WorldWideScience

Sample records for unmanned remote monitoring

  1. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  2. Development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

    International Nuclear Information System (INIS)

    Jose, Jis Romal; Gupta, Ashutosh; Bahadur, Shuchita; Chaudhury, Probal; Pradeepkumar, K.S.

    2016-01-01

    During any radiation emergency, the level and extent of radioactive contamination need to be monitored for the timely and effective implementation of countermeasures to reduce the radiation exposure to public. In such a scenario, radiation surveillance can be carried out using either ground based mobile monitoring techniques or aerial radiation monitoring. Aerial radiation monitoring is quick and capable of scanning the areas which are not easily accessible by the ground based mobile monitoring. Compact unmanned aerial vehicle based radiation surveillance system is ideal in above mentioned radiation emergency scenarios as it can be rapidly deployed in the affected area and radiation exposure to the monitoring personal can be totally avoided. This paper describes development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

  3. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  4. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  5. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  6. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    Science.gov (United States)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  7. Unmanned Mobile Monitoring for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, YoungSoo; Park, JongWon; Kim, TaeWon; Jeong, KyungMin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Severe accidents at nuclear power plant have led to significant consequences to the people, the environment or the facility. Therefore, the appropriate response is required for the mitigation of the accidents. In the past, most of responses were performed by human beings, but it was dangerous and risky. In this paper, we proposed unmanned mobile system for the monitoring of nuclear accident in order to response effectively. For the integrity of reactor cooling and containment building, reactor cooling pipe and hydrogen distribution monitoring with unmanned ground vehicle was designed. And, for the safety of workers, radiation distribution monitoring with unmanned aerial vehicle was designed. Unmanned mobile monitoring system was proposed to respond nuclear accidents effectively. Concept of reinforcing the integrity of RCS and containment building, and radiation distribution monitoring were described. RCS flow measuring, hydrogen distribution measuring and radiation monitoring deployed at unmanned vehicle were proposed. These systems could be a method for the preparedness of effective response of nuclear accidents.

  8. Unmanned Aerial Vehicle (UAV-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex

    Directory of Open Access Journals (Sweden)

    Salvatore F. DI GENNARO

    2016-07-01

    Full Text Available Foliar symptoms of grapevine leaf stripe disease (GLSD, a disease within the esca complex are linked to drastic alteration of photosynthetic function and activation of defense responses in affected grapevines several days before the appearance of the first visible symptoms on leaves. The present study suggests a methodology to investigate the relationships between high-resolution multispectral images (0.05 m/pixel acquired using an Unmanned Aerial Vehicle (UAV, and GLSD foliar symptoms monitored by ground surveys. This approach showed high correlation between Normalized Differential Vegetation Index (NDVI acquired by the UAV and GLSD symptoms, and discrimination between symptomatic from asymptomatic plants. High-resolution multispectral images were acquired during June and July of 2012 and 2013, in an experimental vineyard heavily affected by GLSD, located in Tuscany (Italy, where vines had been surveyed and mapped since 2003. Each vine was located with a global positioning system, and classified for appearance of foliar symptoms and disease severity at weekly intervals from the beginning of each season. Remote sensing and ground observation data were analyzed to promptly identify the early stages of disease, even before visual detection. This work suggests an innovative methodology for quantitative and qualitative analysis of spatial distribution of symptomatic plants. The system may also be used for exploring the physiological bases of GLSD, and predicting the onset of this disease. 

  9. Unmanned aerial complexes as a way of NPP and environment radiation monitoring

    International Nuclear Information System (INIS)

    Babak, V.P.; Kanchenko, V.A.; Klyuchnikov, A.A.; Krasnov, V.A.; Chepur, N.L.

    2012-01-01

    As a example of the using of unmanned aircraft for video monitoring and radiation background measurement in the accident area at the NPP Fukushima -1 are shown the efficiency of its use. The analyse of possible environmental monitoring remotely piloted ultralight unmanned aerial vehicle are carried out

  10. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  11. Unmanned aerial systems for photogrammetry and remote sensing: A review

    OpenAIRE

    Colomina, Ismael; Molina, Pere

    2014-01-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  12. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  13. Remote Monitoring Transparency Program

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.

    1996-01-01

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries

  14. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  15. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  16. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  17. An advanced unmanned vehicle for remote applications

    International Nuclear Information System (INIS)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  18. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  19. An advanced unmanned vehicle for remote applications

    Energy Technology Data Exchange (ETDEWEB)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  20. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  1. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  2. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda

    , technical and logistical challenges facing scientists intending to use UAS in their arctic work. Future planned campaigns and science goals under the Coordinated Investigation of Climate-Cryosphere Interactions (CICCI) umbrella will be outlined. A new AMAP report on conducting safe UAS operations......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...... on the environment. Operating UAS present unique challenges and it is necessary to understand and overcome those challenges. Based on the recommendations put forth by the Arctic scientists, the Arctic Council created a UAS Expert Group under the Arctic Monitoring and Assessment Program (AMAP) to help address...

  3. Modular remote radiation monitor

    International Nuclear Information System (INIS)

    Lacerda, Fabio; Farias, Marcos S.; Aghina, Mauricio A.C.; Oliveira, Mauro V.

    2013-01-01

    The Modular Remote Radiation Monitor (MRRM) is a novel radiation monitor suitable for monitoring environmental exposure to ionizing radiation. It is a portable compact-size low-power microprocessor-based electronic device which provides its monitoring data to other electronic systems, physically distant from it, by means of an electronic communication channel, which can be wired or wireless according to the requirements of each application. Besides its low-power highly-integrated circuit design, the Modular Remote Radiation Monitor is presented in a modular architecture, which promotes full compliance to the technical requirements of different applications while minimizing cost, size and power consumption. Its communication capability also supports the implementation of a network of multiple radiation monitors connected to a supervisory system, capable of remotely controlling each monitor independently as well as visualizing the radiation levels from all monitors. A prototype of the MRRM, functionally equivalent to the MRA-7027 radiation monitor, was implemented and connected to a wired MODBUS network of MRA-7027 monitors, responsible for monitoring ionizing radiation inside Argonauta reactor room at Instituto de Engenharia Nuclear. Based on the highly positive experimental results obtained, further design is currently underway in order to produce a consumer version of the MRRM. (author)

  4. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C

    1977-01-01

    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  5. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  6. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  7. On the Use of Unmanned Aerial Systems for Environmental Monitoring

    KAUST Repository

    Manfreda, Salvatore; McCabe, Matthew; Miller, Pauline; Lucas, Richard; Pajuelo Madrigal, Victor; Mallinis, Giorgos; Ben Dor, Eyal; Helman, David; Estes, Lyndon; Ciraolo, Giuseppe; Mü llerová , Jana; Tauro, Flavia; De Lima, M. Isabel; De Lima, Joao L.M.P.; Frances, Felix; Caylor, Kelly; Kohv, Marko; Maltese, Antonino; Perks, Matthew; Ruiz-Pé rez, Guiomar; Su, Zhongbo; Vico, Giulia; Toth, Brigitta

    2018-01-01

    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems, enhancing the understanding hydrological processes, optimizing the allocation and distribution of water resources, and assessing, forecasting and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors or satellite observations. These data are utilized in describing both small and large scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically evolve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing not just high spatial detail over relatively large areas in a cost-effective way, but as importantly providing an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and applications specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms and evaluations techniques need to be harmonized. The aim of this paper is to provide a comprehensive general overview of the existing research on studies and applications of UAS in environmental monitoring in order to suggest users and researchers on future research directions

  8. On the Use of Unmanned Aerial Systems for Environmental Monitoring

    KAUST Repository

    Manfreda, Salvatore

    2018-03-16

    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems, enhancing the understanding hydrological processes, optimizing the allocation and distribution of water resources, and assessing, forecasting and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors or satellite observations. These data are utilized in describing both small and large scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically evolve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing not just high spatial detail over relatively large areas in a cost-effective way, but as importantly providing an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and applications specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms and evaluations techniques need to be harmonized. The aim of this paper is to provide a comprehensive general overview of the existing research on studies and applications of UAS in environmental monitoring in order to suggest users and researchers on future research directions

  9. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  10. Remote monitoring demonstration

    International Nuclear Information System (INIS)

    Caskey, Susan; Olsen, John

    2006-01-01

    The recently upgraded remote monitoring system at the Joyo Experimental Reactor uses a DCM-14 camera module and GEMINI software. The final data is compatible both with the IAEA-approved GARS review software and the ALIS software that was used for this demonstration. Features of the remote monitoring upgrade emphasized compatibility with IAEA practice. This presentation gives particular attention to the selection process for meeting network security considerations at the O'arai site. The Joyo system is different from the NNCA's ACPF system, in that it emphasizes use of IAEA standard camera technology and data acquisition and transmission software. In the demonstration itself, a temporary virtual private network (VPN) between the meeting room and the server at Sandia in Albuquerque allowed attendees to observe data stored from routine transmissions from the Joyo Fresh Fuel Storage to Sandia. Image files from a fuel movement earlier in the month showed Joyo workers and IAEA inspectors carrying out a transfer. (author)

  11. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  12. AUTONOMOUS UNMANNED HELICOPTER SYSTEM FOR REMOTE SENSING MISSIONS IN UNKNOWN ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    T. Merz

    2012-09-01

    Full Text Available This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.

  13. Remote radiation environmental monitoring

    International Nuclear Information System (INIS)

    Pashayev, A.M.; Mehdiyev, A.Sh.; Bayramov, A.A.

    2003-01-01

    Full text: The project of the automated remote monitoring for a level of an environment background radiation in settlements along boundary of the Azerbaijan Republic is developed. The main purpose of the project is: increase of a level of a radiation safety on territory of the Azerbaijan Republic; controlling of a level of an environment background radiation on boundary of the Azerbaijan Republic with the purpose of well-timed warning and acceptance of indispensable measures at probable emergencies on Atomic Power Stations in a number adjacent from Azerbaijan countries, or other ecological catastrophes; controlling of a level of an environment background radiation along eastern suburbs of Azerbaijan regions occupied of Armenia's army and detection of the facts of wrongful disposals of atomic engineering of Armenia on territory of Azerbaijan. As is known, in a number adjacent from Azerbaijan countries the nuclear industry is advanced or develops. It has resulted in origin of threat of a radiation hazard in case of ecological catastrophes: widely scale leakage of radioactive wastes, explosions, or fires on nuclear generating sets, acts of sabotage, directional against Azerbaijan. In this case, at unfavorable meteorological conditions a radioactive waste may be brought by a wind or a rain on territory of Azerbaijan. Measurement is supposed a carry with the help of 'EKOMON' fixed stations. The results of round-the-clock a gamma and a neutron background measurement from the stations will be transmitted automatically to a dispatcher station in the central computer. Established on the stations telescopic sensors also will allow to determine a direction of a radiation and coordinates of radiation source. Stations will be located along boundary, and also in Kedabek, Akstafa, Terter, Agdam and Fizuli regions, and in Autonomous Republic of Nakhichevan

  14. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    Science.gov (United States)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  15. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  16. Remote data monitoring for CDF

    International Nuclear Information System (INIS)

    Kippenhan, H.A. Jr.; Lidinsky, W.; Roediger, G.

    1995-11-01

    Remote data monitoring from the physicists' home institutions has become an important issue in large international experiments to ensure high performance of the detectors and high quality of data and scientific results. The CDF experiment is a collaboration of 450 physicists from 36 institutions in the U.S., Japan, Canada, Italy and Taiwan. Future experiments at Fermilab, CERN and elsewhere will be even larger, and will be performed over a period of order 10 years. The ability of collaborators at remote sites to monitor the increasingly complex detectors and feed the results back into the data acquisition process will be of great importance We report on the status and performance of remote monitoring from Japan of the CDF experiment in Batavia Illinois. We also discuss feasibilities for modest Remote Control Rooms

  17. Remote monitoring for international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1999-01-01

    Remote monitoring is not a new technology, and its application to safeguards-relevant activities has been examined for a number of years. On behalf of the U.S. Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these Geld trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology Fortunately, modem technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime. (author)

  18. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia

    2018-05-05

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  19. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia; Parkes, Stephen; Zhang, Qiannan; Zhang, Xiangliang; McCabe, Matthew; Duarte, Carlos M.

    2018-01-01

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  20. An Innovative Unmanned System for Advanced Environmental Monitoring: Design and Development

    Science.gov (United States)

    Marsella, Ennio; Giordano, Laura; Evangelista, Lorenza; Iengo, Antonio; di Filippo, Alessandro; Coppola, Aniello

    2015-04-01

    The paper summarizes the design and development of a new technology and tools for real-time coordination and control of unmanned vehicles for advanced environmental monitoring. A new Unmanned System has been developed at Institute for Coastal Marine Environmental - National Research Council (Italy), in the framework of two National Operational Programs (PON): Technological Platform for Geophysical and Environmental Marine Survey-PITAM and Integrated Systems and Technologies for Geophysical and Environmental Monitoring in coastal-marine areas-STIGEAC. In particular, the system includes one Unmanned Aerial Vehicle (UAV) and two Unmanned Marine Vehicles (UMV). Major innovations concern the implementation of a new architecture to control each drone and/or to allow the cooperation between heterogeneous vehicles, the integration of distributed sensing techniques and real-time image processing capabilities. Part of the research in these projects involves, therefore, an architecture, where the ground operator can communicate with the Unmanned Vehicles at various levels of abstraction using pointing devices and video viewing. In detail, a Ground Control Station (GCS) has been design and developed to allow the government in security of the drones within a distance up to twenty kilometers for air explorations and within ten nautical miles for marine activities. The Ground Control Station has the following features: 1. hardware / software system for the definition of the mission profiles; 3. autonomous and semi-autonomous control system by remote control (joystick or other) for the UAV and UMVs; 4. integrated control system with comprehensive visualization capabilities, monitoring and archiving of real-time data acquired from scientific payload; 5. open structure to future additions of systems, sensors and / or additional vehicles. In detail, the UAV architecture is a dual-rotor, with an endurance ranging from 55 to 200 minutes, depending on payload weight (maximum 26 kg) and

  1. US remote monitoring operational experience

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    Under international partnerships and bilateral agreements with the U.S. Department of Energy, Sandia National Laboratories, other national laboratories, and international partner organizations have emplaced remote monitoring systems in nuclear facilities and laboratories in various parts of the world for the purpose of conducting field trials of remote monitoring. The purpose of the present report is to review the results from these field trials and draw general conclusions regarding the trials. Many thousands of hours of sensor and system operation have been logged, and data have been retrieved from many locations. In virtually all cases the system components have functioned as intended and data have been successfully collected and transmitted for review. Comparisons between front-end-triggered video and time-lapse video have shown that the triggered record has captured all relevant monitored operations at the various nuclear facilities included in the field trials. We believe the utility and functional reliability of remote monitoring for international safeguards has been shown. However, it should be kept in mind that openness and transparency, including some form of short-notice inspections, are likely to be prerequisites to the safeguards implementation of remote monitoring in any State

  2. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    OpenAIRE

    Sergey V. Cherkasov; Anvar M. Farkhutdinov; Dmitriy P. Rykovanov; Arbi A. Shaipov

    2018-01-01

    The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic) with the Khankala geothermal plant operating at differe...

  3. The JOYO remote monitoring system

    International Nuclear Information System (INIS)

    Damico, Joseph P.; Hashimoto, Yu

    2000-01-01

    The evolution of the personal computer, operating systems and applications software and the Internet has brought drastic change and many benefits worldwide. Remote monitoring systems benefit from computer network and other modern software technologies. The availability of fast, inexpensive and secure communications enables new solutions for monitoring system applications. The JOYO Remote Monitoring System (RMS) utilizes computer network communications and modular software design to provide a distributed integrated solution for monitoring multiple storage locations. This paper describes the remote monitoring system installed at the JOYO Fast Reactor. The system combines sensors, software, and computer network technologies to create a powerful data collection, storage and dissemination capability. The RMS provides a flexible, scalable solution for a variety of applications. The RMS integrates a variety of state of the art technologies from several sources and serves as a test bed for cutting edge technologies that can be shared with outside users. This paper describes the system components and their operation and discusses system benefits. Current activities and future plants for the JOYO RMS will be discussed. (author)

  4. Remote and unattended monitoring techniques

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Whichello, J.

    1998-01-01

    In the last years, there has been a tremendous growth in the number of unattended assay and monitoring systems in the field. These systems have enabled reduced presence of inspectors while increasing the verification coverage. As part of the Strengthened safeguards System and in particular as part of the measures to improve the cost-effectiveness of safeguards, the possibility of remote transfer of authenticated and encrypted video surveillance, seals and radiation sensor data via telephone or special satellite links have been demonstrated and the necessary arrangements and infrastructure have been prepared. The evaluation of field trials of the remote monitoring systems have shown that the systems are effective in monitoring events of safeguards relevance in near real times. The systems are competitive from a cost standpoint when compared to current methods. The reduction of inspection efforts can be realized by application of remote monitoring technique with scheduled inspections and more effectively with the short notice or unannounced random inspections. It is expected that, upon completion of the necessary arrangements with the Member States authorities, the safeguards department will implement the technique widely before the year 2000

  5. New generation detector for monitoring using remote-controlled ground-based and airborne systems

    International Nuclear Information System (INIS)

    Cespirova, Irena; Gryc, Lubomir; Helebrant, Jan; Sladek, Petr

    2015-01-01

    A new generation detector for monitoring with the use of remote-controlled ground (UAG, robotic rovers) or aircraft (UAV, drones) means was developed and tested within a security project. The main characteristics of the detector and the results of field tests with the detector placed on unmanned aerial means (drones) are described. (orig.)

  6. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  7. Passive unmanned sky spectroscopy for remote bird classification

    Science.gov (United States)

    Lundin, Patrik; Brydegaard, Mikkel; Cocola, Lorenzo; Runemark, Anna; Åkesson, Susanne; Svanberg, Sune

    2011-11-01

    We present a method based on passive spectroscopy with aim to remotely study flying birds. A compact spectrometer is continuously recording spectra of a small section of the sky, waiting for birds to obscure part of the field-of-view when they pass the field in flight. In such situations the total light intensity received through the telescope, looking straight up, will change very rapidly as compared to the otherwise slowly varying sky light. On passage of a bird, both the total intensity and the spectral shape of the captured light changes notably. A camera aimed in the same direction as the telescope, although with a wider field-of-view, is triggered by the sudden intensity changes in the spectrometer to record additional information, which may be used for studies of migration and orientation. Example results from a trial are presented and discussed. The study is meant to explore the information that could be gathered and extracted with the help of a spectrometer connected to a telescope. Information regarding the color, size and height of flying birds is discussed. Specifically, an application for passive distance determination utilizing the atmospheric oxygen A-band absorption at around 760 nm is discussed.

  8. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  9. Field experience with remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, A.E. [Bartlett Services, Inc., Plymouth, MA (United States)

    1995-03-01

    The Remote Monitoring System (RMS) is a combination of Merlin Gerin detection hardware, digital data communications hardware, and computer software from Bartlett Services, Inc. (BSI) that can improve the conduct of reactor plant operations in several areas. Using the RMS can reduce radiation exposures to radiation protection technicians (RPTs), reduce radiation exposures to plant maintenance and operations personnel, and reduce the time required to complete maintenance and inspections during outages. The number of temporary RPTs required during refueling outages can also be reduced. Data from use of the RMS at a two power plants are presented to illustrate these points.

  10. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  11. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  12. The international remote monitoring project and implication

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    The future of remote monitoring in International Safeguards system is analyzed. Problems of an update on the International Remote Monitoring Project are considered. The Project allows to remotely transmit safeguards-relevant data directly to IAEA from nuclear facilities worldwide. Description of integrated monitoring system (IMS) is given. A key element of state-of-art of IMS is modular nodal system which accepts information from sensors and provides information to both a data storage unit and a transmitter. Remote Monitoring Systems of Australia and Sweden are presented. 3 figs

  13. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Directory of Open Access Journals (Sweden)

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  14. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    Science.gov (United States)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  15. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  16. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    Science.gov (United States)

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating

  17. Using Unmanned Aerial Vehicles for monitoring glacial moulins

    Science.gov (United States)

    Santagata, Tommaso

    2016-04-01

    The exploration of cavities on glaciers has always represented a fascinating activity that attracts scientists and researchers since many decades. Several explorations performed by speleologists and scientists since 1985 on the Gorner Gletscher (Mount Rosa group, SW Switzerland) have allowed to survey more than 40 endoglacial caves and some marginal tunnels of this glacier, which is the most interesting in the Alps for its supraglacial and englacial pseudo-karst forms. In recent years, the study of these caves has led to the distinction of two morphological and genetic types: marginal tunnels, that generally forms at the contact between ice and lateral moraine, and swallow holes (moulins) which are vertical shafts where a supraglacial stream sinks into the ice. During the first International glacier-caving camp organized in October 2014 as part of the project "Inside the glaciers" which had the main objective to explore the cavities of this glacier and to study the cryo-karstic processes that lead to the formation of deep shafts, an unmanned aerial vehicle (UAV) equipped with camera and GPS system was used for the first time to perform photogrammetric surveys on three different areas. This technique allowed to derive detailed 3D models with very high resolution and accuracy of the entrance of the main moulins and other interesting parts of this glacier. Thanks to the acquisition of geo-referenced images and post-processing the acquired data (i.e. motion corrections), with the realized 3D point clouds and mesh models it was possible to obtain geo-referenced ortophoto and digital surface models which have been used to calculate contour lines and calculate the difference of position of the same moulins detected during the last years expeditions. Moreover, the data acquired have allowed to perform other different type of surface analysis and obtain an excellent photographic database that will surely be useful for further comparisons in future, proving the importance of

  18. Analysis of an Unmanned Aerial Vehicle Monitoring System for Resurveying of Shipping Routes

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2016-12-01

    Full Text Available The paper gives brief description of the conventional and innovative hydrography survey methods and constraints connected with the realization. Proposed hydrographic survey system based on the use of Unmanned Aerial and Maritime systems provides functionality to conduct hydrographic measurements and environment monitoring. System can be easily adapted to fulfil marine safety and security operations, e.g. intrusion threat monitoring, hazardous pollutions monitoring and prevention operations, icing conditions monitoring.

  19. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China

    Directory of Open Access Journals (Sweden)

    Quanlong Feng

    2015-03-01

    Full Text Available Flooding is a severe natural hazard, which poses a great threat to human life and property, especially in densely-populated urban areas. As one of the fastest developing fields in remote sensing applications, an unmanned aerial vehicle (UAV can provide high-resolution data with a great potential for fast and accurate detection of inundated areas under complex urban landscapes. In this research, optical imagery was acquired by a mini-UAV to monitor the serious urban waterlogging in Yuyao, China. Texture features derived from gray-level co-occurrence matrix were included to increase the separability of different ground objects. A Random Forest classifier, consisting of 200 decision trees, was used to extract flooded areas in the spectral-textural feature space. Confusion matrix was used to assess the accuracy of the proposed method. Results indicated the following: (1 Random Forest showed good performance in urban flood mapping with an overall accuracy of 87.3% and a Kappa coefficient of 0.746; (2 the inclusion of texture features improved classification accuracy significantly; (3 Random Forest outperformed maximum likelihood and artificial neural network, and showed a similar performance to support vector machine. The results demonstrate that UAV can provide an ideal platform for urban flood monitoring and the proposed method shows great capability for the accurate extraction of inundated areas.

  20. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems

    Science.gov (United States)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (challenges for an operational monitoring using UAS compared to satellites: the payload capacity of most commercial UAS is less than 2 kg, but miniaturized sensors have low signal to noise ratios and small field of view requires mosaicking hundreds of images and accurate orthorectification. In addition, wind gusts and lower platform stability require appropriate geometric and radiometric corrections. Finally, modeling fluxes on days without images is still an issue for both satellite and UAS applications. This study focuses on designing an operational UAS-based monitoring system including payload design, sensor calibration, based on routine collection of optical and thermal images in a Danish willow field to perform a joint monitoring of ET and GPP dynamics over continuous time at daily time steps. The payload (approach (Potter et al., 1993). Both models estimate ET and GPP under optimum potential conditions down-regulated by the same biophysical constraints dependent on remote sensing and atmospheric data to reflect multiple stresses. Vegetation indices were calculated from the multispectral data to assess vegetation conditions, while thermal infrared imagery was used to compute a thermal inertia index to infer soil moisture constraints. To interpolate radiometric temperature between flights, a prognostic Surface Energy Balance model (Margulis et al., 2001) based on the force-restore method was applied in a data assimilation scheme to obtain continuous ET and GPP fluxes. With this operational system, regular flight campaigns with a hexacopter (DJI S900) have been conducted in a Danish willow flux site (Risø) over the 2016 growing season. The observed energy, water and carbon fluxes from the Risø eddy covariance flux tower were used to validate the model simulation. This UAS monitoring system is suitable for agricultural management and land-atmosphere interaction studies.

  1. Remote patient monitoring in chronic heart failure.

    Science.gov (United States)

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.

  2. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Directory of Open Access Journals (Sweden)

    Sergey V. Cherkasov

    2018-06-01

    Full Text Available The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic with the Khankala geothermal plant operating at different regimes: during the first survey – with, and the second – without reinjection of used geothermal fluid. Unmanned aerial vehicle Geoscan 201 equipped with digital (Sony DSX-RX1 and thermal imaging (Thermoframe-MX-TTX cameras was used. Besides different images of the geothermal plant obtained by the surveys, 13 thermal anomalies have been identified. Analysis of the shape and temperature facilitated determination of their different sources: fire, heating systems, etc., which was confirmed by a ground reconnaissance. Results of the study demonstrate a high potential of unmanned aerial vehicle based thermal imagery use for environmental and technological monitoring of geothermal fields under operation.

  3. Facility operations transparency and remote monitoring

    International Nuclear Information System (INIS)

    Beddingfield, David

    2006-01-01

    Remote monitoring technologies offer many opportunities, not only to strengthen IAEA safeguards, but also to improve national, industrial and local oversight of various nuclear operations. Remote monitoring benefits in greater timeliness, reduced inspector presence and improved state-of-health awareness are well-known attributes. However, there is also the capability to organize data into a comprehensive knowledge of the 'normal operating envelope' of a facility. In considering future applications of remote monitoring there is also a need to develop a better understanding of the potential cost-savings versus higher up-front costs and potential long-term maintenance or upgrade costs. (author)

  4. Practical remote monitoring using COTS equipment

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.M.; Pepper, S.

    1999-01-01

    It has been clear for some time that the gap between the international nonproliferation verification agenda and the available financial means can only be bridged by adoption of remote monitoring technologies in specific safeguards applications. Past technology development efforts have focused largely on sensor networking and dedicated communications services to link the inspector to the Safeguards instruments using the traditional verification paradigm. Today we have several Commercial Off The Shelf (COTS) sensor networking alternatives that are viable for Safeguards and it has been found that no single communication service can be uniformly deployed in all verification scenarios. While sensor networking is an important element of remote monitoring technology, it does not by itself provide a viable remote monitoring capability. This paper discusses several lessons have been learned from the IAEA's remote monitoring installation in Pelindaba, South Africa and how those lessons have been extended to near-term installations in Japan and Canada. Key among those lessons is that the traditional verification paradigm cannot, and should not, be carried forward into the remote monitoring regime and that the primary technology component of the successful remote monitoring installation is the Server, which processes, filters, categorizes, and otherwise acts on the sensor inputs to dramatically reduce the volume and increase the information -density of data that is transferred remotely using indigenous communication infrastructures. (author)

  5. Legitimate data in remote monitoring.

    Science.gov (United States)

    Schilling, J D

    2009-01-01

    An approach for ensuring legitimate data transfers of an individual within a remote healthcare solution. Biometric traits and networking are discussed for clarification of the approach. In this approach, a biometric solution is identified as a fingerprint scanner for use in a personal area network of the patient's home. Secure data exchange is acknowledged as a potential weakness in the transferring of patient data within this network. Some options are discussed to ensure security of data for the review by the caregiver. Example approaches regarding legitimacy are identified using a pulse oximeter [1], a blood pressure meter, and a weight scale as the remote patient devices in the remote healthcare solution.

  6. Finnish remote environmental monitoring field demonstration

    International Nuclear Information System (INIS)

    Toivonen, H.; Leppaenen, A.; Ylaetalo, S.; Lehtinen, J.; Hokkinen, J.; Tarvainen, M.; Crawford, T.; Glidewell, D.; Smartt, H.; Torres, J.

    1997-10-01

    Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland and Sandia National Laboratories (SNL), working under the Finnish Support Program to IAEA Safeguards and the United States Department of Energy (DOE) funded International Remote Monitoring Program (Task FIN E 935), have undertaken a joint effort to demonstrate the use of remote monitoring for environmental air sampling and safeguards applications. The results of the task will be used by the IAEA to identify the feasibility, cost-effectiveness, reliability, advantages, and problems associated with remote environmental monitoring. An essential prerequisite for a reliable remote air sampling system is the protection of samples against tampering. Means must be developed to guarantee that the sampling itself has been performed as designed and the original samples are not substituted with samples produced with other equipment at another site. One such method is to label the samples with an unequivocal tag. In addition, the inspection personnel must have the capability to remotely monitor and access the automated environmental air sampling system through the use of various sensors and video imagery equipment. A unique aspect to this project is the network integration of remote monitoring equipment with a STUK radiation monitoring system. This integration will allow inspectors to remotely view air sampler radiation data and sensor/image data through separate software applications on the same review station. A sensor network and video system will be integrated with the SNL developed Modular Integrated Monitoring System (MIMS) to provide a comprehensive remote monitoring approach for safeguards purposes. This field trial system is being implemented through a multiphase approach for use by STUK, SNL, and for possible future use by the IAEA

  7. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  8. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    Science.gov (United States)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (Di

  9. Requirements to micro-unmanned aircraft systems in civil protection and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fischer-Stabel, Peter; Hardt, Christopher [Univ. of Applied Sciences Trier, Birkenfeld (Germany). Dept. of Environmental Planning

    2013-07-01

    Especially in application fields such as environmental monitoring or in the field of information and operations management with technical or natural disasters, increased demands on communication and sensor technology to micro unmanned aircraft systems (UAS) are given. These are currently covered by the system manufacturers, however inadequately. The use case of wildlife monitoring with micro UAS comes with some special requirements and problems, addressed in this paper. (orig.)

  10. Remote monitoring: A global partnership for safeguards

    International Nuclear Information System (INIS)

    Bardsley, J.

    1996-01-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues

  11. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  12. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Science.gov (United States)

    Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.

    2016-05-01

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.

  13. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Guijun Yang

    2017-06-01

    Full Text Available Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI, chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  14. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  15. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  16. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  17. Unmanned airborne system in real-time radiological monitoring

    International Nuclear Information System (INIS)

    Zafrir, H.; Pernick, A.; Yaffe, U.; Grushka, A.

    1993-01-01

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  18. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  19. A New Perspective: Assessing the Spatial Distribution of Coral Bleaching with Unmanned Low Altitude Remote Sensing Systems

    Science.gov (United States)

    Levy, J.; Franklin, E. C.; Hunter, C. L.

    2016-12-01

    Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef

  20. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viktor R. Tóth

    2018-06-01

    Full Text Available Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed (Phragmites australis stands using an unmanned aerial vehicle (UAV based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable and deteriorating (die-back patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI camera. Photophysiological parameters of P. australis were also measured with amplitude modulated fluorescence. Parameters characterizing the dynamics of seasonal changes in NDVI data were used for phenological comparison of eutrophic and mesotrophic, stable and die-back, terrestrial and aquatic, mowed and not-mowed patches of reed. It was shown that stable Phragmites plants from the eutrophic part of the lake reached specific phenological stages up to 3.5 days earlier than plants from the mesotrophic part of the lake. The phenological changes correlated with trophic (total and nitrate-nitrite nitrogen and physical (organic C and clay content properties of the sediment, while only minor relationships with air and water temperature were found. Phenological differences between the stable and die-back stands were even more pronounced, with ~34% higher rates of NDVI increase in stable than die-back patches, while the period of NDVI increase was 16 days longer. Aquatic and terrestrial parts of reed stands showed no phenological differences, although intermediate areas (shallow water parts of stands were found to be less vigorous. Winter mowing of dried Phragmites sped up sprouting and growth of reed in the spring. This study showed that remote sensing-derived photophysiological and phenological

  1. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  2. Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data

    Directory of Open Access Journals (Sweden)

    Shenghui Fang

    2016-05-01

    Full Text Available This study developed an approach for remote estimation of Vegetation Fraction (VF and Flower Fraction (FF in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. The results showed that the Visible Atmospherically Resistant Index (VARIgreen worked most accurately for estimating VF in flower-free samples with an Root Mean Square Error (RMSE of 3.56%, while the Enhanced Vegetation Index (EVI2 was the best in flower-containing samples with an RMSE of 5.65%. Based on reflectance in green and NIR bands, a technique was developed to identify whether a sample contained flowers and then to choose automatically the appropriate algorithm for its VF estimation. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate FF in oilseed rape. No significant correlation was observed between VI and FF when soil was visible in the sensor’s field of view. Reflectance at 550 nm worked well for FF estimation with coefficient of determination (R2 above 0.6. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with RMSE below 6%.

  3. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    Science.gov (United States)

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  4. Remote patient monitoring: Information reliability challenges

    NARCIS (Netherlands)

    Petkovic, M.

    2009-01-01

    An increasing number of extramural applications in the personal healthcare domain pose new challenges regarding the security of medical data. In this paper, we focus on remote patient monitoring systems and the issues around information reliability. In these systems medical data is not collected by

  5. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  6. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  7. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    International Nuclear Information System (INIS)

    NELSON RL

    2008-01-01

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel

  8. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  9. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-02-11

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  10. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  11. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  12. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  13. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  14. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  15. Testing integrated sensors for cooperative remote monitoring

    International Nuclear Information System (INIS)

    Filby, E.E.; Smith, T.E.; Albano, R.K.; Andersen, M.K.; Lucero, R.L.; Tolk, K.M.; Andrews, N.S.

    1996-01-01

    The Modular Integrated Monitoring System (MIMS) program, with Sandia National Laboratory (SNL) as the lead lab, was devised to furnish sensors and integrated multi-sensor systems for cooperative remote monitoring. The Idaho National Engineering Laboratory (INEL), via the Center for Integrated Monitoring and Control (CIMC), provides realistic field tests of the sensors and sensor-integration approach for the MIMS, and for other similar programs. This has two important goals: it helps insure that these systems are truly read for use, and provides a platform so they can be demonstrated for potential users. A remote monitoring test/demonstration has been initiated at the Idaho Chemical Processing Plant (ICPP) to track the movement of spent nuclear fuel from one storage location to another, using a straddle carrier and shielded cask combination. Radiation monitors, motion sensors, videocameras, and other devices from several US Department of Energy (DOE) labs and commercial vendors were linked on the network. Currently, project personnel are collecting raw data from this large array of sensors, without trying to program any special network activities or other responses. These data will be used to determine which devices can actually provide useful information for a cooperative monitoring situation, versus those that may be redundant

  16. Remote Working Level Monitor. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The Remote Working Level Monitor (RWLM) is an instrument used to remotely monitor the RN-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor based instrument which multiplexes two independent detector units to a single central processor unit (CPU). The CPU controls the actuation of the detector units and processes and outputs the data received from these remote detector units. The remote detector units are fully automated and require no manual operation once they are set up. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU for processing. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the program enables the RWLM to run and output a calibration procedure on command. The data resulting from this request can then be processed in a separate program on most computers capable of BASIC programming. The calibration program results in the derivation of coefficients and beta efficiencies which provides calibrated coefficients and beta efficiencies

  17. The Argentine remote monitoring and surveillance system

    International Nuclear Information System (INIS)

    Bonino, A.; Roca, J.L.; Perez, A.; Pizarro, L.; Krimer, M.; Teira, R.; Higa, Z.; Saettone, S.; Monzon, J.; Moroni, D.

    1996-01-01

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs

  18. The Argentine remote monitoring and surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A; Roca, J L; Perez, A; Pizarro, L; Krimer, M; Teira, R; Higa, Z; Saettone, S; Monzon, J; Moroni, D [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina). Dept. Apoyo Cientifico y Tecnico

    1997-12-31

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs.

  19. 5. symposium on nuclear reactor remote monitoring

    International Nuclear Information System (INIS)

    1987-01-01

    17 papers deal with the data-technological concept and mode of operation of nuclear-reactor remote-monitoring (RM) systems from the perspectives of users in Baden-Wurttemberg, Sleswig-Holstein, Bavaria and Belgium, with the requirements on measuring devices and equipment in NRM systems, computer-controlled evaluation and processing of measured data, in particular the LASAT and OLDES systems. (DG) [de

  20. R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Moosbruger, Patrick; Rozier, Kristin Y.

    2015-01-01

    We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.

  1. Optimization of the choice of unmanned aerial vehicles used to monitor the implementation of selected construction projects

    Science.gov (United States)

    Skorupka, Dariusz; Duchaczek, Artur; Waniewska, Agnieszka; Kowacka, Magdalena

    2017-07-01

    Due to their properties unmanned aerial vehicles have huge number of possibilities for application in construction engineering. The nature and extent of construction works performedmakes the decision to purchase the right equipment significant for the possibility for its further use while monitoring the implementation of these works. Technical factors, such as the accuracy and quality of the applied measurement instruments are especially important when monitoring the realization of construction projects. The paper presents the optimization of the choice of unmanned aerial vehicles using the Bellinger method. The decision-making analysis takes into account criteria that are particularly crucial by virtue of the range of monitoring of ongoing construction works.

  2. Evolution of Unmanned Aerial Warfare: A Historical Look at Remote Airpower - A Case Study in Innovation

    Science.gov (United States)

    2016-06-10

    could deliver messages from headquarters to other locations without requiring runners . An advanced concept of Messenger was the “Messenger Aerial...North Vietnamese fighters. The unmanned aircraft also proved to be far more resilient than anyone expected. The anticipated life expectancy of a

  3. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  4. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  5. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  6. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  7. Altitude control performance improvement via preview controller for unmanned airplane for radiation monitoring system

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2017-01-01

    This paper is concerned with the design problem of preview altitude controller for Unmanned Airplane for Radiation Monitoring System (UARMS) to improve its control performance. UARMS has been developed for radiation monitoring around Fukushima Dai-ichi nuclear power plant which spread radiation contaminant due to the huge tsunamis caused by the Great East Japan Earthquake. The monitoring area contains flat as well as mountain areas. The basic flight controller has been confirmed to have satisfactory performance with respect to altitude holding; however, the control performance for variable altitude commands is not sufficient for practical use in mountain areas. We therefore design preview altitude controller with only proportional gains by considering the practicality and the strong requirement of safety for UARMS. Control performance of the designed preview controller was evaluated by flight tests conducted around Fukushima Sky Park. (author)

  8. Development of remote operated floor contamination monitor

    International Nuclear Information System (INIS)

    Sreekumar, K.; Gangamohan, M.; Kannan, R.K.; Rajan, S.

    2005-01-01

    Contamination check of floors and walkways in and around Reactor building areas forms an integral part of Radiation Protection Program in Power Stations. Though random swipe check method is adopted for the detection of loose contamination, this method has the disadvantage of leaving the fixed contamination and hotspots undetected. Hence, scanning the area with a sensitive detector, held close to the surface provides positive means for the detection of contamination. Checking large areas and walkways by holding the detector close to the surface involves physical work. Also, areas which are unapproachable due to congestion of equipment, may go uncovered by contamination monitoring in order to eliminate the physical strain involved in such contamination monitoring and to cover unapproachable areas, a small size prototype device that can be operated remotely was fabricated. This device detects contamination instantaneously and accurately. This paper describes design and fabrication of the device used for floor contamination monitoring. (author)

  9. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  10. Design Scheme of Remote Monitoring System Based on Qt

    Directory of Open Access Journals (Sweden)

    Xu Dawei

    2015-01-01

    Full Text Available This paper introduces a design scheme of remote monitoring system based on Qt, the scheme of remote monitoring system based on S3C2410 and Qt, with the aid of cross platform development tools Qt and powerful ARM platform design and implementation. The development of remote video surveillance system based on embedded terminal has practical significance and value.

  11. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  12. NPP post-accident monitoring system based on unmanned aircraft vehicle:concept, design principles

    International Nuclear Information System (INIS)

    Sachenko, A.A.; Kochan, V.V.; Kharchenko, V.S.; Yanovskij, M.Eh.; Yastrebenetskij, M.A.; Fesenko, G.V.

    2016-01-01

    The paper presents a concept of designing the post-accident system for monitoring the equipment and territory of nuclear power plant after a severe accident based on unmanned aircraft vehicle (UAVs). Wired power and communications networks are found out as the most vulnerable ones during the accident monitoring, and informativity, reliability and veracity are recognized as system basic parameters. It is proposed to equip measurement and control modules with backup wireless communication channels and deploy the repeaters network based on UAVs to ensure the informativity. Modules possess the backup power battery, and repeaters appear in the appropriate places after the accident to provide the survivability. Moreover, an optimization of UAVs' location is proposed according to the minimum energy consumption criterion. To ensure the veracity, it is expected to design the noise-immune protocol for message exchange and archiving and self-diagnostics of all system components

  13. Multi-resource data-based research on remote sensing monitoring over the green tide in the Yellow Sea

    Science.gov (United States)

    Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi

    2017-09-01

    This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.

  14. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  15. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA and on a medium selective for the genus Pseudomonas (KBC to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P = 0.027, suggesting an uneven distribution of Pseudomonas across the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P = 0.038, demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P = 0.707 and KBC (P = 0.641 across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720 of the colonies recovered across all four sampling missions were ice nucleation active (ice+ at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments.

  16. Service models for remote healthcare monitoring systems.

    Science.gov (United States)

    Moorman, Bridget A

    2010-01-01

    These scenarios reflect where the future is heading for remote health monitoring technology and service expectations. Being able to manage a "system of systems" with timely service hand-off over seams of responsibility and system interfaces will become very important for a BMET or clinical engineer. These interfaces will include patient homes, clinician homes, commercial/civilian infrastructure, public utilities, vendor infrastructure as well as internal departmental domains. Concurrently, technology is changing rapidly resulting in newer software delivery modes and hardware appliances as well as infrastructure changes. Those who are able to de-construct the complex systems and identify infrastructure assumptions and seams of servicing responsibility will be able to better understand and communicate the expectations for service of these systems. Moreover, as identified in Case 1, prodigious use of underlying system monitoring tools (managing the "meta-data") could move servicing of these remote systems from a reactive approach to a proactive approach. A prepared healthcare organization will identify their current and proposed future service combination use cases and design service philosophies and expectations for those use cases, while understanding the infrastructure assumptions and seams of responsibility. This is the future of technical service to the healthcare clinicians and patients.

  17. A remotely interrogatable sensor for chemical monitoring

    Science.gov (United States)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  18. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    DEFF Research Database (Denmark)

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H

    2014-01-01

    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  19. Daily remote monitoring of implantable cardioverter-defibrillators

    DEFF Research Database (Denmark)

    Hindricks, Gerhard; Varma, Niraj; Kacet, Salem

    2017-01-01

    Aims: Remote monitoring of implantable cardioverter-defibrillators may improve clinical outcome. A recent meta-analysis of three randomized controlled trials (TRUST, ECOST, IN-TIME) using a specific remote monitoring system with daily transmissions [Biotronik Home Monitoring (HM)] demonstrated...

  20. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  1. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  2. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  3. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-01-01

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors

  4. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  5. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-01-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  6. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  7. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  8. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kyle F. Flynn

    2014-12-01

    Full Text Available A passive method for remote sensing of the nuisance green algae Cladophora glomerata in rivers is presented using an unmanned aerial vehicle (UAV. Included are methods for UAV operation, lens distortion correction, image georeferencing, and spectral analysis to support algal cover mapping. Eighteen aerial photography missions were conducted over the summer of 2013 using an off-the-shelf UAV and three-band, wide-angle, red, green, and blue (RGB digital camera sensor. Images were post-processed, mosaicked, and georeferenced so automated classification and mapping could be completed. An adaptive cosine estimator (ACE and spectral angle mapper (SAM algorithm were used to complete the algal identification. Digital analysis of optical imagery correctly identified filamentous algae and background coverage 90% and 92% of the time, and tau coefficients were 0.82 and 0.84 for ACE and SAM, respectively. Thereafter, algal cover was characterized for a one-kilometer channel segment during each of the 18 UAV flights. Percent cover ranged from <5% to >50%, and increased immediately after vernal freshet, peaked in midsummer, and declined in the fall. Results indicate that optical remote sensing with UAV holds promise for completing spatially precise, and multi-temporal measurements of algae or submerged aquatic vegetation in shallow rivers with low turbidity and good optical transmission.

  9. Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring

    Directory of Open Access Journals (Sweden)

    Shane C. Lishawa

    2017-04-01

    Full Text Available The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV, provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp. along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp. cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands

  10. PNC/DOE Remote Monitoring Project at Japan's Joyo Facility

    International Nuclear Information System (INIS)

    Ross, M.; Hashimoto, Yu; Sonnier, C.; Dupree, S.; Ystesund, K.; Hale, W.

    1996-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC's experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities

  11. Remote monitoring of heart failure: benefits for therapeutic decision making.

    Science.gov (United States)

    Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas

    2017-07-01

    Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.

  12. Honey Bee Colonies Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Sergio Gil-Lebrero

    2016-12-01

    Full Text Available Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD. The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  13. ICUD-0499 Low-cost remotely sensed environmental monitoring stations

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    This study contributes with extensive research of applying low-cost remotely sensed monitoring stations to an urban environment. Design requirements are scrutinized, including applications for remote data access, hardware design, and monitoring network design. A network of 9 monitoring stations...... measuring stream water level is deployed during July 2017. Data is streamed to a web page using cellular-based data transmission. Monitoring network performance is quantified with respect to local physical and weather conditions....

  14. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    Science.gov (United States)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  15. Architectures of Remote Monitoring Systems for a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2006-01-01

    Aina(Artificial Intelligence for Nuclear Applications) have developed remote monitoring systems since the 1990's. We have been interested in the safety of reactor vessel, steam generator, pipes, valves and pumps. We have developed several remote inspection systems and will develop some remote care systems for a nuclear power plant. There were critical problems for building remote monitoring systems for mass data processing and remote user interface techniques in the middle of the 1990's. The network capacity wasn't sufficient to transfer the monitoring data to a remote computer. Various computer operating systems require various remote user interfaces. Java provides convenient and powerful interface facilities and the network transfer speed was increased greatly in the 2000's. Java is a good solution for a remote user interface but it can't work standalone in remote monitoring applications. The restrictions of Java make it impossible to build real time based applications. We use Java and a traditional language to improve this problem. We separate the remote user interface and the monitoring application

  16. A Smart Irrigation Approach Aided by Monitoring Surface Soil Moisture using Unmanned Aerial Vehicles

    Science.gov (United States)

    Wienhold, K. J.; Li, D.; Fang, N. Z.

    2017-12-01

    Soil moisture is a critical component in the optimization of irrigation scheduling in water resources management. Unmanned Aerial Vehicles (UAV) equipped with multispectral sensors represent an emerging technology capable of detecting and estimating soil moisture for irrigation and crop management. This study demonstrates a method of using a UAV as an optical and thermal remote sensing platform combined with genetic programming to derive high-resolution, surface soil moisture (SSM) estimates. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course (about 50 acres) in North Central Texas. Multispectral data is collected over the course of one month in the visible, near infrared and longwave infrared spectrums using a UAV capable of rapid and safe deployment for daily estimates. The accuracy of the model predictions is quantified using a time domain reflectometry (TDR) soil moisture sensor and a holdout validation test set. The model produces reasonable estimates for SSM with an average coefficient of correlation (r) = 0.87 and coefficient of determination of (R2) = 0.76. The study suggests that the derived SSM estimates be used to better inform irrigation scheduling decisions for lightly vegetated areas such as the turf or native roughs found on golf courses.

  17. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    Science.gov (United States)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  18. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  19. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Science.gov (United States)

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  20. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    Science.gov (United States)

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  1. Application of Unmanned Aerial System-based Photogrammetry to Monitor Landforms Evolution of Mudstone Badlands

    Science.gov (United States)

    Chen, Yichin

    2017-04-01

    Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal

  2. Volcano Monitoring using Multiple Remote Data Sources

    Science.gov (United States)

    Reath, K. A.; Pritchard, M. E.

    2016-12-01

    Satellite-based remote sensing instruments can be used to determine quantitative values related to precursory activity that can act as a warning sign of an upcoming eruption. These warning signs are measured through examining anomalous activity in: (1) thermal flux, (2) gas/aerosol emission rates, (3) ground deformation, and (4) ground-based seismic readings. Patterns in each of these data sources are then analyzed to create classifications of different phases of precursory activity. These different phases of activity act as guidelines to monitor the progression of precursory activity leading to an eruption. Current monitoring methods rely on using high temporal resolution satellite imagery from instruments like the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectrometer (MODIS) sensors, for variations in thermal and aerosol emissions, and the Ozone Monitoring Instruments (OMI) and Ozone Mapping Profiler Suite (OMPS) instruments, for variations in gas emissions, to provide a valuable resource for near real-time monitoring of volcanic activity. However, the low spatial resolution of these data only enable events that produce a high thermal output or a large amount of gas/aerosol emissions to be detected. High spatial resolution instruments, like the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor, have a small enough pixel size (90m2) that the subtle variations in both thermal flux and gas/aerosol emission rates in the pre-eruptive period can be detected. Including these data with the already established high temporal resolution data helps to identify and classify precursory activity patterns months before an eruption (Reath et al, 2016). By correlating these data with ground surface deformation data, determined from the Interferometric Synthetic Aperture Radar (InSAR) sensor, and seismic data, collected by the Incorporated Research Institution for Seismology (IRIS) data archive, subtle

  3. UNARM (UNattended And Remote Monitoring) overview

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Hsue, S.-T.; Klosterbuer, S.F.; Bosler, G.E.; Browne, M.; Menlove, H.O.; Alvar, K.; Halbig, J.K.; Parker, R.F.; Pelowitz, D.G.; Buck, S.E.; Abhold, M.; Reass, P.

    2001-01-01

    Unattended monitoring systems developed at Los Alamos National Laboratory have been installed in facilities for International Atomic Energy Agency (IAEA) use for the last 20 years. These systems allow for more efficient use of inspection resources and more rigorous coverage of IAEA facilities. As of today, the primary sensor types are radiation, video, and binary switches such as seals, but provision to accommodate additional sensor types is an important concept in UNARM. Interfaces to vendor hardware are defined, and being developed as needed. A component of the UNARM approach is the association of time stamps with every piece of data. Additionally, any sensor can trigger any other sensors to record data. For example, radiation signals can be used to trigger camera systems, thereby providing a reliable way to screen out superfluous images. Alternatively, a door switch can trigger the sensors inside a room, indicating whether the activities inside involve nuclear material. A second generation of unattended and remote monitoring (UNARM) systems has been developed at Los Alamos National Laboratory for use in nuclear fuel cycle facilities. Systems have been installed for International Atomic Energy Agency (IAEA) use and evaluation in Japan and Kazakhstan. Excerpts of experience in these locations will be presented. An important sensor type is radiation, which senses an attribute unique to the radioactive material being safeguarded. Several radiation sensor types have been installed successfully to date, they vary from sub-one percent nondestructive assay instruments to go/no-go threshold detectors. The reliability of the radiation sensors is typically less than one failure per sensor per year, sometimes less than 1 failure per sensor per 100 years

  4. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  5. Remote quality monitoring in the banana chain.

    Science.gov (United States)

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.

  6. Remote monitoring, data sharing, and information security

    International Nuclear Information System (INIS)

    Parise, D.; Dalton, C.; Regula, J.

    2009-01-01

    Full-text: Remote Monitoring (RM) is being used with increased frequency by the IAEA for safeguards in many parts of the world. This is especially true in Japan where there are also agreements for data sharing. The automated nature of RM lends itself to assist in modernizing old cumbersome data sharing techniques. For example, electronic declarations can be received, parsed and checked; then data for that time period and facility can be automatically released. This could save considerable time and effort now spent processing paper declarations and hand copying data. But care must be taken to ensure the parsing, transfers, and connections for these systems are secure. Advanced authentication and encryption techniques are still vital in this process. This paper will describe how to improve security with vulnerability assessments, the use of certificates, avoiding compromising dial-up connections and other methods. A detailed network layout will be presented that will resemble a future RM collaboration with the IAEA and the Japanese. From this network design, key strategic security points will be identified and suggestions will be made to help secure them. (author)

  7. Remote monitoring: An implementation on the Gemini System

    International Nuclear Information System (INIS)

    Sheridan, R.; Ondrik, M.; Kadner, S.; Resnik, W.; Chitumbo, K.; Corbell, B.

    1996-01-01

    The Gemini System consists of a sophisticated, digital surveillance unit and a high performance review system. Due to the open architectural design of the Gemini System, it provides an excellent hardware and software platform to support remote monitoring. The present Gemini System provides the user with the following Remote Monitoring features, via a modem interface and powerful support software: state-of-health reporting, alarm reporting, and remote user interface. Future enhancements will contribute significantly to the Gemini''s ability to provide a broader spectrum of network interfaces and remote review

  8. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    Science.gov (United States)

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  9. Remote condition-based monitoring of turbines

    International Nuclear Information System (INIS)

    2005-01-01

    specific point in time; Timewave: Amount of motion and symmetry of wave shape (i.e., a truncated wave can be an indication of a rub); Orbits: A cross-sectional view of shaft movement; DC Gap Voltage: A measurement of the distance (e.g., gap) between the shaft and the proximity probes. This value is useful in determining bearing wear of shaft centerline location. Daily monitoring of these metrics will not only warn of impending failure, but provide valuable information regarding the possible cause of the impending failure and an approximate indication of time to failure. In the event of a sudden problem and subsequent trip of a turbine, this data helps determine the root cause of the failure. This results in faster problem resolution and a quicker restart of the turbine. Additionally, daily monitoring of these metrics allows companies to watch a problematic turbine's health until the next scheduled outage. Azima's remote, condition-based monitoring system and diagnostics service is an effective way to collect and trend these metrics on a daily basis, as well as supply expert advice in the event of any anomalies. The Azima system aggregates the analog data from the proximity probes mounted on the turbine at a sensor hub. The sensor hub digitizes the analog data and then, either wirelessly or through a wired Ethernet connection, sends the data via the Internet to a hosted server. The hosted server maintains the software that trends the data (e.g., vibration, spectrum, timewave, DC gap voltage, and orbits) and provides automatic alerting. The data can be accessed anywhere, anytime through a standard Web browser. The advantages of daily, remote, condition-based monitoring include: Daily monitoring of vital turbine health metrics to detect impending problems before they become critical; Automatic alerting when a change in condition is detected; Anywhere, anytime access via a standard Web browser. This allows multiple groups at different locations to simultaneously review and

  10. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Science.gov (United States)

    Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman

    2017-10-01

    This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  11. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss

    Directory of Open Access Journals (Sweden)

    Anweiler Stanisław

    2017-01-01

    Full Text Available This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR and efficient heat loss monitoring system. The system consists of a small (<2kg multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.

  12. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  13. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    Science.gov (United States)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  14. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  15. Unmanned Aerial Vehicles (UAVs and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    Directory of Open Access Journals (Sweden)

    Luis F. Gonzalez

    2016-01-01

    Full Text Available Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV, artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  16. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    Science.gov (United States)

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  17. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    International Nuclear Information System (INIS)

    Wang, H B; Wang, G H; Tang, X M; Li, C H

    2014-01-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km 2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis

  18. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  19. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.

    2012-01-01

    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  20. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  1. IAEA perspective on remote monitoring development and implementation

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    The IAEA has made rapid progress in exploiting remote monitoring in 84 systems and 302 cameras, which are spread over 15 states and Taiwan. The increased use, since 2003, of remote monitoring of VACOSS electronic seals is a new feature. Successful use of remote monitoring to spot potential breakdowns through state-of-health diagnostics on 14 occasions is also an important motivation for further implementation. This paper gave detailed descriptions of installed systems for data acquisition and transmission, particularly the SDIS (up to six cameras) and DMOS (up to 16 cameras). IAEA policy for data security and data sharing raise important issues that are relevant to cooperation in transparency that might be based on sharing of data from safeguards systems. Implementation of new remote monitoring systems may utilize satellite links, as under testing now in cooperation between the IAEA and the European Space Agency (ESA). (author)

  2. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    implications to human health, and requires frequent and effective monitoring, particularly during summer months (March–May) when water consumption is highest. These water bodies are frequently located in remote areas away from human habitation, making...

  3. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  4. Data analysis for remote monitoring of safeguarded facilities

    International Nuclear Information System (INIS)

    DeLand, S.M.

    1997-01-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed

  5. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  6. Remote intelligent nuclear facility monitoring in LabVIEW

    International Nuclear Information System (INIS)

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-01-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive' material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs

  7. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  8. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  9. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NARCIS (Netherlands)

    Kraaijenbrink, P.D.A.; Immerzeel, W.W.; de Jong, S.M.; Shea, Joseph M.; Pellicciotti, Francesca; Meijer, Sander W.; Shresta, A.B.

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed

  10. Innovative Remote Sensing techniques for vegetation monitoring

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Della Rocca, A.B.; Farneti, A.; La Porta, L.; Martini, S.; Giordano, L.; Trotta, C.; Marcoccia, S.

    2008-01-01

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region [it

  11. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    Science.gov (United States)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  12. Remote sensing for environmental monitoring and resource management. Volume 2

    International Nuclear Information System (INIS)

    1992-01-01

    The subject of this volume is remote sensing for environmental monitoring and resource management. This session is divided in eight parts. First part is on general topics, methodology and meteorology. Second part is on geology, environment and land cover. Third part is on disaster monitoring. Fourth part is on operational status of remote sensing. Fifth part is on coastal zones and inland waters. Sixth and seventh parts are on forestry and agriculture. Eighth part is on instrumentation and systems. (A.B.). refs., figs., tabs

  13. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M [ed.

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  14. Remote monitoring system workshop and technical cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kwack, E. H.; Yoon, W. K.; Kim, J. S.; Cha, H. Y.; Na, W.W

    2000-06-01

    RMS workshop at the year focus on installing the material monioring system at technology lab. within TCNC. This system was developed by cooperative monitoring center(CMC) belonging to Sandia national lab. MMS consisted of data storage computer, data collection computer and easily connet to DCM-14 camera using monitoring the NPP by IAEA. The system run when the motion is catching and stroes the event data to MMS server. Also, the system communicate with the internet and then they access to check the event data only if the authencated person.

  15. Remote monitoring system workshop and technical cooperation

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kwack, E. H.; Yoon, W. K.; Kim, J. S.; Cha, H. Y.; Na, W.W.

    2000-06-01

    RMS workshop at the year focus on installing the material monioring system at technology lab. within TCNC. This system was developed by cooperative monitoring center(CMC) belonging to Sandia national lab. MMS consisted of data storage computer, data collection computer and easily connet to DCM-14 camera using monitoring the NPP by IAEA. The system run when the motion is catching and stroes the event data to MMS server. Also, the system communicate with the internet and then they access to check the event data only if the authencated person

  16. Remote container monitoring and surveillance systems

    International Nuclear Information System (INIS)

    Resnik, W.M.; Kadner, S.P.

    1995-01-01

    Aquila Technologies Group is developing a monitoring and surveillance system to monitor containers of nuclear materials. The system will both visually and physically monitor the containers. The system is based on the combination of Aquila's Gemini All-Digital Surveillance System and on Aquila's AssetLAN trademark asset tracking technology. This paper discusses the Gemini Digital Surveillance system as well as AssetLAN technology. The Gemini architecture with emphasis on anti-tamper security features is also described. The importance of all-digital surveillance versus other surveillance methods is also discussed. AssetLAN trademark technology is described, emphasizing the ability to continually track containers (as assets) by location utilizing touch memory technology. Touch memory technology provides unique container identification, as well as the ability to store and retrieve digital information on the container. This information may relate to container maintenance, inspection schedules, and other information. Finally, this paper describes the combination of the Gemini system with AssetLAN technology, yielding a self contained, container monitoring and area/container surveillance system. Secure container fixture design considerations are discussed. Basic surveillance review functions are also discussed

  17. Potential to monitor plant stress using remote sensing tools

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-01-01

    Full Text Available simple ratio indices were selected for mapping leaf water potential and leaf N for wet and dry season using RapidEye data. We conclude that remote sensing images can be applied for the long term vegetation monitoring for future biodiversity conservation...

  18. Use of a microprocessor in a remote working level monitor

    International Nuclear Information System (INIS)

    Keffe, D.J.; McDowell, W.P.; Groer, P.G.

    1975-01-01

    A remote working level monitor was designed to measure short-lived radon-daughter concentrations in sealed chambers having potentially high radiation levels (up to 2000 WL). The system is comprised of surface barrier detectors, multiplexer and buffers, microprocessor and teletype

  19. 3.5G based mobile remote monitoring system.

    Science.gov (United States)

    Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul

    2008-01-01

    Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.

  20. Emergency protection and nuclear power station remote monitoring

    International Nuclear Information System (INIS)

    Nowak, K.; Wolf, H.

    1986-01-01

    The States of the Federal Republic of Germany are planning emergency protection measures for the environment of nuclear power stations based on their statutory duty of care. In this connection the paper explains to what extent remote monitoring of nuclear power stations practised by the Federal Supervisory Authorities may support the design and implementation of emergency protection measures. (orig.) [de

  1. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  2. Development of a Remote Monitoring System Using Meteor Burst Technology

    International Nuclear Information System (INIS)

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-01-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  3. Vulnerability analysis on a VPN for a remote monitoring system

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Jong Soo; Park, Il Jin; Min, Kyung Sik; Choi, Young Myung

    2004-01-01

    14 Pressurized Water Reactors(PWR) in Korea use a Remote Monitoring System(RMS), which have been in Korea Since 1998. A memorandum of understanding on remote monitoring, based on enhanced cooperation on PWRs, was signed at the 10th safeguards review meeting in October 2001 between the International Atomic Energy Agency(IAEA) and Ministry Of Science and Technology(MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an internet system for remote monitoring. According to the internet-based Virtual Private Network(VPN) applied to remote monitoring, the Korea Atomic Energy Research Institute(KAERI) came to an agreement with the IAEA, using a Member State Support Program(MSSP). Phase I is a lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated system(SDIS) server, IAEA server and TCNC(Technology Center for Nuclear Control) server. In each system, Virtual Private Network(VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS server and VPN; TCNC server and VPN; and IAEA server and VPN) via penetration testing

  4. Application of network technology to Remote Monitoring System

    International Nuclear Information System (INIS)

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-01-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests

  5. Vulnerability analysis on a VPN for a remote monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Jong Soo; Park, Il Jin; Min, Kyung Sik; Choi, Young Myung [KAERI, Taejon (Korea, Republic of)

    2004-08-01

    14 Pressurized Water Reactors(PWR) in Korea use a Remote Monitoring System(RMS), which have been in Korea Since 1998. A memorandum of understanding on remote monitoring, based on enhanced cooperation on PWRs, was signed at the 10th safeguards review meeting in October 2001 between the International Atomic Energy Agency(IAEA) and Ministry Of Science and Technology(MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an internet system for remote monitoring. According to the internet-based Virtual Private Network(VPN) applied to remote monitoring, the Korea Atomic Energy Research Institute(KAERI) came to an agreement with the IAEA, using a Member State Support Program(MSSP). Phase I is a lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated system(SDIS) server, IAEA server and TCNC(Technology Center for Nuclear Control) server. In each system, Virtual Private Network(VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS server and VPN; TCNC server and VPN; and IAEA server and VPN) via penetration testing.

  6. Remote real-time monitoring of subsurface landfill gas migration.

    Science.gov (United States)

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  7. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  8. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  9. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  10. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  11. Remote monitoring of implantable cardiac devices: current state and future directions.

    Science.gov (United States)

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  12. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    Science.gov (United States)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  13. Remote monitor system of temperature and humidity based on internet

    International Nuclear Information System (INIS)

    Wu Ting; Fang Fang; Zeng Zhijie

    2006-01-01

    This paper introduces the system architecture and implement details of the remote and realtime monitor system of temperature and humidity. In this design, NiosII soft CPU core and peripheral's IP core are embedded in FPGA, while a MicroC/OS2 real-time operating system and lightweight IP protocol stack are porting thereon, to achieve a open system which hardware and software are all can be reconfigure. (authors)

  14. U.S. SUPPORT PROGRAM CONTRIBUTIONS TO REMOTE MONITORING

    International Nuclear Information System (INIS)

    PEPPER, S.E.

    2000-01-01

    Since 1993, the IAEA has made great progress in the implementation of remote monitoring. Equipment has been developed and tested, and installed systems are being used for safeguards purposes. The cost of equipment, the complexity of communication technology, and maintenance of the equipment are challenges that still face the IAEA. Resolution of these challenges will require significant effort. The USSP is committed to assisting the IAEA to overcome these challenges

  15. Nuclear-reactor remote-monitoring systems - concepts and implementations

    International Nuclear Information System (INIS)

    Rudolf, A.

    1987-01-01

    The paper presents general concepts and some examples of implemented nuclear-reactor remote-monitoring (RM) systems. Some functions and tasks of RM systems are demonstrated and three concepts are described in detail and assessed globally. Three examples of implemented RM systems are discussed using the Baden-Wurttemberg RM system for a description in greater detail. A brief prognosis of the future development of RM systems is made. (orig./DG) [de

  16. Ambient assisted living platform for remote monitoring of bedridden people

    OpenAIRE

    Pereira, F.; Barros, C.; Carvalho, V.; Machado, José; Leão, Celina Pinto; Soares, Filomena; Bezerra, K.; Matos, Demétrio Ferreira

    2015-01-01

    The aim of this paper is to present a platform for remote monitoring of bedridden people developed in the context of Ambient Assisted Living (AAL). This platform, Medical Care Terminal (MCT), includes the measurement of biomedical data (body temperature, galvanic skin resistance, electrocardiogram and electromyogram, level of oxygen, body position and breathing) as well environmental data (level of alcohol in the air, carbon monoxide level in the air, brightness and temperature). It presents ...

  17. Design for a Remote Monitoring Equipment of Krypton-85

    Institute of Scientific and Technical Information of China (English)

    LUXue-sheng; LIUGuo-rong; YEFeng; JINHui-min; TANGPei-jia

    2003-01-01

    A prototype equipment for monitoring Krypton-85 in situ is designed and set up. A series of relevant software is also developed for remote control, data acquirement and data analysis. Weight of the system is about 300 kg, which is composed of NaI(T1) detector, digi DART, Marillin measurement container and lead shield. The whole system is placed on a homemade go-cart.

  18. Exploring a New Security Framework for Remote Patient Monitoring Devices

    Directory of Open Access Journals (Sweden)

    Brian Ondiege

    2017-02-01

    Full Text Available Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framework.

  19. NN-SITE: A remote monitoring testbed facility

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-01-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide

  20. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  1. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel

    2018-01-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.

  2. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING and its operations from an unmanned aerial vehicle (UAV during the AROMAT campaign

    Directory of Open Access Journals (Sweden)

    A. Merlaud

    2018-01-01

    Full Text Available The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV. SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm  ×  12 cm  ×  8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. . These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS instrument for Measurements of Atmospheric Pollution (AirMAP, and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.

  3. The remote monitoring system of BESⅢ detector based on web

    International Nuclear Information System (INIS)

    Zhang Yining; Ye Mei; Zhao Shujun

    2011-01-01

    It designed a remote monitoring system of BESⅢ experiment based on web. The software of the system is mainly based on module programming. The Ajax technology and the MVC pattern is used in system framework construction. The function of selecting multiple tables is realized by structural checkbox tree using jstree library. Data chart is plotted by High Charts library. The updating of data curve is realized by the method of calculating the time span between the real data record to measure the http request. The system design can be used by detector monitoring system like BESⅢ. (authors)

  4. Potential and Limitations of Low-Cost Unmanned Aerial Systems for Monitoring Altitudinal Vegetation Phenology in the Tropics

    Science.gov (United States)

    Silva, T. S. F.; Torres, R. S.; Morellato, P.

    2017-12-01

    Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable

  5. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    Science.gov (United States)

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Remotely Piloted Aircraft Systems (RPAS) for high resolution topography and monitoring: civil protection purposes on hydrogeological contexts

    Science.gov (United States)

    Bertacchini, Eleonora; Castagnetti, Cristina; Corsini, Alessandro; De Cono, Stefano

    2014-10-01

    The proposed work concerns the analysis of Remotely Piloted Aircraft Systems (RPAS), also known as drones, UAV (Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System), on hydrogeological contexts for civil protection purposes, underlying the advantages of using a flexible and relatively low cost system. The capabilities of photogrammetric RPAS multi-sensors platform were examined in term of mapping, creation of orthophotos, 3D models generation, data integration into a 3D GIS (Geographic Information System) and validation through independent techniques such as GNSS (Global Navigation Satellite System). The RPAS used (multirotor OktoXL, of the Mikrokopter) was equipped with a GPS (Global Positioning System) receiver, digital cameras for photos and videos, an inertial navigation system, a radio device for communication and telemetry, etc. This innovative way of viewing and understanding the environment showed huge potentialities for the study of the territory, and due to its characteristics could be well integrated with aircraft surveys. However, such characteristics seem to give priority to local applications for rigorous and accurate analysis, while it remains a means of expeditious investigation for more extended areas. According to civil protection purposes, the experimentation was carried out by simulating operational protocols, for example for inspection, surveillance, monitoring, land mapping, georeferencing methods (with or without Ground Control Points - GCP) based on high resolution topography (2D and 3D information).

  7. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  8. Monitoring of the Nirano Mud Volcanoes Regional Natural Reserve (North Italy using Unmanned Aerial Vehicles and Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Tommaso Santagata

    2017-09-01

    Full Text Available In the last years, measurement instruments and techniques for three-dimensional mapping as Terrestrial Laser Scanning (TLS and photogrammetry from Unmanned Aerial Vehicles (UAV are being increasingly used to monitor topographic changes on particular geological features such as volcanic areas. In addition, topographic instruments such as Total Station Theodolite (TST and GPS receivers can be used to obtain precise elevation and coordinate position data measuring fixed points both inside and outside the area interested by volcanic activity. In this study, the integration of these instruments has helped to obtain several types of data to monitor both the variations in heights of extrusive edifices within the mud volcano field of the Nirano Regional Natural Reserve (Northern Italy, as well as to study the mechanism of micro-fracturing and the evolution of mud flows and volcanic cones with very high accuracy by 3D point clouds surface analysis and digitization. The large amount of data detected were also analysed to derive morphological information about mud-cracks and surface roughness. This contribution is focused on methods and analysis performed using measurement instruments as TLS and UAV to study and monitoring the main volcanic complexes of the Nirano Natural Reserve as part of a research project, which also involves other studies addressing gases and acoustic measurements, mineralogical and paleontological analysis, organized by the University of Modena and Reggio Emilia in collaboration with the Municipality of Fiorano Modenese.

  9. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  10. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China

    Directory of Open Access Journals (Sweden)

    Huawei Wan

    2014-01-01

    Full Text Available Spartina alterniflora was introduced to Beihai, Guangxi (China, for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR imagery from the unmanned aerial vehicle (UAV. The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.

  11. Remote health monitoring for elderly through interactive television

    Science.gov (United States)

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  12. Remote sensing techniques in monitoring areas affected by forest fire

    Science.gov (United States)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  13. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Science.gov (United States)

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841

  14. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  15. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    Science.gov (United States)

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  16. Remote Video Monitor of Vehicles in Cooperative Information Platform

    Science.gov (United States)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  17. Remote sensing data in Rangeland assessment and monitoring

    International Nuclear Information System (INIS)

    Hamid, Amna Ahmed; Ali, Mohamed M.

    1999-01-01

    The main objective of the paper is to illustrate the potential of remote sensing data in the study and monitoring of environmental changes in western Sudan where considerable part of the area is under rangeland use. Data from NOAA satellite AVHRR sensor as well as thematic mapper Tm was used to assess the environment of the area during 1982-1997. The AVHRR data was processed into vegetation index (NDVI) images. Image analysis and classification was done using image display and analysis (IDA) GIS method to study vegetation condition in time series. The obtained information from field observations. The result showed high correlation between the information the work concluded the followings: NDVI images and thematic mapper data proved to be efficient in environment change analysis. NOAA AVHRR satellite data can provide an early-warning indicator of an approaching disaster. Remote sensing integrated into a GIS can contribute effectively to improve land management through better understanding of environment variability.(Author)

  18. Remote Control and Monitoring of VLBI Experiments by Smartphones

    Science.gov (United States)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  19. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  20. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  1. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  2. Evaluation of remote monitoring at the Oak Ridge HEU storage vault -- First thoughts and final application

    International Nuclear Information System (INIS)

    Sheely, K.B.; Whitaker, J.M.

    1996-01-01

    Remote monitoring provides a more timely and comprehensive way to meet national and international requirements for monitoring nuclear material inventories. Unattended monitoring technologies could be used to meet national needs for nuclear material safety, protection, control and accountability. Unattended systems possessing a remote data transmission capability could be used to meet international requirements for nuclear material safeguards and transparency. Even though more enhancements are required to improve system reliability, remote monitoring''s future potential seems great. The key questions are: (1) how will remote monitoring systems be used (configuration and operation); (2) how effective will the system be (vs. current activities); and (3) how much will it cost. This paper provides preliminary answers to these questions based on the experience gained from a joint IAEA-United States Support Program (USSP) task to evaluate remote monitoring at the Oak Ridge HEU Storage vault. This paper also draws on experience gained from US involvement in other remote monitoring projects

  3. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  4. Employing unmanned aerial vehicle to monitor the health condition of wind turbines

    Science.gov (United States)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2018-04-01

    Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.

  5. Wearable Antennas for Remote Health Care Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Laura Corchia

    2017-01-01

    Full Text Available Remote monitoring of the elderly in telehealth applications requires that the monitoring must not affect the elderly’s regular habits. To ensure this requirement, the components (i.e., sensor and antenna necessary to carry out such monitoring should blend in with the elderly’s daily routine. To this end, an effective strategy relies on employing wearable antennas that can be fully integrated with clothes and that can be used for remotely transmitting/receiving the sensor data. Starting from these considerations, in this work, two different methods for wearable antenna fabrication are described in detail: the first resorts to the combined use of nonwoven conductive fabrics and of a cutting plotter for shaping the fabric, whereas the second considered fabrication method resorts to the embroidery of conductive threads. To demonstrate the suitability of the considered fabrication techniques and to highlight their pros and cons, numerical and experimental results related to different wearable antennas are also reported and commented on. Results demonstrate that the presented fabrication techniques and strategies are very flexible and can be used to obtain low-cost wearable antennas with performance tailored for the specific application at hand.

  6. Remote monitoring of instrumented structures using the Internet information superhighway

    Science.gov (United States)

    Fuhr, Peter L.; Huston, Dryver R.; Ambrose, Timothy P.

    1994-09-01

    The requirements of sensor monitoring associated with instrumented civil structures poses potential logistical constraints on manpower, training, and costs. The need for frequent or even continuous data monitoring places potentially severe constraints on overall system performance given real-world factors such as available manpower, geographic separation of the instrumented structures, and data archiving as well as the training and cost issues. While the pool of available low wage, moderate skill workers available to the authors is sizable (undergraduate engineering students), the level of performance of such workers is quite variable leading to data acquisition integrity and continuity issues - matters that are not acceptable in the practical field implementation of such developed systems. In the case of acquiring data from the numerous sensors within the civil structures which the authors have instrumented (e.g., a multistory building, roadway/railway bridges, and a hydroelectric dam), we have found that many of these concerns may be alleviated through the use of an automated data acquisition system which archives the acquired information in an electronic location remotely accessible through the Internet global computer network. It is therefore a possible for the data monitoring to be performed at a remote location with the only requirements for data acquisition being Internet accessibility. A description of the developed scheme is presented as well as guiding philosophies.

  7. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  8. Remote monitoring technical review for light water reactors (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Yoon, Wan Ki; Na, Won Woo; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The IAEA has been conducting a field trial of a Remote Monitoring System (RMS) at the spent fuel storage, Younggwang 3 nuclear power plant. The system installation plan was initiated after the agreement in the 7th ROK-IAEA safeguards Implementation Review Meeting that was held in Soul, 1998. It describes that IAEA and Korea proceed RM tasks Implementation of RMS at LWRs in the ROK for field trials. The project of RMS is conducting through 3 stages with timing. RMS has been installed for the Phase I of field trial, one of two stages at Younggwang Unit 3 in October 1998. The RMS consists of video systems and a seal at the spent fuel pond area. This report provides a description of the monitoring system and its functions focusing on several technical points of the installation and its 6 month operation at Younggwang Unit 3. Subjects are selected and analyzed in the three chapters, IAEA safeguards policy on Remote Monitoring, the technology, and field test experiences. 8 refs., 12 figs., 12 tabs. (Author)

  9. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  10. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    Science.gov (United States)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  11. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1977-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  12. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1976-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  13. Remote auscultatory patient monitoring during magnetic resonance imaging

    DEFF Research Database (Denmark)

    Henneberg, S; Hök, B; Wiklund, L

    1992-01-01

    A system for patient monitoring during magnetic resonance imaging (MRI) is described. The system is based on remote auscultation of heart sounds and respiratory sounds using specially developed pickup heads that are positioned on the precordium or at the nostrils and connected to microphones via...... can be simultaneously auscultated both inside and outside the shielded MRI room by infrared transmission through a metal mesh window. Bench tests of the system show that common mode acoustic noise is suppressed by approximately 30 dB in the frequency region of interest (100-1,000 Hz), and that polymer...

  14. Building Construction Progress Monitoring Using Unmanned Aerial System (uas), Low-Cost Photogrammetry, and Geographic Information System (gis)

    Science.gov (United States)

    Bognot, J. R.; Candido, C. G.; Blanco, A. C.; Montelibano, J. R. Y.

    2018-05-01

    Monitoring the progress of building's construction is critical in construction management. However, measuring the building construction's progress are still manual, time consuming, error prone, and impose tedious process of analysis leading to delays, additional costings and effort. The main goal of this research is to develop a methodology for building construction progress monitoring based on 3D as-built model of the building from unmanned aerial system (UAS) images, 4D as-planned model (with construction schedule integrated) and, GIS analysis. Monitoring was done by capturing videos of the building with a camera-equipped UAS. Still images were extracted, filtered, bundle-adjusted, and 3D as-built model was generated using open source photogrammetric software. The as-planned model was generated from digitized CAD drawings using GIS. The 3D as-built model was aligned with the 4D as-planned model of building formed from extrusion of building elements, and integration of the construction's planned schedule. The construction progress is visualized via color-coding the building elements in the 3D model. The developed methodology was conducted and applied from the data obtained from an actual construction site. Accuracy in detecting `built' or `not built' building elements ranges from 82-84 % and precision of 50-72 %. Quantified progress in terms of the number of building elements are 21.31% (November 2016), 26.84 % (January 2017) and 44.19 % (March 2017). The results can be used as an input for progress monitoring performance of construction projects and improving related decision-making process.

  15. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.

    1976-01-01

    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  16. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    M. T. Perks

    2016-10-01

    Full Text Available Unmanned aerial vehicles (UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande–Lucas–Tomasi (KLT algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s−1. Analysis of these vectors provides a rare insight into the complexity of channel–overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s−1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s−1, and within-channel velocities (±0.16 m s−1, illustrating the consistency of the approach.

  17. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    Science.gov (United States)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  18. TCR remote monitoring for the LHC technical infrastructure

    CERN Document Server

    Blanc, D; Morodo-Testa, M C; Poulsen, S; CERN. Geneva. ST Division

    2003-01-01

    The remote monitoring of the LHC technical infrastructure will mainly be done in CERN’s Technical Control Room (TCR). The technical infrastrucure consists of specialised equipment from different groups and divisions, mainly cooling and ventilation and electrical equipment. The responsibility for the definition, operation and maintenance of the equipment is covered by the relevant equipment group. However the monitoring and alerting for action in case of equipment failure is initiated by the TCR and is based on alarms that are sent by the equipment. This implies the correct integration of the equipment and the establishment of rules to follow during the commissioning and start-up of the equipment in order to ensure proper operation. This paper shows the integration possibilities and the different tasks and steps to follow by the different parties for smooth equipment integration and avoiding organizational problems.

  19. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    Science.gov (United States)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  20. Remote Monitoring of the Polarized Target's Control for E1039

    Science.gov (United States)

    Fox, David; SeaQuest Collaboration

    2017-09-01

    The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  1. Personalized and automated remote monitoring of atrial fibrillation.

    Science.gov (United States)

    Rosier, Arnaud; Mabo, Philippe; Temal, Lynda; Van Hille, Pascal; Dameron, Olivier; Deléger, Louise; Grouin, Cyril; Zweigenbaum, Pierre; Jacques, Julie; Chazard, Emmanuel; Laporte, Laure; Henry, Christine; Burgun, Anita

    2016-03-01

    Remote monitoring of cardiac implantable electronic devices is a growing standard; yet, remote follow-up and management of alerts represents a time-consuming task for physicians or trained staff. This study evaluates an automatic mechanism based on artificial intelligence tools to filter atrial fibrillation (AF) alerts based on their medical significance. We evaluated this method on alerts for AF episodes that occurred in 60 pacemaker recipients. AKENATON prototype workflow includes two steps: natural language-processing algorithms abstract the patient health record to a digital version, then a knowledge-based algorithm based on an applied formal ontology allows to calculate the CHA2DS2-VASc score and evaluate the anticoagulation status of the patient. Each alert is then automatically classified by importance from low to critical, by mimicking medical reasoning. Final classification was compared with human expert analysis by two physicians. A total of 1783 alerts about AF episode >5 min in 60 patients were processed. A 1749 of 1783 alerts (98%) were adequately classified and there were no underestimation of alert importance in the remaining 34 misclassified alerts. This work demonstrates the ability of a pilot system to classify alerts and improves personalized remote monitoring of patients. In particular, our method allows integration of patient medical history with device alert notifications, which is useful both from medical and resource-management perspectives. The system was able to automatically classify the importance of 1783 AF alerts in 60 patients, which resulted in an 84% reduction in notification workload, while preserving patient safety. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Potentials and limitations of remote fire monitoring in protected areas.

    Science.gov (United States)

    Dos Santos, João Flávio Costa; Romeiro, Joyce Machado Nunes; de Assis, José Batuíra; Torres, Fillipe Tamiozzo Pereira; Gleriani, José Marinaldo

    2018-03-01

    Protected areas (PAs) play an important role in maintaining the biodiversity and ecological processes of the site. One of the greatest challenges for the PA management in several biomes in the world is wildfires. The objective of this work was to evaluate the potentialities and limitations of the use of data obtained by orbital remote sensing in the monitoring fire occurrence in PAs. Fire Occurrence Records (FORs) were analyzed in Serra do Brigadeiro State Park, Minas Gerais, Brazil, from 2007 to 2015, using photo interpreted data from TM, ETM + and OLI sensors of the Landsat series and the Hot Spot Database (HSD) from the Brazilian Institute of Space Research - INPE. It was also observed the time of permanence of the scar left by fire on the landscape, through the multitemporal analysis of the behavior of NDVI (Normalized Difference Vegetation Index) and NBR (Normalized Burn Ratio) indexes, before and after the occurrence. The greatest limitation found for the orbital remote monitoring was the presence of clouds in the passage of the sensor in dates close to the occurrence of the fires. The burned area identified by photo interpretation was 54.9% less than the area contained in the FOR. Although the HSD reported fire occurrences in the buffer zone (up to 10km from the Park), no FORs were found at a distance greater than 1100m from the boundaries of the PA. As the main potential of remote sensing, the possibility of identifying burned areas throughout the park and surroundings is highlighted, with low costs and greater accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Conversion Timing of Seafarer’s Decision-making for Unmanned Ship Navigation

    Directory of Open Access Journals (Sweden)

    Ruolan Zhang

    2017-09-01

    Full Text Available The aim of this study is to construct an unmanned ship swarms monitoring model to improve autonomous decision-making efficiency and safety performance of unmanned ship navigation. A framework is proposed to determine the relationship between on-board decision-making and shore side monitoring, the process of ship data detection, tracking, analysis and loss, and the application of decision-making algorithm, to discuss the different risk responses of specific unmanned ship types under various latent hazard environments, particularly in terms of precise conversion timing in switching over to remote control and full manual monitoring, to ensure safe navigation when the capability of automatic risk response inadequate. This frame-work makes it easier to train data and the adjustment for machine learning based on Bayesian risk prediction. It can be concluded that the automation level can be increased and the workload of shore-based seafarers can be reduced easily.

  4. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    Science.gov (United States)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  5. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Jana; Brůna, Josef; Bartaloš, T.; Dvořák, P.; Vítková, Michaela; Pyšek, Petr

    2017-01-01

    Roč. 8, MAY 31 (2017), s. 1-13, č. článku 887. ISSN 1664-462X R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : alien species * remote sensing detection * UAV * plant phenology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  6. Printed soft-electronics for remote body monitoring

    Science.gov (United States)

    Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti

    2017-08-01

    Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.

  7. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  8. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.

    Science.gov (United States)

    Messinger, Max; Silman, Miles

    2016-11-01

    Unmanned aerial vehicles (UAVs) offer new opportunities to monitor pollution and provide valuable information to support remediation. Their low-cost, ease of use, and rapid deployment capability make them ideal for environmental emergency response. Here we present a UAV-based study of the third largest coal ash spill in the United States. Coal ash from coal combustion is a toxic industrial waste material present worldwide. Typically stored in settling ponds in close proximity to waterways, coal ash poses significant risk to the environment and drinking water supplies from both chronic contamination of surface and ground water and catastrophic pond failure. We sought to provide an independent estimate of the volume of coal ash and contaminated water lost during the rupture of the primary coal ash pond at the Dan River Steam Station in Eden, NC, USA and to demonstrate the feasibility of using UAVs to rapidly respond to and measure the volume of spills from ponds or containers that are open to the air. Using structure-from-motion (SfM) imagery analysis techniques, we reconstructed the 3D structure of the pond bottom after the spill, used historical imagery to estimate the pre-spill waterline, and calculated the volume of material lost. We estimated a loss of 66,245 ± 5678 m 3 of ash and contaminated water. The technique used here allows rapid response to environmental emergencies and quantification of their impacts at low cost, and these capabilities will make UAVs a central tool in environmental planning, monitoring, and disaster response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  10. Remote Monitoring of Forest Insect Defoliation -A Review-

    Directory of Open Access Journals (Sweden)

    C.D. Rullan-Silva

    2013-12-01

    Full Text Available Aim of study: This paper reviews the global research during the last 6 years (2007-2012 on the state, trends and potential of remote sensing for detecting, mapping and monitoring forest defoliation caused by insects.Area of study: The review covers research carried out within different countries in Europe and America.Main results: A nation or region wide monitoring system should be scaled in two levels, one using time-series with moderate to coarse resolutions, and the other with fine or high resolution. Thus, MODIS data is increasingly used for early warning detection, whereas Landsat data is predominant in defoliation damage research. Furthermore, ALS data currently stands as the more promising option for operative detection of defoliation.Vegetation indices based on infrared-medium/near-infrared ratios and on moisture content indicators are of great potential for mapping insect pest defoliation, although NDVI is the most widely used and tested.Research highlights: Among most promising methods for insect defoliation monitoring are Spectral Mixture Analysis, best suited for detection due to its sub-pixel recognition enhancing multispectral data, and use of logistic models as function of vegetation index change between two dates, recommended for predicting defoliation.Key words: vegetation damage; pest outbreak; spectral change detection.

  11. Remote monitoring of forest insect defoliation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Rullan-Silva, C. D.; Olthoff, A. E.; Delgado de la Mata, J. A.; Pajares-Alonso, J. A.

    2013-07-01

    Aim of study: This paper reviews the global research during the last 6 years (2007-2012) on the state, trends and potential of remote sensing for detecting, mapping and monitoring forest defoliation caused by insects. Area of study: The review covers research carried out within different countries in Europe and America. Main results: A nation or region wide monitoring system should be scaled in two levels, one using time-series with moderate to coarse resolutions, and the other with fine or high resolution. Thus, MODIS data is increasingly used for early warning detection, whereas Landsat data is predominant in defoliation damage research. Furthermore, ALS data currently stands as the more promising option for operative detection of defoliation. Vegetation indices based on infrared-medium/near-infrared ratios and on moisture content indicators are of great potential for mapping insect pest defoliation, although NDVI is the most widely used and tested. Research highlights: Among most promising methods for insect defoliation monitoring are Spectral Mixture Analysis, best suited for detection due to its sub-pixel recognition enhancing multispectral data, and use of logistic models as function of vegetation index change between two dates, recommended for predicting defoliation. (Author)

  12. Angkor site monitoring and evaluation by radar remote sensing

    Science.gov (United States)

    Chen, Fulong; Jiang, Aihui; Ishwaran, Natarajan

    2014-11-01

    Angkor, in the northern province of Siem Reap, Cambodia, is one of the most important world heritage sites of Southeast Asia. Seasonal flood and ground sinking are two representative hazards in Angkor site. Synthetic Aperture Radar (SAR) remote sensing has played an important role for the Angkor site monitoring and management. In this study, 46 scenes of TerraSAR data acquired in the span of February, 2011 to December, 2013 were used for the time series analysis and hazard evaluation; that is, two-fold classification for flood area extracting and Multi-Temporal SAR Interferometry (MT-InSAR) for ground subsidence monitoring. For the flood investigation, the original Single Look Complex (SLC) TerraSAR-X data were transferred into amplitude images. Water features in dry and flood seasons were firstly extracted using a proposed mixed-threshold approach based on the backscattering; and then for the correlation analysis between water features and the precipitation in seasonally and annually. Using the MT-InSAR method, the ground subsidence was derived with values ranging from -50 to +12 mm/yr in the observation period of February, 2011 to June, 2013. It is clear that the displacement on the Angkor site was evident, implying the necessity of continuous monitoring.

  13. Telecontrol - Expert systems. Real-time monitoring and remote diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lam, A.

    1996-09-01

    The role of expert systems in programming simple and complex tasks in utilities companies was discussed with examples from B.C. Hydro, where expert systems have been used in such diverse applications as an in-house programmable logic controller (PLC) training course, and a machine audit on a 150 MW steam turbine generating unit at their Burrard Thermal Generating Plant. The PLC tutoring program uses expert system technology for the air blast circuit breakers` air drier system, for individualized on-site training. The steam turbine audits (an eight-month long project) were performed remotely by dialing an on-site computer configured with customized expert software. Details of these, and other potential applications, such as transformer monitoring and diagnostics, circuit breaker performance analysis, and information management, were described.

  14. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    Science.gov (United States)

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  15. Flight controller design of unmanned airplane for radiation monitoring system via structured robust controller design using multiple model approach. Radiation monitoring flight in Namie-machi in Fukushima prefecture

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2015-01-01

    Due to the tragic accident of radioactive contaminant spread from Fukushima Dai-ichi nuclear power plant, the necessity of unmanned systems for radiation monitoring has been increasing. This paper concerns the flight controller design of an unmanned airplane which has been developed for radiation monitoring around the power plant. The flight controller consists of conventional control elements, i.e. Stability/Control Augmentation System (S/CAS) with PI controllers and guidance loops with PID controllers. The gains in these controllers are designed by minimizing appropriately defined cost functions for several possible models and disturbances to produce structured robust flight controllers. (This method is called as 'multiple model approach'.) Control performance of our flight controller was evaluated through flight tests and a primitive flight of radiation monitoring in Namie-machi in Fukushima prefecture was conducted in Jan. 2014. Flight results are included in this paper. (author)

  16. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    Directory of Open Access Journals (Sweden)

    O. Wigmore

    2017-11-01

    Full Text Available The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs. Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l.  operation, we completed repeat aerial surveys (2014 and 2015 of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm and digital elevation models (DEMs (10 cm were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  17. Remote photoplethysmography system for unsupervised monitoring regional anesthesia effectiveness

    Science.gov (United States)

    Rubins, U.; Miscuks, A.; Marcinkevics, Z.; Lange, M.

    2017-12-01

    Determining the level of regional anesthesia (RA) is vitally important to both an anesthesiologist and surgeon, also knowing the RA level can protect the patient and reduce the time of surgery. Normally to detect the level of RA, usually a simple subjective (sensitivity test) and complicated quantitative methods (thermography, neuromyography, etc.) are used, but there is not yet a standardized method for objective RA detection and evaluation. In this study, the advanced remote photoplethysmography imaging (rPPG) system for unsupervised monitoring of human palm RA is demonstrated. The rPPG system comprises compact video camera with green optical filter, surgical lamp as a light source and a computer with custom-developed software. The algorithm implemented in Matlab software recognizes the palm and two dermatomes (Medial and Ulnar innervation), calculates the perfusion map and perfusion changes in real-time to detect effect of RA. Seven patients (aged 18-80 years) undergoing hand surgery received peripheral nerve brachial plexus blocks during the measurements. Clinical experiments showed that our rPPG system is able to perform unsupervised monitoring of RA.

  18. Dynamic Monitoring of Yin Xu Site by Remote Sensing

    Science.gov (United States)

    Yang, Ruixia; Peng, Yanyan

    2014-03-01

    Yin Xu, dates back more than 3,300 years, is the first relic of the capital of the Shang Dynasty literally recorded and confirmed by oracle bone scripts and the archaeological excavation in China. Located in Anyang City of Henan Province(northwestern suburbs of Huanhe banks) it covers an area of around 36 km2. According to the characteristics of Yin Xu, remote sensing has shown its great capabilities to solve many issues in different fields, e.g. visual interpretations of aerial photo were used to identify the feature of Yin Xu site in 1972, 1984, 1998, 2005 and 2010. Using the classification validated by field investigations,the change information such as the monitoring index of settlements, riverway, main roads, factory and green area can be extracted in heritage site. According to the monitoring results of land cover and the surrounding environment, we conclude that the protection planning system is effective, and the rapid expansion of neighboring building area has playing a negative role in Yin Xu protection.

  19. Remote monitoring of breathing dynamics using infrared thermography.

    Science.gov (United States)

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-11-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient's body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as "gold standard" for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1-3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages.

  20. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Science.gov (United States)

    Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.

    2013-12-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  1. Opium poppy monitoring with remote sensing in North Myanmar.

    Science.gov (United States)

    Tian, Yichen; Wu, Bingfang; Zhang, Lei; Li, Qiangzi; Jia, Kun; Wen, Meiping

    2011-07-01

    Myanmar has long been a focus of the international community as a major opium poppy cultivation region. This study used remote sensing technology and ground verification to monitor opium poppy cultivation for three opium poppy growth seasons in North Myanmar. The study found that opium poppy cultivation has remained high. In 2005-6, 2006-7 and 2007-8 growing seasons the total areas monitored were 52,482 km(2), 178,274 km(2) and 236,342 km(2) and the total cultivated area of opium poppy was 8959 ha, 18,606 ha and 22,300, respectively. This was significantly less than cultivation levels reported during the 1990s. The major cultivation regions were located in Shan State, producing 88% of total poppy cultivation in North Myanmar in 2007-8. The opium poppy was mainly cultivated in the interlocking regions controlled by the local armed forces in Shan State. The field survey noted that most households in this area were poor and poppy cultivation was a main source of income. There were also differences between our figures on poppy cultivation and those reported by United Nations Office on Drugs and Crime. Our study shows that although the opium poppy cultivation in North Myanmar has reduced over recent years, it remains a major producer of opium and to which the international community needs to pay attention, especially in those areas controlled by local armed forces. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Dynamic Monitoring of Yin Xu Site by Remote Sensing

    International Nuclear Information System (INIS)

    Yang, Ruixia; Peng, Yanyan

    2014-01-01

    Yin Xu, dates back more than 3,300 years, is the first relic of the capital of the Shang Dynasty literally recorded and confirmed by oracle bone scripts and the archaeological excavation in China. Located in Anyang City of Henan Province(northwestern suburbs of Huanhe banks) it covers an area of around 36 km 2 . According to the characteristics of Yin Xu, remote sensing has shown its great capabilities to solve many issues in different fields, e.g. visual interpretations of aerial photo were used to identify the feature of Yin Xu site in 1972, 1984, 1998, 2005 and 2010. Using the classification validated by field investigations,the change information such as the monitoring index of settlements, riverway, main roads, factory and green area can be extracted in heritage site. According to the monitoring results of land cover and the surrounding environment, we conclude that the protection planning system is effective, and the rapid expansion of neighboring building area has playing a negative role in Yin Xu protection

  3. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  4. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  5. Development of Decision Support System for Remote Monitoring of PIP Corn

    Science.gov (United States)

    The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...

  6. Remote Sensing Monitoring Methods for Detecting Invasive Weed Coverage in Delta Waterways and Bay Marshlands

    Science.gov (United States)

    Potter, Christopher

    2018-01-01

    This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.

  7. Design of Remote Power Plant Monitoring System Based on LabVIEW and VC++ Software

    Directory of Open Access Journals (Sweden)

    Dawei Tan

    2013-05-01

    Full Text Available This study designs a real-time remote monitoring system based on LabVIEW and Microsoft Visual C++ for Plant Units. The server written in LabVIEW uses for data acquisition and storage. The server adopts the TCP and DataSocket to communicate with the VC client. The remote VC client can accept real-time data and process data, enabling remote monitoring.

  8. Designing remote monitoring systems for long term maintenance and reliability

    International Nuclear Information System (INIS)

    Davis, G.E.; Johnson, G.L.; Schrader, F.D.; Stone, M.A.; Wilson, E.F.

    2001-01-01

    Full text: As part of the effort to modernize safeguards equipment, the IAEA is continuing to acquire and install equipment for upgrading obsolete surveillance systems with digital technology; and providing remote-monitoring capabilities where and when economically justified. Remote monitoring is expected to reduce inspection effort, particularly at storage facilities and reactor sites. Remote monitoring technology will not only involve surveillance, but will also include seals, sensors, and other unattended measurement equipment. LLNL's experience with the Argus Security System offers lessons for the design, deployment, and maintenance of remote monitoring systems. Argus is an integrated security system for protection of high-consequence U.S. Government assets, including nuclear materials. Argus provides secure transmission of sensor data, administrative data, and video information to support intrusion detection and access control functions. LLNL developed and deployed the Argus system on its own site in 1988. Since that time LLNL has installed, maintained, and upgraded Argus systems at several Department of Energy and Department of Defense sites in the US as well as at the original LLNL site. Argus has provided high levels of reliability and integrity, as well as reducing overall lifecycle cost through incremental improvements to hardware and software. This philosophy permits expansion of functional capability, hardware upgrade and software upgrade without system outages and with minimum outage of local functions. This presentation will describe Argus design strategies and lessons learned from the Argus program as they apply to the design, development, and maintenance of a remote monitoring network. Hardware failures, software failures, and communication outages are expected and must be addressed by astute selection of system architecture. A combination of redundancy, diversity, and effective functional allocation between field and system level components should

  9. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  10. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  11. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, R.E., E-mail: ralf.erik.rossel@cern.ch [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Fedosseev, V.N.; Marsh, B.A. [CERN, Geneva (Switzerland); Richter, D. [Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Rothe, S. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Wendt, K.D.A. [Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)

    2013-12-15

    Highlights: • The requirements for continuous and automated RILIS operation are outlined. • Laser wavelength, power, beam position and pulse timing are continuously monitored. • A network-extended LabVIEW-based equipment operation framework was developed. • The system serves as a foundation for collaborative laser spectroscopy data acquisition. • Example applications have been successfully tested with ISOLDE experiment setups. -- Abstract: With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  12. Remote Monitoring of Hypertension Diseases in Pregnancy: A Pilot Study.

    Science.gov (United States)

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Molenberghs, Geert; Van Moerbeke, Anne; van den Hoogen, Anne; Robijns, Tiziana; Vonck, Sharona; Staelens, Anneleen; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2017-03-09

    Although remote monitoring (RM) has proven its added value in various health care domains, little is known about the remote follow-up of pregnant women diagnosed with a gestational hypertensive disorders (GHD). The aim of this study was to evaluate the added value of a remote follow-up program for pregnant women diagnosed with GHD. A 1-year retrospective study was performed in the outpatient clinic of a 2nd level prenatal center where pregnant women with GHD received RM or conventional care (CC). Primary study endpoints include number of prenatal visits and admissions to the prenatal observation ward. Secondary outcomes include gestational outcome, mode of delivery, neonatal outcome, and admission to neonatal intensive care (NIC). Differences in continuous and categorical variables in maternal demographics and characteristics were tested using Unpaired Student's two sampled t test or Mann-Whitney U test and the chi-square test. Both a univariate and multivariate analysis were performed for analyzing prenatal follow-up and gestational outcomes. All statistical analyses were done at nominal level, Cronbach alpha=.05. Of the 166 patients diagnosed with GHD, 53 received RM and 113 CC. After excluding 5 patients in the RM group and 15 in the CC group because of the missing data, 48 patients in RM group and 98 in CC group were taken into final analysis. The RM group had more women diagnosed with gestational hypertension, but less with preeclampsia when compared with CC (81.25% vs 42.86% and 14.58% vs 43.87%). Compared with CC, univariate analysis in RM showed less induction, more spontaneous labors, and less maternal and neonatal hospitalizations (48.98% vs 25.00%; 31.63% vs 60.42%; 74.49% vs 56.25%; and 27.55% vs 10.42%). This was also true in multivariate analysis, except for hospitalizations. An RM follow-up of women with GHD is a promising tool in the prenatal care. It opens the perspectives to reverse the current evolution of antenatal interventions leading to more

  13. Investigating User Identification in Remote Patient Monitoring Devices.

    Science.gov (United States)

    Ondiege, Brian; Clarke, Malcolm

    2017-09-13

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that

  14. Safeguards equipment of the future integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor's and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors

  15. Comparison of remote sensing indices for monitoring of desert cienegas

    Science.gov (United States)

    Wilson, Natalie R.; Norman, Laura M.; Villarreal, Miguel; Gass, Leila; Tiller, Ron; Salywon, Andrew

    2016-01-01

    This research considers the applicability of different vegetation indices at 30 m resolution for mapping and monitoring desert wetland (cienega) health and spatial extent through time at Cienega Creek in southeastern Arizona, USA. Multiple stressors including the risk of decadal-scale drought, the effects of current and predicted global warming, and continued anthropogenic pressures threaten aquatic habitats in the southwest and cienegas are recognized as important sites for conservation and restoration efforts. However, cienegas present a challenge to satellite-imagery based analysis due to their small size and mixed surface cover of open water, exposed soils, and vegetation. We created time series of five well-known vegetation indices using annual Landsat Thematic Mapper (TM) images retrieved during the April–June dry season, from 1984 to 2011 to map landscape-level distribution of wetlands and monitor the temporal dynamics of individual sites. Indices included the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Infrared Index (NDII). One topographic index, the Topographic Wetness Index (TWI), was analyzed to examine the utility of topography in mapping distribution of cienegas. Our results indicate that the NDII, calculated using Landsat TM band 5, outperforms the other indices at differentiating cienegas from riparian and upland sites, and was the best means to analyze change. As such, it offers a critical baseline for future studies that seek to extend the analysis of cienegas to other regions and time scales, and has broader applicability to the remote sensing of wetland features in arid landscapes.

  16. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  17. Remote Left Ventricular Hemodynamic Monitoring Using a Novel Intracardiac Sensor.

    Science.gov (United States)

    Mondritzki, Thomas; Boehme, Philip; White, Jason; Park, Jin Woo; Hoffmann, Jessica; Vogel, Julia; Kolkhof, Peter; Walsh, Stuart; Sandner, Peter; Bischoff, Erwin; Dinh, Wilfried; Hüser, Jörg; Truebel, Hubert

    2018-05-01

    Heart failure (HF) remains the most common reason for hospital admission in patients aged >65 years. Despite modern drug therapy, mortality and readmission rates for patients hospitalized with HF remain high. This necessitates further research to identify early patients at risk for readmission to limit hospitalization by timely adjustment of medical therapy. Implantable devices can monitor left ventricular (LV) hemodynamics and remotely and continuously detect the early signs of decompensation to trigger interventions and reduce the risk of hospitalization for HF. Here, we report the first preclinical study validating a new batteryless and easy to implant LV-microelectromechanical system to assess LV performance. A miniaturized implantable wireless pressure sensor was adapted for implantation in the LV apex. The LV-microelectromechanical system sensor was tested in a canine model of HF. The wireless pressure sensor measurements were compared with invasive left heart catheter-derived measurements at several time points. During different pharmacological challenge studies with dobutamine or vasopressin, the device was equally sensitive compared with invasive standard procedures. No adverse events or any observable reaction related to the implantation and application of the device for a period of 35 days was observed. Our miniaturized wireless pressure sensor placed in the LV (LV-microelectromechanical system) has the potential to become a new telemetric tool to earlier identify patients at risk for HF decompensation and to guide the treatment of patients with HF. © 2018 American Heart Association, Inc.

  18. Remote Patient Monitoring in IBD: Current State and Future Directions.

    Science.gov (United States)

    Atreja, Ashish; Otobo, Emamuzo; Ramireddy, Karthik; Deorocki, Allyssa

    2018-03-07

    Mobile apps are now increasingly used in conjunction with telemedicine and wearable devices to support remote patient monitoring (RPM). The goal of this paper is to review the available evidence and assess the scope of RPM integration into standard practices for care and management of chronic disease in general and, more specifically, inflammatory bowel disease (IBD). RPM has been associated with improvements in health outcomes and indicators across a broad range of chronic diseases. However, there is limited data on the effectiveness of RPM in IBD care. From the emerging literature and body of research, we found promising results about the feasibility of integrating RPM in IBD care and RPM's capacity to support IBD improvement in key process and outcome metrics. Concerns regarding privacy and provider acceptability have limited the mass integration of RPM to date. However, with the healthcare industry's move toward value-based population care and the advent of novel payment models for RPM reimbursement, the adoption of RPM into standard IBD care practices will likely increase as the technology continues to improve and become a mainstream tool for healthcare delivery in the near future.

  19. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    CERN Document Server

    Rossel, R E; Richter, D; Wendt, K D A; Rothe, S; Marsh, B A

    2013-01-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The syst...

  20. Robust remote monitoring of breathing function by using infrared thermography.

    Science.gov (United States)

    Pereira, Carina B; Yu, Xinchi; Blazek, Vladimir; Leonhardt, Steffen

    2015-01-01

    An abnormal breathing rate (BR) is one of the strongest markers of physiological distress. Moreover, it plays an important role in early detection of sudden infant death syndrome, as well as in the diagnosis of respiratory disorders. However, the current measuring modalities can cause discomfort to the patient, since attachment to the patient's body is required. This paper proposes a new approach based on infrared thermography to remotely monitor BR. This method allows to (1) detect automatically the nose, (2) track the associate region of interest (ROI), and (3) extract BR. To evaluate the performance of this method, thermal recording of 5 healthy subjects were acquired. Results were compared with BR obtained by capnography. The introduced approach demonstrated an excellent performance. ROIs were precisely segmented and tracked. Furthermore, a Bland-Altman diagram showed a good agreement between estimated BR and gold standard. The mean correlation and mean absolute BR error are 0.92 ± 0.07 and 0.53 bpm, respectively. In summary, infrared thermography seems to be a great, clinically relevant alternative to attached sensors, due to its outstanding characteristics and performance.

  1. Improving collection efficiency through remote monitoring of charity assets.

    Science.gov (United States)

    McLeod, Fraser; Erdogan, Gunes; Cherrett, Tom; Bektas, Tolga; Davies, Nigel; Shingleton, Duncan; Speed, Chris; Dickinson, Janet; Norgate, Sarah

    2014-02-01

    Collection costs associated with servicing a major UK charity's donation banks and collecting unsold goods from their retail shops can account for up to 20% of the overall income gained. Bank and shop collections are commingled and are typically made on fixed days of the week irrespective of the amounts of materials waiting to be collected. Using collection records from a major UK charity, this paper considers what vehicle routing and scheduling benefits could accrue if bank and shop servicing requirements were monitored, the former using remote sensing technology to allow more proactive collection scheduling. A vehicle routing and scheduling algorithm employing tabu search methods was developed, and suggested time and distance savings of up to 30% over the current fixed schedules when a minimum bank and shop fill level of between 50% and 60% was used as a collection trigger. For the case study investigated, this led to a potential revenue gain of 5% for the charity and estimated CO2 savings of around 0.5 tonnes per week across the fleet of six heterogeneous vehicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring?

    Directory of Open Access Journals (Sweden)

    Nuno C. de Sá

    2018-03-01

    Full Text Available Invasion by alien species is a worldwide phenomenon with negative consequences at both natural and production areas. Acacia longifolia is an invasive shrub/small tree well known for its negative ecological impacts in several places around the world. The recent introduction of a biocontrol agent (Trichilogaster acaciaelongifoliae, an Australian bud-galling wasp which decreases flowering of A. longifolia, in Portugal, demands the development of a cost-efficient method to monitor its establishment. We tested how unmanned aerial vehicles (UAV can be used to map A. longifolia flowering. Our core assumption is as the population of the biocontrol agent increases, its impacts on the reduction of A. longifolia flowering will be increasingly visible. Additionally, we tested if there is a simple linear correlation between the number of flowers of A. longifolia counted in field and the area covered by flowers in the UAV imagery. UAV imagery was acquired over seven coastal areas including frontal dunes, interior sand dunes and pine forests considering two phenological stages: peak and off-peak flowering season. The number of flowers of A. longifolia was counted, in a minimum of 60 1 m2 quadrats per study area. For each study area, flower presence/absence maps were obtained using supervised Random Forest. The correlation between the number of flowers and the area covered by flowering plants could then be tested. The flowering of A. longifolia was mapped using UAV mounted with RGB and CIR Cannon IXUS/ELPH cameras (Overall Accuracy > 0.96; Cohen’s Kappa > 0.85 varying according to habitat type and flowering season. The correlation between the number of flowers counted and the area covered by flowering was weak (r2 between 0.0134 and 0.156. This is probably explained, at least partially, by the high variability of A. longifolia in what regards flowering morphology and distribution. The very high accuracy of our approach to map A. longifolia flowering proved to

  3. High-throughput phenotyping of large wheat breeding nurseries using unmanned aerial system, remote sensing and GIS techniques

    Science.gov (United States)

    Haghighattalab, Atena

    Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging technologies are reducing these obstacles. Advances in genotyping technologies have significantly decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, this is just part of the equation. Field-based phenotyping informs a breeder's decision as to which lines move forward in the breeding cycle. This has long been the most expensive and time-consuming, though most critical, aspect of breeding. The grand challenge remains in connecting genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic composition of lines or cultivars. In this context, the current study was undertaken to investigate the utility of UAS in assessment field trials in wheat breeding programs. The major objective was to integrate remotely sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding nurseries. The initial step was to develop and validate a semi-automated high-throughput phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data (vegetation indices and height) extracted from UAS imagery and manual measurements were examined and found to have a high correlation. Data derived from UAS imagery performed as well as manual measurements while exponentially increasing the amount of data available. The high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to develop a within season grain yield prediction model. Due to the variety in genotypes and environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly across the field. This makes geographically weighted regression models a good choice as a

  4. Workshop on regional cooperation in remote monitoring for transparency and nonproliferation

    International Nuclear Information System (INIS)

    Olsen, John; Inoue, Naoko; Hori, Masato; Hashimoto, Yu; Mochiji, Toshiro

    2006-06-01

    The Workshop on Regional Cooperation in Remote Monitoring for Transparency and Nonproliferation on 8-9 February at O'arai, Japan, brought together remote monitoring experts to share technical experience and consider potential uses of remote monitoring for nuclear transparency and strengthened nonproliferation. Sponsored by the Nuclear Nonproliferation Science and Technology Center (NPSTC) of the Japan Atomic Energy Agency (JAEA), this event gathered thirty five attendees from the JAEA, the Republic of Korea's National Nuclear Management and Control Agency (NNCA), the International Atomic Energy Agency (IAEA), and U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). U.S. technical experts represented Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). Workshop discussions and interactions met or surpassed all goals: On the technical front, the JAEA, NNCA, and SNL exchanged presentations on their respective uses and technical approaches to remote monitoring. These included systems for both international safeguards and transparency. The IAEA shared valuable guidance on future remote monitoring system requirements. Following the presentations SNL conducted training in remote monitoring for technical personnel. In parallel project planning discussions, the JAEA, NNCA, SNL and the U.S. DOE reaffirmed mutual interest in regional cooperation in remote monitoring that could eventuate in exchange of safeguards-related data. A productive off-the-record session by all parties considered the path forward and established intermediate steps and time scales. The 15 of the presented papers are indexed individually. (J.P.N.)

  5. Control of occupational exposure using remote monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunn, M. P. [British Energy Generation Ltd. Sizewell B Power Station, Leiston, Suffolk (United Kingdom)

    2004-07-01

    Advances in electronic dosimetry, portable radio technology and digital video have enabled the development of Remote Monitoring Systems (RMS) that provide a powerful dose control tool for the Operational Health Physicist. North American utilities have led the implementation of these systems, often with coverage of the entire plant, feeding back to a centralized control room. These large-scale systems typically cost around EURO 500,000. In Europe, and especially the UK, implementation of RMS technology has been slower and on a smaller scale. US utilities have justified the high capital cost of their systems by significantly reducing the number of contract RP technicians required during refuelling outages, saving up to EURO 1,000,000. In the UK, the number of contract RP technicians employed during outages is already minimal, and with the generally low dose rates found on Gas-Cooled Reactors, RP engineers have traditionally considered RMS to be an extravagance. However, the commissioning of the UK's first PWR and a significant increase in the number of AGR Vessel entries, have increased the radiological protection challenges facing the British Health Physicist, thus prompting a re-evaluation of this view. The benefit derived from a system that combines telemetry, video and voice communications is synergistic. We found that the system can be used in a variety of ways to significantly enhance radiological protection control in high radiation areas and to significantly reduce the dose received by RP staff covering such jobs. Indeed, it is estimated that the use of RMS saved at least 10 man.mSv of Radiological Protection dose during RF06 However, it is important to note that RMS is a monitoring tool to support existing monitoring techniques and arrangements. Suitably qualified and experienced staff are required to interpret the data and provide suitable advice to the work party. In addition, detailed training on the limitations of RMS, explicit procedures for

  6. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  7. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  8. Study on Remote Monitoring System of Crossing and Spanning Tangent Tower

    Science.gov (United States)

    Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan

    2017-05-01

    In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.

  9. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    Dozier J 1989a Remote sensing of snow in the visible and near-infrared wavelengths; In: Theory and Applications of. Optical Remote Sensing (ed.) Asrar G (New York: John. Wiley and Sons), pp. 527–547. Dozier J 1989b Spectral signature of alpine snow cover from the Landsat Thematic Mapper; Rem. Sens. Environ. 28.

  10. Patient satisfaction and suggestions for improvement of remote ICD monitoring

    DEFF Research Database (Denmark)

    Petersen, Helen Høgh; Larsen, Mie Christa Jensen; Nielsen, Olav Wendelboe

    2012-01-01

    PURPOSE: The study aim was to evaluate patient acceptance and content with remote follow-up (FU) of their implantable cardioverter defibrillator (ICD) and to estimate patients' wish for changes in remote follow-up routines. METHODS: Four hundred seventy-four ICD patients at the device follow-up c...

  11. Remote support services using condition monitoring and online sensor data for offshore oilfield

    OpenAIRE

    Du, Baoli

    2013-01-01

    Master's thesis in Offshore technology Based on advanced technology in condition monitoring and online sensor data, a new style of operation and maintenance management called remote operation and maintenance support services has been created to improve oil and gas E&P performance. This master thesis will look into how the remote support service is conducted including the concept, design, technology and management philosophies; the current implementation of remote support services in China,...

  12. Remote Sensing for Inland Water Quality Monitoring: A U.S. Army Corps of Engineers Perspective

    Science.gov (United States)

    2011-10-01

    remote sensing has experienced an increasing role in water quality studies, largely due to technological advances, including instrument/sensor and algorithm/image processing improvements. The primary strength of remote sensing over traditional techniques includes the ability to provide a synoptic view of water quality for more effective monitoring of spatial and temporal variation. In addition, remote sensing offers capabilities for viewing water quality in multiple waterbodies over a large region at one time, a more

  13. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    Science.gov (United States)

    Tamás, János; Nagy, Attila; Fehér, János

    2015-01-01

    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins.

  14. REMOTE BIOSENSOR FOR IN SITU MONITORING OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)

    Science.gov (United States)

    A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...

  15. Coral reef remote sensing a guide for mapping, monitoring and management

    CERN Document Server

    Goodman, James A; Phinn, Stuart R

    2013-01-01

    This book offers a multi-level examination of remote-sensing technologies for mapping and monitoring coral reef ecosystems, ranging from satellite and airborne imagery to ship-based observation. Includes examples of practical applications of the technologies.

  16. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  17. A Real-Time Audio Tele-Presence Device for Remote Acoustic Monitoring

    National Research Council Canada - National Science Library

    Vaudrey, Michael

    2003-01-01

    .... At the end of the Phase I effort, ATI delivered to ARL a fully functional wired binaural hearing device capable of accurately monitoring remote acoustic environments as far as 50 feet from the listener/operator...

  18. [Design and application of user managing system of cardiac remote monitoring network].

    Science.gov (United States)

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing

    2007-12-01

    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  19. Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management

    OpenAIRE

    Ramirez, Magaly; Wu, Shinyi; Jin, Haomiao; Ell, Kathleen; Gross-Schulman, Sandra; Myerchin Sklaroff, Laura; Guterman, Jeffrey

    2016-01-01

    Background Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)?a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care syst...

  20. Remote sensing monitoring the spatio-temporal changes of ...

    Indian Academy of Sciences (India)

    Xiaoming Cao

    2017-06-16

    Jun 16, 2017 ... mainly focused on the models established by the remote sensing data in .... Page 5 of 16 58. Organization (WMO) World Weather Watch Pro- gram. ...... the disorder of urban sprawl would bring decreased vegetation cover and ...

  1. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  2. Current and future technologies for remote monitoring in cardiology and evidence from trial data.

    Science.gov (United States)

    Acosta-Lobos, Andres; Riley, Jillian P; Cowie, Martin R

    2012-05-01

    All major manufacturers of implantable pacing or defibrillator technologies support remote monitoring of their devices. Integration of signals from several monitored variables can facilitate earlier detection of arrhythmia or technical problems, and can also identify patients at risk of deterioration. Meta-analyses of randomized studies of remote monitoring of heart failure using standalone systems suggest considerable clinical benefit when compared with usual care. However, there may be little to be gained by frequently monitoring patients with well-treated stable disease. Trials of implantable monitoring-only devices suggest that there is a subgroup of patients that may benefit from such remote monitoring. Remote monitoring is still not widely adopted due to a number of social, technological and reimbursement issues, but this is likely to change rapidly. Remote monitoring will not replace face-to-face clinical review, but it will be part of the solution to ever increasing numbers of patients with heart failure and/or an implantable device requiring expert input to their care.

  3. National Unmanned Aircraft Systems Project Office

    Science.gov (United States)

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  4. Aerial infrared monitoring for nuclear fuel cycle facilities in Ukraine

    International Nuclear Information System (INIS)

    Stankevich, S.A.; Dudar, T.V.; Kovalenko, G.D.; Kartashov, V.V.

    2015-01-01

    The scientific research overall objective is rapid express detection and preliminary identification of pre-accidental conditions at nuclear fuel cycle facilities. We consider development of a miniature unmanned aerial vehicle equipped with high-precision infrared spectroradiometer able to detect remotely internal warming up of hazardous facilities by its thermal infrared radiation. The possibility of remote monitoring using unmanned aerial vehicle is considered at the example of the dry spent fuel storage facility of the Zaporizhzhya Nuclear Power Plant. Infrared remote monitoring is supposed to present additional information on the monitored facilities based on different physical principles rather than those currently in use. Models and specifications towards up-to-date samples of infrared surveying equipment and its small-sized unmanned vehicles are presented in the paper.

  5. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  6. System for remote routine monitoring of power equipment at TPP and NPP

    International Nuclear Information System (INIS)

    Kantsedalov, V.G.; Samojlenko, V.P.; Doroshenko, V.A.

    1988-01-01

    A system for remote routine monitoring of TPP and NPP pipeline metals is described. The principal functional unit of the system is the unit of remote routine methods and techniques for studying and monitoring the metal and properties. The system is equipped with 5 types of routine monitoring equipment: robots, remote aggregated complexes, periodical diagnostic monitors, other means of metal diagnostics (endoscopes, introscopes). All current information enters the unit for estimating and forecasting the service life of power unit, where it is compared with the standard indices of reliability, duravility and efficiency. The system considered permits to reduce significantly or minimize the scope of works on metal monitoring during overhauls, increase intermonitoring and interrepairing compaigns to 8 years

  7. Safety Evaluation of an Automated Remote Monitoring System for Heart Failure in an Urban, Indigent Population.

    Science.gov (United States)

    Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Hertz, Crystal Coyazo; Guterman, Jeffrey J

    2017-12-01

    Heart Failure (HF) is the most expensive preventable condition, regardless of patient ethnicity, race, socioeconomic status, sex, and insurance status. Remote telemonitoring with timely outpatient care can significantly reduce avoidable HF hospitalizations. Human outreach, the traditional method used for remote monitoring, is effective but costly. Automated systems can potentially provide positive clinical, fiscal, and satisfaction outcomes in chronic disease monitoring. The authors implemented a telephonic HF automated remote monitoring system that utilizes deterministic decision tree logic to identify patients who are at risk of clinical decompensation. This safety study evaluated the degree of clinical concordance between the automated system and traditional human monitoring. This study focused on a broad underserved population and demonstrated a safe, reliable, and inexpensive method of monitoring patients with HF.

  8. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Science.gov (United States)

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  9. Development of Ethernet Based Remote Monitoring and Controlling of MST Radar Transmitters using ARM Cortex Microcontroller

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana ROSHANNA

    2013-01-01

    Full Text Available The recently emerging Web Services technology has provided a new and excellent solution to Industrial Automation in online control and remote monitoring. In this paper, a Web Service Based Remote Monitoring & Controlling of Radar Transmitters for safety management (WMCT developed for MST Radar is described. It achieved the MST radar transmitters’ remote supervisory, data logging and controlling activities. The system is developed using an ARM Cortex M3 processor to monitor and control the 32 triode-based transmitters of the 53-MHz Radar. The system controls transmitters via the internet using an Ethernet client server and store health status in the Database for radar performance analysis. The system enables scientists to operate and control the radar transmitters from a remote client machine Webpage.

  10. The German remote monitoring field test -- First results

    International Nuclear Information System (INIS)

    Richter, B.; Neumann, G.; Rudolf, K.; Schink, F.J.; Johnson, C.S.; Martinez, R.L.

    1996-01-01

    The International Atomic Energy Agency strives to increase the efficiency of its safeguards by reducing the inspection effort without losing safeguards effectiveness. Remote data transmission may have a potential to automate routine safeguards. The German government sponsors a field trial to study technical and non-technical issues related to the remote transmission of safeguards and status data as well as mailing-in of data carriers. Major technical issues of the field trial are the authenticity and confidentiality of the remotely received data as well as the reliability of the transmission techniques and data storage on removable data carriers. Non-technical issues are related to the release of data including the timing of data transmissions. The field trial takes place in the commercial Ahaus Dry Storage Facility for Spent Nuclear Fuel with participation of Sandia National Laboratories. The paper describes the first results

  11. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    Science.gov (United States)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  12. Remote operations and viewing using the monitor system

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.; Baldwin, T.S.; Ekberg, E.L.; Hernandez, T.R.; Raybun, J.L.

    1984-01-01

    Over the past two years, major rebuilding operations were conducted at the Clinton P. Anderson Meson Physics Facility (LAMPF). These operations involved replacement of complex experimental apparatus in high-radiation areas using servomanipulators and video viewing. All remote tasks were completed on or ahead of allotted schedules. This success is attributed to continuing improvement of manipulators, viewing systems, and operating techniques

  13. Spatial and temporal remote sensing data fusion for vegetation monitoring

    Science.gov (United States)

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  14. Monitoring Shoreline Change using Remote Sensing and GIS: A ...

    African Journals Online (AJOL)

    Key words: remote sensing, geographic information system (GIS), aerial photographs, shoreline change. Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality.

  15. Development of a remote monitoring and control system for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    Nuclear Power Plants (NPPs) will be highly connected network enabled system and need to be monitored and controlled round the clock for high safety and availability. Using the network and web enabled tools, NPPs can be monitored remotely by operators at anytime from any place connected to the network via a general web browser. However, there are security and performance issues associated with such tools, as will be further discussed further. We developed a web-based Remote Monitoring and Control System (RMCS) that uses prevalent web technology. This work, as a preliminary study, performed the conceptual design of the web-based RMCS and developed the prototype

  16. Design of remote weather monitor system based on embedded web database

    International Nuclear Information System (INIS)

    Gao Jiugang; Zhuang Along

    2010-01-01

    The remote weather monitoring system is designed by employing the embedded Web database technology and the S3C2410 microprocessor as the core. The monitoring system can simultaneously monitor the multi-channel sensor signals, and can give a dynamic Web pages display of various types of meteorological information on the remote computer. It gives a elaborated introduction of the construction and application of the Web database under the embedded Linux. Test results show that the client access the Web page via the GPRS or the Internet, acquires data and uses an intuitive graphical way to display the value of various types of meteorological information. (authors)

  17. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    Science.gov (United States)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  18. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  19. Online remote radiological monitoring during operation of Advance Vitrification System (AVS), Tarapur

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Mathew, P.; Khot, A.R.; Singh, K.K.; Kamlesh; Deshpande, M.D.; Kulkarni, Y.

    2010-01-01

    Advanced Vitrification System (AVS) is commissioned for vitrification of high level waste (HLW) by using Joule heated ceramic melter first time in India. The HLW is generated in fuel reprocessing plant. For radiological surveillance of plant, Health Physics Unit (HPU) had installed 37 Area Gamma Monitors (AGM), 7 Continuous Air Monitors (CAM) and all types of personal contamination monitors. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize exposures to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed by calibrating the system by comparing TLD and DRD readings and by theoretical analysis. In addition some modifications were carried in HP instruments to make them user friendly. This paper summarizes different kinds of remote radiological monitoring systems installed for online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, annulus air sampling and over pack monitoring in AVS. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving of collective dose. (author)

  20. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  1. Use of passive microwave remote sensing to monitor soil moisture

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y.

    1998-01-01

    Surface soil moisture is a key variable to describe the water and energy exchanges at the land surface/atmosphere interface. However, soil moisture is highly variable both spatially and temporally. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition (on a daily basis) and at regional scale (∼ 10 km). This paper reviews the various methods for remote sensing of soil moisture from microwave radiometric systems. Potential applications from both airborne and spatial observations are discussed in the fields of agronomy, hydrology and meteorology. Emphasis in this paper is given to relatively new aspects of microwave techniques and of temporal soil moisture information analysis. In particular, the aperture synthesis technique allows us now to a address the soil moisture information needs on a global basis, from space instruments. (author) [fr

  2. Remote physiological monitoring in an austere environment: a future for battlefield care provision?

    Science.gov (United States)

    Smyth, Matthew J; Round, J A; Mellor, A J

    2018-05-14

    Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring

    OpenAIRE

    Mark van Gastel; Sander Stuijk; Gerard de Haan

    2016-01-01

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO2) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted ...

  4. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  5. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Science.gov (United States)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  6. A remote data access architecture for home-monitoring health-care applications.

    Science.gov (United States)

    Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son

    2007-03-01

    With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.

  7. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    Science.gov (United States)

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  8. Research plan for integrated ecosystem and pollutant monitoring at remote wilderness study sites

    International Nuclear Information System (INIS)

    Bruns, D.A.; Wiersma, G.B.

    1988-03-01

    This research plan outlines an approach to the measurement of pollutants and ecosystem parameters at remote, high-elevation, wilderness study sites. A multimedia, systems approach to environmental monitoring is emphasized. The primary purpose of the research is to apply and field test a technical report entitled ''Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems.'' This document intended to provide Federal Land Managers with information to establish environmental monitoring programs in wilderness areas. To date, this monitoring document has yet to be evaluated under rigorous field conditions at a remote, high-elevation Rocky Mountain site. For the purpose of field testing approaches to monitoring of pollutants and ecosystems in remote, wilderness areas, evaluation criteria were developed. These include useability, cost-effectiveness, data variability, alternative approaches, ecosystems conceptual approach, and quality assurance. Both the Forest Service and INEL environmental monitoring techniques will be evaluated with these criteria. Another objective of this research plan is to obtain an integrated data base on pollutants and ecosystem structure and function at a remote study site. The methods tested in this project will be used to acquire these data from a systems approach. This includes multimedia monitoring of air and water quality, soils, and forest, stream, and lake ecosystems. 71 refs., 1 fig., 9 tabs

  9. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    Science.gov (United States)

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui

    2017-01-01

    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  10. A contemporary method for monitoring indoor radon and environmental conditions at a remote test site

    International Nuclear Information System (INIS)

    Renken, K.J.; Coursin, S.

    1996-01-01

    A state-of-the-art method for automatically monitoring indoor radon and environmental conditions at a remote test site is described. A Wisconsin home that exhibited elevated radon levels has been installed with automated PC-data acquisition system (PC-DAS) that includes: a laptop PC, a data acquisition cardcage, a commercial data acquisition software program plus sensors to measure radon gas concentrations, differential pressures, indoor air quality and meteorological conditions. The isolated PC-DAS is connected to a PC in a university laboratory via a modem and a communications software package. Experimental data is monitored and saved by the remote PC in real time and then automatically downloaded to the lab computer at selected intervals. An example of the formatted field results is presented and analysed. This documentation of the set-up, the off-the-shelf computer hardware and software, and the procedures should assist investigations requiring flexible remote long-term radon and environmental monitoring. (Author)

  11. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  12. Ubiquitous computing for remote cardiac patient monitoring: a survey.

    Science.gov (United States)

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.

  13. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    inspection, repair or replacement. The paper explores the requirements for the level of remote data Output that will allow an initial improvement in the overall management of offshore wind farms., and ultimately accurate estimates of remaining life for individual blades. The practical and theoretical...... knowledge synergy required to introduce a working system is also considered. Although the initial objectives of the present Study were simply to establish the fundamentals for such technology, with industrial collaboration to follow, it quickly became clear that the development of specific prototype...

  14. A remote sensing research agenda for mapping and monitoring biodiversity

    Science.gov (United States)

    Stoms, D. M.; Estes, J. E.

    1993-01-01

    A remote sensing research agenda designed to expand the knowledge of the spatial distribution of species richness and its ecological determinants and to predict its response to global change is proposed. Emphasis is placed on current methods of mapping species richness of both plants and animals, hypotheses concerning the biophysical factors believed to determine patterns of species richness, and anthropogenic processes causing the accelerating rate of extinctions. It is concluded that biodiversity should be incorporated more prominently into the global change and earth system science paradigms.

  15. Research and implementation of a Web-based remote desktop image monitoring system

    International Nuclear Information System (INIS)

    Ren Weijuan; Li Luofeng; Wang Chunhong

    2010-01-01

    It studied and implemented an ISS (Image Snapshot Server) system based on Web, using Java Web technology. The ISS system consisted of client web browser and server. The server part could be divided into three modules as the screen shots software, web server and Oracle database. Screen shots software intercepted the desktop environment of the remote monitored PC and sent these pictures to a Tomcat web server for displaying on the web at real time. At the same time, these pictures were also saved in an Oracle database. Through the web browser, monitor person can view the real-time and historical desktop pictures of the monitored PC during some period. It is very convenient for any user to monitor the desktop image of remote monitoring PC. (authors)

  16. Remote sensing applied to the mineral extraction monitoring in urban areas: the pros and cons

    International Nuclear Information System (INIS)

    Morisson Valeriano, D. de.

    1989-06-01

    Within the economic activities that are directly related to the exploration of natural resources, quarrying is one of those that are able to cause great environmental disturbances. Due to its inherent periodicity, space borne remote sensing is potentially a fundamental tool to the execution of such monitoring. Nevertheless, due to the operational peculiarities of the activities and to the variability of materials evolved in the mineral extraction, the application of remote sensing to its monitoring requires methodological attentions that are specific to each type of quarrying. These methodological aspects are discussed through the analysis of a cases study; the coal mining in Southeastern Santa Catarina State. (author)

  17. Training in remote monitoring technology. Digital camera module-14(DCM-14)

    International Nuclear Information System (INIS)

    Caskey, Susan

    2006-01-01

    The DCM-14 (Digital Camera Module) is the backbone of current IAEA remote monitoring surveillance systems. The control module is programmable with features for encryption, authentication, image compression and scene change detection. It can take periodic or triggered images under a variety of time sequences. This training session covered the DCM-14 features and related programming in DCMSET. It also described the processes for receiving, archiving and backing up the camera images using DCMPOLL and GEMINI software. Setting up a DCM-14 camera controller in the configuration of the remote monitoring system at Joyo formed an exercise. (author)

  18. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China

    Directory of Open Access Journals (Sweden)

    Ranghu Wang

    2016-11-01

    Full Text Available This research is focused on gully erosion mapping and monitoring at multiple spatial scales using multi-source remote sensing data of the Sancha River catchment in Northeast China, where gullies extend over a vast area. A high resolution satellite image (Pleiades 1A, 0.7 m was used to obtain the spatial distribution of the gullies of the overall basin. Image visual interpretation with field verification was employed to map the geometric gully features and evaluate gully erosion as well as the topographic differentiation characteristics. Unmanned Aerial Vehicle (UAV remote sensing data and the 3D photo-reconstruction method were employed for detailed gully mapping at a site scale. The results showed that: (1 the sub-meter image showed a strong ability in the recognition of various gully types and obtained satisfactory results, and the topographic factors of elevation, slope and slope aspects exerted significant influence on the gully spatial distribution at the catchment scale; and (2 at a more detailed site scale, UAV imagery combined with 3D photo-reconstruction provided a Digital Surface Model (DSM and ortho-image at the centimeter level as well as a detailed 3D model. The resulting products revealed the area of agricultural utilization and its shaping by human agricultural activities and water erosion in detail, and also provided the gully volume. The present study indicates that using multi-source remote sensing data, including satellite and UAV imagery simultaneously, results in an effective assessment of gully erosion over multiple spatial scales. The combined approach should be continued to regularly monitor gully erosion to understand the erosion process and its relationship with the environment from a comprehensive perspective.

  19. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  20. Remote communications technology redefines integrity verification and monitoring of low pressure isolation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    In 2007, a ship collided with the southeast face of a satellite platform jacket in the North Sea, damaging the 12-inch export riser. Emergency shutdown valves immediately shut-in production from the platform, leaving the pressure in the pipeline at approximately 4 barg. The riser had to be repaired before production could resume. TDW Offshore Services (TDW) was hired to develop a low pressure solution to isolate the damaged section of the pipeline riser from the export pipeline gas inventory. TDW used its range of specialist pipeline pigging, pig tracking and remote communications technology to solve the problem. The solution consisted of a custom-designed TDW pig trap and pigging spread; a high friction pig train furnished with the SmartTrack remote tracking and pressure-monitoring system; a SmartTrack subsea remote tracking and pressure-monitoring system; a SmartTrack topside tracking and monitoring system with radio link to the dive support vessel; and a pipeline isolation ball valve. TDW was able to monitor the downstream pressure of each isolation pig continuously throughout the operation using its innovative technology that sends isolation integrity data by radio link to a dive support vessel through pipe wall communications. The use of remote tracking and pressure monitoring technology enabled TDW to make repairs to the damaged riser while maintaining a continuous flow throughout the duration of the operation. 4 figs.

  1. Application of remote monitoring technology in landslides in the Luoshan mining area

    Energy Technology Data Exchange (ETDEWEB)

    Man-chao He; Zhi-gang Tao; Bin Zhang [China University of Mining & Technology, Beijing (China). Research Center of Geotechnical Engineering

    2009-09-15

    With the scale extending of mining, the landslide disaster in the earth's surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning. 11 refs., 8 figs., 1 tab.

  2. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  3. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  5. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    Science.gov (United States)

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  6. Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels

    Directory of Open Access Journals (Sweden)

    Jan Rudolf Karl Lehmann

    2015-03-01

    Full Text Available The detection of pest infestation is an important aspect of forest management. In the case of the oak splendour beetle (Agrilus biguttatus infestation, the affected oaks (Quercus sp. show high levels of defoliation and altered canopy reflection signature. These critical features can be identified in high-resolution colour infrared (CIR images of the tree crown and branches level captured by Unmanned Aerial Systems (UAS. In this study, we used a small UAS equipped with a compact digital camera which has been calibrated and modified to record not only the visual but also the near infrared reflection (NIR of possibly infested oaks. The flight campaigns were realized in August 2013, covering two study sites which are located in a rural area in western Germany. Both locations represent small-scale, privately managed commercial forests in which oaks are economically valuable species. Our workflow includes the CIR/NIR image acquisition, mosaicking, georeferencing and pixel-based image enhancement followed by object-based image classification techniques. A modified Normalized Difference Vegetation Index (NDVImod derived classification was used to distinguish between five vegetation health classes, i.e., infested, healthy or dead branches, other vegetation and canopy gaps. We achieved an overall Kappa Index of Agreement (KIA   of 0.81 and 0.77 for each study site, respectively. This approach offers a low-cost alternative to private forest owners who pursue a sustainable management strategy.

  7. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  8. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  9. Remote and Centralized Monitoring of PV Power Plants

    DEFF Research Database (Denmark)

    Kopacz, Csaba; Spataru, Sergiu; Sera, Dezso

    2014-01-01

    the inverters within each PV plant. The monitoring software stores the PV measurements in a data warehouse optimized for managing and data mining large amounts of data, from where it can be later visualized, analyzed and exported. By combining PV production measurements data with I-V curve measurements...

  10. Mesh Network Design for Smart Charging Infrastructure and Electric Vehicle Remote Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, Aleksey; Chung, Ching-Yen; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-14

    Plug-In Electric Vehicle (PEV) charging today happens with little knowledge of the state of the vehicle being charged. In order to implement smart charging algorithms and other capabilities of the future smart grid, provisions for remote PEV monitoring will have to be developed and tested. The UCLA Smart-grid Energy Research Center (SMERC) is working on a smart charging research platform that includes data acquired in real time from PEVs being charged in order to investigate smart charging algorithms and demand response (DR) strategies for PEVs in large parking garage settings. The system outlined in this work allows PEVs to be remotely monitored throughout the charging process by a smart-charging controller communicating through a mesh network of charging stations and in-vehicle monitoring devices. The approach may be used for Vehicle to Grid (V2G) communication as well as PEV monitoring.

  11. Design and Implementation of Remotely Monitoring System for Total Dissolved Solid in Baghdad Drinking Water Networks

    Directory of Open Access Journals (Sweden)

    Hussein Abdul-Ridha Mohammed

    2018-01-01

    Full Text Available he pollution of drinking water is a dangerous problem for the whole world, it can threaten the health of people and as people in developed society attaches more importance to environmental protection, it is of great research significance to intelligently and remotely monitoring the environment. Therefore in this paper, a remote water monitoring system for Baghdad drinking water system is suggested. The proposed system consists of data sensing and monitoring nodes at different locations in Baghdad to sensing and analyzes the data. These nodes are periodically measured Total Dissolved Solids (TDS. In case of measured value above TDS threshold which is 500 ppm, then an automated warning message will be sent to authorize persons in the maintenance center via Global Position System to take the correct action. This suggested structure has several advantages over traditional monitoring systems in terms of price, portability, reliability, applicability and takes a sample from a water tap in easy and real-time approach.

  12. Remote monitoring technologies and applications. JAEA-SNL technical cooperation experience in RM for nuclear transparency

    International Nuclear Information System (INIS)

    Matter, John

    2006-01-01

    In ten years of remote monitoring cooperation, Sandia National Laboratories (SNL) and the JAEA (formerly JNC) have developed technology and demonstrated it at the Joyo Experimental Reactor. The program goals were to develop technology to support international safeguards, help evaluate and standardize the technologies for safeguards uses, and demonstrate them for potential regional cooperation. This paper described three generations of remote monitoring systems at the Joyo Fresh Storage and at one of the Joyo Spent Fuel Ponds. Communications and control methods within the facility and between the facility and the remote viewer have changed rapidly. The current configuration is similar to an international safeguards installation, but provides a foundation for transparency cooperation between the JAEA and SNL. Plans to expand this cooperation to other partners are noted. (author)

  13. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  14. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    Science.gov (United States)

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. GSM based real time remote radiation monitoring and mapping system

    International Nuclear Information System (INIS)

    Dodiya, Kamal; Gupta, Ashutosh; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Mobile Radiological Impact Assessment Laboratory (M-RIAL) has been developed in Radiation Safety Systems Division, Bhabha Atomic Research Centre for carrying out assessment of radioactive contamination following a nuclear or radiological emergency in a nuclear facility or in public domain. During such situations a large area is to be monitored for radiological impact assessment and availability of the monitored data in real-time to a control centre is a great advantage for the decision makers. Development and application of such a system has been described in this paper. The system can transmit real-time radiological data, acquired by the universal counting system of M-RIAL and tagged with positional information, wirelessly to an Emergency Response Centre (ERC) using Global System for Mobile (GSM) communication. The radiological profile of the affected area is then superimposed on Geographical Information System (GIS) at the ERC and which can be used for the generation of radiological impact maps for use as decision support

  16. Aerial Remote Radio Frequency Identification System for Small Vessel Monitoring

    Science.gov (United States)

    2009-12-01

    technology as a tool that can benefit everyone (Warner 2008, p.144). Lippitt’s model , coupled with Vroom and Lawler’s Expectancy Theory (Miner 2005, p...Identification System for Small Vessel Monitoring 6. AUTHOR( S ) Jason Appler, Sean Finney, Michael McMellon 5. FUNDING NUMBERS 7. PERFORMING...ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  17. Remote Sensing and Monitoring of Earthen Flood-Control Structures

    Science.gov (United States)

    2017-07-01

    windows also provide valuable information about the earth’s surface and are useful for purposes of both land and water mapping or change detection ...spectrum (Figures 2-2 and 2-3) are considered to be useful for detection and monitoring of boil activity as temperature differences in water from seepage...are no breaks, holes, cracks in the discharge pipes/ culverts that would result in significant water leakage . The pipe shape is still essentially

  18. Device for remote control of monitoring of a conveyor line

    Energy Technology Data Exchange (ETDEWEB)

    Shubin, N F; Rybak, Yu I

    1981-01-01

    The known device under mine conditions because of the decrease of resistance of the insulation of the current-carrying lines of the transfer line does not guarantee reliable protection from false triggering. The purpose of the invention is to improve the reliability of monitoring and control by improving interference-resistance of the device. This goal is achieved because the compensation block is equipped with a transistor, seven diodes, three stabilitrons and resistors united into two compensation circuits which are connected in parallel. The first of them is formed by two stabilitrons connected in series, where the cathode of one of them through a resistor and the counter-connected first diode is connected to a common lead and to the first pole of the block of monitoring and control. The anode of the other through the second counter-connected diode is connected to the second pole of the block of monitoring and control. The second compensation circuit is formed of a transistor, whose collector is connected to the common lead. The emitter is connected through the resistor to the cathode of the third diode whose anode is connected to the lead of the communications line and to the anodes of the fourth diode directly, and the fifth through the resistor, and with the cathode of the third stabilitron whose anode is connected to the transistor base and through the resistor to the common lead. The cathode of the fourth diode is connected to the common point of the first and second stabilitrons through the resistor, connected through the sixth diode, connected by cathode to the cathode of the fourth diode, parallel to the information block. The cathode of the fifth diode is connected to the anode of the second diode, and the second pole of the block of monitoring and control is connected to the communications lead through the seventh diode, connected counter to the fourth and fifth diodes.

  19. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    Science.gov (United States)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  20. Potential for boom-mounted remote sensing applications in seedling quality monitoring

    Science.gov (United States)

    Robert F. Keefe; Jan U. H. Eitel; Daniel S. Long; Anthony S. Davis; Paul Gessler; Alistair M. S. Smith

    2009-01-01

    Remotely sensed aerial and satellite sensor imagery is widely used for classification of vegetation structure and health on industrial and public lands. More intensively than at any other time in the life of a planted tree, its health and status will be maintained and monitored while under culture in a bareroot or container nursery. As a case in point, inventories to...

  1. Towards Proactive Context-Aware Service Selection in the Geographically Distributed Remote Patient Monitoring System

    NARCIS (Netherlands)

    Pawar, P.; van Beijnum, Bernhard J.F.; Mei, H.; Hermens, Hermanus J.

    In the mobile (M)-health domain, the remote patient monitoring system (RPMS) facilitates continuous collection, transmission and viewing of the patient vital signs data. Furthermore, in case of an emergency it provides context-aware emergency response services (ERSs) such as the doctor, paramedic,

  2. Construction of a remote controlled monitoring system with GPIB devices and EPICS

    International Nuclear Information System (INIS)

    Yoshikawa, Takeshi; Yamamoto, Noboru.

    1995-01-01

    The Experimental Physics and Industrial Control System (EPICS) has been used for the accelerator control system in recent years. EPICS has rich set of tools to create application with Graphical User Interface (GUI). It reduces the load of complex programming for GUI and shortens the application development period. This paper will describe the remote temperature monitoring system using EPICS. (author)

  3. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  4. Remote monitoring of radioactive sources based on i.MX27 platform

    International Nuclear Information System (INIS)

    Li Defeng; Wang Renbo; Lin Gangyong; Ding Yufei

    2012-01-01

    It based on the ASIC solutions, has chosen Freescale's i.MX27 development system as a platform for designing video capture and transmission system. The article uses the latest H.264 video compression standard and complete the entire system of hardware and software design, which is successfully applied to remote monitoring of radioactive sources. (authors)

  5. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  6. Remote monitoring of videourodynamics using smart phone and free instant messaging software.

    Science.gov (United States)

    Hsieh, Po-Fan; Chang, Chao-Hsiang; Lien, Chi-Shun; Wu, Hsi-Chin; Hsiao, Po-Jen; Chou, Eric Chieh-Lung

    2013-11-01

    To evaluate the feasibility of using smart phones plus free instant messaging software for remote monitoring of videourodynamics. From November 2011 to October 2012, 85 females with voiding disorders were enrolled for videourodynamic tests. The patients were assigned to videourodynamics remotely monitored by the attending physician by using iPhone/iPad and Skype (group 1) and videourodynamics with the attending physician present (group 2). The procedural time and videourodynamic qualities, assessed by the frequency of adherence to the modified Sullivan criteria, in each group were recorded and compared. There were 44 and 41 patients in group 1 and group 2, respectively. The mean procedural time was comparable between group 1 and group 2 (56.3 vs. 54.4 min, P = 0.25). The frequencies of adherence to the modified Sullivan criteria were similar in each group. The qualities of videourodynamics under the attending physician's remote or direct monitoring were both appropriate. Based on the convenience of Internet, the popularity of smart phones and the intention to make the urologists use their time more efficiently, our study provides remote monitoring as an alternative way for performing videourodynamics. © 2013 Wiley Periodicals, Inc.

  7. Wearable technologies for soldier first responder assessment and remote monitoring (Conference Presentation)

    Science.gov (United States)

    Lee, Stephen

    2017-05-01

    Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.

  8. Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes

    Science.gov (United States)

    Talbot, J. J.; Pettinger, Lawrence R.

    1981-01-01

    Of the three types of remotely sensed data discussed here, Landsat data offers the greatest potential for monitoring broad changes in extensive tropical forest environments because of its low-cost, synoptic, repetitive coverage. Scientists from developing countries can choose from a variety of Landsat data classification techniques, thus enabling each country to satisfy limitations on available funding, trained personnel, and equipment.

  9. Implementing a Compact Data Format for Bluetooth and 3G Communication to Monitor Remote Pipelines

    CSIR Research Space (South Africa)

    Ilgner, Hartmut

    2016-11-01

    Full Text Available Non-invasive monitoring of slurry pipelines with a new embedded system is described to complement existing remote sensing techniques via satellites. The behavior of the slurry inside the pipeline may cause sedimentation which may lead to blockages...

  10. An overview of passive remote sensing for post-fire monitoring

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and HR (Landsat 7, Spot HVR and VHR satellite imagery (Ikonos, Quickbird, Spot 5 is currently sought as a highly viable option for the post-fire monitoring.

  11. Monitor: a short-cut approach to remote-handling at LAMPF

    International Nuclear Information System (INIS)

    Horne, R.A.; Ekberg, E.L.

    1975-01-01

    The monitor, constructed from relatively cheap commercial components, is a straightforward, totally remotely operated handling system intended to work on components in the LAMPF external beam line or elsewhere. It can be towed or lifted into position, then hard-wire controlled from a distance by using television. (auth)

  12. Observing incidental harbour porpoise Phocoena phocoena bycatch by remote electronic monitoring

    DEFF Research Database (Denmark)

    Kindt-Larsen, Lotte; Dalskov, Jørgen; Stage, Bjarne

    2012-01-01

    to document bycatch of marine mammals, 6 Danish commercial gillnetters (10 to15 m in length) operating under the Danish catch quota management system were equipped with Remote Electronic Monitoring (REM) systems. The REM systems provided video footage, time and position of all net hauls and bycatches...

  13. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects

    Science.gov (United States)

    Robert E. Kennedy; Philip A. Townsend; John E. Gross; Warren B. Cohen; Paul Bolstad; Wang Y. Q.; Phyllis Adams

    2009-01-01

    Remote sensing provides a broad view of landscapes and can be consistent through time, making it an important tool for monitoring and managing protected areas. An impediment to broader use of remote sensing science for monitoring has been the need for resource managers to understand the specialized capabilities of an ever-expanding array of image sources and analysis...

  14. Development of Remote Monitoring and a Control System Based on PLC and WebAccess for Learning Mechatronics

    OpenAIRE

    Wen-Jye Shyr; Te-Jen Su; Chia-Ming Lin

    2013-01-01

    This study develops a novel method for learning mechatronics using remote monitoring and control, based on a programmable logic controller (PLC) and WebAccess. A mechatronics module, a Web‐CAM and a PLC were integrated with WebAccess software to organize a remote laboratory. The proposed system enables users to access the Internet for remote monitoring and control of the mechatronics module via a web browser, thereby enhancing work flexibility by enabling personnel to control mechatronics equ...

  15. Prenatal Remote Monitoring of Women With Gestational Hypertensive Diseases: Cost Analysis.

    Science.gov (United States)

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Vonck, Sharona; Claessens, Jade; Heyrman, Yenthel; Vandijck, Dominique; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2018-03-26

    Remote monitoring in obstetrics is relatively new; some studies have shown its effectiveness for both mother and child. However, few studies have evaluated the economic impact compared to conventional care, and no cost analysis of a remote monitoring prenatal follow-up program for women diagnosed with gestational hypertensive diseases (GHD) has been published. The aim of this study was to assess the costs of remote monitoring versus conventional care relative to reported benefits. Patient data from the Pregnancy Remote Monitoring (PREMOM) study were used. Health care costs were calculated from patient-specific hospital bills of Ziekenhuis Oost-Limburg (Genk, Belgium) in 2015. Cost comparison was made from three perspectives: the Belgian national health care system (HCS), the National Institution for Insurance of Disease and Disability (RIZIV), and costs for individual patients. The calculations were made for four major domains: prenatal follow-up, prenatal admission to the hospital, maternal and neonatal care at and after delivery, and total amount of costs. A simulation exercise was made in which it was calculated how much could be demanded of RIZIV for funding the remote monitoring service. A total of 140 pregnancies were included, of which 43 received remote monitoring (30.7%) and 97 received conventional care (69.2%). From the three perspectives, there were no differences in costs for prenatal follow-up. Compared to conventional care, remote monitoring patients had 34.51% less HCS and 41.72% less RIZIV costs for laboratory test results (HCS: mean €0.00 [SD €55.34] vs mean €38.28 [SD € 44.08], Pmonitoring than conventional care (mean €209.22 [SD €213.32] vs mean €231.32 [SD 67.09], P=.02), but were 0.69% higher for RIZIV (mean €122.60 [SD €92.02] vs mean €121.78 [SD €20.77], Pmonitoring were mean €4233.31 (SD €3463.31) per person and mean €4973.69 (SD €5219.00) per person for conventional care (P=.82), a reduction of €740.38 (14

  16. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Science.gov (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  17. Novel remote monitoring platform for RES-hydrogen based smart microgrid

    International Nuclear Information System (INIS)

    González, I.; Calderón, A.J.; Andújar, J.M.

    2017-01-01

    Highlights: • A remote monitoring platform is developed to monitor an experimental smart microgrid. • Smart microgrid integrates renewable energy sources (solar and wind) and hydrogen. • The platform is implemented using open-source tool Easy Java/Javascript Simulations. • Remote user accesses online to graphical/numerical information of all components. • Results show proper operation of the SMG and prove effective real-time monitoring. - Abstract: In the context of the future power grids – Smart Grids (SGs) – Smart MicroGrids (SMGs) play a paramount role. These ones are very specific portions of the SGs that deal with integration of small-rated distributed energy and storage resources closer to the loads – chiefly within the distribution domain. Data acquisition and monitoring tasks are vital functions that must be developed at every stage of the grid for a proper operation. This paper presents a remote monitoring platform (RMP) to monitor an experimental SMG. It integrates Renewable Energy Sources (RESs) (solar and wind) and hydrogen to operate in isolated regime. The RMP has been developed using the open-source authoring tool Easy Java/Javascript Simulations (EJsS). The interface has been designed to be intuitive and easy-to-use, providing real-time information of all the involved magnitudes over the network. Scalability, easy development, portability and cost effective are the main features of the proposed framework. The microgrid and the proposed monitoring platform are described and the successful results are reported. The remote user executes a ready-to-use file with low computational requirements and is enabled to graphically and numerically track the SMG behaviour. These results prove the suitability of the RMP as an effective means for continuous visualization of the coordinated energy flows of a real SMG.

  18. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley

    2014-01-01

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed

  19. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley [University of Tennessee, Knoxville (United States)

    2014-08-15

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed.

  20. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...

  1. Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Dirk Eilander

    2014-01-01

    Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.

  2. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  3. Possibility of continuous monitoring of environment around the nuclear plant using satellite remote sensing

    International Nuclear Information System (INIS)

    Sasaki, Takanori; Tanabu, Yoshimine; Fujita, Shigetaka; Zhao Wenhui

    2008-01-01

    Interest in nuclear power generation is increasing by rising of power demand and environmental concern. It is important more and more to confirm and show the safety operation of nuclear plants, which is useful to remove anxiety of residents. Satellite remote sensing is one of the way of it. Large observation width and long and continuous observation period are advantage of satellite remote sensing. In addition, it is very important to be able to monitor without visitation on the site. We have continued local area environmental analysis using various satellites. MODIS on Terra and Aqua which are NASA satellites received by Hachinohe Institute of Technology is mainly used. According to these results, we have shown that combined analysis of various information parameters such as land surface temperature, geographical changes, vegetation, etc. is very effective to monitor environmental changes. In these analyses, error detection is very important. Therefore, enough storage data with continuously monitoring in usual state is necessary. Moreover, it is thought that the confirmation of stable operation of plants by means of continuous monitoring can contribute to reduce residents' anxiety of nuclear power plant. Additionally, in the case that the change of influence on surroundings is detected, it is possible to grasp the situation and take measure in early stage by error detection. In this paper, as an possible example of continuous monitoring using satellite remote sensing, we introduce the result of analysis and investigation of which changes of sea surface temperature and chlorophyll concentration on the sea around power plant. (author)

  4. Remote system for monitoring and control of controlled area of nuclear installation

    International Nuclear Information System (INIS)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto; Farias, Marcos Sant'anna de; Santos, Isaac J.A. Luquetti dos

    2011-01-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  5. Remote system for monitoring and control of controlled area of nuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto [Departamento de Ciencias da Administracao e Tecnologia. Centro Universitario de Araraquara (UNIARA) Araraquara, SP (Brazil); Farias, Marcos Sant' anna de; Santos, Isaac J.A. Luquetti dos, E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio Janeiro, RJ (Brazil). Divisao de Instrumentacao e Confiabilidade Humana

    2011-07-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  6. Remote monitoring using technologies from the Internet and World Wide Web

    International Nuclear Information System (INIS)

    Puckett, J.M.; Burczyk, L.

    1997-01-01

    Recent developments in Internet technologies are changing and enhancing how one processes and exchanges information. These developments include software and hardware in support of multimedia applications on the World Wide Web. In this paper the authors describe these technologies as they have applied them to remote monitoring and show how they will allow the International Atomic Energy Agency to efficiently review and analyze remote monitoring data for verification of material movements. The authors have developed demonstration software that illustrates several safeguards data systems using the resources of the Internet and Web to access and review data. This Web demo allows the user to directly observe sensor data, to analyze simulated safeguards data, and to view simulated on-line inventory data. Future activities include addressing the technical and security issues associated with using the Web to interface with existing and planned monitoring systems at nuclear facilities. Some of these issues are authentication, encryption, transmission of large quantities of data, and data compression

  7. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.

    Science.gov (United States)

    Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier

    2018-06-06

    As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.

  8. DESERT ECOSYSTEMS: MAPPING, MONITORING & ASSESSMENT USING SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. S. Arya

    2012-09-01

    Full Text Available Desert ecosystems are unique but fragile ecosystems , mostly vulnerable to a variety of degradational processes like water erosion, vegetal degradation, salinity, wind erosion , water logging etc. Some researchers consider desertification to be a process of change, while others view it as the end result of a process of change. There is an urgent need to arrest the process of desertification and combat land degradation. Under the auspices of the United Nations Convention to Combat Desertification (UNCCD, Space Applications Centre, Ahmedabad has undertaken the task of mapping, monitoring and assessment of desertification carrying out pilot project in hot and cold desert regions in drylands on 1:50,000 scale followed by systematic Desertification Status Mappaing (DSM of India on 1:500,000 scale.

  9. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  10. ARM Processor Based Embedded System for Remote Data Acquisition

    OpenAIRE

    Raj Kumar Tiwari; Santosh Kumar Agrahari

    2014-01-01

    The embedded systems are widely used for the data acquisition. The data acquired may be used for monitoring various activity of the system or it can be used to control the parts of the system. Accessing various signals with remote location has greater advantage for multisite operation or unmanned systems. The remote data acquisition used in this paper is based on ARM processor. The Cortex M3 processor used in this system has in-built Ethernet controller which facilitate to acquire the remote ...

  11. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  12. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  13. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    Science.gov (United States)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  14. Online Remote Recording and Monitoring of Sensor Data Using DTMF Technology

    Directory of Open Access Journals (Sweden)

    Niladri Sekhar TRIPATHY

    2011-05-01

    Full Text Available Different wireless application platforms are available for remote monitoring and control of systems. In the present paper a system has been described for online remote recording and monitoring of sensor data using DTMF (Dual Tone Multi Frequency technology where acoustic communication has been implemented. One DTMF transceiver in the sensing system has been used to generate and decode the DTMF tone corresponding to the sensor output which in turn is received from the mobile phone in the user side. A separate DTMF decoder has been used in the user side to decode the received DTMF tone corresponding to the sensor output from the sensor side. Microcontroller has been used to store the decoded data from the sensor and to control the whole operation sequentially. Thus online remote recording and monitoring of the sensor data have been possible at any where in the coverage area of the mobile network. Experimental result shows good linearity between data output taken directly from the sensor side and that remotely from user side.

  15. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    Science.gov (United States)

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  16. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    Science.gov (United States)

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  17. Remote Sensing of Coral Reefs for Monitoring and Management: A Review

    Directory of Open Access Journals (Sweden)

    John D. Hedley

    2016-02-01

    Full Text Available Coral reefs are in decline worldwide and monitoring activities are important for assessing the impact of disturbance on reefs and tracking subsequent recovery or decline. Monitoring by field surveys provides accurate data but at highly localised scales and so is not cost-effective for reef scale monitoring at frequent time points. Remote sensing from satellites is an alternative and complementary approach. While remote sensing cannot provide the level of detail and accuracy at a single point than a field survey, the statistical power for inferring large scale patterns benefits in having complete areal coverage. This review considers the state of the art of coral reef remote sensing for the diverse range of objectives relevant for management, ranging from the composition of the reef: physical extent, benthic cover, bathymetry, rugosity; to environmental parameters: sea surface temperature, exposure, light, carbonate chemistry. In addition to updating previous reviews, here we also consider the capability to go beyond basic maps of habitats or environmental variables, to discuss concepts highly relevant to stakeholders, policy makers and public communication: such as biodiversity, environmental threat and ecosystem services. A clear conclusion of the review is that advances in both sensor technology and processing algorithms continue to drive forward remote sensing capability for coral reef mapping, particularly with respect to spatial resolution of maps, and synthesis across multiple data products. Both trends can be expected to continue.

  18. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Castro, R.; Kneupner, K.; Vega, J.; De Arcas, G.; Lopez, J.M.; Purahoo, K.; Murari, A.; Fonseca, A.; Pereira, A.; Portas, A.

    2010-01-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  19. Real-time remote diagnostic monitoring test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@ciemat.e [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Kneupner, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid, Grupo I2A2, Madrid (Spain); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); Fonseca, A. [Associacao EURATOM/IST, Lisbon (Portugal); Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  20. An artificial reality environment for remote factory control and monitoring

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  1. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  2. Non-contact remote monitoring technique of reactor structural elements

    International Nuclear Information System (INIS)

    Inoue, Hideo; Mori, Kazuo; Ozawa, Norimitsu; Akedo, Jun; Seimiya, Koichi; Chikamori, Kunio; Umezawa, Akihiko

    1998-01-01

    This study aims at development of technique to measure and estimate, at high precision, fine machining scratch, crack and so on formed on grinding tubular elements, especially inner faces of small diameter tube at an optical mirror grade, and at establishment of estimation technique on reliability and soundness of the tubular elements. In this fiscal year, on optical type non-contact monitoring technique, investigations on optical illumination condition and holding accuracy required for the non-contact holding mechanism were conducted by using a sensor head trially produced in 1995 fiscal year. And, in order to realize a high precision non-contact holding in a tube of optical detection system to upgrade static holding properties (holding stiffness, holding attitude, and so on) of pneumatic type inner tube non-contact holding mechanism, realization of increase in supplying air pressure and experiments using a holding mechanism to increase pore numbers of air injecting nozzle were conducted. And, on materials surface technique, effect of difference in pre-machining method (cutting and bright annealing) at inner face of small diameter stainless tube on their smooth machining property was examined. (G.K.)

  3. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    Science.gov (United States)

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider

  4. Mechanism and look-alikes analysis of oil spill monitoring with optical remote sensing

    Science.gov (United States)

    Lan, Guoxin; Ma, Long; Li, Ying; Liu, Bingxin

    2011-12-01

    Remote Sensing surveillance constitutes an important component of oil spill disaster management system, but subject to monitoring accuracy and ability, which suffered from resolution, environmental conditions, and look-alikes. So this article aims to provide information of identification and distinguishing of look-alikes for optical sensors, and then improve the monitoring precision. Although limited by monitoring conditions of the atmosphere and night, optical satellite remote sensing can provide the intrinsic spectral information of the film and the background sea, then affords the potentiality for detailed identification of the film thickness, oil type classification (crude/light oil), trends, and sea surface roughness by multi-type data products. This paper focused on optical sensors and indicated that these false targets of sun glint, bottom feature, cloud shadow, suspend bed sediment and surface bioorganic are the main factors for false alarm in optical images. Based on the detailed description of the theory of oil spill detection in optical images, depending on the preliminary summary of the feature of look-alikes in visible-infrared bands, a discriminate criteria and work-flow for slicks identification are proposed. The results are helpful to improve the remote sensing monitoring ability and the contingency planning.

  5. A Remote Monitoring System for Greenhouse Based on the Internet of Things

    Directory of Open Access Journals (Sweden)

    Xu Zhenfeng

    2016-01-01

    Full Text Available The Internet of Things (IOT is considered as a great opportunity for the development in the information field nowadays, and has been applied widely in many fields. The IOT can be applied to monitor and control the microclimate factors of greenhouse remotely. In this paper, a wireless monitoring network is designed in the perception layer of the IOT. The nodes are developed based on the Mica2 hardware and the TinyOS software. The LPL (low power listening technology is adopted to reduce the energy consumption of the relay node which is powered by a solar panel. The ACK (Acknowledgement mechanism is used in the software to improve the quality of wireless communications. A remote monitoring terminal is developed by using Java technology. The monitoring terminal is easy to operate with good interactivity. The system has been installed in a glass greenhouse. The actual operation results show that the system is stable and reliable, which lays a good foundation for the development of remote control strategies in future.

  6. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  7. A New Remote Monitoring System Application in Laser Power Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Liu Gaoqiang

    2016-01-01

    Full Text Available In this paper, a new remote monitoring system based on LabVIEW was proposed to measure laser power automatically and remotely. This system consists of four basic components: an DH-JG2 optical power meter, a NI-USB 6008 data acquisition card, a personal computer (PC, and HP laserJet 1020 Plus printer. Since power output of laser is generally so unstable that abnormal work situation could not retroaction to inspectors right away, new system was designed to solve this problem. The detection system realized function of remote control by TCP protocol and mobile phone. Laser power curve that is measured by detection system demonstrated that the design has a good performance in real-time detection and operability.

  8. A component-based system for agricultural drought monitoring by remote sensing.

    Science.gov (United States)

    Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  9. A component-based system for agricultural drought monitoring by remote sensing.

    Directory of Open Access Journals (Sweden)

    Heng Dong

    Full Text Available In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  10. The Department of Energy Nevada Test Site Remote Area Monitoring System

    International Nuclear Information System (INIS)

    Sanders, L.D.; Hart, O.F.

    1993-01-01

    The Remote Area Monitoring System was developed by Los Alamos National Laboratory (LANL) for DOE test directors at the Nevada Test Site (NTS) to verify radiological conditions are safe after a nuclear test. In the unlikely event of a venting as a result of a nuclear test, this system provides radiological and meteorological data to Weather Service Nuclear Support Office (WSNSO) computers where mesoscale models are used to predict downwind exposure rates. The system uses a combination of hardwired radiation sensors and satellite based data acquisition units with their own radiation sensors to measure exposure rates in remote areas of the NTS. The satellite based data acquisition units are available as small, Portable Remote Area Monitors (RAMs) for rapid deployment, and larger, Semipermanent RAMs that can have meteorological towers. The satellite based stations measure exposure rates and transmit measurements to the GOES (Geostationary Operational Environmental Satellite) where they are relayed to Direct Readout Ground Stations (DRGS) at the NTS and Los Alamos. Computers process the data and display results in the NTS Operations Coordination Center. Los Alamos computers and NTS computers are linked together through a wide area network, providing remote redundant system capability. Recently, LANL, expanded the system to take radiological and meteorological measurements in communities in the western United States. The system was also expanded to acquire data from Remote Automatic Weather Stations (RAWS) that transmit through GOES. The addition of Portable and Semipermanent RAMs to the system has vastly expanded monitoring capabilities at NTS and can be used to take measurements anywhere in this hemisphere

  11. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    International Nuclear Information System (INIS)

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-01-01

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites

  12. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  13. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring.

    Science.gov (United States)

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2016-12-07

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO 2 ) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO 2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted by motion-induced variations. We introduce a new principle that allows accurate remote measurements even during significant subject motion. We demonstrate the main advantage of the principle, i.e. that the optimal signature remains the same even when the SNR of the PPG signal drops significantly due to motion or limited measurement area. The evaluation uses recordings with breath-holding events, which induce hypoxemia in healthy moving subjects. The events lead to clinically relevant SpO 2 levels in the range 80-100%. The new principle is shown to greatly outperform current remote ratio-of-ratios based methods. The mean-absolute SpO 2 -error (MAE) is about 2 percentage-points during head movements, where the benchmark method shows a MAE of 24 percentage-points. Consequently, we claim ours to be the first method to reliably measure SpO 2 remotely during significant subject motion.

  14. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Kneupner, K.; Purahoo, K. [EURATOM/UKAEA Fusion Association, Abingdon (United Kingdom); Vega, J.; Pereira, A.; Portas, A. [Association EuratomCIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid (Spain); Murari, A. [Consorzio RFX, Padova (Italy); Fonseca, A. [Associacao URATOM/IST, Lisboa (Portugal); Contributors, J.E. [JET-EFDA, Abingdon (United Kingdom)

    2009-07-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  15. Operation of geothermal heating systems. Scientific considerations and possibilities of remote-monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Adnot, J.; Marimont, A.; Ribuot, J.; Villaume, M.

    1986-12-01

    Following a phase in which the questions raised by the development of geothermal heating focused on their profitability and their initial types of tool already used in practice must be subjected to research and investigations: analysis of heat balances, analysis of thermal situations, remote-monitoring methods. Heat balances, often compiled by the operators, can supply more information than they actually do today if performance and needs are related (reflected by the outdoor temperature). Thermal situations are often complex. The body of measurements available does not directly offer a precise diagnosis. Efficient methods are already available on simple cases, including flow management, follow-up of the efficiency of the heat-exchanger, analysis of backflow temperatures. The potential of remote-monitoring for calculations and investigations is largely underexploited. The authors discuss the methods for tapping this potential in the future.

  16. Preliminary Analysis of Remote Monitoring and Robotic Concepts for Performance Confirmation

    International Nuclear Information System (INIS)

    McAffee, D.A.

    1997-01-01

    As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2) Identify and discuss the

  17. Development of a cloud-based system for remote monitoring of a PVT panel

    Science.gov (United States)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  18. MEMS acceleration sensor with remote optical readout for continuous power generator monitoring

    Directory of Open Access Journals (Sweden)

    Tormen Maurizio

    2015-01-01

    Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.

  19. Patient perceptions of a remote monitoring intervention for chronic disease management.

    Science.gov (United States)

    Wakefield, Bonnie J; Holman, John E; Ray, Annette; Scherubel, Melody

    2011-04-01

    Use of telecommunications technology to provide remote monitoring for people with chronic disease is becoming increasingly accepted as a means to improve patient outcomes and reduce resource use. The purpose of this project was to evaluate patient perceptions of a nurse-managed remote monitoring intervention to improve outcomes in veterans with comorbid diabetes and hypertension. Postintervention evaluation data were collected using a 12-item questionnaire and an open-ended question. Participants rated the program as generally positive on the questionnaire, but responses to the open-ended question revealed criticisms and suggestions for improvement not captured on the questionnaire. Interviewing participants in these programs may offer richer data for identifying areas for program improvement. Copyright 2011, SLACK Incorporated.

  20. The remote monitoring systems LOVER and RECOVER for international safeguards technical, economic and legal aspects

    International Nuclear Information System (INIS)

    Lauppe, W.D.; Stein, G.; Rezniczek, A.; Stienen, U.

    1983-12-01

    The electronic remote monitoring systems RECOVER and LOVER were developed to comply with the IAEA's tasks concerning international nuclear materials safeguards with the aim of reducing the inspection expenditure and enhancing control effectiveness. The present study on the technical, economic and legal aspects of an application of these systems is intended to show possible implications and provide argumentation aids for discussions on the application of these systems. RECOVER and LOVER offer the possibility of establishing a direct communication path between containment and surveillance system (c/s), instruments at the site of application and a central monitoring station. The demonstration versions of both systems have shown that remote interrogation of data under safeguards-specific boundary conditions (e.g. requirement of tamper safety) will be technically feasible. (orig./HP)

  1. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area

    OpenAIRE

    Rajchandar Padmanaban; Avit K. Bhowmik; Pedro Cabral

    2017-01-01

    Padmanaban, R., Bhowmik, A. K., & Cabral, P. (2017). A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS International Journal of Geo-Information, 6(12), 1-14. [401]. DOI: 10.3390/ijgi6120401 Mining for resources extraction may lead to geological and associated environmental changes due to ground movements, collision with mining cavities, and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may en...

  2. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  3. Remote sensing as a surface water quality monitoring support in the semiarid region of Brazil

    OpenAIRE

    Fernando Bezerra Lopes

    2013-01-01

    The contamination of surface water bodies due to antropic action has made water ever more scarce. Knowledge of the water quality is essential to determine instruments for it's management . Monitoring water quality in huge areas requires a high number of saimples for water quality control. This fact, allied to the high costs of water analysis, limits the evaluation that can be made of continental waters. Even though in later years geoprocessing and remote sensin...

  4. Development and Application of Devices for Remote Monitoring of Gamma-Ray Contamination at RECOM Ltd

    International Nuclear Information System (INIS)

    Ivanov, O.P.; Stepanov, V.E.; Chesnokov, A.V.; Sudarkin, A.N.; Urutskoev, L.I.

    1999-01-01

    Devices for remote monitoring of gamma-ray contamination develop at RECOM Ltd. are described and typical examples of their application are show. The following devices are discussed: spectrum-sensitive collimated devices for mapping of radioactivity on contaminated surfaces- scanning collimated Gamma Locator, device for field Cs-137 contamination mapping-CORAD; devices for gamma-ray imaging computer-controlled High-Energy Radiation Visualizer (HERV) and Coded Mask Imager

  5. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    OpenAIRE

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) ...

  6. Prospects for regional cooperation. Regional cooperation in remote monitoring for nuclear nonproliferation and transparency

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    The JAEA and Sandia National Laboratories (SNL) have cooperated for a decade in development and testing of remote monitoring technologies in support of international safeguards. With this technology approaching maturity, the JAEA/SNL partnership now envisions regional cooperation to use these technologies to advance nuclear transparency and strengthen nonproliferation, as well. This presentation summarizes the technical evolution and notes the opportunity for regional cooperation to include institutions in the ROK, as well as Japan and the US. (author)

  7. Monitoring Global Food Security with New Remote Sensing Products and Tools

    Science.gov (United States)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for

  8. Continuous remote monitoring of COPD patients-justification and explanation of the requirements and a survey of the available technologies.

    Science.gov (United States)

    Tomasic, Ivan; Tomasic, Nikica; Trobec, Roman; Krpan, Miroslav; Kelava, Tomislav

    2018-04-01

    Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO 2 ) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems. Graphical abstract ᅟ.

  9. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    Science.gov (United States)

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  10. Small Scale Rollout of PV Systems in Chikwawa District, Malawi: Remote Monitoring System Effectiveness

    Directory of Open Access Journals (Sweden)

    Million Mafuta

    2017-01-01

    Full Text Available Off-grid solar photovoltaic systems in Malawi are deployed increasingly as the primary option for rural public infrastructure such as primary schools and health centres. Overall, grid-connected electricity access has remained stagnant at around 9% with only 1% of rural population connected. To improve the technical sustainability of such systems, a novel remote monitoring technology utilising Wireless Sensor Networks was installed and the systems were monitored over roughly one year. This paper has described the technical design, performance, and benefits received from deployment of the technology. Furthermore, it has evaluated the cost implications for a larger scale rollout and potential benefits.

  11. Nuclear power plant remote monitoring system of Hessen (KFUe Hessen) now fully available

    International Nuclear Information System (INIS)

    Lettmann, W.; Merkel, M.

    1991-01-01

    The remote monitoring system for the Biblis nuclear power station has commenced operation in 1990. It is intended to provide the radiological data and other information required by the supervisory Land authority for performing its supervisory functions in accordance with the Atomic Energy Act. The monitoring station records and reports emissions of the reactor station during specified normal operation and as a result of incidents or accidents, measures local dose rates at four measuring stations at the power plant fence, and records the meteorological conditions. The system is explained in detail, including illustration and graphs. (BBR) [de

  12. Development of a remote controlled robot system for monitoring nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)

    1996-12-31

    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  13. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  14. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  15. Technical results of Y-12/IAEA field trial of remote monitoring system

    International Nuclear Information System (INIS)

    Corbell, B.H.; Whitaker, J.M.; Welch, J.

    1997-01-01

    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios

  16. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    Directory of Open Access Journals (Sweden)

    Giordano Lanzola

    2016-11-01

    Full Text Available Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  17. Application of remote debugging techniques in user-centric job monitoring

    International Nuclear Information System (INIS)

    Dos Santos, T; Mättig, P; Harenberg, T; Volkmer, F; Beermann, T; Kalinin, S; Ahrens, R; Wulff, N

    2012-01-01

    With the Job Execution Monitor, a user-centric job monitoring software developed at the University of Wuppertal and integrated into the job brokerage systems of the WLCG, job progress and grid worker node health can be supervised in real time. Imminent error conditions can thus be detected early by the submitter and countermeasures can be taken. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job misbehaviour. To remove the last 'blind spot' from this monitoring, a remote debugging technique based on the GNU C compiler suite was developed and integrated into the software; its design concept and architecture is described in this paper and its application discussed.

  18. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques.

    Science.gov (United States)

    Filho, Geraldo P R; Ueyama, Jó; Villas, Leandro A; Pinto, Alex R; Gonçalves, Vinícius P; Pessin, Gustavo; Pazzi, Richard W; Braun, Torsten

    2014-01-06

    In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  19. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  20. Rangeland monitoring using remote sensing: comparison of cover estimates from field measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Ammon Boswell

    2017-01-01

    Full Text Available Rangeland monitoring is important for evaluating and assessing semi-arid plant communities. Remote sensing provides an effective tool for rapidly and accurately assessing rangeland vegetation and other surface attributes such as bare soil and rock. The purpose of this study was to evaluate the efficacy of remote sensing as a surrogate for field-based sampling techniques in detecting ground cover features (i.e., trees, shrubs, herbaceous cover, litter, surface, and comparing results with field-based measurements collected by the Utah Division of Wildlife Resources Range Trent Program. In the field, five 152 m long transects were used to sample plant, litter, rock, and bare-ground cover using the Daubenmire ocular estimate method. At the same location of each field plot, a 4-band (R,G,B,NIR, 25 cm pixel resolution, remotely sensed image was taken from a fixed-wing aircraft. Each image was spectrally classified producing 4 cover classes (tree, shrub, herbaceous, surface. No significant differences were detected between canopy cover collected remotely and in the field for tree (P = 0.652, shrub (P = 0.800, and herbaceous vegetation (P = 0.258. Surface cover was higher in field plots (P < 0.001, likely in response to the methods used to sample surface features by field crews. Accurately classifying vegetation and other features from remote sensed information can improve the efficiency of collecting vegetation and surface data. This information can also be used to improve data collection frequency for rangeland monitoring and to efficiently quantify ecological succession patterns.

  1. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  2. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production

    Directory of Open Access Journals (Sweden)

    Marston Héracles Domingues Franceschini

    2017-06-01

    Full Text Available Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2, leaf area index (RMSE = 0.67 m2·m−2, canopy chlorophyll (RMSE = 0.24 g·m−2 and ground cover (RMSE = 5.5% using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively, for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical

  3. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring

    Directory of Open Access Journals (Sweden)

    Petteri Vihervaara

    2017-04-01

    Full Text Available Essential Biodiversity Variables (EBVs have been suggested to harmonize biodiversity monitoring worldwide. Their aim is to provide a small but comprehensive set of monitoring variables that would give a balanced picture of the development of biodiversity and the reaching of international and national biodiversity targets. Globally, GEO BON (Group on Earth Observations Biodiversity Observation Network has suggested 22 candidate EBVs to be monitored. In this article we regard EBVs as a conceptual tool that may help in making national scale biodiversity monitoring more robust by pointing out where to focus further development resources. We look at one country –Finland –with a relatively advanced biodiversity monitoring scheme and study how well Finland’s current biodiversity state indicators correspond with EBVs. In particular, we look at how national biodiversity monitoring could be improved by using available remote sensing (RS applications. Rapidly emerging new technologies from drones to airborne laser scanning and new satellite sensors providing imagery with very high resolution (VHR open a whole new world of opportunities for monitoring the state of biodiversity and ecosystems at low cost. In Finland, several RS applications already exist that could be expanded into national indicators. These include the monitoring of shore habitats and water quality parameters, among others. We hope that our analysis and examples help other countries with similar challenges. Along with RS opportunities, our analysis revealed also some needs to develop the EBV framework itself.

  4. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices.

    Science.gov (United States)

    Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio

    2016-01-01

    Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.

  5. Remote monitor used on the 13N leak rate measurement system based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Tang Rulong; Qiu Xiaoping; Guo Lanying

    2012-01-01

    It describes a design on Remote Monitor based on single-chip microcomputer, and also presents the design procedure of hardware and software for circuit design, and gives some of specific instructions about the important parts of the design. (authors)

  6. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  7. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.

    Science.gov (United States)

    Eker, Remzi; Aydın, Abdurrahim; Hübl, Johannes

    2017-12-19

    In the present study, UAV-based monitoring of the Gallenzerkogel landslide (Ybbs, Lower Austria) was carried out by three flight missions. High-resolution digital elevation models (DEMs), orthophotos, and density point clouds were generated from UAV-based aerial photos via structure-from-motion (SfM). According to ground control points (GCPs), an average of 4 cm root mean square error (RMSE) was found for all models. In addition, light detection and ranging (LIDAR) data from 2009, representing the prefailure topography, was utilized as a digital terrain model (DTM) and digital surface model (DSM). First, the DEM of difference (DoD) between the first UAV flight data and the LIDAR-DTM was determined and according to the generated DoD deformation map, an elevation difference of between - 6.6 and 2 m was found. Over the landslide area, a total of 4380.1 m 3 of slope material had been eroded, while 297.4 m 3 of the material had accumulated within the most active part of the slope. In addition, 688.3 m 3 of the total eroded material had belonged to the road destroyed by the landslide. Because of the vegetation surrounding the landslide area, the Multiscale Model-to-Model Cloud Comparison (M3C2) algorithm was then applied to compare the first and second UAV flight data. After eliminating both the distance uncertainty values of higher than 15 cm and the nonsignificant changes, the M3C2 distance obtained was between - 2.5 and 2.5 m. Moreover, the high-resolution orthophoto generated by the third flight allowed visual monitoring of the ongoing control/stabilization work in the area.

  8. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    Science.gov (United States)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis

  9. Remote monitoring improves outcome after ICD implantation: the clinical efficacy in the management of heart failure (EFFECT) study.

    Science.gov (United States)

    De Simone, Antonio; Leoni, Loira; Luzi, Mario; Amellone, Claudia; Stabile, Giuseppe; La Rocca, Vincenzo; Capucci, Alessandro; D'onofrio, Antonio; Ammendola, Ernesto; Accardi, Francesco; Valsecchi, Sergio; Buja, Gianfranco

    2015-08-01

    Internet-based remote interrogation systems have been shown to reduce emergency department and in-office visits in patients with implantable cardioverter defibrillators (ICDs), resulting in increased efficiency for healthcare providers. Nonetheless, studies sized to demonstrate the impact of remote monitoring on patients' outcome have been lacking. The EFFECT study was a multicentre clinical trial aimed at measuring and comparing the outcome of ICD patients conventionally followed-up by means of in-clinic visits (Standard arm) or by remote monitoring (Remote arm) in the clinical practice of 25 Italian centres. From 2011 to 2013, 987 consecutive patients were enrolled and followed up for at least 12 months. The primary endpoint was the rate of death and cardiovascular hospitalizations. Remote monitoring was adopted by 499 patients. Patients in the Standard and Remote arms did not differ significantly in terms of baseline clinical characteristics, except for a more frequent use of ICD with cardiac resynchronization therapy (CRT-D) in the Remote arm (48 vs. 36%, P Remote arm (incident rate ratio, 0.55; 95% CI, 0.41-0.73; P Remote arms were 0.27 and 0.08 events/year, respectively, among CRT-D recipients (P Remote arm. Compared with the standard follow-up through in-office visits, remote monitoring is associated with reduced death and cardiovascular hospitalizations in patients with ICD in clinical practice. URL: http://clinicaltrials.gov/ Identifier: NCT01723865. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. CP monitoring by IR free potential probe through a remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, L. [Politecnico di Milano, Milan (Italy); Bazzoni, B. [Cescor srl, Milan (Italy); Benedetto, S. [Italgas SpA, Turin (Italy)

    2004-07-01

    This paper presents the results of field tests on measurement of true potential of pipelines by means of a IR drop free potential probe and a remote control system. The probe used is composed of a steel coupon, simulating a coating defect, and a reference electrode of Mixed Metal Oxide (MMO) titanium activated type, both embedded in an alkaline mortar. Laboratory and field tests confirmed the probe to be reliable and enable to eliminate the IR drop contribution in all conditions and especially in presence of stray current. A remote control system was tested for a reliable and continuous monitoring of CP parameters with the aim to operate CP systems in compliance with regulations and to reduce maintenance costs. The remote control system consists of Acquisition Units for continuous field data gathering, a Data Centre pilot all functions such as query, download and processing data, and an Internet web site for remote connections. Field data obtained in various situations are presented and discussed. (authors)

  11. Attitudes of heart failure patients and health care providers towards mobile phone-based remote monitoring.

    Science.gov (United States)

    Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J

    2010-11-29

    Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (Pmobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal

  12. A Mobile Remote Lab System to Monitor in Situ Thermal Solar Installations

    Directory of Open Access Journals (Sweden)

    Gastón Saez de Arregui

    2013-01-01

    Full Text Available In this paper we describe the design and development of interconnected devices which allow monitoring in situ the performance of solar boilers. This mobile remote lab system comprises two huge blocks of hardware: a mobile station located by the boiler, which is monitored and controlled in a remote way, and a fixed station, located in the Laboratory of Energy for the Sustained Development of the Universidad Nacional de Rosario. The communication between the fixed and mobile devices is controlled by microcontrollers included in both stations and programmed in C language. The project is being developed through three parallel lines of work: 1 Design and development of fixed and mobile hardware; 2 Development of firmware and software necessary to register and communicate data; 3 Design and development of learning activities. This mobile remote lab will be useful to test the behavior of solar boilers in the place and environmental conditions where they are placed so as to evaluate their performance and efficiency anywhere. This is also in order to contribute for the implementation of norms for the certification of solar boilers. On the other hand, the data and results obtained from the development will be used as supplies for the design of learning activities

  13. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs

    Directory of Open Access Journals (Sweden)

    Clement Atzberger

    2013-02-01

    Full Text Available Many remote sensing applications are devoted to the agricultural sector. Representative case studies are presented in the special issue “Advances in Remote Sensing of Agriculture”. To complement the examples published within the special issue, a few main applications with regional to global focus were selected for this review, where remote sensing contributions are traditionally strong. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. Five different applications have been selected, which are illustrated and described: (1 biomass and yield estimation, (2 vegetation vigor and drought stress monitoring, (3 assessment of crop phenological development, (4 crop acreage estimation and cropland mapping and (5 mapping of disturbances and land use/land cover (LULC changes. Many other applications exist, such as precision agriculture and irrigation management (see other special issues of this journal, but were not included to keep the paper concise. The paper starts with an overview of the main agricultural challenges. This section is followed by a brief overview of existing operational monitoring systems. Finally, in the main part of the paper, the mentioned applications are described and illustrated. The review concludes with some key recommendations.

  14. A Comparison of Novel Optical Remote Sensing-Based Technologies for Forest-Cover/Change Monitoring

    Directory of Open Access Journals (Sweden)

    Gillian V. Lui

    2015-03-01

    Full Text Available Remote sensing is gaining considerable traction in forest monitoring efforts, with the Carnegie Landsat Analysis System lite (CLASlite software package and the Global Forest Change dataset (GFCD being two of the most recently developed optical remote sensing-based tools for analysing forest cover and change. Due to the relatively nascent state of these technologies, their abilities to classify land cover and monitor forest dynamics have yet to be evaluated against more established approaches. Here, we compared maps of forest cover and change produced by the more traditional supervised classification approach with those produced by CLASlite and the GFCD, working with imagery collected over Sierra Leone, West Africa. CLASlite maps of forest change from 2001–2007 and 2007–2014 exhibited the highest overall accuracies (79.1% and 89.6%, respectively and, importantly, the greatest capacity to discriminate natural from planted mature forest growth. CLASlite’s comparative advantage likely derived from its more robust sub-pixel classification logic and numerous user-defined parameters, which resulted in classified products with greater site relevance than those of the two other classification approaches. In light of today’s continuously growing body of analytical toolsets for remotely sensed data, our study importantly elucidates the ways in which methodological processes and limitations inherent in certain classification tools can impact the maps they are capable of producing, and demonstrates the need to understand and weigh such factors before any one tool is selected for a given application.

  15. RESEARCH AND PRACTICE OF UAV REMOTE SENSING IN THE MONITORING AND MANAGEMENT OF CONSTRUCTION PROJECTS IN RIPARIAN AREAS

    Directory of Open Access Journals (Sweden)

    J. Yu

    2018-04-01

    Full Text Available The objective of this paper is to investigate the use of UAV remote sensing in the monitoring and management of construction projects in riparian areas through the case study of embankment construction projects’ monitoring in the Three Gorges Reservoir area. A three-step approach is proposed to address the problem: data acquisition with UAV, data processing, and monitoring information extraction. The results of the case study demonstrate that UAV remote sensing is capable of providing fast and accurate measurements and calculations for the needs of monitoring of riparian constructions.

  16. Research and Practice of Uav Remote Sensing in the Monitoring and Management of Construction Projects in Riparian Areas

    Science.gov (United States)

    Yu, J.; Gan, Z.; Zhong, L.; Deng, L.

    2018-04-01

    The objective of this paper is to investigate the use of UAV remote sensing in the monitoring and management of construction projects in riparian areas through the case study of embankment construction projects' monitoring in the Three Gorges Reservoir area. A three-step approach is proposed to address the problem: data acquisition with UAV, data processing, and monitoring information extraction. The results of the case study demonstrate that UAV remote sensing is capable of providing fast and accurate measurements and calculations for the needs of monitoring of riparian constructions.

  17. Multi-temporal monitoring of crack formation on a mountain col with low-cost unmanned aerial systems - a case study in Austria

    Science.gov (United States)

    Stary, Ulrike; Adams, Marc

    2016-04-01

    In the Tuxer Alps of Western Austria, crack formation was observed on a col at approximately 2,500 m a.s.l., in close proximity to a highly frequented hiking trail. On an area of 0.2 ha, three several meter deep cracks were identified. Here we present the results of a 3-year monitoring of this area with low-cost, unmanned aerial systems (UAS) and photogrammetric techniques. In 2013 and 2014, a custom-built fixed-wing UAS (Multiplex Mentor, wingspan 1.6 m, gross take-off weight 2.5 kg), equipped with a Sony NEX5 (16 mm prime lens, 14 MP sensor resolution) was used to map the study site. In 2015 we employed a helicopter (Thundertiger Raptor, 0.55 m blade length, gross take-off weight 2.8 kg), fitted with a GoPro2 (60° prime lens, 5 MP sensor resolution). In all three cases we recorded 1,200-2,000 images in 10-30 minutes. To georeference the images, 8-10 ground control points (GCP) were placed at the study site and measured with a Trimble GeoXT GPS device (expected accuracy 0.15 m, precision 0.3 m). Using AgiSoft's PhotoScan (v.1.1.6), Orthophotos (OP) and digital surface models (DSM) were calculated with 5 and 20 cm ground sampling distance, respectively. The visual interpretation of the OPs gave some indication, that the size of the cracks was increasing by 0.1-0.5 m (A-axis) or 0.2-0.8 m² per year. An interpretation of the DSMs was inconclusive with regard to the depth of the cracks due to shadows in the imagery and vertical or overhanging sidewalls of the cracks. Additionally the accuracy of the GCP-measurements was found to lie below the rate of change of the cracks, thus not permitting a direct calculation of difference DSM. From an operational point-of-view, the study site proved very challenging because of its exposed, high-alpine location, with high wind speeds, gusts and poor visibility hampering the UAS-missions. The monitoring campaign will continue in 2016, where the collection of additional ground-based reference data is planned (e.g. terrestrial

  18. Integrating IPix immersive video surveillance with unattended and remote monitoring (UNARM) systems

    International Nuclear Information System (INIS)

    Michel, K.D.; Klosterbuer, S.F.; Langner, D.C.

    2004-01-01

    Commercially available IPix cameras and software are being researched as a means by which an inspector can be virtually immersed into a nuclear facility. A single IPix camera can provide 360 by 180 degree views with full pan-tilt-zoom capability, and with no moving parts on the camera mount. Immersive video technology can be merged into the current Unattended and Remote Monitoring (UNARM) system, thereby providing an integrated system of monitoring capabilities that tie together radiation, video, isotopic analysis, Global Positioning System (GPS), etc. The integration of the immersive video capability with other monitoring methods already in place provides a significantly enhanced situational awareness to the International Atomic Energy Agency (IAEA) inspectors.

  19. A remote controlled system for continuous radon measurements to realize a monitoring network

    International Nuclear Information System (INIS)

    Roca, V.; Pugliese, M.; Venoso, G.; Roca, V.; Boiano, A.; D'Onofrio, A.; Pugliese, M.; Sabbarese, C.; Venoso, G.; D'Onofrio, A.; Sabbarese, C.

    2006-01-01

    R.A.M.O.N.A. (radon monitoring and acquisition) is a compact system for radon and climatic parameters monitoring. The instrument can perform alpha particles spectrometry with a resolution better than .5 %, so it is possible the discrimination of radon and thoron daughters. The development of battery operated electronics with integrated amplifier and micro controller makes the device applicable for in-lab and in-field measurements. Moreover, an ethernet interface allows to remotely drive the system and the download of acquired data. After a wide use of the prototype in laboratory, a lot of systems has been built and installed in some sites to carry out radon monitoring in soil. (authors)

  20. Manageable and Extensible Video Streaming Systems for On-Line Monitoring of Remote Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Jian-Wei Lin

    2009-08-01

    Full Text Available To enable clients to view real-time video of the involved instruments during a remote experiment, two real-time video streaming systems are devised. One is for the remote experiments which instruments locate in one geographic spot and the other is for those which instruments scatter over different places. By means of running concurrent streaming processes at a server, multiple instruments can be monitored simultaneously by different clients. The proposed systems possess excellent extensibility, that is, the systems can easily add new digital cameras for instruments without modifying any software. Also they are well-manageable, meaning that an administrator can conveniently adjust the quality of the real-time video depending on system load and visual requirements. Finally, some evaluation concerning CPU utilization and bandwidth consumption of the systems have been evaluated to verify the effectiveness of the proposed solutions.

  1. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  2. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    NARCIS (Netherlands)

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  3. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Priyanka Kakria

    2015-01-01

    Full Text Available Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts. The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  4. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors.

    Science.gov (United States)

    Kakria, Priyanka; Tripathi, N K; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  5. Remote monitoring of vacuum and valve status using LabVIEW

    International Nuclear Information System (INIS)

    Rozario, C.; Pal, S.; Nanal, V.; Pillay, R.G.

    2015-01-01

    For remote monitoring of vacuum status in LINAC and associated beam transport lines, a LabVIEW based interface through RS232 communication is developed. All vacuum stations in LINAC are equipped with Pfeiffer pressure measurement units, namely, TPQ 262 (for 2 no.s) and TPG256 (for 6 no.s). The communication to the unit is done via RS232 with the Serial Device Server. The electro-pneumatic gate valves separating beam line sections and cryostats are fitted with limit switches for indicating open/close status. A modular unit based on PIC 18F4520 microcontroller is developed to read the limit switch positions of up to 10 valves. Both the vacuum readout unit and the gate valve monitor unit act as a server to the client PC on the console. Each unit is assigned a unique IP address and connected to the TCP/IP Ethernet bus. The LabVIEW Virtual Instrument based TCP/IP is used for communication through the distributed LAN. It is possible to connect additional client PCs using the LabVIEW Remote Console features. During the accelerator operation the vacuum reading of the gauge and the status of valves can be monitored from the control room console. All the vacuum parameters like gauge value and status at different physical locations are scanned and logged approximately every second. The LabVIEW GUI has helped in making the system user friendly and can be expanded easily. (author)

  6. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring

    Science.gov (United States)

    Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang

    2015-10-01

    Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.

  7. Remote sensing and monitor system for a large poultry farm based on Internet

    Science.gov (United States)

    Bai, Hongwu; Teng, Guanghui; Ma, Liang; Li, Zhizhong; Yuan, Zhengdong; Li, Minzan; Yang, Xiuslayerg

    2005-09-01

    A remote sensing and monitor system for a large poultry layer farm is developed based on distributed data acquisition and internet control. The supervising system applied patent techniques known as arc orbit movable vidicon, wireless video transmission and telecommunications. It features supervising at all orientations, and digital video telecommunicating through internet. All measured and control information is sent to a central computer, which is in charge of storing, displaying, analyzing and serving to internet, where managers can monitor real time production scene anywhere and customers can also see the healthy layers through internet. This paper primarily discusses how to design the remote sensing and monitor system (RSMS), and its usage in a large poultry farm, Deqingyuan Healthy Breeding Ecological Garden, Yanqing County, Beijing, China. The system applied web service technology and the middleware using XML language and Java language. It preponderated in data management, data exchange, expansibility, security, and compatibility. As a part of poultry sustainable development management system, it has been applied in a large farm with 1,200,000 layers. Tests revealed that there was distinct decline in the death ratio of chicken with 2. 2%, as the surroundings of layers had been ameliorated. At the same time, there was definite increase in the laying ratio with 3. 5%.

  8. Remote monitoring as a tool in condition assessment of a highway bridge

    Science.gov (United States)

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George

    2016-08-01

    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  9. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  10. Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR

    Science.gov (United States)

    Scher, C.; Saah, D.

    2017-12-01

    Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.

  11. Regional cooperation planning. Project planning for JAEA/SNL regional cooperation on remote monitoring

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    Developing cooperation between the JAEA's NPSTC and the NNCA may take advantage of bilateral activities between those parties and SNL. The merger of JNC and JAERI has affected the schedule for JAEA/SNL cooperation. Also, the evolution of the NNCA as an independent agency has slowed the projected schedule for cooperation between the JAEA and the NNCA. A potential schedule for establishment of a quadrilateral remote monitoring system may include interim activities, securing an agreement of some type, and actual establishment of VPN links. A parallel schedule might exist for informing other regional parties and gaining their interest. (author)

  12. Computer-Based Monitoring and Remote Controlling for Oil Well Pumps Using Scada

    Directory of Open Access Journals (Sweden)

    Rudi Tjiptadi

    2011-12-01

    Full Text Available The research aims to change manually the monitoring and controlling of oil well pumps into a computer-based system using SCADA (Supervisory and Data Acquisition system. To design the protection system which consists of controller unit and display system, RTU (Remote Terminal Unit and MTU (Master Terminal Unit are used. The research results in a controller unit which is able to communicate to personal computer using RS-232 C and an alarm system to protect oil pump motors by detecting sensors installed at the pumps. 

  13. Lidar fluorosensor system for remote monitoring phytoplankton blooms in the Swedish marine campaign

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio [ENEA, Centro Ricerche Frascati, Rome (Italy); Micheli, Carla [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-09-01

    The National Agency for New Technologies and the Environments group participated to the ICES/IOC workshop at Kristineberg Marine Research Station (Sweden, 9 - 15 September 1996) with instrumentation suitable to local and remote analysis of phytoplankton. The laser induced fluorescence (LIF) emission of natural communities and cultures has been monitored in vivo allowing to obtain information on the algae species, characterized by different pigments content, and on their photosynthetic activity, the latter differentially measured at different light levels in the presence of a saturating laser pulse. Chemical methods have been used for calibration purposes.

  14. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    Science.gov (United States)

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas

    2014-05-01

    In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for

  15. Evaluation and development of unmanned aircraft (UAV) for UDOT needs.

    Science.gov (United States)

    2012-05-01

    This research involved the use of high-resolution aerial photography obtained from Unmanned Aerial Vehicles (UAV) to aid UDOT in monitoring and documenting State Roadway structures and associated issues. Using geo-referenced UAV high resolution aeria...

  16. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Science.gov (United States)

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  17. The feasibility of utilizing remotely sensed data to assess and monitor oceanic gamefish

    Science.gov (United States)

    Savastano, K. J.; Leming, T. D.

    1975-01-01

    An investigation was conducted to establish the feasibility of utilizing remotely sensed data acquired from aircraft and satellite platforms to provide information concerning the distribution and abundance of oceanic gamefish. The data from the test area was jointly acquired by NASA, the Navy, the Air Force and NOAA/NMFS elements and private and professional fishermen in the northeastern Gulf of Mexico. The data collected has made it possible to identify fisheries significant environmental parameters for white marlin. Prediction models, based on catch data and surface truth information, were developed and demonstrated a potential for significantly reducing search by identifying areas that have a high probability of productivity. Three of the parameters utilized by the models, chlorophyll-a, sea surface temperature, and turbidity were inferred from aircraft sensor data and were tested. Effective use of Skylab data was inhibited by cloud cover and delayed delivery. Initial efforts toward establishing the feasibility of utilizing remotely sensed data to assess and monitor the distribution of oceanic gamefish has successfully identified fisheries significant oceanographic parameters and demonstrated the capability of remotely measuring most of the parameters.

  18. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    Science.gov (United States)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  19. Tracking and position recognition applied to remote monitoring to be used in integrated safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, Anibal D; Perez, Adrian C; Krimer, Mario J; Teira, Ruben O; Vigile, Rodolfo S; Valentino, Lucia I; Giordano, Luis A; Ferro, Juan M [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    In the framework of the Strengthening and integrated Safeguards Systems new measures and tools are available to meet the safeguards objective. The credible assurance on the absence of undeclared nuclear material and activities derived from the implementation of the Additional Protocol has an impact on the current safeguards approach to declared facilities thus their through review is advisable. Among these tools, a more intensive use of unattended systems and remote transmission of safeguards relevant information are considered, specifically for On Load Reactors (ORLs). A Remote Monitoring Systems (RMS) to cover the transfers of spent fuels from the ponds to a dry storage is being tested at Embalse nuclear power plant. In connection with the RMS, this paper describes some of the technologies involved: the Global Position System (GPS) and the Radio Frequency IDentification (RFID), which were implemented due to the requirement to ascertain the position of valuable elements. The main objective of this design aimed at safeguarding the spent fuels transfers from the welding cell to the silos field by a strict surveillance of the whereabouts. The bases for the development were settled by the specifications imposed by the integrated Safeguards of the Nuclear Regulatory Authority in Argentina. The resultant tracking and position recognition system is based on GPS receivers operating in Differential Mode, with the aid of Radio Frequency Identification. In compliance with the safeguard requirement the whole system is able to operate in a continuous and remote mode, what means without human being attention. (author)

  20. Auger ACCESS—Remote Controlling and Monitoring the Pierre Auger Observatory

    Science.gov (United States)

    Jejkal, Thomas

    2013-10-01

    Ultra high energy cosmic rays are the most energetic particles in the universe. They are measured to have energies of up to 1020 eV and occur at a rate of about once per square kilometer per century. To increase the probability of detecting one of these events, a huge detector covering a large area is needed. The Pierre Auger Collaboration build up an observatory covering 3000 square kilometers of the Pampa Amarilla close to Malargüe for this purpose. Until now, the Auger Observatory has been controlled exclusively via the local network for security and performance reasons. As local operation is associated with high travel costs, the Auger ACCESS project, started in 2005, has constructed a secure, operable and sustainable solution for remote control and monitoring. The implemented solution includes Grid technologies for secured access and infrastructure virtualization for building up a fully featured testing environment for the Auger Observatory. Measurements showed only a negligible delay for communicating with the observatory in Argentina, which allows the establishment of remote control rooms in the near future for full remote operation and remarkable cost reduction.

  1. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard, B.

    1998-01-01

    The XIA DXP-4C, a 4 channel, CAMAC based X-ray spectrometer, is based on digitally processing directly digitized preamplifier signals. Designed for instrumenting multi-detector arrays for synchrotron radiation applications, the DXP-4C was optimized for very high count rates at a low cost per detector channel. These design constraints coincidentally lead to an instrument which is very compact and relatively low power (3.4 W/channel), considering its count rate and MCA capabilities, and which therefore offers interesting possibilities for effective extension to portable applications. Further, because all functions (gain, filter parameters, pileup inspection criteria and internal calibrations) are digitally controlled, the design can be readily adapted to a large variety of user interfaces, including remote access interfaces. Here we present the basics of the design and examine approaches to lowering the power to less than 300 mW/channel while retaining count rate capabilities in excess of 50,000 cps. We then consider the engineering issues associated with portable and remote spectrometry applications, examining in detail the three cases of a lead paint detector, a remote contamination monitor, and a space mission spectrometer. (author)

  2. The Security Plan for the Joint Euratom/IAEA Remote Monitoring Network

    International Nuclear Information System (INIS)

    Stronkhorst, J.; Schoop, K.; Ruuska, K.; Kurek, S.; Levert, J.F.

    2015-01-01

    The European Commission and the IAEA have installed surveillance systems in all larger civil European nuclear facilities. The monitoring data is gathered by optical surveillance systems, electronic sealing systems and numerous measuring devices. The on-site joint Euratom/IAEA monitoring networks operate in general completely isolated from the operator's IT systems. To largely improve data security and reliability, remote data transmission (RDT) is installed on a growing number of sites, and the inspection data is daily transferred to the Data Collect Servers in Luxembourg and Vienna. A growing number of RDT connections and a growing number of security threats require an IT security policy that is pro-active as well as reactive in an efficient way. The risk based approach used in setting up the security plans assesses all elements of the monitoring network, from the implemented technical solution and the assessment of the security needs and threats, up to the incident handling and lessons learned. The results of the assessments are, for each individual RDT connection, described in the technical paragraphs and annexes, including system descriptions, network plans and contact information. The principles of secure data handling as implemented in the shared Euratom /IAEA monitoring network can apply to a broad range of industrial monitoring systems, where human interaction is in general the largest security risk. (author)

  3. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    Science.gov (United States)

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  4. The Sandia/Arzamas-16 Magazine-to-Magazine Remote Monitoring Field Trial Evaluation

    International Nuclear Information System (INIS)

    Barkanov, Boris; Blagin, Sergei; Croessmann, Dennis; Damico, Joe; Ehle, Steve; Nilsen, Curt

    1999-01-01

    Sandia National Laboratories and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF) (also known as Arzamas-16) are collaborating on ways to assure the highest standards of safety, security, and international accountability of fissile material. For these collaborations, sensors and information technologies have been identified as important in reaching these standards in a cost-effective manner. Specifically, Sandia and VNIIEF have established a series of remote monitoring field trials to provide a mechanism for joint research and development on storage monitoring systems. These efforts consist of the ''Container-to-Container'', ''Magazine-to-Magazine'', and ''Facility-to-Facility'' field trials. This paper will describe the evaluation exercise Sandia and VNIIEF conducted on the Magazine-to-Magazine systems. Topics covered will include a description of the evaluation philosophy, how the various sensors and system features were tested, evaluation results, and lessons learned

  5. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Science.gov (United States)

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  6. Tropical Forest Monitoring in Southeast Asia Using Remotely Sensed Optical Time Series

    DEFF Research Database (Denmark)

    Grogan, Kenneth Joseph

    of forest cover using satellite remote sensing technology. Recently, there has been a shift in data protection policy where rich archives of satellite imagery are now freely available. This has spurred a new era in satellite-based forest monitoring leading to advancements in optical time series processing...... markets. At the Landsat 30-m resolution, annual time series coupled with linear segmentation using LandTrendr was found to be an effective approach for monitoring forest disturbance, with moderate to high accuracies, depending on forest type. At the MODIS 250-m resolution, intra-annual time series...... global rubber markets can be linked to forest cover change, the effects of land policy in Cambodia, and beyond, have also had a major influence. It remains to be seen if intervention initiatives such as REDD+ can materialise over the coming years to make a meaningful contribution to tropical forest...

  7. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  8. Through the optical combiner monitoring in remote fiber laser welding of zinc coated steels

    Science.gov (United States)

    Colombo, Daniele; Colosimo, Bianca M.; Previtali, Barbara; Bassan, Daniele; Lai, Manuel; Masotti, Giovanni

    2012-03-01

    Thanks to the recent affirmation of the active fiber lasers, remote laser welding of zinc coated steels is under investigation with a particular emphasis on the overlap joint geometry. Due to the high power and high beam quality offered by these lasers, the remote laser welding process has become more practicable. However laser welding of lap zinc coated steels is still problematic because of the violent vaporisation of zinc. The presence of a gap between the plates allowing vapour degassing has been proven to avoid defects due to zinc vaporization. On the other hand variation in the gap value can lead to the welding defect formation. Therefore constant gap values should be ensured and deviation from the reference gap value has to be monitored during the execution of the welding process. Furthermore, the on-line monitoring of the gap values between the plates can be helpful for the on-line quality control of the welding process. The paper proposes a new monitoring solution for the measurement of the gap in remote fiber laser welding of overlapped zinc coated steels. In this solution, referred as Through the Optical Combiner Monitoring (TOCM) , the optical emissions from the welding process are directly observed through the optical combiner of the fiber laser source with spectroscopic equipment. The TOCM solution presented in the paper is integrated in an IPG YLS 3000 fiber laser source whose beam is deflected and focused by means of an El.En. ScanFiber scanning system with an equivalent focal length of 300 mm. After the definition of the right welding process conditions, spectroscopic tests are exploited to evaluate the optical emission from the welding plasma/plume. Acquired spectra are then analysed with multivariate data analysis approach in order to ensure gap monitoring. Results showed that with the proposed method it is possible to evaluate not only the gap between the plates but also the location inside the weld at which the variation occurs. Furthermore

  9. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  10. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    Science.gov (United States)

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  11. Monitoring of the mercury mining site Almadén implementing remote sensing technologies.

    Science.gov (United States)

    Schmid, Thomas; Rico, Celia; Rodríguez-Rastrero, Manuel; José Sierra, María; Javier Díaz-Puente, Fco; Pelayo, Marta; Millán, Rocio

    2013-08-01

    The Almadén area in Spain has a long history of mercury mining with prolonged human-induced activities that are related to mineral extraction and metallurgical processes before the closure of the mines and a more recent post period dominated by projects that reclaim the mine dumps and tailings and recuperating the entire mining area. Furthermore, socio-economic alternatives such as crop cultivation, livestock breeding and tourism are increasing in the area. Up till now, only scattered information on these activities is available from specific studies. However, improved acquisition systems using satellite borne data in the last decades opens up new possibilities to periodically study an area of interest. Therefore, comparing the influence of these activities on the environment and monitoring their impact on the ecosystem vastly improves decision making for the public policy makers to implement appropriate land management measures and control environmental degradation. The objective of this work is to monitor environmental changes affected by human-induced activities within the Almadén area occurring before, during and after the mine closure over a period of nearly three decades. To achieve this, data from numerous sources at different spatial scales and time periods are implemented into a methodology based on advanced remote sensing techniques. This includes field spectroradiometry measurements, laboratory analyses and satellite borne data of different surface covers to detect land cover and use changes throughout the mining area. Finally, monitoring results show that the distribution of areas affected by mercury mining is rapidly diminishing since activities ceased and that rehabilitated mining areas form a new landscape. This refers to mine tailings that have been sealed and revegetated as well as an open pit mine that has been converted to an "artificial" lake surface. Implementing a methodology based on remote sensing techniques that integrate data from

  12. Remote environmental monitoring of the upper sea (REMUS) : Implementation in the strait of Gibraltar

    International Nuclear Information System (INIS)

    Mrabet, R.El.; Dehbi, N.; Khoukhi, T.El.; Laissaoui, A.; Delecaut, G.; Lacroix, J.P.; Abril, J.M.

    2008-01-01

    Full text: Interest in the need of environmental monitoring in the Gibraltar strait, in which a wide range of oceanic processes and interactions of global interest occur, has recently increased in order to ensure proper surveillance and control of marine pollution and consequently to complying with international recommendations and binding agreements pertaining to the protection of marine environment. The effects of the english submarine incident (end 2000) in the Gibraltar strait and the radiological incident of Algeciras, Spain (melting of a Cs- 137 source at a steel manufactory ACENIROX) suggest an adequate national and regional technical capabilities and expertise for long-term environmental monitoring as a key to control the area and to develop emergency model in the case of any future accident in the zone. REMUS involves new technologic developments that allow real-time and continuous remote monitoring of sea areas using autonomous probes in anchored buoys, powered with solar panels and equipped with low consumption sensors and one onboard PC that communicates via GSM with central laboratory in land. Sensors incorporate a very sensitive (few Bq m -3 ) NaI detector for gamma-emitting radionuclides, oceanographic instruments (current meters, CTDs), and chemical sensors (pH,chlorophyl1,..). This technology allows the remote environmental monitoring of the upper sea (although some additional sensors can be equally deployed in depth) combining the interest in the early detection of environmental risks (releases of many hazardous materials) and the fundmental research in marine systems, as chalenge in the preservation of natural resources and the human health through the knowledge. Thus, the development of predictive models is also one objective of this project. [fr

  13. Benefits of remote real-time side-effect monitoring systems for patients receiving cancer treatment.

    Science.gov (United States)

    Kofoed, Sarah; Breen, Sibilah; Gough, Karla; Aranda, Sanchia

    2012-03-05

    In Australia, the incidence of cancer diagnoses is rising along with an aging population. Cancer treatments, such as chemotherapy, are increasingly being provided in the ambulatory care setting. Cancer treatments are commonly associated with distressing and serious side-effects and patients often struggle to manage these themselves without specialized real-time support. Unlike chronic disease populations, few systems for the remote real-time monitoring of cancer patients have been reported. However, several prototype systems have been developed and have received favorable reports. This review aimed to identify and detail systems that reported statistical analyses of changes in patient clinical outcomes, health care system usage or health economic analyses. Five papers were identified that met these criteria. There was wide variation in the design of the monitoring systems in terms of data input method, clinician alerting and response, groups of patients targeted and clinical outcomes measured. The majority of studies had significant methodological weaknesses. These included no control group comparisons, small sample sizes, poor documentation of clinical interventions or measures of adherence to the monitoring systems. In spite of the limitations, promising results emerged in terms of improved clinical outcomes (e.g. pain, depression, fatigue). Health care system usage was assessed in two papers with inconsistent results. No studies included health economic analyses. The diversity in systems described, outcomes measured and methodological issues all limited between-study comparisons. Given the acceptability of remote monitoring and the promising outcomes from the few studies analyzing patient or health care system outcomes, future research is needed to rigorously trial these systems to enable greater patient support and safety in the ambulatory setting.

  14. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  15. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  16. Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results.

    Science.gov (United States)

    Watras, Carl J; Morrow, Michael; Morrison, Ken; Scannell, Sean; Yaziciaglu, Steve; Read, Jordan S; Hu, Yu-Hen; Hanson, Paul C; Kratz, Tim

    2014-02-01

    Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)-all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.

  17. A study of penetration test for applying a remote monitoring system for virtual private network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Park, I. J.; Min, K. S.; Choi, Y. M. [KAERI, Taejon (Korea, Republic of); Jo, D. K. [A3 Security Consulting Co., Seoul (Korea, Republic of)

    2003-07-01

    A penetration test has been performed to verify the vulnerability of Virtual Private N