plant has shown very good growth in leaves and petal, whereas the control plant was dried. Soil and plant analyses were also approved the results because physical (humidity increase and chemical (EC decrease characteristics of the amended soil with sludge were improved. Most of the time, the concentrations of micro-nutrients such as iron, manganese, zinc, copper and nutrients in soil and leaves showed an increase in values by an increase in the rate of applied sludge. Other results were

  17. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  18. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    Stanton, Alan [Southwest Sciences, Inc., Santa Fe, NM (United States); Zondlo, Mark [Princeton Univ., NJ (United States); Gomez, Anthony [Southwest Sciences, Inc., Santa Fe, NM (United States); Pan, Da [Princeton Univ., NJ (United States)

    2017-02-27

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lack of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and

  19. Sustainable Agriculture Evaluation for Red Soil Hill Region of Southeast China

    ZHAO Qi-Guo; XU Meng-Jie

    2004-01-01

    Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this study was to evaluate sustainable agriculture in the red soil hill region of Southeast China through a newly proposed method combining four separate sub-systems: regional population (P), resource (R), environmental (E), and socio-economic (S). This new index system was proposed to appraise synthetically the agricultural sustainability of the red soil hill region from 1988 to 1996 with a two-step method assessing: a) the agricultural sustainability in each province independently and b) the relative sustainability of each province to the whole region. The first step only provided a development trend for each province based on its original situation, while the second step provided additional information on the comparative status of each province in agricultural development to the region as a whole. Higher index scores were found for the economy and resource categories denoting improvement. However, lower scores in the environment category indicated the improvement was achieved at the cost of deteriorating ecological surroundings due to an increasing population that demanded more from the agro-ecosystem and put heavier pressures on it. Results also showed that water and soil losses in this region were the major obstacles encountered in sustainable agriculture development. The assessment results were verified when compared with results from another method. This suggested that the new assessment system was reliable and credible in evaluating agricultural sustainability on a regional scale.

  20. The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes

    Bedard-Haughn, A.; Jongbloed, F.; Akkennan, J.; Uijl, A.; Jong, de E.; Yates, T.; Pennock, D.

    2006-01-01

    Carbon sequestration by agricultural soils has been widely promoted as a means of mitigating greenhouse gas emissions. In many regions agricultural fields are just one component of a complex landscape matrix and understanding the interactions between agricultural fields and other landscape

  1. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  2. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  3. Soil Loss Vulnerability in an Agricultural Catchment in the Atlantic Forest Biome in Southern Brazil

    Rafael Gotardo

    2016-11-01

    Full Text Available This study estimates soil loss vulnerability using field samples and spatial data in a 30 km² area in the Atlantic forest biome in southern Brazil. The anthropogenic part of the landscape consists mainly of small agricultural properties. Soil loss vulnerability was calculated using adaptations of the universal soil loss equation. The results were compared to sediment data collected during field surveys. Spatial analysis was performed using a geographical information system (GIS and fine resolution data (1 m. Both field and spatial analyses produced similar results, 5.390 tons of soil loss per year using field data and 5.691 tons per year using GIS. Using soil loss and sediment data related to the Concordia River, we estimate that of all the exported sediment 25% of the lost soil reaches the river. These data are an effective source of information for municipal administrators of the region, which consists of small agricultural catchments (dominated by small properties that comprise the regional economy. A thematic map was used to determine sub-drainage priority as information for public managers.

  4. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  5. Atmospheric impact of abandoned boreal organic agricultural soils depends on hydrological conditions

    Maljanen, M.; Martikainen, P.J. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], E-Mail: marja.maljanen@uef.fi; Hytonen, J. [Finnish Forest Research Inst., Kannus (Finland); Makiranta, P.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Forest Sciences; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)

    2013-09-01

    Drained agricultural peat soils are significant sources of carbon dioxide (CO{sub 2}) but also small sinks for methane (CH{sub 4}). Leaving these soils without any cultivation practice could be an option to mitigate GHG emissions. To test this hypothesis, we measured, over a three year period, net CO{sub 2} exchange and fluxes of CH{sub 4} for five agricultural peat soils that had been abandoned for 20-30 years. Annually, the sites were either small net sinks or sources of CO{sub 2} and CH{sub 4} (-7,8 to 530 g CO{sub 2}-Cm {sup -2} and -0,41 to 1,8 g CH{sub 4}m{sup -2}). Including N{sub 2}O emissions from our previous study, the net (CH{sub 4}+CO{sub 2}+N{sub 2}O) emissions as CO{sub 2} equivalents were lower than in cultivated peat soils and were lowest in the wet year. Therefore, high GHG emissions from these soils could be avoided if the water table is maintained close to the soil surface when photosynthesis is favoured over respiration. (orig.)

  6. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications

    Xu, Gang; Lv, Yingchun [Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai (China); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai (China); Sun, Junna; Wei, Linlin [Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai (China); Graduate University of Chinese Academy of Sciences (CAS), Beijing (China); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai (China); Shao, Hongbo [Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai (China); Institute of Life Sciences,Qingdao University of Science and Technology, Qingdao (China); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai (China)

    2012-10-15

    Biochar, a by-product of biomass pyrolysis, has been suggested as a mean to combat climate change, and at the same time to achieve agricultural and environmental benefits. As one possible source of the components with high aromatic structure in soil humus, biochar is of great importance in increasing soil carbon storage and improving soil nutrient retention and nutrient availability, and in maintaining the balance of soil ecosystem. This paper briefly reviewed and synthesized recent findings and discussions regarding the production and characteristics of biochar, its effects on global climate change and particularly in relation to the environmental effects of biochar in soils. Agronomic benefits of biochar application are critically highlighted because researches show that biochar had varied effects on crop productivity thorough the different bio-physical interactions between the biochar and the soils, which are deserved for further investigations. Potential pitfalls and knowledge gaps were briefly discussed on the environmental behavior and the effects of biochar in agricultural ecosystem. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  8. Soil nutrient content of old-field and agricultural ecosystems exposed to chronic gamma irradiation

    Armentano, T.V.; Holt, B.R.; Bottino, P.J.

    1975-01-01

    Soil nutrients (extractable P. and NO 3 -N, exchangeable Ca, Mg and K), exchangeable Al, pH and organic matter content were measured over the top six inches of the soils of the seven-year old-field portion and the cultivated portion of the Brookhaven gamma field. Although concentrations of all nutrient elements were higher in the agricultural soil, the distributions of Ca, P, Al, pH and organic matter were similar along the radiation gradient in both fields. There was also a regular reduction in the phosphorus with decreasing exposure, but distribution of other elements was not clearly related to radiation effects. The distribution of all elements except K was significantly correlated with pH in the agricultural soil. In the old-field only Ca, Mg and Al showed this relationship. The most conspicuous effects of nearly 25 yr of chronic irradiation of the site were a reduction in soil organic matter content and an increase in soil P in both fields. (author)

  9. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20 °C vs. 25 °C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus

  10. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  11. Interactive effects of agricultural management and topography on soil carbon sequestration

    Ladoni, M.; Kravchenko, S.; Munoz, J.; Erickson, M.

    2012-12-01

    Proper agricultural management scenarios such as no-tillage, cover cropping, agroforestry, have demonstrated potential to increase the amount of carbon sequestered in soil and to mitigate atmospheric carbon levels. The knowledge about positive effects of cover cropping comes mostly from small uniform experimental plots, but whether these positive effects will exists in large scale fields with diverse topography and what would be the magnitude of these effects on a field scale remains to be seen. Our objective is to compare performance of different agricultural managements including those with cover crops in their influences on SOC across diverse topographical landscape in large agricultural fields. The three studied agricultural practices are Conventionally tilled and fertilized management without cover crops (T1), Low-input management with reduced chemical inputs (T3) and Organic (T4) management, the latter two have rye and red clover cover crops as part of their rotations. Within each field 1- 4 transects with three topographical positions of "depression", "slope" and "summit" were identified. The first soil sampling was done in spring 2010 and the second set of soil samples were collected from topographical positions during growing season of 2011. Samples were analyzed for total SOC and also particulate organic carbon (POC) content to show the changes in active pools of SOC. The results showed that topography has a significant influence in performance of cover crops. Agricultural managements with cover crops increased the POC in soil and the magnitude of this increase was different across space. Cover crops built the highest POC in depressions followed by summit and then slope. The conventional agricultural management increased POC in depression but decreased it on slopes. Low-input agricultural management when coupled with cover cropping has a potential to produce the highest increase in active pools of SOC across topographically diverse fields. The ratio of

  12. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy.

    Guidotti, Laura; Carini, Franca; Rossi, Riccardo; Gatti, Marina; Cenci, Roberto M; Beone, Gian Maria

    2015-04-01

    This work is part of a wider monitoring project of the agricultural soils in Lombardia, which aims to build a database of topsoil properties and the potentially toxic elements, organic pollutants and gamma emitting radionuclides that the topsoils contain. A total of 156 agricultural soils were sampled according to the LUCAS (Land Use/Cover Area frame statistical Survey) standard procedure. The aim was to provide a baseline to document the conditions present at the time of sampling. The results of the project concerning soil radioactivity are presented here. The aim was to assess the content of (238)U, (232)Th, (137)Cs and (40)K by measuring soil samples by gamma spectrometry. (238)U, (232)Th and (40)K activities range 24-231, 20-70, and 242-1434 Bq kg(-1) respectively. The geographic distribution of (238)U reflects the geophysical framework of the Lombardia region: the soils with high content of uranium are distributed for the most part in the South Alpine belt, where the presence of magmatic rocks is widespread. These soils show an higher activity of (238)U than of (232)Th. The (238)U activities become lower than (232)Th when soils are located in the plain, originating from basic sedimentary rocks. (137)Cs activity ranges 0.4-86.8 kBq m(-2). The lowest activity of (137)Cs is in the plain, whereas the highest is in the North on soils kept as lawn or pasture. The (137)Cs activity of some samples suggests the presence of accumulation processes that lead to (137)Cs enriched soils. This is the first survey of gamma emitting radionuclides in Lombardia that is based on the LUCAS standard sampling. The results from this monitoring campaign are important for the human radiation exposure and provide the zero point, which will be useful for assessing future effects due to external factors such as human activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  14. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  15. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  16. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  17. Assessing Soil Conservation Efficiency of Traditional Agricultural Practices by FRN Techniques: Example in the Highlands of Madagascar

    Rabesiranana, Naivo; Rasolonirina, Martin; Fanantenansoa Solonjara, Asivelo; Nomenjanahary Ravoson, Heritiana; Mabit, Lionel

    2016-01-01

    Soil degradation induced by human activity is a major concern in Madagascar. More than 30% of the island’s total soil area, covering 184 338 km 2 , is degraded. Moreover, soil erosion and sedimentation cause not only on-site degradation of agricultural fertile soils in Madagascar, but also off-site problems such as downstream sediment deposition in floodplains, water streams and reservoirs. Therefore, there is a clear need to acquire reliable data on the pattern and magnitude of soil redistribution under various agricultural practices to promote effective conservation strategies.

  18. Effect of Continuous Agriculture of Grassland Soils of the Argentine Rolling Pampa on Soil Organic Carbon and Nitrogen

    Luis A. Milesi Delaye

    2013-01-01

    Full Text Available Long-term soil organic carbon (SOC and soil organic nitrogen (SON following cultivation of grassland soils (100/120-year tillage (T + 20/30-year no tillage (NT of the Rolling Pampa were studied calibrating the simple AMG model coupled with the natural 13C abundance measurements issued from long-term experiments and validating it on a data set obtained by a farmer survey and by long-term NT experiments. The multisite survey and NT trials permitted coverage of the history of the 140 years with agriculture. The decrease in SOC and SON storage that occurred during the first twenty years by a loss through biological activity was 27% for SOC and 32% for SON. The calibrated model described the SOC storage evolution very well and permitted an accurate simultaneous estimation of their three parameters. The validated model simulated well SOC and SON evolution. Overall, the results analyzed separately for the T and NT period indicated that the active pool has a rapid turnover (MRT ~9 and 13 years, resp. which represents 50% of SOC in the native prairie soil and 20% of SOC at equilibrium after NT period. NT implementation on soils with the highest soil organic matter reserves will continue to decrease (17% for three decades later under current annual addition.

  19. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  20. Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey.

    Dartan, Güler; Taşpınar, Fatih; Toröz, İsmail

    2015-03-01

    This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandırma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.

  1. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Assessment of potential soil degradation on agricultural land in the czech republic.

    Šarapatka, Bořivoj; Bednář, Marek

    2015-01-01

    Many attempts have been made worldwide to develop methods to identify the areas most threatened by soil degradation. Some soils in afflicted areas may be irreversibly degraded and thus have very little resilience (the ability to restore themselves). For the purpose of assessing the current state of soil degradation in the Czech Republic (CZ) we have developed an overall indicator of land vulnerability to the threat of soil degradation on the basis of individual factors that contribute to soil degradation and are monitored on a long-term basis in various research worksites in the CZ. Individual degradation factors were divided into two groups: chemical and physical degradation. On the basis of principal component analysis, individual degradation factors were assigned a specific weight of influence. With the use of a GIS, the input factors of degradation were combined to create maps of chemical and physical soil degradation, and consequently a map of overall degradation-threatened soils for the CZ, along with a map of areas differentiated according to the prevailing type of degradation. Results showed that, at present, the most important degradation factor in the CZ is water erosion, followed by loss of organic matter. Statistical analysis showed that approximately 51% of agricultural land is moderately threatened in the CZ. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems.

    Fernández, María Dolores; Alonso-Blázquez, María Nieves; García-Gómez, Concepción; Babin, Mar

    2014-11-01

    To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (psoils, significant reductions (psoil phosphatase enzymatic activity decreased significantly (psoils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik

    2015-04-01

    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  5. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  6. Multiresidual determination of pesticides in agricultural soil sample using Quechers extraction methodology

    Castro Garcia, Consuelo del Pilar

    2011-01-01

    To achieve a sustainable agricultural production there are used different organic and inorganic products, among them we found the fertilizers and pesticides. When they are applied most of the product falls to the ground, generating significant sources of pollution in the areas near the application and depending on the mobility of the pesticide, it can reach more remote areas. That is why it is important to determine the pesticide residues in soil after their application, being the selection of the extraction method crucial for the subsequent traces detection. In the present work there was evaluated the QUECHERS extraction technique, a method used in food but modified for a different and complex matrix like soil in order to achieve acceptable efficiencies multi-residue extraction of 20 pesticides and their subsequent determination by gas chromatography with electron capture and mass detection. The method was applied for the determination of pesticides in three soil samples from an agricultural site with different slopes between them. The Results indicated that 75% of the pesticides tested had acceptable efficiencies, thus meeting the objective of achieving multiresidue determination of pesticides in agricultural soil samples by extraction methodology QUECHERS. Besides, the presence of the fungicide penconazole was only detected in the three samples, being the highest concentration of pesticide found in the area with less slope (V_A_B_A_J_O) (author)

  7. Physico-Chemical Analysis of Groundwater and Agriculture Soil of Gambat, Khairpur District, Pakistan

    Pirzada, T.; Talpur, M.M.A.; Qazi, Y.F.; Naseem, S.

    2013-01-01

    This study was conducted to estimate the ground water as well as agriculture soil quality, nutrient status and physico-chemical characteristics of Gambat, District Khairpur, Pakistan. Assorted parameters like temperature, pH, EC, TDS, Cl-, SO/sub 4/sup 2-/, HCO/sub 3/ /sup -/, sodium, potassium, calcium, magnesium, SAR values as well as the Piper and Stiff diagrams were determined to confer a clear picture of quality parameters in ground water and agriculture soil of the area. The present investigations conclude that the maximum parameters are not at the level of pollution except major metal ions Na/sup +/ and Ca/sup 2+/. The higher concentration of Ca/sup 2+/ and Na/sup +/ could be due to the deposits of the salts of these elements into soil, which may had leached into ground water. The Piper diagram suggest that composition of water is (Na+/sup +/K/sup +/)-(Ca/sup 2+/+Mg/sup 2+/)-HCO/sub 3/ /sup -/ - (Cl/sup -/+SO/sub 4//sup 2-/)-type. The areal distribution of stiff diagram constructed for groundwater samples showed ionic balances, indicating the major ion analyses are of good quality. Therefore, both ground water and soil samples observed are satisfactory for their utilization in various purposes such as domestic, agricultural, industrial, etc. (author)

  8. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik

    2010-01-01

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  9. Distribution and geology accumulation contamination analysis of heavy metal cadmium in agricultural soil of Zunyi county

    Chen Hongliang; Long Qian; Ke Yang

    2011-01-01

    The pollution of heavy metal Cd in agricultural soils of Zunyi County, Guizhou Province, was investigated and assessed by using geology accumulation indices (igeo) and pollution index method in this study. Results showed that the average content of Cd is 0.356 mg/kg, and the geochemistry baseline content of Cd was 0.147 mg/kg. The I geo s of Cd was 0.691, which suggested that non-contaminated soil accounts for 13.84%, 59.17% of tested soils was between non-polluted and mid-level polluted, 21.37% with mid-level polluted and 5.17% was between mid-level polluted and severely polluted, 0.45% of which was severely polluted. Contamination degree analysis indicated that non-contaminated soil was only 10.57%, 54.44% was influenced by Cd and 34.98% was seriously influenced by Cd. (authors)

  10. CQESTR Simulation of Soil Organic Matter Dynamics in Long-term Agricultural Experiments across USA

    Gollany, H.; Liang, Y.; Albrecht, S.; Rickman, R.; Follett, R.; Wilhelm, W.; Novak, J.

    2009-04-01

    Soil organic matter (SOM) has important chemical (supplies nutrients, buffers and adsorbs harmful chemical compounds), biological (supports the growth of microorganisms and micro fauna), and physical (improves soil structure and soil tilth, stores water, and reduces surface crusting, water runoff) functions. The loss of 20 to 50% of soil organic carbon (SOC) from USA soils after converting native prairie or forest to production agriculture is well documented. Sustainable management practices for SOC is critical for maintaining soil productivity and responsible utilization of crop residues. As crop residues are targeted for additional uses (e.g., cellulosic ethanol feedstock) developing C models that predict change in SOM over time with change in management becomes increasingly important. CQESTR, pronounced "sequester," is a process-based C balance model that relates organic residue additions, crop management and soil tillage to SOM accretion or loss. The model works on daily time-steps and can perform long-term (100-year) simulations. Soil organic matter change is computed by maintaining a soil C budget for additions, such as crop residue or added amendments like manure, and organic C losses through microbial decomposition. Our objective was to simulate SOM changes in agricultural soils under a range of soil parent materials, climate and management systems using the CQESTR model. Long-term experiments (e.g. Champaign, IL, >100 yrs; Columbia, MO, >100 yrs; Lincoln, NE, 20 yrs) under various tillage practices, organic amendments, crop rotations, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. Simulated and observed values from the sites were significantly related (r2 = 94%, P management issue. CQESTR successfully simulated a substantial decline in SOM with 90% of crop residue removal for 50 years under various rotations at Columbia, MO and Champaign, IL. An increase in SOM

  11. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management.

    Sułowicz, Sławomir; Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-08-01

    Effect of the fungicide tetraconazole on microbial community in silt loam soils from orchard with long history of triazole application and from grassland with no known history of fungicide usage was investigated. Triazole tetraconazole that had never been used on these soils before was applied at the field rate and at tenfold the FR. Response of microbial communities to tetraconazole was investigated during 28-day laboratory experiment by determination of changes in their biomass and structure (phospholipid fatty acids method-PLFA), activity (fluorescein diacetate hydrolysis-FDA) as well as changes in genetic (DGGE) and functional (Biolog) diversity. Obtained results indicated that the response of soil microorganisms to tetraconazole depended on the management of the soils. DGGE patterns revealed that both dosages of fungicide affected the structure of bacterial community and the impact on genetic diversity and richness was more prominent in orchard soil. Values of stress indices-the saturated/monounsaturated PLFAs ratio and the cyclo/monounsaturated precursors ratio, were almost twice as high and the Gram-negative/Gram-positive ratio was significantly lower in the orchard soil compared with the grassland soil. Results of principal component analysis of PLFA and Biolog profiles revealed significant impact of tetraconazole in orchard soil on day 28, whereas changes in these profiles obtained for grassland soil were insignificant or transient. Obtained results indicated that orchards soil seems to be more vulnerable to tetraconazole application compared to grassland soil. History of pesticide application and agricultural management should be taken into account in assessing of environmental impact of studied pesticides.

  12. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  14. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  15. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  16. Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment

    Sylvie eNazaret

    2014-04-01

    Full Text Available The occurrence of Pseudomonas aeruginosa was monitored at a broad spatial scale in French agricultural soils, from various soil types and under various land uses to evaluate the ability of soil to be a natural habitat for that species. To appreciate the impact of agricultural practices on the potential dispersion of P. aeruginosa, we further investigated the impact of organic amendment at experimental sites in France and Burkina Faso. A real-time quantitative PCR (qPCR approach was used to analyze a set of 380 samples selected within the French RMQS (‘Réseau de Mesures de la Qualité des Sols’ soil library. In parallel, a culture-dependent approach was tested on a subset of samples. The results showed that P. aeruginosa was very rarely detected suggesting a sporadic presence of this bacterium in soils from France and Burkina Faso, whatever the structural and physico-chemical characteristics or climate. When we analyzed the impact of organic amendment on the prevalence of P. aeruginosa, we found that even if it was detectable in various manures (at levels from 103 to 105 CFU or DNA targets (g drywt-1 of sample, it was hardly ever detected in the corresponding soils, which raises questions about its survival. The only case reports were from a vineyard soil amended with a compost of mushroom manure in Burgundy, and a few samples from two fields amended with raw urban wastes in the sub-urban area of Ouagadougou, Burkina Faso. In these soils the levels of culturable cells were below 10 CFU (g drywt-1.

  17. Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku

    Reginawanti Hindersah

    2018-01-01

    Full Text Available Agricultural productivity in Buru Island, Maluku is threatened by tailings which are generated from formerly gold mine in Botak Mountain in Wamsait Village. Gold that extracted by using mercury was carried out in mining area as well agricultural field.  High content of mercury in tailings and agricultural field pose a serious problem of food production and quality; and further endangers human health. The purpose of this research was to determine the contaminant level of mercury in tailing, soil and its accumulation in edible part of some food crops. Soil, tailing and plant samples for Hg testing were taken by purposive method based on mining activities in Waelata, Waeapo and Namlea sub district. Six soil samples had been analyzed for their chemical properties. Total mercury levels in tailings and plants were measured by Atomic Adsorption Spectrophotometer. This study showed that agricultural field where tailings were deposited contained Hg above the threshold but agricultural area which is far from hot spot did not. Most edible parts of food crops accumulated mercury more than Indonesian threshold for mercury content in food. This evidence explained that tailings deposited on the surface of agricultural field had an impact on soil quality and crop quality. Tailing accumulated on soil will decreased soil quality since naturally soil fertility in agricultural field in Buru is low.

  18. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy

    Guidotti, Laura; Carini, Franca; Rossi, Riccardo; Gatti, Marina; Cenci, Roberto M.; Beone, Gian Maria

    2015-01-01

    This work is part of a wider monitoring project of the agricultural soils in Lombardia, which aims to build a database of topsoil properties and the potentially toxic elements, organic pollutants and gamma emitting radionuclides that the topsoils contain. A total of 156 agricultural soils were sampled according to the LUCAS (Land Use/Cover Area frame statistical Survey) standard procedure. The aim was to provide a baseline to document the conditions present at the time of sampling. The results of the project concerning soil radioactivity are presented here. The aim was to assess the content of 238 U, 232 Th, 137 Cs and 40 K by measuring soil samples by gamma spectrometry. 238 U, 232 Th and 40 K activities range 24–231, 20–70, and 242–1434 Bq kg −1 respectively. The geographic distribution of 238 U reflects the geophysical framework of the Lombardia region: the soils with high content of uranium are distributed for the most part in the South Alpine belt, where the presence of magmatic rocks is widespread. These soils show an higher activity of 238 U than of 232 Th. The 238 U activities become lower than 232 Th when soils are located in the plain, originating from basic sedimentary rocks. 137 Cs activity ranges 0.4–86.8 kBq m −2 . The lowest activity of 137 Cs is in the plain, whereas the highest is in the North on soils kept as lawn or pasture. The 137 Cs activity of some samples suggests the presence of accumulation processes that lead to 137 Cs enriched soils. This is the first survey of gamma emitting radionuclides in Lombardia that is based on the LUCAS standard sampling. The results from this monitoring campaign are important for the human radiation exposure and provide the zero point, which will be useful for assessing future effects due to external factors such as human activities. - Highlights: • A monitoring campaign of agricultural soils was carried out in Lombardia, Italy. • 156 topsoils were sampled according to the European standard

  19. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  20. Assessment of herbicides and organochlorine pesticides contamination in agricultural soils using gas chromatography-mass spectrometry.

    Wang, Wan-Hong; Wang, Shi-Cheng; Wang, Yan-Hong

    2008-01-01

    A rapid multi-residue method for the simultaneous analysis of 3 herbicides and 8 organochlorine pesticides (OCPs) in agricultural soils has been developed, using ultrasonic solvent extraction coupled with gas chromatography-mass spectrometry (GC-MS). The recoveries ranged from 81% to 117% with a relative standard deviation (R.S.D) lower than 15%. The limits of quantification (LOQs) ranged from 0.03 to 1.06 microg x kg(-1) dry weight for different pesticides studied. The proposed method has been applied to investigate the 11 pesticide residues in agricultural soils collected from Liaoning Province, northeast of China. 3 OCPs and 3 herbicides were identified. Acetochlor, atrazine, butachtor were measured in the relatively high level with values ranging from 0.53 to 203.18 microg x kg(-1), 0.14 to 21.20 microg x kg(-1), pesticides in this study was compared with the date of other countries reported and the corresponding limiting values used in Netherland, USA, Canada, Vietnam and Thailand. Among the herbicide residues, there was a significant relativity between soil utilizing types and their residue concentration. It seems that the monitoring action for soil contamination caused by commonly-used herbicides should be enhanced according to soil utilizing types, especially acetochlor in maize field.

  1. The impact of tropical forest logging and oil palm agriculture on the soil microbiome.

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M

    2016-05-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.

  2. Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen Eivind

    2016-01-01

    , various agricultural management scenarios were considered including characteristic crop rotations with and without the presence of cover crops, and the application of organic amendments. We compared these simulated management effects with management effects estimated from Danish SOC monitoring network...

  3. Physicochemical Characterization of Potential Mobile Organic Matter In Five Typical German Agricultural Soils

    Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.

    Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of about 1-2 mM Ca2+ can be estimated which increases the stability of soil

  4. GENEPEASE Genomic tools for assessment of pesticide effects on the agricultural soil ecosystem

    Jacobsen, Carsten Suhr; Feld, Louise; Hjelmsø, Mathis Hjort

    The project focussed on validating RNA based methods as potential genomic tools in assessment of agricultural soil ecosystems. It was shown that the mRNA based technique was very sensitive and the effects was seen in the same situations as when the OECD nitrification assay showed an effect. 16S r......RNA based pyrosequencing of bacterial communities in soil was shown to report different than just DNA based analysis and indicated unlike the DNA measurement that the community was developing. Finally microarray analysis was compared to traditional test for toxicity testing of Folsomia candida and showed...

  5. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  6. Relationships between physical-geographical factors and soil degradation on agricultural land.

    Bednář, Marek; Šarapatka, Bořivoj

    2018-07-01

    It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature 10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  8. Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study.

    Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya

    2016-10-01

    The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.

  9. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  11. The use of the environmental Caesium-137 for soil erosion study at Kalumpang Agriculture Station

    Othman, Zainudin

    2004-01-01

    Rapid industrial development and intensive agriculture land use induce soil erosion, increase surface runoff and subsequent deposition of eroded sediment. It is a serious threat to sustainable agricultural development and environmental conservation. Several methods have been developed to assess the degree of soil erosion. One of the method currently being applied is using environmental isotope caesium-137. Caesium-137 (1 37C s) is a product of nuclear weapons tests during the 1950s to 1970s. Fallout of 137 Cs from the atmosphere is distributed globally and become part of the world ecosystem. The fallout has been used as an indicator of soil erosion and sediment deposition status. Since it has been uniformly deposited on the soil, the sites with no net soil loss should have 137 Cs inventories that reflect the amount of 137 Cs fallout, less the loss due to radioactive decay, 137 Cs has a half-life 30 years. The level of 137 Cs at an undisturbed site provides a reference value for assessing the degree of erosion and deposition within the area. The sites having concentration less than the reference value can be considered eroded and the sites having more than the reference value can be regarded as depositional (Walling and Quine, 1992). In recent years, there has been an increase increasing attention of using this technique it offers as an alternative technique in providing more information and answers to some soil erosion and sediment deposition status. In order to establish the spatial variability of 137 Cs in the soil in the erosion plot, soil samples were collected using a motorized corer at 72 sampling points in a sloping erosion plot of an area 120 x 50 meter. In this study, a slope transects technique was employed because the site was characterised by a simple topography. Four combine soil cores are needed at each point for analysis. The results strongly indicated that 137 Cs concentration was uniformly distributed throughout the cultivation layer of the plot

  12. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China

    Chen, Weixiao; Wu, Xinyi; Zhang, Haiyun; Sun, Jianteng; Liu, Wenxin; Zhu, Lizhong; Li, Xiangdong; Tsang, Daniel C.W.; Tao, Shu; Wang, Xilong

    2017-01-01

    Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth. - Highlights: • Several 2–4 rings methyl-PAHs were investigated in soils from Yangtze River Delta. • Higher levels of

  13. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture.

    Marcela S Montecchia

    Full Text Available The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%, while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.

  14. Recycling soil nitrate nitrogen by amending agricultural lands with oily food waste.

    Rashid, M T; Voroney, R P

    2003-01-01

    With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.

  15. An accelerated soil bait assay for the detection of potato mop top virus in agricultural soil.

    Davey, Triona

    2009-01-01

    An accelerated soil bait test can be used to determine whether a field harbours virus-carrying Spongospora subterranea. S. subterranea is the causal agent of powdery scab and also the only vector of potato mop top virus (PMTV). Real-time RT-PCR can detect PMTV RNA in the roots of bait plants after 2 weeks of growth in viruliferous soil. This test may be used to assess the risk of planting potato crops in a particular field.

  16. Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants.

    Raphael K Didham

    Full Text Available Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could 'spare' further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables, and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone

  17. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    Gina María Hernández-Ruiz; Natalia Andrea Álvarez-Orozco; Leonardo Alberto Ríos-Osorio

    2017-01-01

    Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of t...

  18. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B.; Juhler, René K.; Aamand, Jens

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metaboli...

  19. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Tröger, Josephine [Department of Psychology, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Muñoz, Katherine [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Frör, Oliver [Institute for Environmental Sciences, Group of Environmental Economics, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Schaumann, Gabriele Ellen, E-mail: schaumann@uni-landau.de [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany)

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  1. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-01-01

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  2. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  4. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  5. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  6. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  8. The assessment of soil redistribution on agricultural land using the environmental isotope of Caesium-137

    Zainudin Othman

    2002-01-01

    Environmental radionuclides have the potential to be used to trace sediment movements. Caesium-137 ( 137 Cs), a radionuclide released during nuclear weapon tests from 1950s to 1960s is strongly adsorbed on to clay. It enters the Malaysian environment through cold continental polar (cPk) air mass circulation and Hadley cell effects from the higher latitude regions, converged during Inter-tropical Convergence Zones (ITCZ) oscillation and deposited through precipitation on to the soil as fallouts. Its content in the soil profile has been used to estimate soil loss due to water erosion in agricultural land. Two soil sampling methods, incremental and bulk sampling, were adopted to collect samples from the erosion plot and reference sites to a depth of 40 cm for the determination of 137 Cs inventories. The soil depth-profile of 137 Cs inventory at an undisturbed site exhibits an exponential function with most of the contents are accumulated within the upper 12 cm portion of the soil profile whereas in the disturbed sites the 137 Cs content were partially mixed within the plough layer. The average 137 Cs reference inventory from two different locations was 580.7 Bq/ m 2 while local 137 Cs reference inventory was 551.9 Bq/ m 2 . The USLE, Ritchie equation and three mathematical models were used to estimate the rate of soil loss. The Proportional Model was found suitable to be used in this environment. Net soil loss from the study slope was estimated by the USLE of 4.34 ton/ ha/ yr. The soil redistribution patterns show that the upper and middle slopes had been eroded while deposition was observed at the foot slope. The maximum land form evolutions of the eroded areas was 4.5 mm/ yr and 0.5 mm/ yr for the depositional areas. The long-term erosion rate of the study area was considered low. (author)

  9. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary

  10. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  11. Mapping and determinism of soil microbial community distribution across an agricultural landscape.

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-06-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    Hively, W.D; McCarty, G.W; Reeves, J.B; Lang, M.W; Oesterling, R.A; Delwiche, S.R

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400-2450 nm, -10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R 2 >0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 x 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  13. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Dinéia Tessaro

    2016-06-01

    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  14. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems

    Jan H. Mol

    2013-09-01

    Full Text Available In tropical countries soil erosion is often increased due to high erodibility of geologically old and weathered soils; intensive rainfall; inappropriate soil management; removal of forest vegetation cover; and mining activities. Stream ecosystems draining agricultural or mining areas are often severely impacted by the high loads of eroded material entering the stream channel; increasing turbidity; covering instream habitat and affecting the riparian zone; and thereby modifying habitat and food web structures. The biodiversity is severely threatened by these negative effects as the aquatic and riparian fauna and flora are not adapted to cope with excessive rates of erosion and sedimentation. Eroded material may also be polluted by pesticides or heavy metals that have an aggravating effect on functions and ecosystem services. Loss of superficial material and deepening of erosion gullies impoverish the nutrient and carbon contents of the soils; and lower the water tables; causing a “lose-lose” situation for agricultural productivity and environmental integrity. Several examples show how to interrupt this vicious cycle by integrated catchment management and by combining “green” and “hard” engineering for habitat restoration. In this review; we summarize current findings on this issue from tropical countries with a focus on case studies from Suriname and Brazil.

  15. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.

    Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap

    2017-06-01

    Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Crop residue stabilization and application to agricultural and degraded soils: A review.

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants.

    Cicatelli, Angela; Guarino, Francesco; Castiglione, Stefano

    2017-04-01

    Chromium (Cr) and copper (Cu) are pollutants with a strong environmental impact. "Green biotechnology" as phytoremediation represents a sustainability opportunity for soil reclamation. In this study, we evaluated the possibility to reclaim agricultural soils located in the Solofrana valley, contaminated by Cr or Cu. Chromium contamination derives by repeated flooding events of Solofrana rivers containing Cr because of leather tanning plants, while Cu soil pollution was due to the use of Cu-rich pesticides in agriculture. Both metals showed a very low bioavailability. In order to perform an assisted phytoremediation of polluted fields, we carried out a preliminary ex situ experimentation testing for the first time sunflowers (cv. Pretor) and chelants (ethylenediaminetetraacetic acid (EDTA) and/or ethylene diamine disuccinate (EDDS)), useful when metal bioavailability is low. No symptoms of toxicity were observed in sunflowers grown on both soils, while biomass was improved when EDDS was added. Cr and Cu bioavailability was only slightly enhanced by chelants at the end of the treatments. Both Cr and Cu were mainly accumulated in the roots; moreover, Cu was also translocated to the aboveground organs in the presence of EDTA. The ex situ experimentation demonstrated that assisted phytoremediation is a very slow process not useful in the case of persistent pollution.

  18. Tracking agricultural soil nitric oxide emission variations with novel isotopic measurements

    Miller, D. J.; Chai, J.; Guo, F.; Overby, S.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2016-12-01

    Agricultural production systems impact the reactive nitrogen cycle via atmospheric nitrogen emissions including nitric oxide, denoted as total nitrogen oxides (NOx). NOx serve as precursors to ozone and nitrate aerosols, influencing air quality, radiative forcing, and ecosystem health. With recent declines in fuel combustion sources, soil emissions are an increasing contributor to NOx budgets. However, spatially heterogeneous, episodic soil NOx pulses are challenging to constrain and remain highly uncertain. Using a novel hourly resolution soil flux chamber-based NOx collection method, we investigate fertilizer management and climatic controls on cropland soil NOx flux and nitrogen isotopic composition (δ15N-NOx) natural abundance variations with field-based and laboratory measurements. No-till, rain-fed corn plots were sampled daily (triplicate isotope samples per treatment per day) following broadcast and shallow-disk injected dairy manure applications as part of a sustainable dairy cropping study in State College, PA (Penn State University; USDA-ARS). Injected manure plots exhibited median fluxes two times higher with larger spatial variations than that for broadcast manure. Soil emission δ15N-NOx signatures of -45 to -20 ‰ were correlated with flux magnitudes across both treatments. Median δ15N-NOx signatures for injected manure were lower with larger spatial variations (-32 ± 9 ‰) than that for broadcast manure (-24 ± 1.5 ‰). These differences are likely linked with higher NH4+ availability for nitrification with injected manure in contrast with higher NH3 volatilization and higher soil δ15N-NH4+ for broadcast manure. Although NOx fluxes were suppressed 1-2 days after heavy rainfall (>35 % water-filled pore space), δ15N-NOx remained consistent. Controlled laboratory incubation studies will also be presented quantifying links with inorganic substrate and fertilizer δ15N. Our observations suggest that agricultural soil δ15N-NOx signatures are

  19. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.

    2012-12-01

    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  20. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and

  1. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  2. Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field.

    Sørensen, Sebastian R; Aamand, Jens

    2003-10-01

    Mineralisation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and two of its known metabolites, 3-(4-isopropylphenyl)-1-methylurea (monodesmethyl-isoproturon) and 4-isopropylaniline, was studied in Danish agricultural soils with or without previous exposure to isoproturon. A potential for rapid mineralisation of isoproturon and the two metabolites was present in soils sampled from three plots within an agricultural field previously treated regularly with the herbicide, with 34-45%, 51-58% and 33-36% of the added [phenyl-U-14C]isoproturon, [phenyl-U-14C]monodesmethyl-isoproturon and [phenyl-U-14C]4-isopropylaniline metabolised to [14C]carbon dioxide within 30 days at 20 degrees C. In contrast, such extensive mineralisation of these three compounds was not observed within this period in soils sampled from two other agricultural fields without previous treatment with isoproturon. The mineralisation patterns indicated growth-linked metabolism of the three compounds in the previously exposed soils, and doubling times for [14C]carbon dioxide production ranged from 1.6 to 3.2, 1.0 to 2.1 and 1.3 to 1.7 days for isoproturon, monodesmethyl-isoproturon and 4-isopropylaniline, respectively. The ability to mineralise [phenyl-U-14C]isoproturon to [14C]carbon dioxide was successfully sub-cultured to a fresh mineral medium which provided isoproturon as sole source of carbon and nitrogen. One of the soils sampled from an agricultural field not previously treated with isoproturon showed accelerated mineralisation of [phenyl-U-14C]4-isopropylaniline toward the end of the experiment, with a doubling time for [14C]carbon dioxide production of 7.4days. This study indicates that the occurrence of rapid mineralisation of the phenyl ring of isoproturon to carbon dioxide is related to previous exposure to the herbicide, which suggests that microbial adaptation upon repeated isoproturon use may occur within agricultural fields.

  3. Metal Distribution in Urban Agricultural Soils in the Inland Empire, California

    Marin, C. C. E.

    2015-12-01

    Urban environments exhibit unique biogeochemistry due to the presence of a myriad of anthropogenic sources of contaminants. One potential route through which humans have been exposed to metal contaminants is the ingestion of food produced on urban soils. The Inland Empire is a metropolitan located in semi-arid region of Southern California with greater than 4 million residents, where the growing population is demonstrating an increase in citizen participation in contributing to expanding local food systems. In response to the demand for locally grown produce, the Inland Empire is undergoing rapid land use change, where large tracts of land on the periphery of cities, including Riverside, are being converted or set aside for urban agriculture, though the quality of the soil for food production is unknown. At the same time, smaller gardens and farms are growing in number within the more densely populated areas. Assessing the quality of urban soil currently used for food production in this region can aid in projecting how land use change will affect the quality of crops produced as urban agriculture continues to expand in arid regions. Soil samples were taken from a variety of land use types, including areas currently producing crops and areas set aside for future large scale food production. Samples were collected at the surface (0-2 cm) and below till depth (20-22 cm). These soils were analyzed for total carbon including organic and inorganic carbon fractions, total nitrogen, bulk metal and trace metal concentrations (including As, Mn, Cr, Pb, Cd, Zn, and Cu). To approximate the mobility of the trace elements under various conditions, extraction tests were also performed, including EPA Pb bioavailability analysis. Finally, we utilize statistical tools and spatial analysis to illustrate the relationship between previous land use, current land use, and soil quality for urban crop production.

  4. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  5. Distribution of heavy metals in peri-urban agricultural areas soils

    Iram, S.; Ahmad, I.; Akhtar, S.

    2012-01-01

    In industry oriented peri-urban areas, the heavy metals accumulation in soils caused by industrialization has become a potential threat. The top soil sample from 48 agricultural fields were collected from a typical industry based peri-urban areas (Lahore, Faisalabad, Multan, Kasur, Islamabad, Wah Cantt.) of Punjab, Pakistan to study the accumulation and distribution of heavy metals (Pb, Cd, Cr, Cu, Ni and Zn) by atomic absorption spectrophotometer. The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in peri-urban agricultural soils. The results of the study showed that the Pb content in the soil ranged from 17.24 to 126.4 mg/kg and the highest Pb content was observed in Islamabad soil samples, and the lowest in that of Multan area. The Cd content ranged from 1.1 to 4.0 mg/kg in Lahore while the highest Cr concentration level was 210.2 mg/kg and it was observed in Kasur and lowest 30.60 in that of Multan. The Cu content ranged from 31.2 to 127.9 mg/kg (Kasur-Lahore). The highest Ni concentration (82.0 mg/kg) was observed in Lahore from the urban area and the lowest level of 12.15 mg/kg was observed in Multan. The Zn content ranged from 42.5 to 267.7 mg/kg (Faisalabad-Wah Cantt). The study concluded that the concentration level of the heavy metals (Pb, Cd, Cu, Ni, Cr, Zn) in the studied peri-urban areas was higher as compared to heavy metal content of normal Dutch soil. High automobile traffic and industrial waste both are the most likely sources of the contamination of the peri urban areas of Pakistan. (author)

  6. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  7. Contamination of Phthalate Esters (PAEs in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China.

    Yuan Zhang

    Full Text Available The Wangyang River (WYR basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs in the agricultural soils in this area. Thirty-nine soil samples (0-20 cm were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g-1 dw to 0.457 μg g-1 dw with an average value of 0.294 μg g-1 dw. Di(2-ethylhexyl phthalate (DEHP and di-n-butyl phthalate (DnBP are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.

  8. Soil nitrogen balance assessment and its application for sustainable agriculture and environment

    Rabindra; Nath; Roy

    2005-01-01

    [1]United Nations,World Population Prospects:The 1998 Revision,New York,1999.[2]FAO,Fertilizer Requirements in 2015 and 2030,Rome:FAO,2000.[3]IPCC,Climate Change 1995:The Science of Climate Change,Cambridge:Cambridge University Press,1996.[4]USEPA Impact Assessment Report US EPA,Office of Policy,Planning and Evaluation,Washington,DC,1997.[5]IFA/FAO,Global estimates of gaseous emissions of NH3,NO and N2O from agricultural land,Rome,2001.[6]Stoorvogel,J.J.,Smaling,E.M.A.,Assessment of Soil Nutrient Depletion in Sub-Saharan Africa:1983-2000.Report 28,Wageningen:Winland Staring Centre,1990.[7]Pieri,C.,Bilans minéraux des systèmes de cultures pluviales en zones arides et semi-arides,L'Agron.Trop.,1985,40:1 -20.[8]Henao,J.,Baanante,C.,Estimating Rates of Nutrient Depletion in Soils of Agriculture Lands in Africa,Muscle Shoals:International Fertilizer Development Center,1999.[9]OECD,OECD National Soil Surface Nitrogen Balances-Explanatory Notes,Paris:OECD Secretariat,200la.[10]OECD,Environmental Indicators for Agriculture,Volume 3:Methods and Results,Paris:OECD Secretariat,200lb.[11]Sheldrick,W.F.,Syers,J.K.,Lingard,J.,A conceptual model for conducting nutrient audits at national,regional,and global scales,Nut.Cyc.Agroecosys.,2002,62:61-72.[12]Sheldrick,W.F,Syers,J.K.,Lingard,J.,Soil nutrient audits for China to estimate nutrient balances and output/input relationships,Ag.Ecosys.Env.,2003a,94:341-354.[13]FAO,Scaling soil nutrient balances-enabling mesolevel applications for African realities,in Fertilizer and Plant Nutrition Bull.15,Rome:FAO,2004.[14]IFA/IFDC/FAO,Fertilizer Use by Crop,4th ed.,Rome:IFA/IFDC/FAO,2000.[15]De Willigen,P.,An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach.Report 18,Wageningen:Plant Research International,2000.[16]Schoorl,J.M.,Veldkamp,A.,Bouma,J.,Modelling water and soil redistribution in a dynamic landscape context,Soil Sci.Soc.Am.,2002,66:1610- 1619.[17]Smaling,E

  9. Bioavailable soil P as a main key for sustainable agriculture: its functional model determined using isotopic tracers

    Fardeau, J.C.; Guiraud, G.; Marol, C.

    1994-12-31

    Sustainable agriculture is defined in many ways. In all of them, two main complementary concepts appear: this agriculture must firstly satisfy the human needs of foods for the present and secondly must not compromise the ability for the future generations to meet their needs. Therefore, concerning P, the sustainability in an ecosystem can be maintained if, and only if: (i) bioavailable soil P is not a limiting factor of crop yields in the considered conditions; (ii) all the parameters describing the available soil P will be unmodified each time that P is simultaneously taken by crops and returned to soils; (iii) P inputs and outputs must be without negative consequences on environment. Whatever the ecosystem, P nutrition can be described in terms of fluxes of P between soil and plant roots. The isotopic exchange method gives informations not only on bioavailable soil P but also on potential fluxes of P between soil and soil-solution. As roots take phosphorus in the soil solution it is concluded that this method can be used to predict not only potential P uptake by plants or crops in native soils but also the contribution to crop nutrition of a P application in soil. Isotopic tracers of P seem to be, at the present time, the simplest tool useful to describe, with a high accuracy, the main link of P cycle in sustainable agriculture: the bioavailable soil P. (authors). 9 refs., 1 fig., 1 tab. (authors).

  10. Bioavailable soil P as a main key for sustainable agriculture: its functional model determined using isotopic tracers

    Fardeau, J.C.; Guiraud, G.; Marol, C.

    1994-01-01

    Sustainable agriculture is defined in many ways. In all of them, two main complementary concepts appear: this agriculture must firstly satisfy the human needs of foods for the present and secondly must not compromise the ability for the future generations to meet their needs. Therefore, concerning P, the sustainability in an ecosystem can be maintained if, and only if: (i) bioavailable soil P is not a limiting factor of crop yields in the considered conditions; (ii) all the parameters describing the available soil P will be unmodified each time that P is simultaneously taken by crops and returned to soils; (iii) P inputs and outputs must be without negative consequences on environment. Whatever the ecosystem, P nutrition can be described in terms of fluxes of P between soil and plant roots. The isotopic exchange method gives informations not only on bioavailable soil P but also on potential fluxes of P between soil and soil-solution. As roots take phosphorus in the soil solution it is concluded that this method can be used to predict not only potential P uptake by plants or crops in native soils but also the contribution to crop nutrition of a P application in soil. Isotopic tracers of P seem to be, at the present time, the simplest tool useful to describe, with a high accuracy, the main link of P cycle in sustainable agriculture: the bioavailable soil P. (authors). 9 refs., 1 fig., 1 tab. (authors)

  11. Sorption of phosphate and zinc onto hematite and magnetite as mechanism of attenuation of contamination in agricultural soils

    Martínez Martínez, María del Rosario; Martí, Vicens; Giménez Izquierdo, Francisco Javier

    2014-01-01

    Excess of natural and synthetic fertilizers applied to agricultural soils is a well-known source of contamination of nitrates and potential source of contamination of metals (copper and zinc) and phosphates (Alloway 2010). Mineral phases such as iron oxides, are present in agricultural soils and they might play a main role in the retardation of the transport of different contaminants (Giménez et al. 2007). The present communication shows the experimental study of sorption of phosp...

  12. A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use.

    Assimakopoulos, J H; Kalivas, D P; Kollias, V J

    2003-06-20

    Special attention should be paid to the choice of the proper N-fertilizer, in order to avoid a further acidification and degradation of acid soils and at the same time to improve nitrogen use efficiency and to limit the nitrate pollution of the ground waters. Therefore, the risk of leaching of the fertilizer and of the acidification of the soils must be considered prior to any N-fertilizer application. The application of N-fertilizers to the soil requires a good knowledge of the soil-fertilizer relationship, which those who are planning the fertilization policy and/or applying it might not have. In this study, a fuzzy classification methodology is presented for mapping the agricultural soils according to the kind and the rate of application of N-fertilizer that should be used. The values of pH, clay, sand and carbonates soil variables are estimated at each point of an area by applying geostatistical techniques. Using the pH values three fuzzy sets: "no-risk-acidification"; "low-risk-acidification"; and "high-risk-acidification" are produced and the memberships of each point to the three sets are estimated. Additionally, from the clay and sand values the membership grade to the fuzzy set "risk-of-leaching" is calculated. The parameters and their values, which are used for the construction of the fuzzy sets, are based on the literature, the existing knowledge and the experimentation, of the soil-fertilizer relationships and provide a consistent mechanism for mapping the soils according to the type of N-fertilizers that should be applied and the rate of applications. The maps produced can easily be interpreted and used by non-experts in the application of the fertilization policy at national, local and farm level. The methodology is presented through a case study using data from the Amfilochia area, west Greece.

  13. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco

    Ibno Namr, Khalid; Mrabet, Rachid

    2004-06-01

    Morocco's semi-arid lands are characterized by unique challenges. The most important obstacles to the development of durable agriculture are (1) limited and unpredictable supply of soil moisture and (2) low soil quality. Intensive use of soil throughout history has led to depletion in soil quality, leading in return to reduced yields because of the consequent reduced organic matter. Recognizing the need to recover soil quality and production decline, INRA scientists began, in the early 1980s, research on the effects of crop rotations, tillage and residue management on the productivity and quality of cropped soils. The present study concerns the short-term effect of rotation, tillage and residue management on selected quality indices of a calcixeroll (organic matter, nitrogen, particulate organic carbon (Cpom), particulate organic nitrogen (Npom) and pH). Hence, three rotations (wheat-wheat, WW; fallow-wheat, FW; and fallow-wheat-barley, FWB), two tillage systems (conventional offset disking, CT and no-tillage, NT), and three levels of residue in the NT system (NT 0 = no-residue cover, NT 50 = half surface residue cover, NT 100 = full surface residue cover) were selected. Three surface horizons were sampled (0-2.5, 2.5-7 and 7-20 cm). The study results showed an improvement of measured soil chemical properties under NT compared to CT, at the surface layer. No-tillage system helped sequestration of carbon and nitrogen, build-up of particulate organic carbon and nitrogen and sensible reduction of pH only at the surface layer. Continuous wheat permitted a slight improvement of soil quality, mainly at the 0-2.5 cm depth. Effects of rotation, tillage and residue level were reduced with depth of measurements.

  14. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  16. Assessment of soil fertility status of Agriculture Research Station, Belachapi, Dhanusha, Nepal

    Dinesh Khadka

    2016-12-01

    Full Text Available Soil test-based fertility management is important for sustainable soil management. This study was carried out to determine the soil fertility status of the Agriculture Research Station, Belachapi, Dhanusha, Nepal. Using soil sampling auger 25 soil samples were collected randomly from a depth of 0-20 cm. Soil sampling points were identified using GPS device. Following standard methods adopted by Soil Science Division laboratory, Khumaltar, the collected soil samples were analyzed to find out their texture, pH, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu, Mn and organic matter status. The soil fertility status maps were made using Arc-GIS 10.1 software. The observed data revealed that soil was grayish brown in colour and sub-angular blocky in structure. The sand, silt and clay content were 36.03±3.66%, 50.32±2.52% and 25.42±2.25%, respectively and categorized as eight different classes of texture. The soil was acidic in pH (5.61±0.14. The available sulphur (0.73±0.09 ppm status was very low, whereas organic matter (1.34±0.07%, available boron (0.56±0.10 ppm, available zinc (0.54±0.22 ppm and available copper (0.30±0.01 ppm were low in status. The extractable potassium (95.52±13.37 ppm and extractable calcium (1264.8±92.80ppm exhibited medium in status. In addition, available phosphorus (33.25±6.97 ppm, available magnesium (223.20±23.65 ppm and available manganese (20.50±2.43 ppm were high in status. Furthermore, available iron (55.80±8.89 ppm status was very high. To improve the potentiality of crops (maize, rice, wheat etc. for studied area, future research strategy should be made based on its soil fertility status.

  17. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  18. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  19. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  20. Developing Sustainable Agromining Systems in Agricultural Ultramafic Soils for Nickel Recovery

    Petra Susan Kidd

    2018-06-01

    Full Text Available Ultramafic soils are typically enriched in nickel (Ni, chromium (Cr, and cobalt (Co and deficient in essential nutrients, making them unattractive for traditional agriculture. Implementing agromining systems in ultramafic agricultural soils represent an ecological option for the sustainable management and re-valorisation of these low-productivity landscapes. These novel agroecosystems cultivate Ni-hyperaccumulating plants which are able to bioaccumulate this metal in their aerial plant parts; harvested biomass can be incinerated to produce Ni-enriched ash or “bio-ore” from which Ni metal, Ni ecocatalysts or pure Ni salts can be recovered. Nickel hyperaccumulation has been documented in ~450 species, and in temperate latitudes these mainly belong to the family Brassicaceae and particularly to the genus Odontarrhena (syn. Alyssum pro parte. Agromining allows for sustainable metal recovery without causing the environmental impacts associated with conventional mining activities, and at the same time, can improve soil fertility and quality and provide essential ecosystem services. Parallel reductions in Ni phytotoxicity over time would also permit cultivation of conventional agricultural crops. Field studies in Europe have been restricted to Mediterranean areas and these only evaluated the Ni-hyperaccumulator Odontarrhena muralis s.l. Two recent EU projects (Agronickel and LIFE-Agromine have established a network of agromining field sites in ultramafic regions with different edapho-climatic characteristics across Albania, Austria, Greece and Spain. Soil and crop management practices are being developed so as to optimize the Ni agromining process; field studies are evaluating the potential benefits of fertilization regimes, crop selection and cropping patterns, and bioaugmentation with plant-associated microorganisms. Hydrometallurgical processes are being up-scaled to produce nickel compounds and energy from hyperaccumulator biomass. Exploratory

  1. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through