WorldWideScience

Sample records for unmanned airborne platforms

  1. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    Instrella, Ron; Chirayath, Ved

    2016-01-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  2. Geophex Airborne Unmanned Survey System

    Won, I.L.; Keiswetter, D.

    1995-01-01

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  3. Geophex Airborne Unmanned Survey System

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  4. Geophex airborne unmanned survey system

    Won, I.J.; Taylor, D.W.A.

    1995-01-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  5. Geophex airborne unmanned survey system

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  6. NASA Airborne Science Program: NASA Stratospheric Platforms

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  7. Unmanned airborne system in real-time radiological monitoring

    Zafrir, H.; Pernick, A.; Yaffe, U.; Grushka, A.

    1993-01-01

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  8. Mapping of traditional settlements by unmanned airborne vehicles towards architectural restoration

    Partsinevelos, Panagiotis; Skoutelis, Nikolaos; Tripolitsiotis, Achilleas; Tsatsarounos, Stelios; Tsitonaki, Anna; Zervos, Panagiotis

    2015-06-01

    Conservation and restoration of traditional settlements are amongst the actions that international directives proclaim in order to protect our cultural heritage. Towards this end, a mandatory base step in all archaeological and historical practices includes the surveying and mapping of the study area. Often, new, unexplored or abandoned settlements are considered, where dense vegetation, damaged structures and ruins, incorporation of newer structures and renovation characteristics make the precise surveying procedure a labor intensive and time consuming procedure. Unmanned airborne vehicles (UAVs) have been effectively incorporated into several cultural heritage projects mainly for mapping archeological sites. However, the majority of relevant publications lack of quantitative evaluation of their results and when such a validation is provided it is rather a procedural error estimation readily available from the software used, without independent ground truth verification. In this study, a low-cost custom-built hexacopter prototype was employed to deliver accurate mapping of the traditional settlement of Kamariotis in east Crete, Greece. The case of Kamariotis settlement included highly dense urban structures with continuous building forms, curved walls and missing terraces, while wild vegetation made classic geodetic surveying unfeasible. The resulting maps were qualitatively compared against the ones derived using Google Earth and the Greek Cadastral Orthophoto Viewing platforms to evaluate their applicability for architectural mapping. Moreover, the overall precision of the photogrammetric procedure was compared against geodetic surveying.

  9. COCAP - A compact carbon dioxide analyser for airborne platforms

    Kunz, Martin; Lavrič, Jošt V.; Jeschag, Wieland; Bryzgalov, Maksym; Hök, Bertil; Heimann, Martin

    2014-05-01

    Airborne platforms are a valuable tool for atmospheric trace gas measurements due to their capability of movement in three dimensions, covering spatial scales from metres to thousands of kilometres. Although crewed research aircraft are flexible in payload and range, their use is limited by high initial and operating costs. Small unmanned aerial vehicles (UAV) have the potential for substantial cost reduction, but require lightweight, miniaturized and energy-efficient scientific equipment. We are developing a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). It contains a non-dispersive infrared CO2sensor with a nominal full scale of 3000 μmol/mol. Sampled air is dried with magnesium perchlorate before it enters the sensor. This enables measurement of the dry air mole fraction of CO2, as recommended by the World Meteorological Organization. During post-processing, the CO2 measurement is corrected for temperature and pressure variations in the gas line. Allan variance analysis shows that we achieve a precision of better than 0.4 μmol/mol for 10 s averaging time. We plan to monitor the analyser's stability during flight by measuring reference air from a miniature gas tank in regular intervals. Besides CO2, COCAP measures relative humidity, temperature and pressure of ambient air. An on-board GPS receiver delivers accurate timestamps and allows georeferencing. Data is both stored on a microSD card and simultaneously transferred over a wireless serial interface to a ground station for real-time review. The target weight for COCAP is less than 1 kg. We deploy COCAP on a commercially available fixed-wing UAV (Bormatec Explorer) with a wingspan of 2.2 metres. The UAV has high payload capacity (2.5 kg) as well as sufficient space in the fuselage (80x80x600 mm3). It is built from a shock-resistant foam material, which allows quick repair of minor damages in the field. In case of severe damage spare parts are readily available. Calculations suggest that the

  10. Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles Symposium. Technical Evaluation Report

    Decuypere, Roland; Selegan, David

    2007-01-01

    ...) of the Research and Technology Organization (RTO) of NATO organized a joint symposium on Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles which met from 14-18 May 2007 in Florence Italy...

  11. Rapid Development of Bespoke Unmanned Platforms for Atmospheric Science

    Sobester, A.; Johnston, S. J.; Scanlan, J. P.; Hart, E. E.; O'Brien, N. S.

    2012-04-01

    The effective deployment of airborne atmospheric science instruments often hinges on the development cycle time of a suitable platform, one that is capable of delivering them to the desired altitude range for a specified amount of time, along a pre-determined trajectory. This could be driven by the need to respond rapidly to sudden, unexpected events (e.g., volcano eruptions, nuclear fallout, etc.) or simply to accommodate the iterative design and flight test cycle of the instrument developer. A shorter development cycle time would also afford us the ability to quickly adapt the hardware and control logic in response to unexpected results during an experimental campaign. We report on recent developments aimed at meeting this demand. As part of the Atmospheric Science Through Robotic Aircraft (ASTRA) initiative we have investigated the use of rapid prototyping technologies to this end, both on the 'airframe' of the platform itself and on the on-board systems. We show how fast multi-disciplinary design optimization techniques, coupled with computer-controlled additive manufacturing (3D printing) and laser cutting methods and electronic prototyping (using standard, modular, programmable building blocks) can lead to the delivery of a fully customized platform integrating a given instrument in a timescale of the order of ten days. Specific examples include the design and testing of a balloon-launched glider sensorcraft and a stratospheric balloon system. The 'vehicle' for the latter was built on a 3D printer using a copolymer thermoplastic material and fitted with a sacrificial protective 'cage' laser-cut from an open-cell foam. The data logging, tracking, sensor integration and communications services of the platform were constructed using the .net Gadgeteer open source hardware kit. The flight planning and eventual post-flight recovery of the system is enabled by a generic, stochastic trajectory simulation tool, also developed as part of the ASTRA initiative. This

  12. HIGH RESOLUTION AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGING WITH A SMALL UAV PLATFORM

    M. Gallay

    2016-06-01

    Full Text Available The capabilities of unmanned airborne systems (UAS have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology in high spectral and spatial resolution.

  13. A comparison of stable platform and strapdown airborne gravity

    Glennie, C.L.; Schwarz, K.P.; Bruton, A.M.

    2000-01-01

    To date, operational airborne gravity results have been obtained using either a damped two-axis stable platform gravimeter system such as the LaCoste and Romberg (LCR) S-model marine gravimeter or a strapdown inertial navigation system (INS), showing comparable accuracies. In June 1998 three flight...

  14. Dynamic Antenna Alignment Control in Microwave Air-Bridging for Sky-Net Mobile Communication Using Unmanned Flying Platform

    Chin E. Lin

    2015-01-01

    Full Text Available This paper presents a preliminary study on establishing a mobile point-to-point (P2P microwave air-bridging (MAB between Unmanned Low Altitude Flying Platform (ULAFP and backhaul telecommunication network. The proposed Sky-Net system relays telecom signal for general mobile cellphone users via ULAFP when natural disaster sweeps off Base Transceiver Stations (BTSs. Unlike the conventional fix point microwave bridging application, the ULAFP is cruising on a predefined mission flight path to cover a wider range of service. The difficulty and challenge fall on how to maintain antenna alignment accurately in order to provide the signal strength for MAB. A dual-axis rotation mechanism with embedded controller is designed and implemented on airborne and ground units for stabilizing airborne antenna and tracking the moving ULAFP. The MAB link is established in flight tests using the proposed antenna stabilizing/tracking mechanism with correlated control method. The result supports backbone technique of the Sky-Net mobile communication and verifies the feasibility of airborne e-Cell BTS.

  15. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  16. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  17. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  18. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-06

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  19. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  20. Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates

    Jensen, Tim E.; Nielsen, J. Emil; Olesen, Arne V.

    2017-01-01

    into the long-wavelengths of the gravity estimates. This has made the stable-platform approach the preferred method for geodetic applications. In the summer of 2016, during a large airborne survey in Malaysia, a SIMU system was flown alongside a traditional LaCoste&Romberg (LCR) gravimeter. The SIMU......For the past two decades, airborne gravimetry using a Strapdown Inertial Measurement Unit (SIMU) has been producing gravity estimates comparable to the traditional stable-platform single-axis gravimeters. The challenge has been to control the long term drift of the IMU sensors, propagating...

  1. Airborne Platforms for Emergency Communications and Reconnaissance in Domestic Disaster Response

    2010-04-01

    primarily focused in the areas of tourism , port operations, and educational services. 3 Telecommunications are foundational in our nation’s...concerted effort to successfully integrate these airborne platforms into domestic disaster response operations must be undertaken, or we are doomed to

  2. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and

  3. Decentralized Control of Unmanned Aerial Robots for Wireless Airborne Communication Networks

    Deok-Jin Lee

    2010-09-01

    Full Text Available This paper presents a cooperative control strategy for a team of aerial robotic vehicles to establish wireless airborne communication networks between distributed heterogeneous vehicles. Each aerial robot serves as a flying mobile sensor performing a reconfigurable communication relay node which enabls communication networks with static or slow-moving nodes on gorund or ocean. For distributed optimal deployment of the aerial vehicles for communication networks, an adaptive hill-climbing type decentralized control algorithm is developed to seek out local extremum for optimal localization of the vehicles. The sensor networks estabilished by the decentralized cooperative control approach can adopt its configuraiton in response to signal strength as the function of the relative distance between the autonomous aerial robots and distributed sensor nodes in the sensed environment. Simulation studies are conducted to evaluate the effectiveness of the proposed decentralized cooperative control technique for robust communication networks.

  4. The Booting-Type ADRC of Airborne Photoelectrical Platform

    Xiantao Li

    2014-01-01

    Full Text Available Customary disturbance rejection in the photoelectrical platform is “passive,” which makes it difficult to further improve the isolation degree owning to the strict restriction of mechanical resonance frequency. In this paper, a booting-type ADRC is proposed, whose disturbance estimation process is guided by target value to reduce the overshoot and lag in the estimated value of disturbance. All kinds of disturbance in the system are modeled in a unified way by using the equivalent disturbance voltage to avoid the complex modeling process. Based on the simplified model, extended state observer (ESO is designed to realize a real-time estimation of the disturbance. Then, the disturbance compensation is added to generate the final control value by combining the customary square lead-lag controller. Experiments are implemented to test the proposed control strategy by mounting the photoelectrical platform on a flight simulator and generating a motion perturbation. Compared with the case of only traditional lead-lag controller, the isolation degree of disturbance is enhanced obviously. And the experiments also illustrate strong robustness of ADRC.

  5. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  6. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  7. The research of a gyro-stabilized platform and POS application technology in airborne remote sensing

    Xu, Jiang; Du, Qi

    2009-07-01

    The distortion of the collected images usually takes place since the attitude changes along with the flying aerocraft on airborne remote sensing. In order to get original images without distortion, it is necessary to use professional gyro-stabilized platform. In addition to this, another solution of correcting the original image distortion is to utilize later geometric rectification using position & orientation system ( POS ) data. The third way is to utilize medium-accuracy stabilized platform to control the distortion at a tolerant range, and then make use of the data obtained by high-solution posture measure system to correct the low-quality remote sensing images. The third way which takes advantage of both techniques is better than using only one of the two other ways. This paper introduces several kinds of structural forms of gyro-stabilized platforms, and POS acquiring instruments respectively. Then, the essay will make some analysis of their advantages and disadvantages, key technologies and the application experiment of the third method. After the analysis, the thesis discusses the design of the gyro-stabilized platform. The thesis provides crucial information not only for the application technology of gyro-stabilized platform and POS but also for future development.

  8. A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicle

    Ebeid, Emad Samuel Malki; Skriver, Martin; Jin, Jie

    2017-01-01

    Recently, Unmanned Aerial Vehicle (UAV), so-called drones, have gotten a lot of attention in academic research and commercial applications due to their simple structure, ease of operations and low-cost hardware components. Flight controller, embedded electronics component, represents the core part...... of the drone. It aims at performing the main operations of the drone (e.g., autonomous control and navigation). There are various types of flight controllers and each of them has its own characteristics and features. This paper presents an extensive survey on the publicly available open-source flight...

  9. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT ampersand E) project by EG ampersand G Energy Measurement's (EG ampersand G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG ampersand G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available

  10. Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data

    Wang Zhongyu

    2014-12-01

    Full Text Available For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density (PSD data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method (FNM is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.

  11. Efficiency of Airborne Sample Analysis Platform (ASAP Bioaerosol Sampler for Pathogen Detection

    Anurag eSharma

    2015-05-01

    Full Text Available The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3 in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5×10E3 plaque-forming units (p.f.u. [2×10E5 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection.

  12. A Novel System for Correction of Relative Angular Displacement between Airborne Platform and UAV in Target Localization

    Chenglong Liu

    2017-03-01

    Full Text Available This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.

  13. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    Hervas, Jaime Rubio; Tang, Hui [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 (Singapore); Reyhanoglu, Mahmut [Physical Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States)

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  14. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-01-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example

  15. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  16. FEASIBILITY COMPARISON OF AIRBORNE LASER SCANNING DATA AND 3D-POINT CLOUDS FORMED FROM UNMANNED AERIAL VEHICLE (UAV-BASED IMAGERY USED FOR 3D PROJECTING

    I. I. Rilskiy

    2017-01-01

    Full Text Available New, innovative methods of aerial surveys have changed the approaches to information provision of projecting dramatically for the last 15 years. Nowadays there are at least two methods that claim to be the most efficient way for collecting geospatial data intended for projecting – the airborne laser scanning (LIDAR data and photogrammetrically processed unmanned aerial vehicle (UAV-based aerial imagery, forming 3D point clouds. But these materials are not identical to each other neither in precision, nor in completeness.Airborne laser scanning (LIDAR is normally being performed using manned aircrafts. LIDAR data are very precise, they allow us to achieve data about relief even overgrown with vegetation, or to collect laser reflections from wires, metal constructions and poles. UAV surveys are normally being performed using frame digital cameras (lightweight, full-frame, or mid-size. These cameras form images that are being processed using 3D photogrammetric software in automatic mode that allows one to generate 3D point cloud, which is used for building digital elevation models, surfaces, orthomosaics, etc.All these materials are traditionally being used for making maps and GIS data. LIDAR data have been popular in design work. Also there have been some attempts to use for the same purpose 3D-point clouds, formed by photogrammetric software from images acquired from UAVs.After comparison of the datasets from these two different types of surveying (surveys were made simultaneously on the same territory, it became possible to define some specific, typical for LIDAR or imagery-based 3D data. It can be mentioned that imagery-based 3D data (3D point clouds, formed in automatic mode using photogrammetry, are much worse than LIDAR data – both in terms of precision and completeness.The article highlights these differences and makes attempts at explaining the origin of these differences. 

  17. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  18. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  19. A new look at inhalable metalliferous airborne particles on rail subway platforms.

    Moreno, Teresa; Martins, Vânia; Querol, Xavier; Jones, Tim; BéruBé, Kelly; Minguillón, Maria Cruz; Amato, Fulvio; Capdevila, Marta; de Miguel, Eladio; Centelles, Sonia; Gibbons, Wes

    2015-02-01

    Most particles breathed on rail subway platforms are highly ferruginous (FePM) and extremely small (nanometric to a few microns in size). High magnification observations of particle texture and chemistry on airborne PM₁₀ samples collected from the Barcelona Metro, combined with published experimental work on particle generation by frictional sliding, allow us to propose a general model to explain the origin of most subway FePM. Particle generation occurs by mechanical wear at the brake-wheel and wheel-rail interfaces, where magnetic metallic flakes and splinters are released and undergo progressive atmospheric oxidation from metallic iron to magnetite and maghemite. Flakes of magnetite typically comprise mottled mosaics of octahedral nanocrystals (10-20 nm) that become pseudomorphed by maghemite. Continued oxidation results in extensive alteration of the magnetic nanostructure to more rounded aggregates of non-magnetic hematite nanocrystals, with magnetic precursors (including iron metal) still preserved in some particle cores. Particles derived from steel wheel and rails contain a characteristic trace element chemistry, typically with Mn/Fe=0.01. Flakes released from brakes are chemically very distinctive, depending on the pad composition, being always carbonaceous, commonly barium-rich, and texturally inhomogeneous, with trace elements present in nanominerals incorporated within the crystalline structure. In the studied subway lines of Barcelona at least there appears to be only a minimal aerosol contribution from high temperature processes such as sparking. To date there is no strong evidence that these chemically and texturally complex inhalable metallic materials are any more or less toxic than street-level urban particles, and as with outdoor air, the priority in subway air quality should be to reduce high mass concentrations of aerosol present in some stations. Copyright © 2014. Published by Elsevier B.V.

  20. Microwave tomography for an effective imaging in GPR on UAV/airborne observational platforms

    Soldovieri, Francesco; Catapano, Ilaria; Ludeno, Giovanni

    2017-04-01

    GPR was originally thought as a non-invasive diagnostics technique working in contact with the underground or structure to be investigated. On the other hand, in the recent years several challenging necessities and opportunities entail the necessity to work with antenna not in contact with the structure to be investigated. This necessity arises for example in the case of landmine detection but also for cultural heritage diagnostics. Other field of application regards the forward-looking GPR aiming at shallower hidden targets forward the platfrom (vehicle) carrying the GPR [1]. Finally, a recent application is concerned with the deployment of airborne/UAV GPR, able to ensure several advantages in terms of large scale surveys and "freedom" of logistics constraint [2]. For all the above mentioned cases, the interest is towards the development of effective data processing able to make imaging task in real time. The presentation will show different data processing strategies, based on microwave tomography [1,2], for a reliable and real time imaging in the case of GPR platforms far from the interface of the structure/underground to be investigated. [1] I. Catapano, A. Affinito, A. Del Moro,.G. Alli, and F. Soldovieri, "Forward-Looking Ground-Penetrating Radar via a Linear Inverse Scattering Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5624 - 5633, Oct. 2015. [2] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, "A tomographic approach for helicopter-borne ground penetrating radar imaging," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 378-382, May 2012.

  1. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  2. Systematic observations of Volcán Turrialba, Costa Rica, with small unmanned aircraft and aerostats (UAVs): the Costa Rican Airborne Research and Technology Applications (CARTA) missions

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Abtahi, A.; Alan, A., Jr.; Alegria, O.; Azofeifa, S.; Berthold, R.; Corrales, E.; Fuerstenau, S.; Gerardi, J.; Herlth, D.; Hickman, G.; Hunter, G.; Linick, J.; Madrigal, Y.; Makel, D.; Miles, T.; Realmuto, V. J.; Storms, B.; Vogel, A.; Kolyer, R.; Weber, K.

    2014-12-01

    For several years, the University of Costa Rica, NASA Centers (e.g., JPL, ARC, GSFC/WFF, GRC) & NASA contractors-partners have made regular in situ measurements of aerosols & gases at Turrialba Volcano in Costa Rica, with aerostats (e.g., tethered balloons & kites), & free-flying fixed wing UAVs (e.g., Dragon Eye, Vector Wing 100, DELTA 150), at altitudes up to 12.5Kft ASL within 5km of the summit. Onboard instruments included gas detectors (e.g., SO2, CO2), visible & thermal IR cameras, air samplers, temperature pressure & humidity sensors, particle counters, & a nephelometer. Deployments are timed to support bimonthly overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite (26 deployments to date). In situ observations of dilute plume SO2 concentrations (~1-20ppmv), plume dimensions, and associated temperature, pressure, & humidity profiles, validate detailed radiative transfer-based SO2 retrievals, as well as archive-wide ASTER band-ratio SO2 algorithms. Our recent UAV-based CO2 observations confirm high concentrations (e.g., ~3000ppmv max at summit jet), with 1000-1500ppmv flank values, and essentially global background CO2 levels (400ppmv) over distal surroundings. Transient Turrialba He detections (up to 20ppmv) were obtained with a small (~10kg) airborne mass spectrometer on a light aircraft—a UAV version (~3kg) will deploy there soon on the UCR DELTA 500. Thus, these platforms, though small (most payloads de Costa Rica, the NASA Airborne Science and Earth Surface & Interior Programs, the Dirección General de Aeronáutica Civil de Costa Rica, and FH Düsseldorf for their support.

  3. Azimuth-Variant Signal Processing in High-Altitude Platform Passive SAR with Spaceborne/Airborne Transmitter

    Huaizong Shao

    2013-03-01

    Full Text Available High-altitude platforms (HAP or near-space vehicle offers several advantages over current low earth orbit (LEO satellite and airplane, because HAP is not constrained by orbital mechanics and fuel consumption. These advantages provide potential for some specific remote sensing applications that require persistent monitoring or fast-revisiting frequency. This paper investigates the azimuth-variant signal processing in HAP-borne bistatic synthetic aperture radar (BiSAR with spaceborne or airborne transmitter for high-resolution remote sensing. The system configuration, azimuth-variant Doppler characteristics and two-dimensional echo spectrum are analyzed. Conceptual system simulation results are also provided. Since the azimuth-variant BiSAR geometry brings a challenge for developing high precision data processing algorithms, we propose an image formation algorithm using equivalent velocity and nonlinear chirp scaling (NCS to address the azimuth-variant signal processing problem. The proposed algorithm is verified by numerical simulation results.

  4. Cooperative Airborne Inertial-SLAM for Improved Platform and Feature/Target Localisation

    Sukkarieh, Salah; Bryson, Mitch

    2008-01-01

    .... The benefit of using the SLAM algorithm is that it can determine the accuracy of both platform and target locations, both of which improve as a function of feature/target revisitation or sharing...

  5. Transitioning Unmanned Technologies for Earth Science Applications

    Wardell, L. J.; Douglas, J.

    2008-12-01

    Development of small unmanned aerial systems (UAS) has progressed dramatically in recent years along with miniaturization of sensor technology. This confluence of development paths has resulted in greater capability in smaller, less expensive platforms allowing research to be performed where manned airborne platforms are impractical or dangerous. Recent applications include small UAS for studies involving hurricanes, volcanic activity, sea ice changes, glacier melt, biological monitoring of land and sea species, wildfire monitoring, and others. However, the majority of UAS employed in these investigations were originally developed for non-civilian applications and many of the required interfaces are locked behind proprietary specifications, requiring expensive customization by the manufacturer to transform a military UAS into one suitable for civilian work. A small UAS for scientific research should be standards-based, low-cost, user friendly, field serviceable, and be designed to accept a range of payloads. The AV8R UAS is one example of an unmanned system that has been developed for specific application to earth observation missions. This system is designed to be operated by the user with difficult environmental conditions and field logistics in mind. Numerous features and innovations that advance this technology as a research tool as well as its planned science missions will be presented. Most importantly, all interfaces to the system required for successful design and integration of various payloads will be openly available. The environment of open, standards based development allow the small technologies companies that serve as the backbone for much of the technology development to participate in the rapid development of industry capabilities. This is particularly true with UAS technologies. Programs within the USA such as the STTR foster collaborations with small businesses and university researchers. Other innovations related to autonomous unmanned systems

  6. Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms

    Douglas C. Comer

    2017-10-01

    Full Text Available We used synthetic aperture radar (SAR data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR returns, collected at different times, and generate correlation images. Landscape disturbances even on the scale of pedestrian travel are discernible in correlation images generated from airborne, L-band SAR. Correlation images derived from C-band SAR data collected by the European Space Agency’s Sentinel-1 satellites also provide detailed landscape change information. Because the two Sentinel-1 satellites together have a repeat pass interval that can be as short as six days, products derived from their data can not only provide information on the location and degree of ground disturbance, but also identify a time window of about one to three weeks during which disturbance must have occurred. For Sentinel-1, this does not depend on collecting data in fine-beam modes, which generally sacrifice the size of the area covered for a higher spatial resolution. We also report on pixel value stretching for a visual analysis of SAR data, quantitative assessment of landscape disturbance, and statistical testing for significant landscape change.

  7. Atmospheric Pollution from Shipping and Oil platforms of West Africa (APSOWA) observed during the airborne DACCIWA campaign

    Krysztofiak-Tong, Gisèle; Brocchi, Vanessa; Catoire, Valéry; Stratmann, Greta; Sauer, Daniel; Deroubaix, Adrien; Deetz, Konrad; Schlager, Hans

    2017-04-01

    In the framework of the European DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project, the airborne study APSOWA (Atmospheric Pollution from Shipping and Oil platforms of West Africa) has been conducted in July 2016 to study emissions from oil rigs and maritime traffic in the Gulf of Guinea. The measurements were performed during four flights of about 3-4 hours including meandering transects through emission plumes in the planetary boundary layer (around 300 m asl) off the coast of West Africa from Ivory Coast to Togo. Several instruments have been used on-board the DLR Falcon-20, providing measurements of the pollutants O3, CO, NO2, SO2, aerosol content and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local air pollution. The first part of our study is focused on the FPSO Kwame Nkrumah facility operating in the Jubilee oil field off the coast of Ghana. Aircraft observations have been combined with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART) to estimate surface emission fluxes from this platform. A simplified inverse method is used and repeated until the modelling output and aircraft observations converged. The estimated fluxes of CO, SO2, NO2 are compared to global (EDGAR, MACCity) and regional (Deetz and Vogel, 2017, in press) inventories. A second part of the study provides the first results of the APSOWA flights for the study of the impact of shipping emissions on the regional air quality. Using data from Marine Traffic, ship positions during the campaign are identified. Then, FLEXPART is used to quantify the contributions of the ship emissions to the aircraft observations. Finally, direct measurements in the MBL around 4°N latitude along the Ghana coast show no strong evidence of the presence of an atmospheric pollution maritime corridor simulated by MACCity.

  8. Icepod: A modular approach to the development of an airborne remote sensing and data acquisition platform

    Frearson, N.; Bell, R. E.; Tinto, K. J.; Zappa, C. J.

    2013-12-01

    The New York Air National Guard [NYANG] provides regular airborne support to the National Science Foundation [NSF] moving science parties and their equipment onto and around the ice-sheets in both polar regions during the respective summer seasons. Icepod has been developed to utilize this readily available resource, providing the aircraft with a modular external pod attached to the rear-paratrooper door on either side of the NYANG's ski-equipped LC-130s. The pod is divided into five separate bays each approximately a 2ft cube within which can be mounted an array of remote sensors. Power, heating, sensor control and data management services are provided to each bay. An Ethernet network is used to transfer commands and data packets between the individual sensors and data acquisition system located inside the aircraft. Data for each sensor is stored on ruggedized and removable hard-drives that can be taken off the aircraft at the end of a flight for further analysis. In its current configuration the pod is equipped for the remote sensing of ice sheets and their margins and the bay's contain two radar systems, radar antennas, a vibration isolated optics bay including a scanning laser, Infra-red camera and high-definition visible wave camera. Sensor data is geo-referenced using GNSS and orientation sensors located inside the pod. A Pyrometer provides the downward looking IR Camera with the current sky temperature. In January 2013, the Icepod system was flight certified at the Stratton air base in Schenectady, New York. The system deployed to Greenland in April and July 2013 to test the instrumentation suite over ice and its ease of deployment with the NYANG. Icepod can be operated in two modes, a traditional dedicated science flight mode and a piggy-back mode. In piggy-back mode science parties and their cargo are delivered to their destinations with Icepod installed but stowed. Once they have been delivered the Icepod is deployed and measurements can be taken on the

  9. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been

  10. Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    Lee, James D.; Mobbs, Stephen D.; Wellpott, Axel; Allen, Grant; Bauguitte, Stephane J.-B.; Burton, Ralph R.; Camilli, Richard; Coe, Hugh; Fisher, Rebecca E.; France, James L.; Gallagher, Martin; Hopkins, James R.; Lanoiselle, Mathias; Lewis, Alastair C.; Lowry, David; Nisbet, Euan G.; Purvis, Ruth M.; O'Shea, Sebastian; Pyle, John A.; Ryerson, Thomas B.

    2018-03-01

    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin wellhead and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically instrumented BAe-146 research aircraft were used to quantify the flow rate. The flow rate was calculated by assuming the plume may be modelled by a Gaussian distribution with two different solution methods: Gaussian fitting in the vertical and fitting with a fully mixed layer. When both solution methods were used they compared within 6 % of each other, which was within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s-1, decreasing to less than half that by the second flight on 17 April 2012. δ13CCH4 in the gas was found to be -43 ‰, implying that the gas source was unlikely to be from the main high pressure, high temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 h of sampling, with δ13CCH4 characterization soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting

  11. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  12. Platforms.

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis.

  13. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  14. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  15. Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification

    Jian Zhang

    2016-03-01

    Full Text Available Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications has not been well documented in related studies. The objective of this research was to apply three commonly-used classification methods (unsupervised, supervised, and object-based to three-band imagery with RGB (red, green, and blue bands and four-band imagery with RGB and near-infrared (NIR bands to evaluate the performance of a dual-camera imaging system for crop identification. Airborne images were acquired from a cropping area in Texas and mosaicked and georeferenced. The mosaicked imagery was classified using the three classification methods to assess the usefulness of NIR imagery for crop identification and to evaluate performance differences between the object-based and pixel-based methods. Image classification and accuracy assessment showed that the additional NIR band imagery improved crop classification accuracy over the RGB imagery and that the object-based method achieved better results with additional non-spectral image features. The results from this study indicate that the airborne imaging system based on two consumer-grade cameras used in this study can be useful for crop identification and other agricultural applications.

  16. Natural interaction for unmanned systems

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  17. Morphing unmanned aerial vehicles

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-01-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies. (topical review)

  18. Applications for Navy Unmanned Aircraft Systems

    2010-01-01

    comunication intelligence (COMINT) collection, and airborne electronic attack applications. If the UCAS-D program is successful in addressing many of the...position navigation and timing RF radio frequency RSTA reconnaissance, surveillance, and target acquisition SAB Scientific Advisory Board SAR synthetic...Aircraft Systems Roadmap 2005–2030 and Unmanned Systems Roadmap 2007–2032, and the 2003 Air Force Scientific Advisory Board (SAB) UAS study

  19. Technical Report: Unmanned Helicopter Solution for Survey-Grade Lidar and Hyperspectral Mapping

    Kaňuk, Ján; Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Dvorný, Eduard

    2018-05-01

    Recent development of light-weight unmanned airborne vehicles (UAV) and miniaturization of sensors provide new possibilities for remote sensing and high-resolution mapping. Mini-UAV platforms are emerging, but powerful UAV platforms of higher payload capacity are required to carry the sensors for survey-grade mapping. In this paper, we demonstrate a technological solution and application of two different payloads for highly accurate and detailed mapping. The unmanned airborne system (UAS) comprises a Scout B1-100 autonomously operating UAV helicopter powered by a gasoline two-stroke engine with maximum take-off weight of 75 kg. The UAV allows for integrating of up to 18 kg of a customized payload. Our technological solution comprises two types of payload completely independent of the platform. The first payload contains a VUX-1 laser scanner (Riegl, Austria) and a Sony A6000 E-Mount photo camera. The second payload integrates a hyperspectral push-broom scanner AISA Kestrel 10 (Specim, Finland). The two payloads need to be alternated if mapping with both is required. Both payloads include an inertial navigation system xNAV550 (Oxford Technical Solutions Ltd., United Kingdom), a separate data link, and a power supply unit. Such a constellation allowed for achieving high accuracy of the flight line post-processing in two test missions. The standard deviation was 0.02 m (XY) and 0.025 m (Z), respectively. The intended application of the UAS was for high-resolution mapping and monitoring of landscape dynamics (landslides, erosion, flooding, or crops growth). The legal regulations for such UAV applications in Switzerland and Slovakia are also discussed.

  20. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  1. Distributed sensing and actuation over bluetooth for unmanned air vehicles

    Afonso, José A.; Coelho, Ezequiel T.; Carvalhal, Paulo; Ferreira, Manuel João Oliveira; Santos, Cristina; Silva, Luís F.; Almeida, Heitor

    2006-01-01

    A short range wireless network platform, based on Bluetooth technology and on a Round Robin scheduling is presented. The objective is to build an application independent platform, to support a distributed sensing and actuation control system, which will be used in an Unmanned Aerial Vehicle (UAV). This platform provides the advantages of wireless communications while assuring low weight, small energy consumption and reliable communications.

  2. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  3. Unmanned systems win unexpected support

    Schneiderman, R.

    1991-09-01

    A review of unmanned aerial vehicles (UAVs) is presented in which emphasis is given to recent mission accomplishments and current directions of research. Existing and new military UAV programs are listed with reference to funding, the type of vehicle, and level of development. Several trends are established including the reliance of UVAs on global positioning satellites and advanced electronics and the growth of the UVA industry. UVAs that are in advanced stages of development or have been deployed include short-range UAV such as the Pioneer, the Pointer, the Sky Owl, and the Hunter. Key UAV systems are described such as the Advanced Tactical Airborne Reconnaissance System, the Maritime Vertical Takeoff and Landing, and other VTOL systems. Very small UVAs and Exdrones are also discussed, and a weather reconnaissance system and surveillance systems are mentioned.

  4. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  5. DIRECT GEOREFERENCING ON SMALL UNMANNED AERIAL PLATFORMS FOR IMPROVED RELIABILITY AND ACCURACY OF MAPPING WITHOUT THE NEED FOR GROUND CONTROL POINTS

    O. Mian

    2015-08-01

    Full Text Available This paper presents results from a Direct Mapping Solution (DMS comprised of an Applanix APX-15 UAV GNSS-Inertial system integrated with a Sony a7R camera to produce highly accurate ortho-rectified imagery without Ground Control Points on a Microdrones md4-1000 platform. A 55 millimeter Nikkor f/1.8 lens was mounted on the Sony a7R and the camera was then focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 UAV GNSS-Inertial system using a custom mount specifically designed for UAV applications. In July 2015, Applanix and Avyon carried out a test flight of this system. The goal of the test flight was to assess the performance of DMS APX-15 UAV direct georeferencing system on the md4-1000. The area mapped during the test was a 250 x 300 meter block in a rural setting in Ontario, Canada. Several ground control points are distributed within the test area. The test included 8 North-South lines and 1 cross strip flown at 80 meters AGL, resulting in a ~1 centimeter Ground Sample Distance (GSD. Map products were generated from the test flight using Direct Georeferencing, and then compared for accuracy against the known positions of ground control points in the test area. The GNSS-Inertial data collected by the APX-15 UAV was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. The base-station’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. The ground control points were surveyed in using differential GNSS post-processing techniques with respect to the base-station.

  6. Building Change Detection from Harvey using Unmanned Aerial System (UAS)

    Chang, A.; Yeom, J.; Jung, J.; Choi, I.

    2017-12-01

    Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.

  7. COCAP: a carbon dioxide analyser for small unmanned aircraft systems

    Kunz, Martin; Lavric, Jost V.; Gerbig, Christoph; Tans, Pieter; Neff, Don; Hummelgård, Christine; Martin, Hans; Rödjegård, Henrik; Wrenger, Burkhard; Heimann, Martin

    2018-03-01

    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol-1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.

  8. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  9. Characterization of High Altitude Turbulence for Air Force Platforms

    Ruggiero, Frank H; Werne, Joe; Mahalov, Alex; Nichols, Basil; Wroblewski, Donald E

    2007-01-01

    ...) on systems that operate at or propagate through those attitudes. Examples of systems affected by HAT include surveillance aircraft such as the U-2 and the unmanned Global Hawk, developing weapons systems such as the Airborne Laser (ABL...

  10. Routing architecture and security for airborne networks

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  11. On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Manfreda, Salvatore; McCabe, Matthew; Miller, Pauline; Lucas, Richard; Pajuelo Madrigal, Victor; Mallinis, Giorgos; Ben Dor, Eyal; Helman, David; Estes, Lyndon; Ciraolo, Giuseppe; Mü llerová , Jana; Tauro, Flavia; De Lima, M. Isabel; De Lima, Joao L.M.P.; Frances, Felix; Caylor, Kelly; Kohv, Marko; Maltese, Antonino; Perks, Matthew; Ruiz-Pé rez, Guiomar; Su, Zhongbo; Vico, Giulia; Toth, Brigitta

    2018-01-01

    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems, enhancing the understanding hydrological processes, optimizing the allocation and distribution of water resources, and assessing, forecasting and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors or satellite observations. These data are utilized in describing both small and large scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically evolve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing not just high spatial detail over relatively large areas in a cost-effective way, but as importantly providing an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and applications specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms and evaluations techniques need to be harmonized. The aim of this paper is to provide a comprehensive general overview of the existing research on studies and applications of UAS in environmental monitoring in order to suggest users and researchers on future research directions

  12. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  13. On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Manfreda, Salvatore

    2018-03-16

    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems, enhancing the understanding hydrological processes, optimizing the allocation and distribution of water resources, and assessing, forecasting and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors or satellite observations. These data are utilized in describing both small and large scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically evolve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing not just high spatial detail over relatively large areas in a cost-effective way, but as importantly providing an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and applications specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms and evaluations techniques need to be harmonized. The aim of this paper is to provide a comprehensive general overview of the existing research on studies and applications of UAS in environmental monitoring in order to suggest users and researchers on future research directions

  14. Unmanned Systems in Perspective

    2014-05-22

    36Gertler, 41-42. 37Gertler, 42; Spencer Ackerman, “Exclusive Pics: The Navy’s Unmanned, Autonomous ‘ UFO ’,” Wired, 31 July 2012, http...Pics: The Navy’s Unmanned, Autonomous ‘ UFO ’.” Wired, 31 July 2012. http://www.wired.com/dangerroom/2012/07/x47b (accessed 1 March 2014). Air Force

  15. An automated data exploitation system for airborne sensors

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  16. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  17. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  18. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  19. UNMANNED AIRCRAFT SYSTEMS FOR RAPID NEAR SURFACE GEOPHYSICAL MEASUREMENTS

    J. B. Stoll

    2013-08-01

    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  20. Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species.

    Phan-Quang, Gia Chuong; Lee, Hiang Kwee; Teng, Hao Wen; Koh, Charlynn Sher Lin; Yim, Barnabas Qinwei; Tan, Eddie Khay Ming; Tok, Wee Lee; Phang, In Yee; Ling, Xing Yi

    2018-05-14

    Molecular-level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface-enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS-active depth. "Aerosolized plasmonic colloidosomes" (APCs) are introduced as airborne plasmonic hotspots for direct in-air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100-fold higher tolerance to laser misalignment along the z-axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in-air SERS detection is demonstrated in stand-off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of the Vertical Takeoff and Landing Unmanned Aerial Vehicle (VTUAV) in Small Unit Urban Operations

    Cason, Roman

    2004-01-01

    ...) to replace the aging Pioneer Unmanned Aerial Vehicle (UAV) system. This thesis examines the critical elements this platform must possess to effectively support small units operating in urban environments...

  2. International Symposium on Unmanned Aerial Vehicles

    Oh, Paul; Piegl, Les

    2009-01-01

    Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as ...

  3. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  4. Surfzone monitoring using rotary wing unmanned aerial vehicles

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  5. Satellite Image Classification of Building Damages Using Airborne and Satellite Image Samples in a Deep Learning Approach

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2018-05-01

    The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image samples are compared against two benchmark networks where only satellite image samples are used. Combining feature maps generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4 % the overall satellite image

  6. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  7. Unmanned Ground Systems Roadmap

    2011-07-01

    quality metric tracking history . 1.4.3.4 Technical Management Division The mission of the RS JPO Technical Management (Tech Mgt) Division is to...missions dictate radio capabilities. IP version 4 ( IPv4 ) is the common IP standard used on IP addressable devices of UGVs, however, Unmanned Ground...Systems Roadmap UNCLASSIFIED 26 UNCLASSIFIED July 2011 IPv4 addresses are projected to run out and UGV systems will need to migrate to IP version 6

  8. Classification of robotic battery service systems for unmanned aerial vehicles

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  9. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.

    2015-01-01

    The U.S. Department of the Interior (DOI) is responsible for protecting the natural resources and heritage contained on almost 20 percent of the land in the United States. This responsibility requires acquisition of remotely sensed data throughout vast lands, including areas that are remote and potentially dangerous to access. One promising new technology for data collection is unmanned aircraft systems (UAS), which may be better suited (achieving superior science, safety, and savings) than traditional methods. UAS, regardless of their size, have the same operational components: aircraft, payloads, communications unit, and operator control unit. The aircraft is the platform that flies and carries any required payloads. For Department of the Interior missions these payloads will be either a sensor or set of sensors that can acquire the specific type of remotely sensed data that is needed. The aircraft will also carry the payload that is responsible for transmitting live airborne video images, compass headings, and location information to the operator control unit. The communications unit, which transfers information between the aircraft and the operator control unit, consists of the hardware and software required to establish both uplink and downlink communications. Finally, the operator control unit both controls and monitors the aircraft and can be operated either by a pilot on the ground or autonomously.

  10. DETERMINING GEOMETRIC PARAMETERS OF AGRICULTURAL TREES FROM LASER SCANNING DATA OBTAINED WITH UNMANNED AERIAL VEHICLE

    E. Hadas

    2018-05-01

    Full Text Available The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2 obtained with Unmanned Aerial Vehicle (UAV equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.

  11. Determining Geometric Parameters of Agricultural Trees from Laser Scanning Data Obtained with Unmanned Aerial Vehicle

    Hadas, E.; Jozkow, G.; Walicka, A.; Borkowski, A.

    2018-05-01

    The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.

  12. Intelligent autonomy for unmanned naval systems

    Steinberg, Marc

    2006-05-01

    vehicles and a buoy as surrogate platforms. In addition, a multiple heterogeneous vehicle demonstration was performed using five different types of small unmanned air and ground vehicles. This provided some initial experimentation with specifying tasking for high-level mission objectives and then mapping those objectives onto heterogeneous unmanned vehicles that each have different lower-level autonomy software. Finally, this paper will discuss lessons learned.

  13. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  14. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  15. Unmanned air vehicles - real time intelligence without the risk

    Miller, James Bryan.

    1988-01-01

    Unmanned Air Vehicles (UAVs) are capable of supporting the officer in tactical command (OTC) by gathering intelligence in real- or near real-time. UAVs now under development will be able to collect high-resolution imagery, and thus provide the OTC with the option of gathering tactical intelligence without using manned reconnaissance platforms. This thesis asserts that UAVs should be used to supplement existing intelligence sensors, particularly in those cases where current sources are too amb...

  16. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    J. F. Burkhart

    2017-07-01

    Full Text Available Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS bidirectional reflectance distribution function (BRDF/albedo (MCD43 algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS. The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  17. Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb

    Yang, Jiaoying; Guo, Yachao

    2017-10-01

    For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.

  18. LOW COST SURVEYING USING AN UNMANNED AERIAL VEHICLE

    M. Pérez

    2013-08-01

    Full Text Available Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM. The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37–111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps

  19. The application of unmanned aerial systems (UAS) in geophysical investigations of geothermal systems

    Glen, J. M.; Egger, A. E.; Ippolito, C.; Phelps, G. A.; Berthold, R.; Lee, R.; Spritzer, J. M.; Tchernychev, M.

    2012-12-01

    Investigations of geothermal systems typically involve ground-based geological and geophysical studies in order to map structures that control and facilitate fluid flow. The spatial extent of ground-based investigations can be limited, however, by surficial hot springs, dense foliage, and roadless or private lands. This can result in data gaps in key areas, particularly around active hydrothermal springs. Manned aircraft can provide access to these areas and can yield broad and uniform data coverage, but high-resolution surveys are costly and relatively inflexible to changes in the survey specifications that may arise as data are collected. Unmanned aerial systems (UAS) are well suited for conducting these surveys, but until recently, various factors (scientific instrumentation requirements, platform limitations, and size of the survey area) have required the use of large UAS platforms, rendering unmanned aerial surveys unsuitable for most investigations. We have developed and tested a new cesium magnetometer system to collect magnetic data using two different small-platform UAS that overcomes many of the challenges described above. We are deploying this new system in Surprise Valley, CA, to study the area's active geothermal field. Surprise Valley is ideally suited to testing UAS due to its low population density, accessible airspace, and broad playa that provides ample opportunity to safely land the aircraft. In combination with gravity and topographic data, magnetic data are particularly useful for identifying buried, intra-basin structures, especially in areas such as Surprise Valley where highly magnetic, dense mafic volcanic rocks are interbedded with and faulted against less magnetic, less dense sedimentary rock. While high-resolution gravity data must be collected at point locations on the ground, high-resolution magnetic data can be obtained by UAS that provide continuous coverage. Once acquired, the magnetic data obtained by the UAS will be combined with

  20. Unmanned and Unarmed

    Kristensen, Kristian Søby; Pradhan-Blach, Flemming; Schaub Jr, Gary John

    , the American, British, French, and Danish experiences highlight difficulties developing, acquiring, and operating UAVs. The Danish government should consider the tasks that UAVs are best-suited to perform, the costs associated with the entire UAV system, and the operational, doctrinal, and other challenges...... that must be addressed to integrate UAV capabilities into the Danish armed forces. These are not trivial considerations. Larger UAVs are very complex systems with which the Danish armed forces have limited experience, and introducing radically new technology always comes with substantial risks. Should...... Denmark decide to procure larger unmanned systems, such as Reapers or Global Hawks, it should cooperate with Allies to purchase, operate, and integrate these capabilities as smoothly as possible and mitigate these risks. It should also establish a joint unit dedicated to house, train, educate, and operate...

  1. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    Demetrios Gatziolis

    Full Text Available Detailed, precise, three-dimensional (3D representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs, light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  2. ARM Aerial Facility ArcticShark Unmanned Aerial System

    Schmid, B.; Hubbell, M.; Mei, F.; Carroll, P.; Mendoza, A.; Ireland, C.; Lewko, K.

    2017-12-01

    The TigerShark Block 3 XP-AR "ArcticShark" Unmanned Aerial System (UAS), developed and manufactured by Navmar Applied Sciences Corporation (NASC), is a single-prop, 60 hp rotary-engine platform with a wingspan of 6.5 m and Maximum Gross Takeoff Weight of 295 Kg. The ArcticShark is owned by the U.S. Department of Energy (DOE) and has been operated by Pacific Northwest National Laboratory (PNNL) since March 2017. The UAS will serve as an airborne atmospheric research observatory for DOE ARM, and, once fully operational, can be requested through ARM's annual call for proposals. The Arctic Shark is anticipated to measure a wide range of radiative, aerosol, and cloud properties using a variable instrument payload weighing up to 46 Kg. SATCOM-equipped, it is capable of taking measurements up to altitudes of 5.5 Km over ranges of up to 500 Km. The ArcticShark operates at airspeeds of 30 to 40 m/s, making it capable of slow sampling. With a full fuel load, its endurance exceeds 8 hours. The aircraft and its Mobile Operations Center (MOC) have been hardened specifically for operations in colder temperatures.ArcticShark's design facilitates rapid integration of various types of payloads. 2500 W of its 4000 W electrical systems is dedicated to payload servicing. It has an interior payload volume of almost 85 L and four wing-mounted pylons capable of carrying external probes. Its payload bay volume, electrical power, payload capacity, and flight characteristics enable the ArcticShark to accommodate multiple combinations of payloads in numerous configurations. Many instruments will be provided by the ARM Aerial Facility (AAF), but other organizations may eventually propose instrumentation for specific campaigns. AAF-provided measurement capabilities will include the following atmospheric state and thermodynamics: temperature, pressure, winds; gases: H2O and CO2; up- and down-welling broadband infrared and visible radiation; surface temperature; aerosol number concentration

  3. Airborne Video Surveillance

    Blask, Steven

    2002-01-01

    The DARPA Airborne Video Surveillance (AVS) program was established to develop and promote technologies to make airborne video more useful, providing capabilities that achieve a UAV force multiplier...

  4. A survey of hybrid Unmanned Aerial Vehicles

    Saeed, Adnan S.; Younes, Ahmad Bani; Cai, Chenxiao; Cai, Guowei

    2018-04-01

    This article presents a comprehensive overview on the recent advances of miniature hybrid Unmanned Aerial Vehicles (UAVs). For now, two conventional types, i.e., fixed-wing UAV and Vertical Takeoff and Landing (VTOL) UAV, dominate the miniature UAVs. Each type has its own inherent limitations on flexibility, payload, flight range, cruising speed, takeoff and landing requirements and endurance. Enhanced popularity and interest are recently gained by the newer type, named hybrid UAV, that integrates the beneficial features of both conventional ones. In this survey paper, a systematic categorization method for the hybrid UAV's platform designs is introduced, first presenting the technical features and representative examples. Next, the hybrid UAV's flight dynamics model and flight control strategies are explained addressing several representative modeling and control work. In addition, key observations, existing challenges and conclusive remarks based on the conducted review are discussed accordingly.

  5. CADASTRAL AUDIT AND ASSESSMENTS USING UNMANNED AERIAL SYSTEMS

    K. Cunningham

    2012-09-01

    Full Text Available Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR laser scanners, and now synthetic aperture radar (SAR. At the University of Alaska Fairbanks (UAF, we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  6. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  7. Airborne relay-based regional positioning system.

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  8. Layered autonomous overwatch: the necessity and feasability of multiple unmanned systems in combat support

    Monckton, Simon; Digney, Bruce; Broten, Greg; Penzes, Steve

    2007-04-01

    Unmanned systems simultaneously reduce risk and magnify the impact of soldier-operators. For example, in Afghanistan UAVs routinely provide overwatch to manned units while UGVs support IED identification and disposal roles. Expanding these roles requires greater autonomy with a coherent unmanned "system of systems" approach that leverages one platform's strengths against the weakness of another. Specific collaborative unmanned systems such as shared sensing, communication relay, and distributed computing to achieve greater autonomy are often presented as possible solutions. By surveying currently deployed systems, this paper shows that the spectrum of air and ground systems provide an important mixture of range, speed, payload, and endurance with significant implications on mission structure. Rather than proposing UxV teams collaborating towards specific autonomous capabilities, this paper proposes that basic physical and environmental constraints will drive tactics towards a layered, unmanned battlespace that provides force protection and reconnaissance in depth to a manned core.

  9. Planning a radar system for protection from the airborne threat

    Greneker, E.F.; McGee, M.C.

    1986-01-01

    A planning methodology for developing a radar system to protect nuclear materials facilities from the airborne threat is presented. Planning for physical security to counter the airborne threat is becoming even more important because hostile acts by terrorists are increasing and airborne platforms that can be used to bypass physical barriers are readily available. The comprehensive system planning process includes threat and facility surveys, defense hardening, analysis of detection and early warning requirements, optimization of sensor mix and placement, and system implementation considerations

  10. Tracking of a Fluorescent Dye in a Freshwater Lake with an Unmanned Surface Vehicle and an Unmanned Aircraft System

    Craig Powers

    2018-01-01

    Full Text Available Recent catastrophic events in our oceans, including the spill of toxic oil from the explosion of the Deepwater Horizon drilling rig and the rapid dispersion of radioactive particulates from the meltdown of the Fukushima Daiichi nuclear plant, underscore the need for new tools and technologies to rapidly respond to hazardous agents. Our understanding of the movement and aerosolization of hazardous agents from natural aquatic systems can be expanded upon and used in prevention and tracking. New technologies with coordinated unmanned robotic systems could lead to faster identification and mitigation of hazardous agents in lakes, rivers, and oceans. In this study, we released a fluorescent dye (fluorescein into a freshwater lake from an anchored floating platform. A fluorometer (fluorescence sensor was mounted underneath an unmanned surface vehicle (USV, unmanned boat and was used to detect and track the released dye in situ in real-time. An unmanned aircraft system (UAS was used to visualize the dye and direct the USV to sample different areas of the dye plume. Image processing tools were used to map concentration profiles of the dye plume from aerial images acquired from the UAS, and these were associated with concentration measurements collected from the sensors onboard the USV. The results of this project have the potential to transform monitoring strategies for hazardous agents, enabling timely and accurate exposure assessment and response in affected areas. Fast response is essential in reacting to the introduction of hazardous agents, in order to quickly predict and contain their spread.

  11. GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS

    E. Honkavaara

    2016-06-01

    Full Text Available Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.

  12. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (Di

  13. Controlling Unmanned Vehicles : the Human Factors Solution

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  14. Collaborative Unmanned Vehicles for Maritime Domain Awareness

    Healey, A. J; Horner, D. P; Kragelund, S. P

    2005-01-01

    Unmanned vehicles are becoming a critical component of military operations. As the vehicles develop in capability, there will be a trend for heterogeneous classes of unmanned vehicles to be able to work in a more collaborative fashion...

  15. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  16. SMEX02 Airborne GPS Bistatic Radar Data, Iowa

    National Aeronautics and Space Administration — This data set contains measurements of Global Positioning System (GPS) signals reflected from the Earth’s surface and collected on an airborne platform. The...

  17. Analysis of Unmanned Systems in Military Logistics

    2016-12-01

    performance measures: customer satisfaction , flexibility, visibility, and trust. If we apply this explanation of Li and Schulze (2011) to the military...unmanned systems, initially, we aimed to define current and proposed unmanned applications in civilian-sector logistics and current military...aimed to define current and proposed unmanned applications in civilian-sector logistics and current military logistics challenges. Then, justifying

  18. Unmanned Maritime Systems Incremental Acquisition Approach

    2016-12-01

    REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH 5. FUNDING...Approved for public release. Distribution is unlimited. UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH Thomas Driscoll, Lieutenant...UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH ABSTRACT The purpose of this MBA report is to explore and understand the issues

  19. Handbook of unmanned aerial vehicles

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  20. Preliminary analysis of the forest health state based on multispectral images acquired by Unmanned Aerial Vehicle

    Czapski Paweł

    2015-09-01

    Full Text Available The main purpose of this publication is to present the current progress of the work associated with the use of a lightweight unmanned platforms for various environmental studies. Current development in information technology, electronics and sensors miniaturisation allows mounting multispectral cameras and scanners on unmanned aerial vehicle (UAV that could only be used on board aircraft and satellites. Remote Sensing Division in the Institute of Aviation carries out innovative researches using multisensory platform and lightweight unmanned vehicle to evaluate the health state of forests in Wielkopolska province. In this paper, applicability of multispectral images analysis acquired several times during the growing season from low altitude (up to 800m is presented. We present remote sensing indicators computed by our software and common methods for assessing state of trees health. The correctness of applied methods is verified using analysis of satellite scenes acquired by Landsat 8 OLI instrument (Operational Land Imager.

  1. Scheduling Mission-Critical Flows in Congested and Contested Airborne Network Environments

    2018-03-01

    networks for atmospheric, wildlife, and ecological monitoring. They equip airborne nodes with off-the-shelf 802.15.4-compliant Zigbee radios. They...Theoretical Criminology, vol. 15, no. 3, pp. 239–254, 2011. [51] R. L. Finn and D. Wright, “Unmanned aircraft systems: Surveillance, ethics and privacy in

  2. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  3. Unmanned Ground Vehicle

    2001-11-01

    Systems ( JAUGS ). JAUGS is a JRP technology initiative under the cognizance of the Aviation and Missile Command Research, Development and Engineering Center...AMRDEC). The JAUGS focus is on developing a high-level command and control architecture for UGVs. As defined in the JRP Glossary, “ JAUGS is an upper...vehicle platforms and missions. JAUGS uses the Society of Automotive Engineers Generic Open Architecture framework to classify UGV interfaces and

  4. RISK DEFINITION IN CIVIL UNMANNED AVIATION

    Volodymyr Kharchenko

    2016-12-01

    Full Text Available Objective: The risks in unmanned civil aviation are considered as one of the most important. In the article is proved applicability of ensuring the flight safety of aircraft and considered the basic risks of manned civil aviation. Methods: Analyzed statistical data on aviation accidents, organized probabilities distribution of aviation accidents for manned and unmanned civil aviation to identify factors that influence the occurrence of emergency situations in manned and unmanned aviation. Results: We proposed typology of risk components in civil aviation and systematized methods and techniques to reduce risks. Over the analogies defined possible risks, their causes and remedies in civil unmanned aircraft. Weight coefficients distribution was justified between risk types for development of recommendations on risk management in unmanned civil aviation. Discussion: We found that the most probable risk in manned civil aviation is the human factor, organization of air traffic control, design flaws of unmanned aviation system as a whole, as well as maintenance of unmanned aviation system.

  5. Race for the wireless robot platform

    2008-07-01

    With the world going wireless, Norwegian energy champion Statoil Hydro is pushing forward with an unmanned, robot-operated production platform called Mesa Verde. Enlisted to solve safety and operational issues and help the oil company gain a cost edge on global competitors is an Emerson-Cisco wireless alliance itself facing stiff competition

  6. Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle

    Gao, Chen

    Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of

  7. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle

    Tahar, K N; Mohd, W M N W; Ahmad, A; Akib, W A A W M

    2014-01-01

    This paper discusses a rapid production of slope mapping using multi-rotor unmanned aerial vehicle (UAV). The objective of this study is to determine the accuracy of the photogrammetric results based on novel method of multi-rotor UAV images as well as to analyze the slope error distribution that are obtained from the UAV images. This study only concentrates on multi-rotor UAV which also known as Hexacopter. An operator can control the speed of multi-rotor UAV during flight mission. Several ground control points and checkpoints were established using Real Time Kinematic Global Positioning System (RTK- GPS) at the slope area. Ground control points were used in exterior orientation during image processing in sequence to transform image coordinates into local coordinate system. Checkpoints were established at the slope area for accuracy assessment. A digital camera, Sony NEX-5N was used for image acquisition of slope area from UAV platforms. The digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. All acquired images went through photogrammetric processing including interior orientation, exterior orientation and bundle adjustment using photogrammetric software. Photogrammetric results such as digital elevation model, and digital orthophoto including slope map were assessed. UAV is able to acquire data within short period of time with low budget compared to the previous methods such as satellite images and airborne laser scanner. Analysis on slope analysis and error distribution analysis are discussed in this paper to determine the quality of slope map in the area of interest. In summary, multi-rotor UAV is suited in slope mapping studies

  8. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  9. SAR system development for UAV multicopter platforms

    Escartin Martínez, Antonio

    2015-01-01

    SAR system development for UAV multicopter platforms This thesis describes the optimization of a synthetic aperture radar (SAR) at X-band and its integration into an unmanned aerial vehicle (UAV) of type octocopter. For such optimization the SAR system functionality was extended from singlepol to fulpol and it has been optimized at hardware level in order to improve its quality against noise figure. After its integration into the octocopter platform, its features has been used in order to ...

  10. Determination of UAV position using high accuracy navigation platform

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  11. Optical Airborne Tracker System

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  12. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  13. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System

    Susana Del Pozo

    2014-02-01

    Full Text Available Combinations of unmanned aerial platforms and multispectral sensors are considered low-cost tools for detailed spatial and temporal studies addressing spectral signatures, opening a broad range of applications in remote sensing. Thus, a key step in this process is knowledge of multi-spectral sensor calibration parameters in order to identify the physical variables collected by the sensor. This paper discusses the radiometric calibration process by means of a vicarious method applied to a high-spatial resolution unmanned flight using low-cost artificial and natural covers as control and check surfaces, respectively.

  14. Bespilotne letjelice : Unmanned aerial vehicles

    Vlado Jurić

    2016-12-01

    Full Text Available Bespilotne letjelice imaju širok spektar uporabe, i svrha im svakim danom sve više dobiva na značaju. Konstrukcija im se poboljšava, pronalaze se materijali koji su optimalniji za obavljanje funkcija s kojima se trebaju suočiti. Pravna regulativa za bespilotne letjelice do 150 kg težine na polijetanju (MTOW se razlikuje od države do države. : Unmanned aerial vehicles have a wide range of applications, and their purpose is every day more important. Construction has been improving, finding the materials that are optimal for carrying out the functions which need to be cope with. Legal regulations for unmanned aircrafts up to 150 kg take-off weight (MTOW varies from country to country.

  15. Unmanned operation of Hydro Power Plants

    Regula, E.

    2008-01-01

    Intentions to launch unmanned operation are no news, the very first occurred in Hydro Power Plants (HPP) at the time when the first computer technology was implemented into process of power generation, i.e. no later than in 1960 s . ENEL entering Slovenske elektrarne not only revived but significantly accelerated the implementation process of unmanned operation. Experience of ENEL says that unmanned operation means better reliability of the HPP and this is the priority. (author)

  16. Airborne geoid determination

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  17. Initial Results from an Energy-Aware Airborne Dynamic, Data-Driven Application System Performing Sampling in Coherent Boundary-Layer Structures

    Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.

    2014-12-01

    The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.

  18. Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

    Viatcheslav Tretyakov

    2008-11-01

    Full Text Available This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV and an Unmanned Aerial Vehicles (UAV. The paper focuses on three topics of the inspection with the combined UGV and UAV: (A teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C the architecture and hardware of the UAV

  19. Unmanned Aerial Vehicles unique cost estimating requirements

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  20. Mission-Aware Payloads for Unmanned Platforms, Phase I

    National Aeronautics and Space Administration — Sentix and Brigham Young University propose the research and development of embedded payload intelligence for inflight optimization of surveillance, reconnaissance,...

  1. Test bed for applications of heterogeneous unmanned vehicles

    Filiberto Muñoz Palacios

    2017-01-01

    Full Text Available This article addresses the development and implementation of a test bed for applications of heterogeneous unmanned vehicle systems. The test bed consists of unmanned aerial vehicles (Parrot AR.Drones versions 1 or 2, Parrot SA, Paris, France, and Bebop Drones 1.0 and 2.0, Parrot SA, Paris, France, ground vehicles (WowWee Rovio, WowWee Group Limited, Hong Kong, China, and the motion capture systems VICON and OptiTrack. Such test bed allows the user to choose between two different options of development environments, to perform aerial and ground vehicles applications. On the one hand, it is possible to select an environment based on the VICON system and LabVIEW (National Instruments or robotics operating system platforms, which make use the Parrot AR.Drone software development kit or the Bebop_autonomy Driver to communicate with the unmanned vehicles. On the other hand, it is possible to employ a platform that uses the OptiTrack system and that allows users to develop their own applications, replacing AR.Drone’s original firmware with original code. We have developed four experimental setups to illustrate the use of the Parrot software development kit, the Bebop Driver (AutonomyLab, Simon Fraser University, British Columbia, Canada, and the original firmware replacement for performing a strategy that involves both ground and aerial vehicle tracking. Finally, in order to illustrate the effectiveness of the developed test bed for the implementation of advanced controllers, we present experimental results of the implementation of three consensus algorithms: static, adaptive, and neural network, in order to accomplish that a team of multiagents systems move together to track a target.

  2. Photogrammetric mapping using unmanned aerial vehicle

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  3. FrankenRaven: A New Platform for Remote Sensing

    Dahlgren, R. P.; Fladeland, M. M.; Pinsker, E. A.; Jasionowicz, J. P.; Jones, L. L.; Mosser, C. D.; Pscheid, M. J.; Weidow, N. L.; Kelly, P. J.; Kern, C.; Werner, C. A.; Johnson, M. S.

    2016-12-01

    Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into "FrankenRaven" aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.

  4. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  5. Unmanned Mobile Monitoring for Nuclear Emergency Response

    Choi, YoungSoo; Park, JongWon; Kim, TaeWon; Jeong, KyungMin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Severe accidents at nuclear power plant have led to significant consequences to the people, the environment or the facility. Therefore, the appropriate response is required for the mitigation of the accidents. In the past, most of responses were performed by human beings, but it was dangerous and risky. In this paper, we proposed unmanned mobile system for the monitoring of nuclear accident in order to response effectively. For the integrity of reactor cooling and containment building, reactor cooling pipe and hydrogen distribution monitoring with unmanned ground vehicle was designed. And, for the safety of workers, radiation distribution monitoring with unmanned aerial vehicle was designed. Unmanned mobile monitoring system was proposed to respond nuclear accidents effectively. Concept of reinforcing the integrity of RCS and containment building, and radiation distribution monitoring were described. RCS flow measuring, hydrogen distribution measuring and radiation monitoring deployed at unmanned vehicle were proposed. These systems could be a method for the preparedness of effective response of nuclear accidents.

  6. International Conference on Intelligent Unmanned Systems (ICIUS)

    Kartidjo, Muljowidodo; Yoon, Kwang-Joon; Budiyono, Agus; Autonomous Control Systems and Vehicles : Intelligent Unmanned Systems

    2013-01-01

    The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers ...

  7. Study on analysis from sources of error for Airborne LIDAR

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  8. Airborne Compositae dermatitis

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...... for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed....

  9. Remote sensing technology research and instrumentation platform design

    1992-01-01

    An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.

  10. Bird's-Eye View of Sampling Sites: Using Unmanned Aerial Vehicles to Make Chemistry Fieldwork Videos

    Fung, Fun Man; Watts, Simon Francis

    2017-01-01

    Drones, unmanned aerial vehicles (UAVs), usually helicopters or airplanes, are commonly used for warfare, aerial surveillance, and recreation. In recent years, drones have become more accessible to the public as a platform for photography. In this report, we explore the use of drones as a new technological filming tool to enhance student learning…

  11. Integrated application of the database for airborne geophysical survey achievement information

    Ji Zengxian; Zhang Junwei

    2006-01-01

    The paper briefly introduces the database of information for airborne geophysical survey achievements. This database was developed on the platform of Microsoft Windows System with the technical methods of Visual C++ 6.0 and MapGIS. It is an information management system concerning airborne geophysical surveying achievements with perfect functions in graphic display, graphic cutting and output, query of data, printing of documents and reports, maintenance of database, etc. All information of airborne geophysical survey achievements in nuclear industry from 1972 to 2003 was embedded in. Based on regional geological map and Meso-Cenozoic basin map, the detailed statistical information of each airborne survey area, each airborne radioactive anomalous point and high field point can be presented visually by combining geological or basin research result. The successful development of this system will provide a fairly good base and platform for management of archives and data of airborne geophysical survey achievements in nuclear industry. (authors)

  12. Airborne Tactical Crossload Planner

    2017-12-01

    Regiment AGL above ground level AO area of operation APA American psychological association ASOP airborne standard operating procedure A/C aircraft...awarded a research contract to develop a tactical crossload tool. [C]omputer assisted Airborne Planning Application ( APA ) that provides a

  13. PERFORMANCE EVALUATION OF A LIGHT-WEIGHT MULTI-ECHO LIDAR FOR UNMANNED ROTORCRAFT APPLICATIONS

    G. Conte

    2013-08-01

    Full Text Available The paper presents a light-weight and low-cost airborne terrain mapping system. The developed Airborne LiDAR Scanner (ALS system consists of a high-precision GNSS receiver, an inertial measurement unit and a magnetic compass which are used to complement a LiDAR sensor in order to compute a digital surface model. Evaluation of the accuracy of the generated surface model is presented. Additionally, a comparison is provided between the surface model generated from the developed ALS system and a model generated using a commercial photogrammetric software. Finally, the multi-echo capability of the used LiDAR sensor is evaluated in areas covered with dense vegetation. The ALS system and camera systems were mounted on-board an industrial unmanned helicopter of around 100 kilograms maximum take-off weight. Presented results are based on real flight-test data.

  14. A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System

    2012-07-01

    and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general

  15. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  16. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  17. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  18. A unique aerial platform equipped for large area surveillance: a real-time tool for emergency management

    Frullani, Salvatore; Castelluccio, Donato M.; Cisbani, Evaristo; Colilli, Stefano; Fratoni, Rolando; Giuliani, Fausto; Mostarda, Angelo; Colangeli, Giorgio; De Otto, Gian L.; Marchiori, Carlo; Paoloni, Gianfranco

    2008-01-01

    Aerial platform equipped with a sampling line and real-time monitoring of sampled aerosol is presented. The system is composed by: a) A Sky Arrow 650 fixed wing aircraft with the front part of the fuselage properly adapted to house the detection and acquisition equipment; b) A compact air sampling line where the iso kinetic sampling is dynamically maintained, aerosol is collected on a filter positioned along the line and hosted on a rotating 4-filters disk; c) A detection subsystem: a small BGO scintillator and Geiger counter right behind the sampling filter, a HPGe detector allows radionuclide identification in the collected aerosol samples, a large NaI(Tl) crystal detects airborne and ground gamma radiation; d) Several environmental (temperature, pressure, aircraft/wind speed) sensors and a GPS receiver that support the full characterization of the sampling conditions and the temporal and geographical location of the acquired data; e) Acquisition and control system based on compact electronics and real time software that operate the sampling line actuators, guarantee the dynamical iso kinetic condition, and acquire the detectors and sensor data. With this system quantitative measurements can be available also during the plume phase of an accident, while other aerial platforms, without sampling capability, can only be used for qualitative assessments. Transmission of all data will be soon implemented in order to make all the data available in real-time to the Technical Centre for the Emergency Management. The use of an unmanned air-vehicle (UAV) is discussed as future option. (author)

  19. Airspace Integration Plan for Unmanned Aviation

    2004-01-01

    The Office of the Secretary of Defense Airspace Integration Plan for Unmanned Aviation outlines the key issues that must be addressed to achieve the goal of safe, routine use of the National Airspace System (NAS...

  20. Formation keeping of unmanned ground vehicles

    Muangmin Kamonwan

    2017-01-01

    Full Text Available Controlling motions of an unmanned ground vehicle becomes more popular in real world practices. Its application is useful for household chores, military services, medical purposes, and industrial revolutions, etc. An analysis of motions by using the Fundamental Equations of Constrained Motion (FECM is one effective tool to determine the motions. Its conceptualization is done in three-step procedure as follows: (I Determining an unconstrained motion (II Assigning constraint equations and (III Computing a constrained motion. The equations of motion obtained are expressed as liner functions of acceleration. Then other kinematical information of the unmanned ground vehicles can be obtained by integration its acceleration. In this work, the FECM is used as a tool to analyze motions of a group of unmanned ground vehicles in various forms. The simulation results show that control forces obtained from the approach can regulate motions of unmanned ground vehicles to maneuver in desired formations.

  1. Unmanned Ground Vehicle Tactical Behaviors Technology Assessment

    Childers, Marshal A; Bodt, Barry A; Hill, Susan G; Camden, Richard; Dean, Robert M; Dodson, William F; Sutton, Lyle G; Sapronov, Leonid

    2009-01-01

    During 4-14 February 2008, the U.S. Army Research Laboratory and General Dynamics Robotic Systems conducted an unmanned systems tactical behaviors technology assessment at three training areas of Ft. Indiantown Gap, PA...

  2. Airborne Deployment of and Recent Improvements to the Viper Counter Sniper System

    Moroz, S

    1999-01-01

    .... These experiments indicate that automatic detection of muzzle flash from an airborne platform is possible, and techniques that were developed for background estimation and false alarm reduction with a stationary sensor can apply with modifications to a moving sensor.

  3. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  4. STUDY ON SAFETY TECHNOLOGY SCHEME OF THE UNMANNED HELICOPTER

    Z. Lin

    2013-08-01

    Full Text Available Nowadays the unmanned helicopter is widely used for its' unique strongpoint, however, the high failure rate of unmanned helicopter seriously limits its further application and development. For solving the above problems, in this paper, the reasons for the high failure rate of unmanned helicopter is analyzed and the corresponding solution schemes are proposed. The main problem of the failure cause of the unmanned helicopter is the aircraft engine fault, and the failure cause of the unmanned helicopter is analyzed particularly. In order to improving the safety performance of unmanned helicopter system, the scheme of adding the safety parachute system to the unmanned helicopter system is proposed and introduced. These schemes provide the safety redundancy of the unmanned helicopter system and lay on basis for the unmanned helicopter applying into residential areas.

  5. Unmanned Aircraft Systems Roadmap, 2005-2030

    2005-01-01

    UCAV Unmanned Combat Air Vehicle ISS Integrated Sensor Suite UCS Unmanned Control System ITU International Telecommunications Union UFO UHF...RDC) at Groton, CT. These have included alien and drug interdiction along the Texas coast and in the Caribbean, UA launch and recovery systems...altitude aircraft and UA; and narrowband services to support mobile and handheld services as a replacement or follow-on for the UHF Follow-On ( UFO

  6. An integrated compact airborne multispectral imaging system using embedded computer

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  7. Artificial guide stars for adaptive optics using unmanned aerial vehicles

    Basden, A. G.; Brown, Anthony M.; Chadwick, P. M.; Clark, P.; Massey, R.

    2018-06-01

    Astronomical adaptive optics (AO) systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept that relies on the UAV being able to measure its precise relative position. We investigate the AO performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8 m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar AO systems.

  8. Concept development of control system for perspective unmanned aerial vehicles

    Koryanov Vsevolod V.

    2018-01-01

    Full Text Available Presented actual aspects of the development of the control system of unmanned aerial vehicles (UAVs in the example of perspective. Because the current and future UAV oriented to implementation of a wide range of tasks, taking into account the use of several types of payload, in this paper discusses the general principles of construction of onboard control complex, in turn, a hardware implementation of the automatic control system has been implemented in the microcontroller Arduino platform and the Raspberry Pi. In addition, in the paper presents the most common and promising way to ensure the smooth and reliable communication of the command post with the UAV as well as to the ways of parry considered and abnormal situations.

  9. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  10. Airborne Magnetic Trackline Database

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  11. Airborne Evaluation Facility

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  12. Airborne Test Bed Facility

    Federal Laboratory Consortium — The Laboratory operates the main hangar on the Hanscom Air Force Base flight line. This very large building (~93,000sqft) accommodates the Laboratory's airborne test...

  13. Unmanned aircraft systems (UAS) activities at the Department of the Interior

    Quirk, Bruce K.; Hutt, Michael E.

    2014-01-01

    informed decisions. It will also provide a digital baseline record that can be archived and used when monitoring future events or conditions. One possible future scenario has scientists carrying sUAS into the field allowing quick deployment and operation to observe the environment or for emergency response. This scenario could also include a persistent monitoring capability provided by a UAS that can stay airborne over a small geographic area for days or weeks, or possibly longer. While the DOI focus is on sUAS, the Department recognizes that larger UAS systems will also play a role in meeting its mission. The Department anticipates meeting long-duration or specialized acquisition commitments, such as state or national aerial photography, by collaboration with other agencies or through commercial contracts. Even though the DOI continues to evaluate UAS and sensor technology to meet the Department’s mission, some of its bureaus are already moving towards an operational capability. The authors fully anticipate that by 2020 UAS will emerge as one of the primary platforms for DOI remote sensing applications.

  14. ARV robotic technologies (ART): a risk reduction effort for future unmanned systems

    Jaster, Jeffrey F.

    2006-05-01

    The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.

  15. Payment Platform

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  16. Multispectral and DSLR sensors for assessing crop stress in corn and cotton using fixed-wing unmanned air systems

    Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.

    2016-05-01

    As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.

  17. The airborne EMIRAD L-band radiometer system

    Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup; Balling, Jan E.

    2013-01-01

    ). The EMIRAD system has been installed on three different airborne platforms for measurements of sea surface signatures and salinity, soil moisture, and the homogeneity of the Antarctic SMOS calibration site. The installations are shown in the paper, and some major results for ocean and ice observations...

  18. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  19. Stratospheric Platforms for Monitoring Purposes

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  20. Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK) on the Vision II turbine rotorcraft UAV over the Florida Keys

    Holasek, R. E.; Nakanishi, K.; Swartz, B.; Zacaroli, R.; Hill, B.; Naungayan, J.; Herwitz, S.; Kavros, P.; English, D. C.

    2013-12-01

    As part of the NASA ROSES program, the NovaSol Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK) was flown as the payload on the unmanned Vision II helicopter. The goal of the May 2013 data collection was to obtain high resolution visible and near-infrared (visNIR) hyperspectral data of seagrasses and coral reefs in the Florida Keys. The specifications of the SHARK hyperspectral system and the Vision II turbine rotorcraft will be described along with the process of integrating the payload to the vehicle platform. The minimal size, weight, and power (SWaP) specifications of the SHARK system is an ideal match to the Vision II helicopter and its flight parameters. One advantage of the helicopter over fixed wing platforms is its inherent ability to take off and land in a limited area and without a runway, enabling the UAV to be located in close proximity to the experiment areas and the science team. Decisions regarding integration times, waypoint selection, mission duration, and mission frequency are able to be based upon the local environmental conditions and can be modified just prior to take off. The operational procedures and coordination between the UAV pilot, payload operator, and scientist will be described. The SHARK system includes an inertial navigation system and digital elevation model (DEM) which allows image coordinates to be calculated onboard the aircraft in real-time. Examples of the geo-registered images from the data collection will be shown. SHARK mounted below VTUAV. SHARK deployed on VTUAV over water.

  1. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  2. Optimization of the Flight Path of an Unmanned Aerial Vehicle

    Vasyl Myklukha

    2017-09-01

    Full Text Available The article describes the features of optimizing the flight path of an unmanned aerial vehicle. The paper analyzes the composition and designation of main equipment and payload of unmanned aerial vehicle. In particular, attention is drawn to the basic requirements that relate to the unmanned aerial vehicle today.

  3. Airborne gamma spectrometry - towards integration of European operational capability

    Toivonen, H.

    2003-01-01

    Full text: A nuclear threat can take several forms. The fallout from nuclear weapons or from an accident in a nuclear power reactor may contaminate a large area (>>100,000 km 2 ) whereas the dispersion of single sources, either accidentally or deliberately (dirty bomb), contaminates a much smaller area, perhaps only a few thousand square kilometres or less. Airborne gamma spectrometry (AGS) plays an important role in providing detailed information an the dispersion of radioactive materials. AGS using a fixed-wing or a rotary-wing aircraft is at its best in fallout mapping and in searching for orphan sources. Plume tracking could be a third application but is very complex, and there is a risk of vehicle contamination, which would deteriorate mission capability in the later phases of an accident. Because of obvious advantages, unmanned aerial vehicles could be used to monitor the release rate at the site of an accident and perhaps the plume itself. The aim of the present paper is to discuss ways to utilize existing European airborne monitoring capabilities for multilateral assistance in an accident and to give some thoughts to how an integrated system could be developed to take into account various national measuring strategies. In a large-scale accident, it is to be expected that the European countries use their radiological resources to map their own territory. It is realistic to think of assistance by transferring equipment and staff to another country only in accident scenarios where a country or countries with essential AGS capability would not have been affected by the fallout. Various AGS survey results can be fused only if a common platform for data exchange is available. Formats and protocols have been developed for special cases (ECCOMAGS, Nuclear Fission Safety, 4 th and 5 th Framework Programmes) but there are no universal solutions applicable to different situations and Instruments. The hardware and software among the European AGS teams are tailor

  4. Platform Constellations

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel and a......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  5. Cooperative path planning of unmanned aerial vehicles

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...

  6. Unmanned Vehicle Material Flammability Test

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  7. ARM Unmanned Aerial Systems Implementation Plan

    Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS for the science missions ARM supports.

  8. Remote sensing and actuation using unmanned vehicles

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  9. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture

    Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard

    2017-04-01

    Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price

  10. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  11. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  12. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  13. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  14. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    Burger, CR

    2011-09-01

    Full Text Available - unmanned aircraft; pilot training. I. INTRODUCTION Unmanned aircraft offer flexibility not found in manned aircraft. They can be made smaller and cheaper to operate. They offer payload advantages relative to small manned aircraft. They can also perform... certificate to non-state users. To facilitate useful operations by UAs, future operations must be subject to no more than routine notification (e.g. an ATC flight plan), just like manned aircraft already are. Before such operations can be established, some...

  15. NH11B-1726: FrankenRaven: A New Platform for Remote Sensing

    Dahlgren, Robert; Fladeland, Matthew M.; Pinsker, Ethan A.; Jasionowicz, John P.; Jones, Lowell L.; Pscheid, Matthew J.

    2016-01-01

    Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into FrankenRaven aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.

  16. South African Airborne Operations

    South Africa carried out numerous airborne operations during the latter part .... It was a lesson the French had learned and were learning in Indo-China and ..... South African government, concerned that the conflict would spill across their northern border, ...... the Super Frelon and it was an outstanding helicopter at sea level.

  17. Analysis of measured L-band airborne land clutter from the Western Cape region of South Africa

    De Witt, JJ

    2014-10-01

    Full Text Available -band Airborne Land Clutter from the Western Cape region of South Africa J.J. de Witt and J.J. Strydom Abstract: This paper presents backscatter analysis of L-band land clutter data, measured from an airborne platform, over various terrain types...

  18. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  19. Delegation control of multiple unmanned systems

    Flaherty, Susan R.; Shively, Robert J.

    2010-04-01

    Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.

  20. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  1. Unmanned Aerial Vehicle (UAV) Photogrammetry Produces ...

    Marinus Boon

    Department of Geography, Environmental Management and Energy Studies, University of ... The technique also only requires a few control measurements and the ... The number of Unmanned Aerial Systems (UAS) referenced in the 2013 ... model aircraft airfield east of the R25 road, just south of the M6 intersection, up until ...

  2. Exploring Security Vulnerabilities of Unmanned Aerial Vehicles

    Rodday, Nils Miro; de Oliveira Schmidt, R.; Pras, Aiko

    We are currently observing a significant increase in the popularity of Unmanned Aerial Vehicles (UAVs), popularly also known by their generic term drones. This is not only the case for recreational UAVs, that one can acquire for a few hundred dollars, but also for more sophisticated ones, namely

  3. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  4. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  5. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  6. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-01-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping

  7. An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control

    Aksenov Alexey Y.

    2014-09-01

    Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.

  8. Control techniques of tilt rotor unmanned aerial vehicle systems: A review

    Zhong Liu

    2017-02-01

    Full Text Available The tilt rotor unmanned aerial vehicle (TRUAV exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV’s high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.

  9. Vision enhanced navigation for unmanned systems

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  10. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Initial assessment of an airborne Ku-band polarimetric SAR.

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  12. Air-borne shape measurement of parabolic trough collector fields

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  13. Airborne wireless communication systems, airborne communication methods, and communication methods

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  14. Unmanned Aircraft Systems (UAS) Traffic Management (UTM) National Campaign II

    Aweiss, Arwa S.; Owens, Brandon D.; Rios, Joseph L.; Homola, Jeffrey R.; Mohlenbrink, Christoph P.

    2018-01-01

    The Unmanned Aircraft System (UAS) Traffic Management (UTM) effort at NASA aims to enable access to low-altitude airspace for small UAS. This goal is being pursued partly through partnerships that NASA has developed with the UAS stakeholder community, the FAA, other government agencies, and the designated FAA UAS Test Sites. By partnering with the FAA UAS Test Sites, NASA's UTM project has performed a geographically diverse, simultaneous set of UAS operations at locations in six states. The demonstrations used an architecture that was developed by NASA in partnership with the FAA to safely coordinate such operations. These demonstrations-the second or 'Technical Capability Level (TCL 2)' National Campaign of UTM testing-was performed from May 15 through June 9, 2017. Multiple UAS operations occurred during the testing at sites located in Alaska, Nevada, Texas, North Dakota, Virginia, and New York with multiple organizations serving as UAS Service Suppliers and/or UAS Operators per the specifications provided by NASA. By engaging various members of the UAS community in development and operational roles, this campaign provided initial validation of different aspects of the UTM concept including: UAS Service Supplier technologies and procedures; geofencing technologies/conformance monitoring; ground-based surveillance/sense and avoid; airborne sense and avoid; communication, navigation, surveillance; and human factors related to UTM data creation and display. Additionally, measures of performance were defined and calculated from the flight data to establish quantitative bases for comparing flight test activities and to provide potential metrics that might be routinely monitored in future operational UTM systems.

  15. Unmanned Aerial Technologies for Observations at Active Volcanoes: Advances and Prospects

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M.; Makel, D.; Schwandner, F. M.; Buongiorno, M. F.; Elston, J. S.

    2017-12-01

    Modern application of unmanned aerial systems' (UASs) technology allow us to conduct in situ measurements in volcanic plumes and drifting volcanic clouds that were impossible to make in the past. Thus, we are now able to explore proximal airspace near and within eruption columns and or other active vents, at very high and at very low altitudes—risk to human investigators is vastly reduced (although not eliminated). We are now on the cusp of being able to make in situ measurements and conduct sampling at altitudes of 5000-6000 meters relatively routinely. We also are developing heat tolerant electronics and sensors that will deployed on, around, and over active lava lakes and lava flows at terrestrial volcanoes, but with a view toward developing planetary applications, for instance on the surface of Venus. We report on our 2012-present systematic UAS-based observations of light gases (e.g., SO2 CO2, H2S) at Turrialba Volcano in Costa Rica, at Italian volcanic sites (e.g., Isole Vulcano; La Solfatara), and most recently at Kilauea Volcano, Hawaii in collaboration with USGS and NPS colleagues. Other deployments for Fall 2017 and Winter 2018 are in planning stages for the Salton Sea Basin and Costa Rica, which will include an airborne miniature mass spectrometer onboard several different types of UAVs. In addition, under development is the first purpose-built-for-volcanology small unmanned aircraft. We discuss strategies for acquiring airborne data from proximal ash/gas plumes during restless periods and during eruptions, from distal drifting ash/gas clouds from eruptions, and from diffuse emissions (e.g., CO2) at very low altitudes, utilizing UASs (e.g., fixed wing, multi-rotor, aerostat), especially regarding inputs for source flux reverse models. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  16. Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter

    Strydom, JJ

    2011-11-01

    Full Text Available and Evaluation of Airborne Radar through Realtime Simulation of Synthetic Clutter Presenter: Jurgen Strydom Systems Engineer & Signal Analyst Experimental EW Systems, CSIR Email: jjstrydom@csir.co.za Co-authors: Jacques Cilliers, CSIR 48th AOC Conference... environment simulation domain ? CSIR 2011 Slide 2 ? Technological advancements and challenges in the simulation of clutter for an airborne radar platform is discussed Where we are from: South Africa ? CSIR 2011 Slide 3 Health Natural Environment...

  17. A REVIEW OF TACTICAL UNMANNED AERIAL VEHICLE DESIGN STUDIES

    Coban, Sezer; Oktay, Tugrul

    2017-01-01

    In this study, a literaturesearch was conducted on tactical unmanned aerial vehicles. First of all, it wasclassified as an unmanned aerial vehicle. It is mentioned about thecharacteristics of ZANKA-III, which is highly autonomous, passive and activemorphing, aerodynamically perfect, tactical unmanned aerial vehicle (TUAV)ZANKA-III, supported by TUBITAK's 1001 Ardeb program 115M603 by TUBITAK and itis mentioned that they have superior characteristics from other tacticalunmanned aerial veh...

  18. OPTIMUM PROGRAMMABLE CONTROL OF UNMANNED FLYING VEHICLE

    A. А. Lobaty

    2012-01-01

    Full Text Available The paper considers an analytical synthesis problem pertaining to programmable control of an unmanned flying vehicle while steering it to the fixed space point. The problem has been solved while applying a maximum principle which takes into account a final control purpose and its integral expenses. The paper presents an optimum law of controlling overload variation of a flying vehicle that has been obtained analytically

  19. Unmanned Systems Roadmap 2007-2032

    2007-01-01

    advances in each of the three fields, as shown from the following selected summaries from the study: Transgenic biopolymers fall at the intersection...cowlings) for unmanned systems. As an example, the silk -producing gene of spiders has been spliced into the mammary gland gene of sheep, from whose...subsequent milk the silk protein can be extracted. Breeding herds of such sheep enable spider silk , known for its light weight and high strength, to be

  20. The prospects for Unmanned Aerial Vehicles

    Brookes, Andrew

    2000-01-01

    In this study Andrew Brookes argues that Unmanned Aerial Vehicles (UAV) is the military fashion of the moment. Since the end of the 1990s many nations have added UAVs to their military inventories, and in 1999 half a dozen nations used UAVs over Kosovo. In the light of operational experience in Kosovo, Brookes re-evaluates the potential of this vehicle, and examines the roles, capabilities and future challenges of UAV.

  1. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  2. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  3. Unmanned Mine of the 21st Centuries

    Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy

    2017-11-01

    The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.

  4. Development of a Geospatial Data-Sharing Method for Unmanned Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

    2005-08-01

    the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was

  5. Tilt rotor tricopter : control system for the holonomic multirotor platform

    Gjertsen, Sindre; Salem, Daniel

    2013-01-01

    Masteroppgave i mekatronikk MAS500 2013 – Universitetet i Agder, Grimstad Development of a new approach to the multicopter segment of the Unmanned Areal Vehicle (UAV) family is presented. The system is designed on a T-shaped tricopter platform with ability to tilt all three motors, hereby defined as Tilt Rotor Tricopter (TRT). The highly coupled nonlinear system is investigated through the mathematical model, and verified by simulations. Linearization of the system has been ach...

  6. High-Altitude Platforms — Present Situation and Technology Trends

    d’Oliveira, Flavio Araripe; Melo, Francisco Cristovão Lourenço de; Devezas, Tessaleno Campos

    2016-01-01

    ABSTRACT High-altitude platforms (HAPs) are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook) announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or sa...

  7. Platform computing

    2002-01-01

    "Platform Computing releases first grid-enabled workload management solution for IBM eServer Intel and UNIX high performance computing clusters. This Out-of-the-box solution maximizes the performance and capability of applications on IBM HPC clusters" (1/2 page) .

  8. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  9. Thermal soaring flight of birds and unmanned aerial vehicles

    Akos, Zsuzsa; Nagy, Mate; Vicsek, Tamas; Leven, Severin

    2010-01-01

    Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and unmanned aerial vehicles (UAVs). The solution is to make use of the so-called thermals, which are localized, warmer regions in the atmosphere moving upward with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more efficiently is an important possibility for autonomous UAVs as well. Successful control strategies have been developed recently for UAVs in simulations and in real applications. This paper first presents an overview of our knowledge of the soaring flight and strategy of birds, followed by a discussion of control strategies that have been developed for soaring UAVs both in simulations and applications on real platforms. To improve the accuracy of the simulation of thermal exploitation strategies we propose a method to take into account the effect of turbulence. Finally, we propose a new GPS-independent control strategy for exploiting thermal updrafts.

  10. An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

    Li, J M; Yan, D M; Wang, G; Zhang, L

    2014-01-01

    The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale Invariant Feature Transform (SIFT) features are invariant to image scaling, rotation and translation. However, the main drawback of a SIFT algorithm is its significant memory consumption and low computational speed, particularly in the case of high-resolution imagery. In this study, in order to overcome these drawbacks, we have analysed the construction of the scale-space in the SIFT algorithm and selected new parameters to construct the SIFT scale-space to improve the memory consumption and computational speed for the processing of UAV imagery. Here, we propose a restriction on the number of octaves and levels for Gaussian image pyramids. Our experiment shows that the proposed algorithm effectively reduces memory consumption and significantly improves the operational efficiency of the feature point extraction and matching under the premise of maintaining the precision of the extracted feature points

  11. Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    Lebat, V.; Foulon, B.; Christophe, B.; Huynh, P. A.; Liorzou, F.; Boulanger, D.

    2017-12-01

    Taking advantage of technologies, developed by ONERA for the GRACE, GOCE and GRACE FOLLOW-ON space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. The performance of the gradiometer is directly linked to the stabilized platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. After the definition of the architecture of the stabilized platform to achieve the global performance of the gradiometer, the platform has been manufactured and integrated. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The poster will emphasize the status of realization and first tests of the instrument and of its stabilized platform.

  12. Airborne Laser Polarization Sensor

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  13. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  14. An intelligent control strategy based on ANFIS techniques in order to improve the performance of a low-cost unmanned aerial vehicle vision system

    Marichal, G. N.; Hernández, A.; Olivares Méndez, Miguel Ángel; Acosta, L.; Campoy Cervera, Pascual

    2010-01-01

    In this paper, an intelligent control approach based on Neuro-Fuzzy systems is presented. A model of a low-cost vision platform for an unmanned aerial system is taken in the study. A simulation platform including this low-cost vision system and the influence of the helicopter vibrations over this system is shown. The intelligent control approach has been inserted in this simulation platform. Several trials taking these Neuro-Fuzzy systems as a fundamental part of the control strategy have bee...

  15. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  16. [Orange Platform].

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  17. Airborne monitoring system

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  18. The Next Generation Airborne Polarimetric Doppler Radar

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  19. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  20. Autonomous Landing on Moving Platforms

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  1. Manned-Unmanned Teaming of Aircraft - Literature Search

    2013-12-01

    restricted to 2003 2013. Literature searches were conducted in eight databases Aerospace and High Technology, Scopus , NTIS, Inspec, Compendex, DTIC, Jane’si...Buddy Unmanned wingman Manned-Unmanned Teaming Dec 2013 Page 35 of 37 7.1.2 Sources Online databases • Scopus • Aerospace and High Technology

  2. The Impact of Conflicting Spatial Representations in Airborne Unmanned Aerial System Sensor Control

    2016-02-01

    approximated that of the GlobalHawk, and maintained an unclassified level of fidelity. The fourth computer ran the MetaVR™ v5.10 Virtual Reality ...Three of the computers ran a modified version of MetaVR™ v5.10 Scenario Creation Tool (SCT), which is a 3D real-time PC-based virtual environment...other questions of perspiration, anxiety , and mood remained stable. Since an increase across all measures was not found, we can conclude that

  3. Unmanned airborne thermal and mutilspectral imagery for estimating evapotranspiration in irrigated vineyards

    Thermal-infrared remote sensing of land surface temperature (LST) provides valuable information for quantifying rootzone water availability, evapotranspiration (ET) and crop condition. This paper describes the most recent modifications applied to the robust but relatively simple LST-based energy bal...

  4. Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle

    Riccardo Polvara

    2018-04-01

    Full Text Available Autonomous landing on the deck of an unmanned surface vehicle (USV is still a major challenge for unmanned aerial vehicles (UAVs. In this paper, a fiducial marker is located on the platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter (EKF estimates the current USV’s position with reference to the last known position. Validation experiments have been performed in a simulated environment under various marine conditions. The results confirmed that the EKF provides estimates accurate enough to direct the UAV in proximity of the autonomous vessel such that the marker becomes visible again. Using only the odometry and the inertial measurements for the estimation, this method is found to be applicable even under adverse weather conditions in the absence of the global positioning system.

  5. An Innovative Unmanned System for Advanced Environmental Monitoring: Design and Development

    Marsella, Ennio; Giordano, Laura; Evangelista, Lorenza; Iengo, Antonio; di Filippo, Alessandro; Coppola, Aniello

    2015-04-01

    The paper summarizes the design and development of a new technology and tools for real-time coordination and control of unmanned vehicles for advanced environmental monitoring. A new Unmanned System has been developed at Institute for Coastal Marine Environmental - National Research Council (Italy), in the framework of two National Operational Programs (PON): Technological Platform for Geophysical and Environmental Marine Survey-PITAM and Integrated Systems and Technologies for Geophysical and Environmental Monitoring in coastal-marine areas-STIGEAC. In particular, the system includes one Unmanned Aerial Vehicle (UAV) and two Unmanned Marine Vehicles (UMV). Major innovations concern the implementation of a new architecture to control each drone and/or to allow the cooperation between heterogeneous vehicles, the integration of distributed sensing techniques and real-time image processing capabilities. Part of the research in these projects involves, therefore, an architecture, where the ground operator can communicate with the Unmanned Vehicles at various levels of abstraction using pointing devices and video viewing. In detail, a Ground Control Station (GCS) has been design and developed to allow the government in security of the drones within a distance up to twenty kilometers for air explorations and within ten nautical miles for marine activities. The Ground Control Station has the following features: 1. hardware / software system for the definition of the mission profiles; 3. autonomous and semi-autonomous control system by remote control (joystick or other) for the UAV and UMVs; 4. integrated control system with comprehensive visualization capabilities, monitoring and archiving of real-time data acquired from scientific payload; 5. open structure to future additions of systems, sensors and / or additional vehicles. In detail, the UAV architecture is a dual-rotor, with an endurance ranging from 55 to 200 minutes, depending on payload weight (maximum 26 kg) and

  6. Developments and challenges for autonomous unmanned vehicles

    Finn, Anthony

    2010-01-01

    It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and

  7. Delivery of Unmanned Aerial Vehicle Data

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  8. Cooperative Electronic Attack using Unmanned Air Vehicles

    Mears, Mark J

    2006-01-01

    ... that are salient in the context of cooperative control. The utility of electronic attack is described in the context of integrated air defense systems that rely on RADAR sites that act as a network to gather information about potential airborne threats...

  9. Modeling for Airborne Contamination

    F.R. Faillace; Y. Yuan

    2000-01-01

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  10. Airborne Cloud Computing Environment (ACCE)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  11. Weed detection using unmanned aircraft vehicles

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  12. High-performance computing for airborne applications

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  13. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (psubway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  14. BLM Unmanned Aircraft Systems (UAS) Resource Management Operations

    Hatfield, M. C.; Breen, A. L.; Thurau, R.

    2016-12-01

    The Department of the Interior Bureau of Land Management is funding research at the University of Alaska Fairbanks to study Unmanned Aircraft Systems (UAS) Resource Management Operations. In August 2015, the team conducted flight research at UAF's Toolik Field Station (TFS). The purpose was to determine the most efficient use of small UAS to collect low-altitude airborne digital stereo images, process the stereo imagery into close-range photogrammetry products, and integrate derived imagery products into the BLM's National Assessment, Inventory and Monitoring (AIM) Strategy. The AIM Strategy assists managers in answering questions of land resources at all organizational levels and develop management policy at regional and national levels. In Alaska, the BLM began to implement its AIM strategy in the National Petroleum Reserve-Alaska (NPR-A) in 2012. The primary goals of AIM-monitoring at the NPR-A are to implement an ecological baseline to monitor ecological trends, and to develop a monitoring network to understand the efficacy of management decisions. The long-term AIM strategy also complements other ongoing NPR-A monitoring processes, collects multi-use and multi-temporal data, and supports understanding of ecosystem management strategies in order to implement defensible natural resource management policy. The campaign measured vegetation types found in the NPR-A, using UAF's TFS location as a convenient proxy. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. The payload was a stereo camera system consisting of Sony NEX7's with various lens configurations (16/20/24/35 mm). A total of 77 flights were conducted over a 4 ½ day period, with 1.5 TB of data collected. Mission variables included camera height, UAS speed, transect overlaps, and camera lenses/settings. Invaluable knowledge was gained as to

  15. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  16. Airborne geophysical radon hazard mapping

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  17. Research on Aerodynamic Characteristics of Composite powered Unmanned Airship

    Chen, Yu; Wang, Yun; Wang, Lu; Ma, Chengyu; Xia, Jun

    2017-10-01

    The main structure of the composite powered unmanned airship is consists of airbags and four-rotor system, which airbag increases the available lift, and has more advantages in terms of load and flight when compared with the traditional four-rotor. In order to compare the aerodynamic performance of the composite powered unmanned airship and the traditional four-rotor, the SIMPLE algorithm and the RNG k-epsilon model method are be used. The energy consumption of the composite powered unmanned airship is lesser than the traditional four-rotor under the same load and range was found.

  18. Airborne Particulate Threat Assessment

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  19. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  20. UV/visible albedos from airborne measurements

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  1. Drift reduction in strapdown airborne gravimetry using a simple thermal correction

    Becker, David; Nielsen, J. Emil; Ayres-Sampaio, Diogo

    2015-01-01

    Previous work has shown, that strapdown airborne gravimeters can have a comparable or even superior performance in the higher frequency domain (resolution of few kilometres), compared to classical stable-platform air gravimeters using springs, such as the LaCoste and Romberg (LCR) S-gravimeter. H...

  2. Karoo airborne geophysical survey

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  3. Multi-image Matching of Airborne SAR Imagery by SANCC

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  4. A mini-UAV VTOL Platform for Surveying Applications

    Kuldeep Rawat

    2014-05-01

    Full Text Available In this paper we discuss implementation of a mini-Unmanned Aerial Vehicle (UAV vertical take-off and landing (VTOL platform for surveying activities related to highway construction. Recent advances in sensor and communication technologies have allowed scaling sizes of unmanned aerial platforms, and explore them for tasks that are economical and safe over populated or inhabited areas. In highway construction the capability of mini-UAVs to survey in hostile and/or hardly accessible areas can greatly reduce human risks. The project focused on developing a cost effective, remotely controlled, fuel powered mini-UAV VTOL (helicopter platform with certain payload capacity and configuration and demonstrated its use in surveying and monitoring activities required for highway planning and construction. With an on-board flight recorder global positioning system (GPS device, memory storage card, telemetry, inertial navigation sensors, and a video camera the mini-UAV can record flying coordinates and relay live video images to a remote ground receiver and surveyor. After all necessary integration and flight tests were done the mini-UAV helicopter was tested to operate and relay video from the areas where construction was underway. The mini-UAV can provide a platform for a range of sensors and instruments that directly support the operational requirements of transportation sector.

  5. Responsibility practices and unmanned military technologies.

    Noorman, Merel

    2014-09-01

    The prospect of increasingly autonomous military robots has raised concerns about the obfuscation of human responsibility. This papers argues that whether or not and to what extent human actors are and will be considered to be responsible for the behavior of robotic systems is and will be the outcome of ongoing negotiations between the various human actors involved. These negotiations are about what technologies should do and mean, but they are also about how responsibility should be interpreted and how it can be best assigned or ascribed. The notion of responsibility practices, as the paper shows, provides a conceptual tool to examine these negotiations as well as the interplay between technological development and the ascription of responsibility. To illustrate the dynamics of responsibility practices the paper explores how the introduction of unmanned aerial vehicles has led to (re)negotiations about responsibility practices, focusing particularly on negotiations within the US Armed Forces.

  6. Pipeline monitoring with unmanned aerial vehicles

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  7. Mathematical Modelling of Unmanned Aerial Vehicles

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  8. Robust obstacle detection for unmanned surface vehicles

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  9. Risk Assessment for an Unmanned Merchant Ship

    Ø.J. Rødseth

    2015-09-01

    Full Text Available The MUNIN project is doing a feasibility study on an unmanned bulk carrier on an intercontinental voyage. To develop the technical and operational concepts, MUNIN has used a risk-based design method, based on the Formal Safety Analysis method which is also recommended by the International Mari-time Organization. Scenario analysis has been used to identify risks and to simplify operational scope. Systematic hazard identification has been used to find critical safety and security risks and how to address these. Technology and operational concept testing is using a hypothesis-based test method, where the hypotheses have been created as a result of the risk assessment. Finally, the cost-benefit assessment will also use results from the risk assessment. This paper describes the risk assessment method, some of the most important results and also describes how the results have been or will be used in the different parts of the project.

  10. Mathematical modelling of unmanned aerial vehicles

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  11. National Unmanned Aircraft Systems Project Office

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  12. Bioinspired optical sensors for unmanned aerial systems

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  13. Autonomous vertical autorotation for unmanned helicopters

    Dalamagkidis, Konstantinos

    Small Unmanned Aircraft Systems (UAS) are considered the stepping stone for the integration of civil unmanned vehicles in the National Airspace System (NAS) because of their low cost and risk. Such systems are aimed at a variety of applications including search and rescue, surveillance, communications, traffic monitoring and inspection of buildings, power lines and bridges. Amidst these systems, small helicopters play an important role because of their capability to hold a position, to maneuver in tight spaces and to take off and land from virtually anywhere. Nevertheless civil adoption of such systems is minimal, mostly because of regulatory problems that in turn are due to safety concerns. This dissertation examines the risk to safety imposed by UAS in general and small helicopters in particular, focusing on accidents resulting in a ground impact. To improve the performance of small helicopters in this area, the use of autonomous autorotation is proposed. This research goes beyond previous work in the area of autonomous autorotation by developing an on-line, model-based, real-time controller that is capable of handling constraints and different cost functions. The approach selected is based on a non-linear model-predictive controller, that is augmented by a neural network to improve the speed of the non-linear optimization. The immediate benefit of this controller is that a class of failures that would otherwise result in an uncontrolled crash and possible injuries or fatalities can now be accommodated. Furthermore besides simply landing the helicopter, the controller is also capable of minimizing the risk of serious injury to people in the area. This is accomplished by minimizing the kinetic energy during the last phase of the descent. The presented research is designed to benefit the entire UAS community as well as the public, by allowing for safer UAS operations, which in turn also allow faster and less expensive integration of UAS in the NAS.

  14. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories, Phase II

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  15. Unmanned Aerial Vehicles: Background and Issues for Congress

    Geer, Harlan; Bolkcom, Christopher

    2005-01-01

    .... Furthermore, the military effectiveness of UAVs in recent conflicts such as Iraq (1990) and Kosovo (1999) opened the eyes of many to both the advantages and disadvantages provided by unmanned aircraft...

  16. Windhover Unmanned Aircraft Systems (UAS) Software Ecosystem, Phase II

    National Aeronautics and Space Administration — The safety of Unmanned Aircraft Systems (UAS) flights is currently the responsibility of the pilot who is required to keep the vehicle within their line of sight...

  17. Autonomous Agricultural Application using Unmanned Aircraft, Phase II

    National Aeronautics and Space Administration — Interest in Unmanned Aircraft Systems (UAS) for civilian use has increased greatly in recent years and is expected to grow significantly in the future. NASA is...

  18. Core Flight Software for Unmanned Aircraft Systems, Phase I

    National Aeronautics and Space Administration — Use of Unmanned Aircraft Systems (UAS) is increasing worldwide, but multiple technical barriers restrict the greater use of UASs. The safe operation of UASs in the...

  19. Unmanned Aircraft Systems Integration in the National Airspace System Project

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  20. Defining Handling Qualities of Unmanned Aerial Systems, Phase I

    National Aeronautics and Space Administration — Unmanned Air Systems (UAS) are here to stay and operators are demanding access to the National Airspace System (NAS) for a wide variety of missions. This includes a...

  1. Defining Handling Qualities of Unmanned Aerial Systems, Phase II

    National Aeronautics and Space Administration — Unmanned Air Systems (UAS) are no longer coming, they are here, and operators from first responders to commercial operators are demanding access to the National...

  2. Evaluation and development of unmanned aircraft (UAV) for UDOT needs.

    2012-05-01

    This research involved the use of high-resolution aerial photography obtained from Unmanned Aerial Vehicles (UAV) to aid UDOT in monitoring and documenting State Roadway structures and associated issues. Using geo-referenced UAV high resolution aeria...

  3. Information Exchange Architecture for Integrating Unmanned Vehicles into Maritime Missions

    Woolsey, Aaron

    2004-01-01

    .... The focus of this study is to analyze the structure of information flow for unmanned systems and suggest an exchange architecture to successfully inform and build decision maker understanding based...

  4. Unmanned Aircraft Systems: The Road to Effective Integration

    Petrock, Christopher T; Huizenga, Thomas D

    2006-01-01

    ...) sharing airspace with manned assets. There have been at least two recent collisions between unmanned and rotary-wing aircraft at lower altitudes in Iraq, as well as numerous near misses with fixed-wing aircraft at higher altitudes...

  5. Optimum Route Planning and Scheduling for Unmanned Aerial Vehicles

    Sonmezocak, Erkan; Kurt, Senol

    2008-01-01

    .... The route planning of UAVs is the most critical and challenging problem of wartime. This thesis will develop three algorithms to solve a model that produces executable routings in order to dispatch three Unmanned Aerial Vehicles (UAV...

  6. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  7. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  8. ACQUISION OF GEOMETRICAL DATA OF SMALL RIVERS WITH AN UNMANNED WATER VEHICLE

    H. Sardemann

    2018-05-01

    Full Text Available Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub- catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle based point clouds are fused.

  9. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  10. Use of Unmanned Aerial Systems to Study Atmospheric Processes During Sea Ice Freeze Up

    de Boer, G.; Lawrence, D.; Weibel, D.; Borenstein, S.; Bendure, A.; Solomon, A.; Intrieri, J. M.

    2017-12-01

    In October 2016, a team of scientists deployed to Oliktok Point, Alaska to make atmospheric measurements as part of the Evaluation of Routine Atmospheric Sounding measurements using Unmanned Systems (ERASMUS) and Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) campaigns. The deployment included operations using the University of Colorado DataHawk2 UAS. The DataHawk2 was configured to make measurements of atmospheric thermodynamics, wind and surface temperature, providing information on lower tropospheric thermodynamic structure, turbulent surface fluxes, and surface temperature. During this campaign, the team experienced a variety of weather regimes and witnessed the development of near shore sea ice. In this presentation, we will give an overview of the measurements obtained during this time and how they were used to better understand freeze up processes in this coastal environment. Additionally, we will provide insight into how these platforms are being used for evaluation of a fully-coupled sea ice forecast model operated by NOAA's Physical Sciences Division.

  11. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  12. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS

  13. HMSRP Unmanned Aerial System (UAS) Data

    National Oceanic and Atmospheric Administration, Department of Commerce — Metadata collected during UAS flights for Hawaiian monk seal research purposes. This dataset includes date, time, location, duration, platform type, and other...

  14. Focused Lens on Unmanned Aerial Systems: An Evaluation of Department of Defense’s Unmanned Aerial Vision 2011

    2014-06-13

    Break Free of Regulations.” 69Barbara Opall -Rome, “ Israel Tackles The Last Frontier Of UAS Technology: Israel Moves Closer Toward Flying UASs In...with the new F-35 Joint Strike Fighter once it comes online, or with helicopters aboard the Littoral Combat Ship. Unmanned mine hunters could operate...Office, 2002. ———. Unmanned Aircraft Systems Roadmap 2005-2030. Washington, DC: Government Publishing Office, 2005. Opall -Rome, Barbra. “Israel

  15. Estimating Soil Displacement from Timber Extraction Trails in Steep Terrain: Application of an Unmanned Aircraft for 3D Modelling

    Marek Pierzchała

    2014-06-01

    Full Text Available Skid trails constructed for timber extraction in steep terrain constitute a serious environmental concern if not well planned, executed and ameliorated. Carrying out post-harvest surveys in monitoring constructed trails in such terrain is an onerous task for forest administrators, as hundreds of meters need to be surveyed per site, and the quantification of parameters and volumes is largely based on assumptions of trail symmetry and terrain uniformity. In this study, aerial imagery captured from a multi-rotor Unmanned Aerial Vehicle was used in generating a detailed post-harvest terrain model which included all skid trails. This was then compared with an Airborne Laser Scanning derived pre-harvest terrain model and the dimensions, slopes and cut-and-fill volumes associated with the skid trails were determined. The overall skid trail length was 954 m, or 381 m·ha−1 with segments varying from 40–60 m, inclinations from 3.9% to 9.6%, and cut volumes, from 1.7 to 3.7 m3 per running meter. The methods used in this work can be used in rapidly assessing the extent of disturbance and erosion risk on a wide range of sites. The multi-rotor Unmanned Aerial Vehicle (UAV was found to be highly suited to the task, given the relatively small size of harvested stands, their shape and their location in the mountainous terrain.

  16. Development of a non-contextual model for determining the autonomy level of intelligent unmanned systems

    Durst, Phillip J.; Gray, Wendell; Trentini, Michael

    2013-05-01

    A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.

  17. Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)

    Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf

    2017-04-01

    In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.

  18. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  19. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  20. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  1. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  2. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  3. On regulation of radioactive airborne discharge

    Stroganov, A.A.; Kuryndin, A.V.; Shapovalov, A.S.; Orlov, M.Yu.

    2013-01-01

    Authors present the Russian regulatory basis of radioactive airborne discharges which was updated after enactment of the Methodology for airborne discharge limits development. Criteria for establishing of airborne discharge limits, scope and other features of methodology are also considered in the article [ru

  4. Robustness of mission plans for unmanned aircraft

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  5. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  6. Land Survey from Unmaned Aerial Veichle

    Peterman, V.; Mesarič, M.

    2012-07-01

    In this paper we present, how we use a quadrocopter unmanned aerial vehicle with a camera attached to it, to do low altitude photogrammetric land survey. We use the quadrocopter to take highly overlapping photos of the area of interest. A "structure from motion" algorithm is implemented to get parameters of camera orientations and to generate a sparse point cloud representation of objects in photos. Than a patch based multi view stereo algorithm is applied to generate a dense point cloud. Ground control points are used to georeference the data. Further processing is applied to generate digital orthophoto maps, digital surface models, digital terrain models and assess volumes of various types of material. Practical examples of land survey from a UAV are presented in the paper. We explain how we used our system to monitor the reconstruction of commercial building, then how our UAV was used to assess the volume of coal supply for Ljubljana heating plant. Further example shows the usefulness of low altitude photogrammetry for documentation of archaeological excavations. In the final example we present how we used our UAV to prepare an underlay map for natural gas pipeline's route planning. In the final analysis we conclude that low altitude photogrammetry can help bridge the gap between laser scanning and classic tachymetric survey, since it offers advantages of both techniques.

  7. Measured Noise from Small Unmanned Aerial Vehicles

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  8. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  9. On the use of airborne gravimetry in gravity field modelling: Experiences from the AGMASCO project

    Bastos, L.; Cunha, S.; Forsberg, René

    2000-01-01

    of the vertical accelerations acting on the airborne platform from the natural gravity signal. With the advances in DGPS techniques new prospects arise for gravity field recovery which are of great importance for geodesy, geophysics oceanography and satellite navigation. Furthermore, airborne gravimetric...... and the methods validated. Recovery of the gravity values directly from measurements with the Lacoste & Romberg air/sea gravimeter and from measurements with the inertial sensors was analysed. The potential of these sensors to recover gravity and the experience gained within this project are reported here....

  10. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  11. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  12. Tracking Unmanned Aerial Vehicle CTU FTS - Application of equipment

    David Hůlek

    2015-10-01

    Full Text Available Article which is about the Tracking Unmanned Aerial Vehicle continues in the description of the project development dealing with the utilization of the UAV (unmanned aerial vehicle. Documentation of the project progresses builds on the previous article. In that article the selection of observation and transmission equipment was summarized. In the article, the reader learns about an installation of the equipment on the UAV (helicopter, about an interconnection of the equipment to create complete and functional system, about testing of the UAV, about the solutions of the problems which came into being during testing and about protection of the equipment against unfavourable effects. The location of equipment on the unmanned vehicle was chosen after a considering of several parameters. These parameters are preservation of the functionality or an influence to the balance. To find out how the added equipment affect the centre of gravity of the UAV the tabular method of the centre of gravity calculation was used. The results of the existing work on the project are location and attaching of the equipment to the unmanned vehicle, balance of the unmanned vehicle, solutions of the problems coming into being during the testing and design of the equipment protection against unfavourable effects.

  13. Airborne radionuclide waste-management reference document

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  14. THE METHOD OF FORMING A RATIONAL ASPECT OF THE ONBOARD COMPLEX OF RADAR DEFENSE UNMANNED AERIAL VEHICLE

    A. B. Guseynov

    2017-01-01

    Full Text Available The urgency of the problem of increasing the efficiency by reducing the visibility of aircraft and installing radio interference on the radio-electronic systems of the air defense complex is substantiated. The main characteristics of the on-board electronic radio protection system of an unmanned aerial vehicle are determined. When designing a low-visibility aircraft, it is advisable to simultaneously solve three-level tasks – the formation of a technical task for the design of aircraft, technical proposals and design sketches. In solving the problems of the first level, operational-tactical, flight-technical characteristics of the aircraft are analyzed and requirements for indicators of visibility are justified, the second one – a matrix of alternative design solutions is formed and rational structural solutions for the airborne complex and aircraft appearance as a whole are determined, the third one determines optimal design -Ballistic, geometric design parameters of technical solutions and aircraft in general. The statement of the problem is formulated in the article. A block diagram of the analysis of design solutions for the placement of an active noise station on board an unmanned aerial vehicle and optimization of their parameters based on a complex "cost-effectiveness" criterion is given. At the same time, it is necessary to take into account the influence of alternative technical solutions on low visibility and their design parameters on geometric, aerodynamic, energy, ballistic, thermal characteristics, mass, cost, indicators of visibility and combat effectiveness. The structural and logical scheme for solving the problem for a given technical assignment for the design of an unmanned aerial vehicle includes the following steps: the formation of the initial information and the development of a "support" version of the aircraft structure; formation of a morphological matrix of design decisions on aircraft; compatibility assessment

  15. An advanced unmanned vehicle for remote applications

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  16. Vulnerability Analysis of the MAVLink Protocol for Command and Control of Unmanned Aircraft

    2013-03-27

    Patton, Nikos Karapanos, Lorenz Meier, Peter Schwabe, Andrew Tridgell, Michael Oborne, Dr. Gareth Owen, and Capt Matthew Vincie, all of whom greatly...Frew and T. Brown . Networking Issues For Small Unmanned Aircraft Systems. In Unmanned Aircraft Systems : International Symposium on Unmanned Aerial

  17. Airborne pipeline leak detection: UV or IR?

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  18. The alpine Swiss-French airborne gravity survey

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  19. Detail design of empennage of an unmanned aerial vehicle

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  20. Unmanned systems to support the human exploration of Mars

    Gage, Douglas W.

    2010-04-01

    Robots and other unmanned systems will play many critical roles in support of a human presence on Mars, including surveying candidate landing sites, locating ice and mineral resources, establishing power and other infrastructure, performing construction tasks, and transporting equipment and supplies. Many of these systems will require much more strength and power than exploration rovers. The presence of humans on Mars will permit proactive maintenance and repair, and allow teleoperation and operator intervention, supporting multiple dynamic levels of autonomy, so the critical challenges to the use of unmanned systems will occur before humans arrive on Mars. Nevertheless, installed communications and navigation infrastructure should be able to support structured and/or repetitive operations (such as excavation, drilling, or construction) within a "familiar" area with an acceptable level of remote operator intervention. This paper discusses some of the factors involved in developing and deploying unmanned systems to make humans' time on Mars safer and more productive, efficient, and enjoyable.

  1. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    2015-06-01

    9 Kenneth Macksey, Guderian: Panzer General-revised EDITION (South Yorkshire, England: Greenhill Books, 2003), 1–20. 10 Dr. John Arquilla...Airborne Operations: Field Manual 90=26, 1–5. 14 The 1st Special Forces Regiment has five active Special Forces Groups (1st, 3rd, 5th , 7th, 10th...Oxford University Press, 1981). Headrick, in his book, describes the interplay between technology and imperialism. For the purposes of this research

  2. Morphing hull implementation for unmanned underwater vehicles

    Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.

    2013-11-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).

  3. Morphing hull implementation for unmanned underwater vehicles

    Miller, Timothy F; Gandhi, Farhan; Rufino, Russell J

    2013-01-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations). (paper)

  4. Unmanned aerial vehicles (drones) to prevent drowning.

    Seguin, Celia; Blaquière, Gilles; Loundou, Anderson; Michelet, Pierre; Markarian, Thibaut

    2018-06-01

    Drowning literature have highlighted the submersion time as the most powerful predictor in assessing the prognosis. Reducing the time taken to provide a flotation device and prevent submersion appears of paramount importance. Unmanned aerial vehicles (UAVs) can provide the location of the swimmer and a flotation device. The objective of this simulation study was to evaluate the efficiency of a UAV in providing a flotation device in different sea conditions, and to compare the times taken by rescue operations with and without a UAV (standard vs UAV intervention). Several comparisons were made using professional lifeguards acting as simulated victims. A specifically-shaped UAV was used to allow us to drop an inflatable life buoy into the water. During the summer of 2017, 28 tests were performed. UAV use was associated with a reduction of time it took to provide a flotation device to the simulated victim compared with standard rescue operations (p < 0.001 for all measurements) and the time was reduced even further in moderate (81 ± 39 vs 179 ± 78 s; p < 0.001) and rough sea conditions (99 ± 34 vs 198 ± 130 s; p < 0.001). The times taken for UAV to locate the simulated victim, identify them and drop the life buoy were not altered by the weather conditions. UAV can deliver a flotation device to a swimmer safely and quickly. The addition of a UAV in rescue operations could improve the quality and speed of first aid while keeping lifeguards away from dangerous sea conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  6. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    Bland, Geoffrey [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  7. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Colomina, Ismael; Molina, Pere

    2014-01-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  8. EUFAR the unique portal for airborne research in Europe

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    , the website offers easy navigation, and user friendly functionalities. New features also include a section on news and airborne research stories to keep users up-to-date on EUFAR's activities, a career section, photo galleries, and much more. By elaborating new solutions for the web portal, EUFAR continues to serve as an interactive and dynamic platform bringing together experts, early-stage researchers, operators, data users, industry and other stakeholders in the airborne research community. A main focus of the current project is the establishment of a sustainable legal structure for EUFAR. This is critical to ensuring the continuity of EUFAR and securing, at the least, partial financial independence from the European Commission who has been funding the project since its start. After carefully examining different legal forms relevant for EUFAR, the arguments are strongly in favour of establishing an International non-profit Association under the Belgian law (AISBL). Together with the implementation of an Open Access scheme by means of resource-sharing to support the mobility of personnel across countries envisaged in 2016, such a sustainable structure would contribute substantially toward broadening the user base of existing airborne research facilities in Europe and mobilising additional resources for this end. In essence, this would cement EUFAR's position as the key portal for airborne research in Europe.

  9. An advanced unmanned vehicle for remote applications

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  10. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  11. Airborne microorganisms from waste containers.

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  12. Airborne particulate matter in spacecraft

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  13. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating

  14. SPEKTROP DPU: optoelectronic platform for fast multispectral imaging

    Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin

    2010-09-01

    In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.

  15. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  16. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  17. Concept and realization of unmanned aerial system with different modes of operation

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian [Silesian University of Technology, Akademicka 2A, 44-100 Gliwice (Poland)

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  18. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  19. A hybrid system approach to airspeed, angle of attack and sideslip estimation in Unmanned Aerial Vehicles

    Shaqura, Mohammad

    2015-06-01

    Fixed wing Unmanned Aerial Vehicles (UAVs) are an increasingly common sensing platform, owing to their key advantages: speed, endurance and ability to explore remote areas. While these platforms are highly efficient, they cannot easily be equipped with air data sensors commonly found on their larger scale manned counterparts. Indeed, such sensors are bulky, expensive and severely reduce the payload capability of the UAVs. In consequence, UAV controllers (humans or autopilots) have little information on the actual mode of operation of the wing (normal, stalled, spin) which can cause catastrophic losses of control when flying in turbulent weather conditions. In this article, we propose a real-time air parameter estimation scheme that can run on commercial, low power autopilots in real-time. The computational method is based on a hybrid decomposition of the modes of operation of the UAV. A Bayesian approach is considered for estimation, in which the estimated airspeed, angle of attack and sideslip are described statistically. An implementation on a UAV is presented, and the performance and computational efficiency of this method are validated using hardware in the loop (HIL) simulation and experimental flight data and compared with classical Extended Kalman Filter estimation. Our benchmark tests shows that this method is faster than EKF by up to two orders of magnitude. © 2015 IEEE.

  20. Concept and realization of unmanned aerial system with different modes of operation

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-01-01

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization

  1. Monitoring and evaluation techniques for airborne contamination

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  2. Monitoring and evaluation techniques for airborne contamination

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  3. Robust adaptive control for Unmanned Aerial Vehicles

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  4. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the

  5. ZPR-9 airborne plutonium monitoring system

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  6. Diagnosis of airspeed measurement faults for unmanned aerial vehicles

    Hansen, Søren; Blanke, Mogens

    2014-01-01

    Airspeed sensor faults are common causes for incidents with unmanned aerial vehicles with pitot tube clogging or icing being the most common causes. Timely diagnosis of such faults or other artifacts in signals from airspeed sensing systems could potentially prevent crashes. This paper employs...

  7. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  8. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    Eid, B M; Albatsh, F; Faris, W F; Chebil, J

    2013-01-01

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment

  9. Unmanned Aerial System Four-Dimensional Gunnery Training Device Development

    2017-10-01

    Aerial System (UAS) Four-Dimensional Gunnery Training Device: Training Effectiveness Assessment (James & Miller, in press). 31 Technical ...Research Product 2018-05 Unmanned Aerial System Four-Dimensional Gunnery Training Device Development David R. James...for the Department of the Army by Northrop Grumman Corporation. Technical review by Thomas Rhett Graves, Ph.D., U.S. Army Research Institute

  10. UNMANNED AERIAL VEHICLE USE FOR WOOD CHIPS PILE VOLUME ESTIMATION

    M. Mokroš

    2016-06-01

    Full Text Available The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000. We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993. We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  11. Where am I? Creating spatial awareness in unmanned ground ...

    This paper presents a survey of Simultaneous Localization And Mapping (SLAM) algorithms for unmanned ground robots. SLAM is the process of creating a map of the environment, sometimes unknown a priori, while at the same time localizing the robot in the same map. The map could be one of different types i.e. metrical, ...

  12. A usage-centered evaluation methodology for unmanned ground vehicles

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of

  13. Augmenting camera images for operators of Unmanned Aerial Vehicles

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  14. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  15. Optimal event handling by multiple unmanned aerial vehicles

    de Roo, Martijn; Frasca, Paolo; Carloni, Raffaella

    This paper proposes a control architecture for a fleet of unmanned aerial vehicles that is responsible for handling the events that take place in a given area. The architecture guarantees that each event is handled by the required number of vehicles in the shortest time, while the rest of the fleet

  16. Product Platform Performance

    Munk, Lone

    The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...... engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... experienced representatives from the different life systems phase systems of the platform products. The effects are estimated and modeled within different scenarios, taking into account financial and real option aspects. The model illustrates and supports estimation and quantification of internal platform...

  17. Electrospray Collection of Airborne Contaminants, Phase I

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  18. Recent developments in airborne gamma ray surveying

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  19. Challenges and Opportunities of Airborne Metagenomics

    Behzad, H.; Gojobori, Takashi; Mineta, K.

    2015-01-01

    microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  20. Mobile platform security

    Asokan, N; Dmitrienko, Alexandra

    2013-01-01

    Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrat

  1. High-Altitude Platforms - Present Situation and Technology Trends

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  2. Not normally manned compression platforms for the North Sea

    Kumaran, K.S.

    1994-01-01

    Gas turbine driven gas compressors have been widely used on manned offshore facilities. Similarly unmanned gas turbine driven compressor stations have been in operation onshore with major gas transmission companies in Europe, North America and elsewhere. This paper summarizes a recent joint industry study to investigate the technical and economic feasibility of Not Normally Manned (NNM) Offshore Compression Facilities in terms of reliability, availability and maintainability. Classification of not normally manned (or unmanned) offshore facilities in the UK North Sea is in accordance with HSE Operations Notice 8. ON8 specifies criteria for offshore visits, visit hours and number of personnel on board for the operation of NNM platforms. This paper describes a typical Southern North Sea gas platform being considered for NNM compressor application. The conclusions from the study was that NNM compression is technically feasible with the facilities being able to provide an availability in excess of 98%. Life cycle costs were of the order of 70% of manned facilities thus significantly improving field development economics

  3. Data Platforms and Cities

    Blok, Anders; Courmont, Antoine; Hoyng, Rolien

    2017-01-01

    This section offers a series of joint reflections on (open) data platform from a variety of cases, from cycling, traffic and mapping to activism, environment and data brokering. Data platforms play a key role in contemporary urban governance. Linked to open data initiatives, such platforms are of...

  4. Dynamic Gaming Platform (DGP)

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  5. ITS Platform North Denmark

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens

    2012-01-01

    This paper presents the project entitled “ITS Platform North Denmark” which is used as a test platform for Intelligent Transportation System (ITS) solutions. The platform consists of a newly developed GNSS/GPRS On Board Unit (OBU) to be installed in 500 cars, a backend server and a specially...

  6. Innovative CO2 Analyzer Technology for the Eddy Covariance Flux Monitor, Phase I

    National Aeronautics and Space Administration — We propose to build and evaluate NDIR Analyzers that can observe eddy covariance flux of CO2 from unmanned airborne platforms. For both phases, a total of four...

  7. Continuous Platform Development

    Nielsen, Ole Fiil

    low risks and investments but also with relatively fuzzy results. When looking for new platform projects, it is important to make sure that the company and market is ready for the introduction of platforms, and to make sure that people from marketing and sales, product development, and downstream......, but continuous product family evolution challenges this strategy. The concept of continuous platform development is based on the fact that platform development should not be a one-time experience but rather an ongoing process of developing new platforms and updating existing ones, so that product family...

  8. An unmanned search and rescue mission

    Novaro Mascarello, Laura; Quagliotti, Fulvia; Bertini, Mario

    2016-04-01

    The Remotely Piloted Aircraft Systems (RPAS) are becoming more and more powerful and innovative and they have an increased interest in civil applications, in particular, after natural hazard phenomena. The RPAS is useful in search and rescue missions in high mountain where scenarios are unfriendly and the use of helicopters is often not profitable. First, the unmanned configuration is safer because there is no hazards for human life that is not on board. Moreover, it is cheaper due to the use of electric propulsion instead of internal combustion engine and to its small dimensions and weights. Finally, the use of the RPAS is faster while the helicopter is often not available because is involved in other missions or it cannot be used if the search mission is in impervious scenario, such as forests with thick vegetation. For instance, the RPAS can be used after an avalanche when victims have little time to be saved before the death by hypothermia. In most conditions, the body maintains a healthy temperature. However, if it is exposed to cold temperatures, especially with a high cooling factor from wind and high humidity, for extended periods, the control mechanisms of the body may not be able to maintain a normal body temperature. When you lose more heat than the body can generate, it takes over hypothermia, defined as a body temperature below 35° C. Wet clothing, fall into cold water or not adequately cover themselves during the cold season, are all factors that can increase the chances of hypothermia. Signs and symptoms (tremor, slurred speech, breathing abnormally slow, cold and pale skin, loss of coordination, fatigue, lethargy or apathy, confusion or memory loss) usually develop slowly. People with hypothermia typically experience a gradual loss of mental acuity and physical capacity, and realize that you have need of emergency medical care. For these reasons, the use of an RPAS could be crucial for the survival of disappeared people in high mountain. In

  9. Low-Altitude Operation of Unmanned Rotorcraft

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized

  10. Airborne Research Experience for Educators

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  11. Cyberinfrastructure for Airborne Sensor Webs

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  12. Source terms for airborne effluents

    Blomeke, J.O.; Perona, J.J.

    1976-01-01

    The origin and nature of fuel cycle wastes are discussed with regard to high-level wastes, cladding, noble gases, iodine, tritium, 14 C, low-level and intermediate-level transuranic wastes, non-transuranic wastes, and ore tailings. The current practice for gaseous effluent treatment is described for light water reactors and high-temperature gas-cooled reactors. Other topics discussed are projections of nuclear power generation; projected accumulation of gaseous wastes; the impact of nuclear fuel cycle centers; and global buildup of airborne effluents

  13. Airborne gamma-ray spectrometry

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  14. Cross-Platform Technologies

    Maria Cristina ENACHE

    2017-04-01

    Full Text Available Cross-platform - a concept becoming increasingly used in recent years especially in the development of mobile apps, but this consistently over time and in the development of conventional desktop applications. The notion of cross-platform software (multi-platform or platform-independent refers to a software application that can run on more than one operating system or computing architecture. Thus, a cross-platform application can operate independent of software or hardware platform on which it is execute. As a generic definition presents a wide range of meanings for purposes of this paper we individualize this definition as follows: we will reduce the horizon of meaning and we use functionally following definition: a cross-platform application is a software application that can run on more than one operating system (desktop or mobile identical or in a similar way.

  15. Airborne Lidar Surface Topography (LIST) Simulator

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  16. Digital airborne camera introduction and technology

    Sandau, Rainer

    2014-01-01

    The last decade has seen great innovations on the airborne camera. This book is the first ever written on the topic and describes all components of a digital airborne camera ranging from the object to be imaged to the mass memory device.

  17. Resuscitation effects of catalase on airborne bacteria.

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  18. Airborne iodine-125 arising from surface contamination

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  19. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis

  20. Airborne metals in Spanish moss

    Connor, J.J.; Shacklette, H.T.

    1973-01-01

    One hundred twenty-three samples of Spanish moss (Tillandsia usneoides L.) were collected throughout the southern United States to assess the potential use of the plant as a natural long-term integrator of local atmospheric metal burdens. R-mode components analysis of the ash chemistry strongly suggests that at least five nearly uncorrelated factors are contributing to the observed chemical variation. Four of these factors are thought to reflect chemical properties of the atmosphere or airborne particulates; the fifth appears to be related in some way to metabolic activity in the living plant. The atmospheric factors are interpreted to be a) the ratio of terrestrial dust to ocean-derived salt in the local atmosphere, b) the regional variation in trace-element content of the terrestrial dust, c) the local concentration of automotive or technology-related lead-rich emissions, and d) higher concentrations of airborne vanadium east of the Mississippi River. If the intensity of the lead-rich factor in each sample is used as an index of general atmospheric pollution, sets of most polluted and least polluted samples may be defined. The estimates of abundance (arithmetic mean) are given for ash (Pb, Cu, Zn, Cd, Ni, and Cr) based on the 20 most polluted (MP) and 17 least polluted (LP) samples.

  1. An Overview of New Technologies Driving Innovation in the Airborne Science Community

    Fladeland, Matthew M.

    2017-01-01

    Following a more than a century of scientific aircraft and ballooning there is a sense that a renaissance of sorts is at hand in the aviation industry. The advent of incredibly miniaturized autopilots, inertial navigation systems, GPS antennae, and payloads has sparked a revolution in manned and unmanned aircraft. Improved SATCOM and onboard computing has enabled realtime data processing and improved transfer of data on and off the aircraft, making flight planning and data collection more efficient and effective. Electric propulsion systems are scaling up to larger and larger vehicles as evidenced by the NASA GL-10, which is leading to a new X-plane and is leading to renewed interest in personal air vehicles. There is also significant private and government investments in the development of High Altitude, Long Endurance (HALE) aircraft. This presentation will explore how such developments are likely to improve our ability to observe earth systems processes from aircraft by providing an overview of current NASA Airborne Science capabilities, followed by a brief discussion of new technologies being applied to Airborne Science missions, and then conclude with an overview of new capabilities on the horizon that are likely to be of interest to the Earth Science community.

  2. A Overview of New Technologies Driving Innovation in the Airborne Science Community

    Fladeland, Matthew M.

    2017-01-01

    Following a more than a century of scientific aircraft and ballooning there is a sense that a renaissance of sorts is at hand in the aviation industry. The advent of incredibly miniaturized autopilots, inertial navigation systems, GPS antennae, and payloads has sparked a revolution in manned and unmanned aircraft. Improved SATCOM and onboard computing has enabled realtime data processing and improved transfer of data on and off the aircraft, making flight planning and data collection more efficient and effective. Electric propulsion systems are scaling up to larger and larger vehicles as evidenced by the NASA GL-10, which is leading to a new X-plane and is leading to renewed interest in personal air vehicles. There is also significant private and government investments in the development of High Altitude, Long Endurance (HALE) aircraft. This presentation will explore how such developments are likely to improve our ability to observe earth systems processes from aircraft by providing an overview of current NASA Airborne Science capabilities, followed by a brief discussion of new technologies being applied to Airborne Science missions, and then conclude with an overview of new capabilities on the horizon that are likely to be of interest to the Earth Science community.

  3. Report on gravity measurements and replacement of an unmanned magnetometer in the Sor Rondane Mountains, Eastern Dronning Maud Land, 2013 (JARE-55

    Yusuke Suganuma

    2014-11-01

    Full Text Available Gravity measurements, replacement of the unmanned magnetometer, and a reconnaissance flight to the Belgica Mountains were carried out in the Sor Rondane Mountains as a part of the 55 th Japanese Antarctic Research Expedition (JARE-55. The field party comprised two geodesists, one geomorphologists, and one magnetospheric scientist. The Belgian Antarctic Research Expedition (BELARE and International Polar Foundation (IPF supported this field expedition. Dronning Maud Land Air Network (DROMLAN provided airborne access from Cape Town, South Africa to the Sor Rondane Mountains via Novolazarevskaya Airbase. The survey areas of this field expedition are the central parts of the Sor Rondane Mountains and the Belgica Mountains. This report summarizes the field expedition in terms of operations, logistics, and weather observations.

  4. Anti-Ballistic Missile Laser Predictive Avoidance of Satellites: Theory and Software for Real-Time Processing and Deconfliction of Satellite Ephemerides With a Moving Platform Laser, Book 1

    vloedman, David

    1999-01-01

    The Anti-Ballistic missile Laser (ABL) Project is committed to defense against attack from enemy-launched Theater Ballistic Missiles using an airborne laser platform to disable an enemy missile in the boost phase of launch...

  5. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems

    Max Messinger

    2016-07-01

    Full Text Available Unmanned aerial vehicles (UAVs can provide new ways to measure forests and supplement expensive or labor-intensive inventory methods. Forest carbon, a key uncertainty in the global carbon cycle and also important for carbon conservation programs, is typically monitored using manned aircraft or extensive forest plot networks to estimate aboveground carbon density (ACD. Manned aircraft are only cost-effective when applied to large areas (>100,000 ha, while plot networks are most effective for total C stock estimation across large areas, not for quantifying spatially-explicit variation. We sought to develop an effective method for frequent and accurate ACD estimation at intermediate scales (100–100,000 ha that would be sensitive to small-scale disturbance. Using small UAVs, we collected imagery of 516 ha of lowland forest in the Peruvian Amazon. We then used a structure-from-motion (SFM approach to create a 3D model of forest canopy. Comparing SFM- and airborne Light Detection and Ranging (LiDAR-derived estimates of canopy height and ACD, we found that SFM estimates of top-of-canopy height (TCH and ACD were highly correlated with previous LiDAR estimates (r = 0.86–0.93 and r = 0.73–0.94 for TCH and ACD, respectively, at 0.1–4 ha grain sizes, with r = 0.92 for ACD determination at the 1 ha scale, despite SFM and LiDAR measurements being separated by two years in a dynamic forest. SFM and LiDAR estimates of mean TCH and mean ACD were highly similar, differing by only 0.4% and 0.04%, respectively, within mature forest. The technique allows inexpensive, near-real-time monitoring of ACD for ecological studies, payment for ecosystem services (PES ventures, such as reducing emissions from deforestation and forest degradation (REDD+, forestry enterprises, and governance.

  6. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  7. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  8. Airborne Atmospheric Aerosol Measurement System

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  9. Trends in the development of unmanned marine technology

    Olejnik Adam

    2016-06-01

    Full Text Available The article constitutes an attempt to identify current tendencies regarding the development of unmanned marine technologies such as unmanned surface and underwater vehicles. The analyses were performed on the basis of available literature, databases on research projects and internet sources. The material has been divided with regard to the location the research was conducted, the following groups being identified: the European Union, the United States of America and Poland. On the basis of the review of objectives and final effects of projects, tendencies in the development of the discussed marine technology have been identified. An interesting result of the review consists in an observation that Polish R&D works in this area are placed within the main identified developmental trends. Unfortunately, their effects are incomparable due to the minuteness of national funds allocated to R&D as opposed to other countries.

  10. Quantifying ground impact fatality rate for small unmanned aircraft

    La Cour-Harbo, Anders

    2018-01-01

    is based on a standard stochastic model, and employs a parameterized high fidelity ground impact distribution model that accounts for both aircraft specifications, parameter uncertainties, and wind. The method also samples the flight path to create an almost continuous quantification of the risk......One of the major challenges of conducting operation of unmanned aircraft, especially operations beyond visual line-of-sight (BVLOS), is to make a realistic and sufficiently detailed risk assessment. An important part of such an assessment is to identify the risk of fatalities, preferably...... in a quantitative way since this allows for comparison with manned aviation to determine whether an equivalent level of safety is achievable. This work presents a method for quantifying the probability of fatalities resulting from an uncontrolled descent of an unmanned aircraft conducting a BVLOS flight. The method...

  11. Bio-inspired computation in unmanned aerial vehicles

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  12. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  13. ADMS Evaluation Platform

    2018-01-23

    Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.

  14. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Sergey V. Cherkasov; Anvar M. Farkhutdinov; Dmitriy P. Rykovanov; Arbi A. Shaipov

    2018-01-01

    The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic) with the Khankala geothermal plant operating at differe...

  15. Use of Unmanned Aerial Assault Vehicles (UAAV) as an Asymmetric Factor

    Eker, Alper Alpaslan; Sallar, Eray; Turan, Yasin

    2014-01-01

    In the 21st century, unmanned systems (especially unmanned aerial vehicles) will play a dominant role in the operational fields. Thanks to the technological developments witnessed in many fields, the use of unmanned aerial vehicles for military purposes is becoming easier. Looking at the operations carried out over the last 25 years, it can be seen that most were conducted in residential areas, where and techniques, tactics and equipment with asymmetric effects will make significant differenc...

  16. THE USE OF MOBILE LASER SCANNING DATA AND UNMANNED AERIAL VEHICLE IMAGES FOR 3D MODEL RECONSTRUCTION

    L. Zhu

    2013-08-01

    Full Text Available The increasing availability in multiple data sources acquired by different sensor platforms has provided the great advantages for desired result achievement. This paper proposes the use of both mobile laser scanning (MLS data and Unmanned Aerial Vehicle (UAV images for 3D model reconstruction. Due to no available exterior orientation parameters for UAV images, the first task is to georeference these images to 3D points. In order to fast and accurate acquire 3D points which are also easy to be found the corresponding locations on UAV images, automated pole extraction from MLS was developed. After georeferencing UAV images, building roofs are acquired from those images and building walls are extracted from MLS data. The roofs and the walls are combined to achieve the complete building models.

  17. Building Toward an Unmanned Aircraft System Training Strategy

    2014-01-01

    and fly at altitudes higher than commercial airlines do. They file instrument flight rules flight plans. However, BAMS-D and Triton do not...incorporate sense-and-avoid technology, and conflicts can exist with visual flight rules aircraft in the airspace. Airspace issues exist at some Navy training...MODS, Washington, DC, February 2011, p. 1 of 10. 164 Peter La Franchi , “Directory: Unmanned Air Vehicles,” Flight International, June 21st, 2005, p. 56

  18. A new electronic control system for unmanned underwater vehicles

    Molina Molina, J.C.; Guerrero González, A.; Gilabert, J.

    2015-01-01

    In this paper a new electronic control system for unmanned underwater vehicles is presented. This control system is characterized by a distribution in control over two network of type CANBus and Ethernet. This new electronic control system integrates functionalities of AUVs, as the automatic execution of preprogrammed trajectories. The control system also integrates an acoustic positioning system based on USBL. The information of relative positioning is sent through specific...

  19. Integrating the Unmanned Aircraft System into the National Airspace System

    2011-06-18

    HALE High Altitude Long Endurance IFR Instrument Flight Rules ISR Intelligence, Surveillance, and Reconnaissance JFC Joint Force Commander JP...many advantages and disadvantages of unmanned aircraft now made national headlines as UAS executed missions, once reserved for manned aircraft...of this research. To operate above 18,000 feet MSL the UAS must be filed under Instrument Flight Rules, or IFR flight plan. Additionally, the

  20. A concept of unmanned aerial vehicles in amphibious operations

    Collins, Kipp A.

    1993-01-01

    Approved for public release; distribution is unlimited. The purpose of this thesis was to perform a conceptual study of using Unmanned Aerial Vehicles (UAVs) in amphibious operations. It focused on the command relations, tasking and critical problems in UAV amphibious operations. This thesis investigated the question of whether using UAVs at sea is a feasible complement to current amphibious operational doctrine and, if so, then what expense is incurred to assets on which it is embarked an...

  1. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  2. PARAMETRIC ANALYSIS OF LONGITUDINAL STABILITY UNMANNED AERIAL VEHICLE

    Ievgen Udartsev

    2013-10-01

    Full Text Available 1024x768 We consider the aerodynamic characteristics of unmanned aircraft container type, which were obtained in a wind tunnel and refined amended by soot blowing elements propeller system and the influence of the earth's surface. The estimation of longitudinal static stability and its dependence on altitude, damping, coordinates of center of gravity, shoulder horizontal tail, wings rejection of mechanization. The variation of these parameters enables to optimize balancing system with minimal losses. Normal 0 false false false

  3. Piecewise affine control for fast unmanned ground vehicles

    Benine Neto , André; Grand , Christophe

    2012-01-01

    International audience; Unmanned ground vehicles (UGV) may experience skidding when moving at high speeds, and therefore have its safety jeopardized. For this reason the nonlinear dynamics of lateral tire forces must be taken into account into the design of steering controllers for autonomous vehicles. This paper presents the design of a state feedback piecewise affine controller applied to an UGV to coordinate the steering and torque distribution inputs in order to reduce vehicle skidding on...

  4. An intelligent navigation system for an unmanned surface vehicle

    Xu , Tao

    2007-01-01

    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS) A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-S...

  5. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  6. Search and Pursuit with Unmanned Aerial Vehicles in Road Networks

    2013-11-01

    landmark tracking, Andersen and Taylor [7] show that with a planar ground assumption, a homography-based visual odometry algorithm can be combined with...7] Evan D. Andersen and Clark N. Taylor. Improving MAV pose estimation using visual information. In IEEE International Conference on Intelligent...patrol and surveillance missions using multiple unmanned air vehicles. In IEEE Confer- ence on Decision and Control, 2004. [53] Arthur S. Goldstein

  7. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  8. Routing Unmanned Vehicles in GPS-Denied Environments

    Sundar, Kaarthik; Misra, Sohum; Rathinam, Sivakumar; Sharma, Rajnikant

    2017-01-01

    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article...

  9. FY2009-2034 Unmanned Systems Integrated Roadmap

    2009-04-20

    to vocal and forceful remonstrations by the threatened communities. Unmanned systems offer as yet largely unseen operational capabilities, and these...flexible wings, which fold around its fuselage, allowing the entire UAS to be stored in a 22- inch long, 5-inch diameter tube and carried in the user’s...wounded soldiers on the battlefield who might otherwise die from loss of airway, hemorrhage , or other acute injuries, such as a tension pneumothorax

  10. Platform development supportedby gaming

    Mikkola, Juliana Hsuan; Hansen, Poul H. Kyvsgård

    2007-01-01

    The challenge of implementing industrial platforms in practice can be described as a configuration problem caused by high number of variables, which often have contradictory influences on the total performance of the firm. Consequently, the specific platform decisions become extremely complex......, possibly increasing the strategic risks for the firm. This paper reports preliminary findings on platform management process at LEGO, a Danish toy company.  Specifically, we report the process of applying games combined with simulations and workshops in the platform development. We also propose a framework...

  11. Omnidirectional holonomic platforms

    Pin, F.G.; Killough, S.M.

    1994-01-01

    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed

  12. Platform decommissioning costs

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  13. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  14. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  15. Space nuclear reactor shields for manned and unmanned applications

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  16. Space nuclear reactor shields for manned and unmanned applications

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  17. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  18. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  19. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  20. Intelligent Terrain Analysis and Tactical Support System (ITATSS) for Unmanned Ground Vehicles

    Jones, Randolph M; Arkin, Ron; Sidki, Nahid

    2005-01-01

    ...). The system enable unmanned combat and support vehicles to achieve significant new levels of autonomy, mobility, rapid response, coordination and effectiveness, while simultaneously enriching human...

  1. Evaluating the Impact of Unrestricted Operation of Unmanned Aircraft Systems in the National Airspace System

    National Aeronautics and Space Administration — Unmanned aircraft systems (UAS) can be used for scientific, emergency management, and defense missions, among others. The existing federal air regulations,...

  2. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  3. A Distributed Resilient Autonomous Framework for Manned/Unmanned Trajectory-Based Operations, Phase II

    National Aeronautics and Space Administration — Resilient Ops, working in collaboration with Metron Aviation, Inc., proposes to develop a prototype system for planning Unmanned Aircraft Systems (UAS) trajectories...

  4. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  5. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days.

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2018-05-01

    The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real

  6. Airborne gamma ray spectrometer surveying

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  7. Global deposition of airborne dioxin.

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Target tracking control and semi-physical simulation of Qball-X4 quad-rotor unmanned aerial vehicle

    Lu Liu

    2017-01-01

    Full Text Available In this article, a set of integrated ground target tracking flight system has been proposed based on the Qball-X4 quad-rotor unmanned aerial vehicle hardware platform and the QuaRC software platform. Both of the hardware and software platforms are developed by Quanser Company, Canada. The proposed tracking and positioning algorithm could be divided into several stages. First, a tracker is developed based on an optical flow method to track the target; and then, in order to improve the reliability of tracking algorithm and also help in retrieving the lost target, a cascade target detector is developed; meanwhile, a model updated scheme aiming at some possible errors in tracking and detecting process is presented based on Positive-Negative (P-N learning system; at last, a monocular visual positioning system is designed based on the corresponding navigation message. In addition, the effectiveness of the proposed flight control system is verified by both simulation and hardware-in-loop system results in several tracking flight tests.

  9. U.S. Unmanned Aerial Vehicles (UAVs) and Network Centric Warfare (NCW): Impacts on Combat Aviation Tactics from Gulf War I Through 2007 Iraq

    2008-03-01

    early warning AIM Air-intercept missile AJCN Adaptive, joint, C4ISR node AOR Area of responsibility ARM Anti-radiation missile ATARS Advanced...and economic considerations are offered, including relevant technological advancements. UAV impacts on these four conflicts are examined in the next...Tactical Airborne Reconnaissance System ( ATARS ) on F-16 and F/A-18 aircraft, and satellites. Manned platforms were adapted to multiple mission scenarios

  10. Bespilotne letelice zapadnih zemalja / Unmanned aircraft of Western countries

    Slavko Pokorni

    2002-11-01

    Full Text Available Trend sve češće primene bespilotnih letelica biće nastavljen nesumnjivo, i tokom ove decenije. U vezi s tim stiče se utisak da će razvoj borbenih bespilotnih letilica biti u usponu. Mada je u proteklom periodu težište bilo na razvoju bespilotnih letilica za vojne primene (gde su ulagana velika sredstva, a civilni sektor je, uglavnom, koristio rezultate razvoja vojnih bespilotnih letelica, u narednom periodu se očekuje porast ulaganja i u razvoj bespilotnih letelica u civilnom sektoru. Bespilotne letelice su imale značajnu ulogu u zadacima koje su obavljale multinacionalne snage u toku rata u Bosni i Hercegovini i agresije NATO-a na SRJ, pa je poznavanje karakteristika bespilotnih letelica, za pripadnike Vojske, od velikog značaja. U sažetom tabelarnom pregledu prikazani su podatci o bespilotnim letelicama uglavnom proizvođača iz zapadnih zemalja, što ne znači da ih ne proizvode i druge zemlje, posebno Ruska federacija kao i neke susedne zemlje (Bugarska, Hrvatska. / The increasingly frequent use of unmanned aircraft will continue unabated throughout this decade. About that the impression is that the development of combat drones will rise. Although in the past period the focus was on the development of unmanned military vehicles (where large funds were invested, and the civil sector used mainly the development of military drones, in the coming period, investment in the development of unmanned aircraft in the civil sector is expected . Unmanned aircraft played a significant role in the tasks performed by multinational forces during the war in Bosnia and Herzegovina and NATO aggression in the FR Yugoslavia, so the knowledge of the characteristics of drones for members of the Army is of great importance. The summary table shows the data on unmanned aircraft mainly manufactured from Western countries, which does not mean that they are not produced by other countries, especially the Russian Federation as well as some neighboring

  11. Factors affecting the abundance of selected fishes near oil and gas platforms in the northern Gulf of Mexico

    Stanley, D.R.; Wilson, C.A.

    1991-01-01

    A logbook program was initiated to determine the relative abundance of selected fish species around oil and gas platforms off the Louisiana coast. Logbooks were maintained by 55 anglers and 10 charterboat operators from March 1987 to March 1988. A total of 36,839 fish were caught representing over 46 different species. Principal component analysis (PCA) grouped the seventeen most abundant species into reef fish, pelagic fish, bluefish-red drum, Atlantic croaker-silver/sand seatrout, and cobia-shark-blue runner associations. Multiple regression analyses were used to compare PCA groupings to physical platform, temporal, geological, and angler characteristic variables and their interactions. Reef fish, Atlantic croaker, and silver/sand seatrout abundances were highest near large, structurally complex platforms in relatively deep water. High spotted seatrout abundances were correlated with small, unmanned oil and gas platforms in shallow water. Pelagic fish, bluefish, red drum, cobia, and shark abundances were not related to the physical parameters of the platforms

  12. Factors affecting the abundance of selected fishes near oil and gas platforms in the northern Gulf of Mexico

    Stanley, D.R.; Wilson, C.A. (Louisiana State Univ., Baton Rouge (United States))

    1991-01-01

    A logbook program was initiated to determine the relative abundance of selected fish species around oil and gas platforms off the Louisiana coast. Logbooks were maintained by 55 anglers and 10 charterboat operators from March 1987 to March 1988. A total of 36,839 fish were caught representing over 46 different species. Principal component analysis (PCA) grouped the seventeen most abundant species into reef fish, pelagic fish, bluefish-red drum, Atlantic croaker-silver/sand seatrout, and cobia-shark-blue runner associations. Multiple regression analyses were used to compare PCA groupings to physical platform, temporal, geological, and angler characteristic variables and their interactions. Reef fish, Atlantic croaker, and silver/sand seatrout abundances were highest near large, structurally complex platforms in relatively deep water. High spotted seatrout abundances were correlated with small, unmanned oil and gas platforms in shallow water. Pelagic fish, bluefish, red drum, cobia, and shark abundances were not related to the physical parameters of the platforms.

  13. Groundwater Assessment Platform

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  14. EURESCOM Services Platform

    Nieuwenhuis, Lambertus Johannes Maria; van Halteren, Aart

    1999-01-01

    This paper presents the results of the EURESCOM Project 715. In February 1999, a large team of researchers from six European public network operators completed a two year period of cooperative experiments on a TINA-based environment, called the EURESCOM Services Platform (ESP). This platform

  15. Development of an Airborne Micropulse Water Vapor DIAL

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    based instrument is achievable via overdriven current pulses to the TSOA gain medium while maintaining a 1μs and 10 kHz pulse width and PRF, respectively. The increase in the laser transmitter pulse energy will allow for nighttime and daytime water vapor profile retrievals from an airborne platform operating at an 8 km altitude with 2-5 minute integration periods. Results from a numerical model demonstrating the performance of an airborne DIAL system with the mentioned transmitter enhancements will be presented and compared against the existing ground based instrument performance. Furthermore, results from laboratory experiments demonstrating the laser transmitter performance including maximum extractable energy, energy stability, and spectral purity will also be presented.

  16. Exposure to airborne particulate matter in the subway system.

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. Copyright © 2014 The Authors. Published by

  17. Bridging Operational and Strategic Communication Architectures: Integrating Small Unmanned Aircraft Systems as Airborne Tactical Relay Communication Vertical Nodes

    2012-09-01

    IP Address. Node Nome, a nd SSPG SA ID. Selec’ "Node Configuration" from the naviga- tion bar, and select ·ourck Setup" from the lisr . Clicl...Addresses should motch tf-oe ones in the Node lisr Ensure thot all IP Addresses ore in rhe some Subner Rei)eal this process lor eoch set of identical nodes

  18. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate

  19. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  20. A Smart Irrigation Approach Aided by Monitoring Surface Soil Moisture using Unmanned Aerial Vehicles

    Wienhold, K. J.; Li, D.; Fang, N. Z.

    2017-12-01

    Soil moisture is a critical component in the optimization of irrigation scheduling in water resources management. Unmanned Aerial Vehicles (UAV) equipped with multispectral sensors represent an emerging technology capable of detecting and estimating soil moisture for irrigation and crop management. This study demonstrates a method of using a UAV as an optical and thermal remote sensing platform combined with genetic programming to derive high-resolution, surface soil moisture (SSM) estimates. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course (about 50 acres) in North Central Texas. Multispectral data is collected over the course of one month in the visible, near infrared and longwave infrared spectrums using a UAV capable of rapid and safe deployment for daily estimates. The accuracy of the model predictions is quantified using a time domain reflectometry (TDR) soil moisture sensor and a holdout validation test set. The model produces reasonable estimates for SSM with an average coefficient of correlation (r) = 0.87 and coefficient of determination of (R2) = 0.76. The study suggests that the derived SSM estimates be used to better inform irrigation scheduling decisions for lightly vegetated areas such as the turf or native roughs found on golf courses.

  1. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.

    2016-05-01

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.

  2. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  3. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  4. Experimental flights using a small unmanned aircraft system for mapping emergent sandbars

    Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd

    2015-01-01

    The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.

  5. Product Platform Modeling

    Pedersen, Rasmus

    for customisation of products. In many companies these changes in the business environment have created a controversy between the need for a wide variety of products offered to the marketplace and a desire to reduce variation within the company in order to increase efficiency. Many companies use the concept...... other. These groups can be varied and combined to form different product variants without increasing the internal variety in the company. Based on the Theory of Domains, the concept of encapsulation in the organ domain is introduced, and organs are formulated as platform elements. Included......This PhD thesis has the title Product Platform Modelling. The thesis is about product platforms and visual product platform modelling. Product platforms have gained an increasing attention in industry and academia in the past decade. The reasons are many, yet the increasing globalisation...

  6. Product Platform Replacements

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    . To shed light on this unexplored and growing managerial concern, the purpose of this explorative study is to identify operational challenges to management when product platforms are replaced. Design/methodology/approach – The study uses a longitudinal field-study approach. Two companies, Gamma and Omega...... replacement was chosen in each company. Findings – The study shows that platform replacements primarily challenge managers' existing knowledge about platform architectures. A distinction can be made between “width” and “height” in platform replacements, and it is crucial that managers observe this in order...... to challenge their existing knowledge about platform architectures. Issues on technologies, architectures, components and processes as well as on segments, applications and functions are identified. Practical implications – Practical implications are summarized and discussed in relation to a framework...

  7. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    Guijun Yang

    2017-06-01

    Full Text Available Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI, chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  8. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; Swanson, Erika M.; Cooley, James A.

    2017-08-01

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy's Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models were created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within 40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90-130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of

  9. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    Udin, W S; Ahmad, A

    2014-01-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications

  10. Autonomous, Safe Take-Off and Landing Operations for Unmanned Aerial Vehicles in the National Airspace, Phase II

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) have the potential to significantly impact modern society. While the technology for unmanned air vehicles operating day in and day out...

  11. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  12. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; hide

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  13. MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM

    A. G. Demchenko

    2014-01-01

    Full Text Available This article is devoted to math modeling of channel of alternate current airborne electrical power-supply system. Considered to modeling of synchronous generator that runs on three-phase static load.

  14. Airborne Radar Search for Diesel Submarines (ARSDS)

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  15. Airborne Radar Search for Diesel Submarines

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  16. Airborne radioactive contamination following aerosol ventilation studies

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  17. Software for airborne radiation monitoring system

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  18. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  19. Challenges and Opportunities of Airborne Metagenomics

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  20. Aeromagnetic and aerial photographic survey in the South Shetland Islands,Antarctica, conducted by a small unmanned aerial vehicle (Ant-Plane

    Minoru Funaki

    2013-07-01

    Full Text Available Two small unmanned aerial vehicles, Ant-Plane 6 and Ant-Plane 3, were assembled using parts and technologies developed for model airplanes. The aerial vehicles were scheduled to conduct aero magnetic and photographic surveys of the Brans?eld Basin, from a takeoff runway at Marsh Air?eld on the South Shetland Islands, Antarctica, during January 2011. However, the scheduled surveys were not conducted on account of poor weather. Research was later conducted on a glacier, using a takeoff runway at St. Kliment Ohridski Base, Livingston Island, during December 2011. A ?ight from St. Kliment Ohridski Base to Deception Island yielded satisfactory results; the total distance of 302.4 km was traversed in 3 h 7 min (3:07. On this ?ight, aeromagnetic and aerial photographic data were obtained from an altitude of 780 m for a 9×18 km area on the northern half of Deception Island. Aerial photographs of Deception Island and South Bay showed the distributions of glaciers and their crevasses. The Ant-Plane ?ew over the Antarctic horizon and surveyed above Deception Island. That was the successful venture of this kind, demonstrating that airborne surveys by Ant-Planes are useful for Antarctic research investigations. Airborne surveys provide a safe and economical approach to data acquisition as compared with manned aerial operations.

  1. Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data

    Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2018-03-01

    Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.

  2. The vacuum platform

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  3. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery

    2015-03-27

    INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL VEHICLE...protection in the United States. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS

  4. The availability of unmanned air vehicles: a post-case study

    Smith, M.A.J.; Dekker, R.; Kos, J.; Hontelez, J.A.M.

    2001-01-01

    An Unmanned Air Vehicle (UAV) is an unmanned, remotely controlled, small air vehicle. It has an important role in antisurface warfare. This implies over-the-horizon detection, classification, targeting and battle damage assessment. To perform these tasks several UAVs are needed to assist or

  5. Graduate Education for Unmanned Vehicles and Undersea Warfare: NPS Teaching, Research and Partnership Strategies

    Brutzman, Don

    2005-01-01

    Panel Discussion, NDIA conference, Unmanned Maritime Vehicle (UMV)Test & Evaluation Conference

Held in Conjunction with 
Autonomous Underwater Vehicle (AUV) Fest 2005

“Accelerating Deployment of Unmanned Maritime Vehicles Through Advancements in Test & Evaluation”

Keyport, WA 14-16 June 2005

  6. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    2013-12-13

    Reconnaissance Squadrons with a fixed-wing unmanned aircraft troop or company, and is in the market for an autonomous cargo unmanned rotary-wing...Warwick, Graham. “Sky Patrol.” Aviation Week & Space Technology 174, no. 32 (September 3, 2012): 55. Military & Government Collection, EBSCOhost

  7. Cooperative conflict detection and resolution of civil unmanned aerial vehicles in metropolis

    Jian Yang

    2016-06-01

    Full Text Available Unmanned air vehicles have recently attracted attention of many researchers because of their potential civil applications. A systematic integration of unmanned air vehicles in non-segregated airspace is required that allows safe operation of unmanned air vehicles along with other manned aircrafts. One of the critical issues is conflict detection and resolution. This article proposes to solve unmanned air vehicles’ conflict detection and resolution problem in metropolis airspace. First, the structure of metropolis airspace in the coming future is studied, and the airspace conflict problem between different unmanned air vehicles is analyzed by velocity obstacle theory. Second, a conflict detection and resolution framework in metropolis is proposed, and factors that have influences on conflict-free solutions are discussed. Third, the multi-unmanned air vehicle conflict resolution problem is formalized as a nonlinear optimization problem with the aim of minimizing overall conflict resolution consumption. The safe separation constraint is further discussed to improve the computation efficiency. When the speeds of conflict-involved unmanned air vehicles are equal, the nonlinear safe separation constraint is transformed into linear constraints. The problem is solved by mixed integer convex programming. When unmanned air vehicles are with unequal speeds, we propose to solve the nonlinear optimization problem by stochastic parallel gradient descent–based method. Our approaches are demonstrated in computational examples.

  8. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    2017-06-01

    SYSTEM CONCEPT OF OPERATION IN SUPPORT OF DISTRIBUTED OPERATIONS by Elle M. Ekman June 2017 Thesis...UNMANNED LOGISTICS SYSTEM CONCEPT OF OPERATION IN SUPPORT OF DISTRIBUTED OPERATIONS Elle M. Ekman Captain, United States Marine Corps B.S...Corps CO company CONEPS concept of employment CONOPS concept of operations CP command post CUAS cargo unmanned aircraft system DES discrete

  9. Unmanned aerial complexes as a way of NPP and environment radiation monitoring

    Babak, V.P.; Kanchenko, V.A.; Klyuchnikov, A.A.; Krasnov, V.A.; Chepur, N.L.

    2012-01-01

    As a example of the using of unmanned aircraft for video monitoring and radiation background measurement in the accident area at the NPP Fukushima -1 are shown the efficiency of its use. The analyse of possible environmental monitoring remotely piloted ultralight unmanned aerial vehicle are carried out

  10. The development of ground unmanned vehicles, driver assistance systems and components according to patent publications

    Saykin, A. M.; Tuktakiev, G. S.; Zhuravlev, A. V.; Zaitseva, E. P.

    2018-02-01

    The paper contains the analysis of the main trends in the patenting of ground unmanned vehicles, driver assistance systems (ADAS) and unmanned vehicle components abroad during the period from 2010 to 2016. The conclusion was made that the intensity of their patenting abroad increased.

  11. Ground impact probability distribution for small unmanned aircraft in ballistic descent

    La Cour-Harbo, Anders

    2018-01-01

    Safety is a key factor in all aviation, and while years of development has made manned aviation relatively safe, the same has yet to happen for unmanned aircraft. However, the rapid development of unmanned aircraft technology means that the range of commercial and scientific applications is growing...

  12. Analysis of airborne particulate matter

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  13. Applicability of Unmanned Aerial Vehicles in Research on Aeolian Processes

    Algimantas, Česnulevičius; Artūras, Bautrėnas; Linas, Bevainis; Donatas, Ovodas; Kęstutis, Papšys

    2018-02-01

    Surface dynamics and instabilities are characteristic of aeolian formation. The method of surface comparison is regarded as the most appropriate one for evaluation of the intensity of aeolian processes and the amount of transported sand. The data for surface comparison can be collected by topographic survey measurements and using unmanned aerial vehicles. Time cost for relief microform fixation and measurement executing topographic survey are very high. The method of unmanned aircraft aerial photographs fixation also encounters difficulties because there are no stable clear objects and contours that enable to link aerial photographs, to determine the boundaries of captured territory and to ensure the accuracy of surface measurements. Creation of stationary anchor points is irrational due to intense sand accumulation and deflation in different climate seasons. In September 2015 and in April 2016 the combined methodology was applied for evaluation of intensity of aeolian processes in the Curonian Spit. Temporary signs (marks) were installed on the surface, coordinates of the marks were fixed using GPS and then flight of unmanned aircraft was conducted. The fixed coordinates of marks ensure the accuracy of measuring aerial imagery and the ability to calculate the possible corrections. This method was used to track and measure very small (micro-rank) relief forms (5-10 cm height and 10-20 cm length). Using this method morphometric indicators of micro-terraces caused by sand dunes pressure to gytia layer were measured in a non-contact way. An additional advantage of the method is the ability to accurately link the repeated measurements. The comparison of 3D terrain models showed sand deflation and accumulation areas and quantitative changes in the terrain very clearly.

  14. Development of an Unmanned Aircraft Systems Program: ACUASI

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2017-12-01

    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  15. The universal modular platform

    North, R.B.

    1995-01-01

    A new and patented design for offshore wellhead platforms has been developed to meet a 'fast track' requirement for increased offshore production, from field locations not yet identified. The new design uses modular construction to allow for radical changes in the water depth of the final location and assembly line efficiency in fabrication. By utilizing high strength steels and structural support from the well conductors the new design accommodates all planned production requirements on a support structure significantly lighter and less expensive than the conventional design it replaces. Twenty two platforms based on the new design were ready for installation within 18 months of the project start. Installation of the new platforms began in 1992 for drilling support and 1993 for production support. The new design has become the Company standard for all future production platforms. Large saving and construction costs have been realized through its light weight, flexibility in both positioning and water depth, and its modular construction

  16. Identification of platform levels

    Mortensen, Niels Henrik

    2005-01-01

    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... product development in one step and therefore the objective of this paper is to identify levels of platform based product development. The structure of this paper is as follows. First the applied terminology for platforms will be briefly explained and then characteristics between single and multi product...... development will be examined. Based on the identification of the above characteristics five platform levels are described. The research presented in this paper is a result of MSc, Ph.D projects at the Technical University of Denmark and consultancy projects within the organisation of Institute of Product...

  17. Paper based electronics platform

    Nassar, Joanna Mohammad; Sevilla, Galo Andres Torres; Hussain, Muhammad Mustafa

    2017-01-01

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors

  18. USA Hire Testing Platform

    Office of Personnel Management — The USA Hire Testing Platform delivers tests used in hiring for positions in the Federal Government. To safeguard the integrity of the hiring processes and ensure...

  19. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel

    2018-01-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.

  20. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING and its operations from an unmanned aerial vehicle (UAV during the AROMAT campaign

    A. Merlaud

    2018-01-01

    Full Text Available The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV. SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm  ×  12 cm  ×  8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. . These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS instrument for Measurements of Atmospheric Pollution (AirMAP, and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.

  1. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  2. Simulation of a weather radar display for over-water airborne radar approaches

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  3. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  4. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  5. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  6. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  7. CRUSER (Consortium for Robotics and Unmanned Systems Education and Research)

    2013-07-08

    LPI) comms: covert and innovative networks – such as the “Digital Semaphore ” concept being taken to field experimentation in FY13. 3)  UxS support of...Resolution Full Motion Video for Unmanned Systems and Remote Sensing Jeff Weekley, NPS Digital Semaphore Dr. Don Brutzman, NPS •  7-10 May 2012... Semaphore CRUSER  Thread  1   Sept  2011   Warfare   InnovaKon   Workshop   May  2012   Technical   ConKnuum   Apr  2013

  8. Homeland Security: Unmanned Aerial Vehicles and Border Surveillance

    2010-07-08

    outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft

  9. Model Predictive Control for a Small Scale Unmanned Helicopter

    Jianfu Du

    2008-11-01

    Full Text Available Kinematical and dynamical equations of a small scale unmanned helicoper are presented in the paper. Based on these equations a model predictive control (MPC method is proposed for controlling the helicopter. This novel method allows the direct accounting for the existing time delays which are used to model the dynamics of actuators and aerodynamics of the main rotor. Also the limits of the actuators are taken into the considerations during the controller design. The proposed control algorithm was verified in real flight experiments where good perfomance was shown in postion control mode.

  10. Integrated Unmanned Air-Ground Robotics System, Volume 4

    2001-08-20

    3) IPT Integrated Product Team IRP Intermediate Power Rating JAUGS TBD JCDL TBD Joint Vision 2020 TBD Km Kilometer lbs. pounds MAE Mechanical and...compatible with emerging JCDL and/or JAUGS . 2.3.2.2. Payload must be “plug and play.” 2.3.3. Communications 2.3.3.1. System communications shall be robust...Power JCDL JAUGS Joint Architecture for Unmanned Ground Systems JP-8 Jet Propulsion Fuel 8 km Kilometer lbs. Pounds LOS Line Of Sight MAE Mechanical

  11. Validation of landfill methane measurements from an unmanned aerial system

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  12. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  13. National Community Solar Platform

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  14. Unmanned Aerial Vehicles Master Plan, 1994. Master Plan.

    1994-05-31

    Terminal SINCGARS = Single-Channel Ground and Airborne Radio System Figure 3-5 Maneuver Variant CONOPS I Psychological operations. deployment with early...650 KM DAT M 3 K (300 DESIRED) BEYOND FORWARD LINE OF OWN TROOPS (FLOT) APPROXIMATE RADIUS OF ACTION LEGEND ATARS = Advanced Tactical Air

  15. Providing Data Management Support to NASA Airborne Field Studies through Streamlined Usability Design

    Beach, A. L., III; Northup, E. A.; Early, A. B.; Chen, G.

    2016-12-01

    Airborne field studies are an effective way to gain a detailed understanding of atmospheric processes for scientific research on climate change and air quality relevant issues. One major function of airborne project data management is to maintain seamless data access within the science team. This allows individual instrument principal investigators (PIs) to process and validate their own data, which requires analysis of data sets from other PIs (or instruments). The project's web platform streamlines data ingest, distribution processes, and data format validation. In May 2016, the NASA Langley Research Center (LaRC) Atmospheric Science Data Center (ASDC) developed a new data management capability to help support the Korea U.S.-Air Quality (KORUS-AQ) science team. This effort is aimed at providing direct NASA Distributed Active Archive Center (DAAC) support to an airborne field study. Working closely with the science team, the ASDC developed a scalable architecture that allows investigators to easily upload and distribute their data and documentation within a secure collaborative environment. The user interface leverages modern design elements to intuitively guide the PI through each step of the data management process. In addition, the new framework creates an abstraction layer between how the data files are stored and how the data itself is organized(i.e. grouping files by PI). This approach makes it easy for PIs to simply transfer their data to one directory, while the system itself can automatically group/sort data as needed. Moreover, the platform is "server agnostic" to a certain degree, making deployment and customization more straightforward as hardware needs change. This flexible design will improve development efficiency and can be leveraged for future field campaigns. This presentation will examine the KORUS-AQ data portal as a scalable solution that applies consistent and intuitive usability design practices to support ingest and management of airborne

  16. An Assessment of the Need for Standard Variable Names for Airborne Field Campaigns

    Beach, A. L., III; Chen, G.; Northup, E. A.; Kusterer, J.; Quam, B. M.

    2017-12-01

    The NASA Earth Venture Program has led to a dramatic increase in airborne observations, requiring updated data management practices with clearly defined data standards and protocols for metadata. An airborne field campaign can involve multiple aircraft and a variety of instruments. It is quite common to have different instruments/techniques measure the same parameter on one or more aircraft platforms. This creates a need to allow instrument Principal Investigators (PIs) to name their variables in a way that would distinguish them across various data sets. A lack of standardization of variables names presents a challenge for data search tools in enabling discovery of similar data across airborne studies, aircraft platforms, and instruments. This was also identified by data users as one of the top issues in data use. One effective approach for mitigating this problem is to enforce variable name standardization, which can effectively map the unique PI variable names to fixed standard names. In order to ensure consistency amongst the standard names, it will be necessary to choose them from a controlled list. However, no such list currently exists despite a number of previous efforts to establish a sufficient list of atmospheric variable names. The Atmospheric Composition Variable Standard Name Working Group was established under the auspices of NASA's Earth Science Data Systems Working Group (ESDSWG) to solicit research community feedback to create a list of standard names that are acceptable to data providers and data users This presentation will discuss the challenges and recommendations of standard variable names in an effort to demonstrate how airborne metadata curation/management can be improved to streamline data ingest, improve interoperability, and discoverability to a broader user community.

  17. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  18. Assessing UAV platform types and optical sensor specifications

    Altena, B.; Goedemé, T.

    2014-05-01

    Photogrammetric acquisition with unmanned aerial vehicles (UAV) has grown extensively over the last couple of years. Such mobile platforms and their processing software have matured, resulting in a market which offers off-the-shelf mapping solutions to surveying companies and geospatial enterprises. Different approaches in platform type and optical instruments exist, though its resulting products have similar specifications. To demonstrate differences in acquisitioning practice, a case study over an open mine was flown with two different off-the-shelf UAVs (a fixed-wing and a multi-rotor). The resulting imagery is analyzed to clarify the differences in collection quality. We look at image settings, and stress the fact of photographic experience if manual setting are applied. For mapping production it might be safest to set the camera on automatic. Furthermore, we try to estimate if blur is present due to image motion. A subtle trend seems to be present, for the fast flying platform though its extent is of similar order to the slow moving one. It shows both systems operate at their limits. Finally, the lens distortion is assessed with special attention to chromatic aberration. Here we see that through calibration such aberrations could be present, however detecting this phenomena directly on imagery is not straightforward. For such effects a normal lens is sufficient, though a better lens and collimator does give significant improvement.

  19. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.

    Haghighattalab, Atena; González Pérez, Lorena; Mondal, Suchismita; Singh, Daljit; Schinstock, Dale; Rutkoski, Jessica; Ortiz-Monasterio, Ivan; Singh, Ravi Prakash; Goodin, Douglas; Poland, Jesse

    2016-01-01

    Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-based high-throughput phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot research, while enabling the rapid assessment of tens-of-thousands of field plots. The objective of this study was to complete a baseline assessment of the utility of UAS in assessment field trials as commonly implemented in wheat breeding programs. We developed a semi-automated image-processing pipeline to extract plot level data from UAS imagery. The image dataset was processed using a photogrammetric pipeline based on image orientation and radiometric calibration to produce orthomosaic images. We also examined the relationships between vegetation indices (VIs) extracted from high spatial resolution multispectral imagery collected with two different UAS systems (eBee Ag carrying MultiSpec 4C camera, and IRIS+ quadcopter carrying modified NIR Canon S100) and ground truth spectral data from hand-held spectroradiometer. We found good correlation between the VIs obtained from UAS platforms and ground-truth measurements and observed high broad-sense heritability for VIs. We determined radiometric calibration methods developed for satellite imagery significantly improved the precision of VIs from the UAS. We observed VIs extracted from calibrated images of Canon S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the MultiSpec 4C camera (r = 0.64). Their correlation to spectroradiometer readings was as high as or higher than repeated measurements with the spectroradiometer per se. The approaches described here for UAS imaging and extraction of proximal sensing data enable collection of HTP

  20. The Platformization of the Web: Making Web Data Platform Ready

    Helmond, A.

    2015-01-01

    In this article, I inquire into Facebook’s development as a platform by situating it within the transformation of social network sites into social media platforms. I explore this shift with a historical perspective on, what I refer to as, platformization, or the rise of the platform as the dominant