WorldWideScience

Sample records for university scientists uncover

  1. Scientists confirm delay in testing new CERN particle accelerator

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  2. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  3. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  4. Phobias and underutilization of university scientists

    International Nuclear Information System (INIS)

    Mandra, Y.T.

    1992-01-01

    This paper reports that there is an urgent need for a large scale, nationwide education program designed to correct the almost ubiquitous misconceptions that exist because of the public's misinformation about commercial nuclear power. It is suggested that this program use only university professors and that it have a precisely defined target of community colleges. To do this a Distinguished Visiting Scientist Program needs to be established by the Department of Energy. This would be the means by which these visiting scientists could get invited for 2-day visits at community colleges. When on campus the visiting scientist would give lectures in the morning and it the afternoon to student and professors on just two topics dealing with commercial nuclear power: nuclear plants and disposal of the waste. It is suggested that a pilot program be done in California and selected hub-centers, and that it be evaluated by an independent agency so that it can be improved

  5. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  6. Is there a glass ceiling for highly cited scientists at the top of research universities?

    Science.gov (United States)

    Ioannidis, John P A

    2010-12-01

    University leaders aim to protect, shape, and promote the missions of their institutions. I evaluated whether top highly cited scientists are likely to occupy these positions. Of the current leaders of 96 U.S. high research activity universities, only 6 presidents or chancellors were found among the 4009 U.S. scientists listed in the ISIHighlyCited.com database. Of the current leaders of 77 UK universities, only 2 vice-chancellors were found among the 483 UK scientists listed in the same database. In a sample of 100 top-cited clinical medicine scientists and 100 top-cited biology and biochemistry scientists, only 1 and 1, respectively, had served at any time as president of a university. Among the leaders of 25 U.S. universities with the highest citation volumes, only 12 had doctoral degrees in life, natural, physical or computer sciences, and 5 of these 12 had a Hirsch citation index m < 1.0. The participation of highly cited scientists in the top leadership of universities is limited. This could have consequences for the research and overall mission of universities.

  7. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  8. Forgotten women the scientists

    CERN Document Server

    Tsjeng, Zing

    2018-01-01

    The women who shaped and were erased from our history. The Forgotten Women series will uncover the lost histories of the influential women who have refused over hundreds of years to accept the hand they've been dealt and, as a result, have formed, shaped and changed the course of our futures. The Scientists celebrates 48* unsung scientific heroines whose hugely important, yet broadly unacknowledged or incorrectly attributed, discoveries have transformed our understanding of the scientific world. Mary Anning, the amateur paleontologist whose fossil findings changed scientific thinking about prehistoric life Emmy Noether, dubbed "The Mighty Mathematician You've Never Heard Of" Ynés Mexía, the Mexican-American botanist who discovered over 500 new plant species Wangari Maathai, who started an environmental and ecological revolution in Kenya Margaret Sanger, the maverick nurse who paved the way for the legalization of contraception Chapters including Earth & Universe; Biology & N...

  9. The Use of Internet Services and Resources by Scientists at Olabisi Onabanjo University, Ago Iwoye, Nigeria

    Science.gov (United States)

    Bankole, Olubanke M.

    2013-01-01

    Purpose: This study aims to investigate the extent and level of internet access and use among scientists at Olabisi Onabanjo University (OOU), Ago Iwoye, Nigeria, its impact on their academic activities and the constraints faced in internet use. Design/methodology/approach: A questionnaire survey with all the 125 scientists in the Faculty of…

  10. Are secrets of the universe just about to be revealed? Scots scientists search for "God's particle"

    CERN Multimedia

    Morgan, James

    2007-01-01

    "The invisible force which explains the nature of life, the universe and everything was first predicted by an Edinburgh scientist. Now, a team of Glasgow University physicists are prepring to discover if he was right. (2,5 pages)

  11. Engaging Scientists in Meaningful E/PO: The Universe Discovery Guides

    Science.gov (United States)

    Meinke, B. K.; Lawton, B.; Gurton, S.; Smith, D. A.; Manning, J. G.

    2014-12-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly "Discovery Guides" for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today's NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into "evergreen" educational resources suitable for a variety of audiences. The Guides focus on "deep sky" objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive "big picture" approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences. Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov. We will share the Forum-led Collaborative's experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  12. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  13. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  14. York University atomic scientist contributes to new breakthrough in the production of antimatter

    CERN Multimedia

    2002-01-01

    Physicists working in Europe, including Canada Research Chair in Atomic Physics at York University, Prof. Eric Hessels, have succeeded in capturing the first glimpse of the structure of antimatter. The ATRAP group of scientists at CERN have managed to examine the internal states of anti-hydrogen atoms (1/2 page).

  15. Scots scientists dismiss Apollo mission doubts university team deals with the conspiracies

    CERN Multimedia

    Simpson, Cameron

    2004-01-01

    "Scientists from a Scottish university are going walkabout to combat the sceptics who claim US astronaut Neil Armstrong never set foot on the moon. The conspiracists claim the Apollo moon landings of the 60s and 70s were faked by Nasa in a TV studio in an attempt to help America claim victory in the space race with the former Soviet Union" (1 page)

  16. NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners

    Science.gov (United States)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team

    2017-01-01

    NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.

  17. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  18. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  20. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  1. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  2. Frederic Joliot-Curie the history of a civic-minded scientist

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The year 2000 marks the hundredth anniversary of the birth of Frederic Joliot-Curie, who can be safely termed as one of the most prominent figures of the twentieth century. The scientist and his wife Irene discovered artificial radioactivity at the Radium Institute; in 1935, they received the Nobel Chemistry Prize for their discovery. At the College de France four years later, Frederic Joliot-Curie uncovered the conditions required for a chain reaction in uranium. He gave meaning to the word civic-minded citizen. His many deeds were a statement that a scientist should offer more than his research and its possible applications to society; that he should not shrink from committing to political and social struggles. That is why this exceptional man is a model of a committed scientist. (author)

  3. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    Science.gov (United States)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline

  4. A fortunate universe life in a finely tuned cosmos

    CERN Document Server

    Lewis, Geraint F

    2016-01-01

    Over the last forty years, scientists have uncovered evidence that if the Universe had been forged with even slightly different properties, life as we know it - and life as we can imagine it - would be impossible. Join us on a journey through how we understand the Universe, from its most basic particles and forces, to planets, stars and galaxies, and back through cosmic history to the birth of the cosmos. Conflicting notions about our place in the Universe are defined, defended and critiqued from scientific, philosophical and religious viewpoints. The authors' engaging and witty style addresses what fine-tuning might mean for the future of physics and the search for the ultimate laws of nature. Tackling difficult questions and providing thought-provoking answers, this volumes challenges us to consider our place in the cosmos, regardless of our initial convictions.

  5. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting.

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. © 2015 J. Schinske et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    OpenAIRE

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children?s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology clas...

  7. Promoting seismology education through collaboration between university research scientists and school teachers

    Science.gov (United States)

    Brunt, M. R.; Ellins, K. K.; Boyd, D.; Mote, A. S.; Pulliam, J.; Frohlich, C. A.

    2012-12-01

    Participation in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development project paved the way for several teachers to receive educational seismometers and join the IRIS Seismograph in Schools program. This, in turn, has led to secondary school teachers working with university seismologists on research projects. Examples are the NSF-EarthScope SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) project; field studies to compile felt-reports for Texas earthquakes, some which may have been induced by human activities; and a seismic study of the Texas Gulf Coast to investigate ocean-continent transition processes along a passive margin. Such collaborations are mutually beneficial in nature. They help scientists to accomplish their research objectives, involve teachers and their students in the authentic, inquiry-based science, promote public awareness of such projects, and open the doors to advancement opportunities for those teachers involved. In some cases, bringing together research scientists and teachers results in collaborations that produce publishable research. In order to effectively integrate seismology research into 7-12 grade education, one of us (Brunt) established the Eagle Pass Junior High Seismology Team in connection with IRIS Seismograph in Schools, station EPTX (AS-1 seismograph), to teach students about earthquakes using authentic real-time data. The concept has sparked interest among other secondary teachers, leading to the creation of two similarly organized seismology teams: WPTX (Boyd, Williams Preparatory School, Dallas) and THTX (Mote, Ann Richards School for Young Women Leaders, Austin). Although the educational seismometers are basic instruments, they are effective educational tools. Seismographs in schools offer students opportunities to learn how earthquakes are recorded and how modern seismometers work, to collect and interpret seismic data, and to

  8. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  9. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  10. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Scientists Celebrate VLBA's First Decade As Astronomy's Sharpest "Eye" on the Universe

    Science.gov (United States)

    2003-06-01

    measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; "movies" of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. In coming years, scientists plan to use the VLBA, along with other radio-telescope facilities, to gain important new insights on astronomical bodies ranging from nearby stars to the most distant galaxies, seen as they were billions of years ago. The VLBA also will help improve the celestial coordinate system used for spacecraft navigation and other purposes. Blandford outlined a number of future research challenges, including understanding how pulsars produce their powerful beams of light and radio waves, learning how supermassive black holes and their nearby environments produce superfast cosmic jets, trying to understand solar bursts, using gravitational lenses to study the distant Universe, and understanding the mechanisms of gamma ray bursts and their "afterglows." "I am heartened to see the number of young astronomers at this meeting who are using the VLBA and will use it to help answer these important scientific questions," Blandford added. Closer to home, the VLBA can be "turned around" to produce extremely precise measurements on the Earth. This capability allows scientists to study the motion of Earth's tectonic plates, to track "wobbles" in our planet's rotation, and to measure subtle changes attributed to atmospheric motions and climate change. The meeting in Socorro began June 8 and runs through June 12. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Non-natives: 141 scientists object

    OpenAIRE

    Simberloff, Daniel; Vilà, Montserrat

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. Jake Alexander Institute of Integrative Biology, Zurich, Switzerland. Fred Allendorf University of Montana, Missoula, Montana, USA. James Aronson CEFE/CNRS, Montpellier, France. Pedro M. Antunes Algoma University, Sault Ste. Marie, Onta...

  13. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  14. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  15. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  16. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  17. The UK-Japan Young Scientist Workshop Programme...

    Science.gov (United States)

    Albone, Eric; Okano, Toru

    2012-01-01

    The authors have been running UK-Japan Young Scientist Workshops at universities in Britain and Japan since 2001: for the past three years in England with Cambridge University and, last year, also with Kyoto University and Kyoto University of Education. For many years they have worked jointly with colleagues in a group of Super Science High…

  18. Sustained response with ixekizumab treatment of moderate-to-severe psoriasis with scalp involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2, UNCOVER-3).

    Science.gov (United States)

    Reich, Kristian; Leonardi, Craig; Lebwohl, Mark; Kerdel, Francisco; Okubo, Yukari; Romiti, Ricardo; Goldblum, Orin; Dennehy, Ellen B; Kerr, Lisa; Sofen, Howard

    2017-06-01

    Scalp is a frequently affected and difficult-to-treat area in psoriasis patients. We assessed the efficacy of ixekizumab in the treatment of patients with scalp psoriasis over 60 weeks using the Psoriasis Scalp Severity Index (PSSI). In three Phase 3, multicenter, double-blind, placebo-controlled trials, patients with moderate-to-severe psoriasis in UNCOVER-1 (N = 1296), UNCOVER-2 (N = 1224) and UNCOVER-3 (N = 1346) were randomized to subcutaneous 80 mg ixekizumab every two weeks (Q2W) or every four weeks (Q4W) after a 160 mg starting dose, or placebo through Week 12. Additional UNCOVER-2 and UNCOVER-3 cohorts were randomized to 50 mg bi-weekly etanercept through Week 12. Patients entering the open-label long-term extension (LTE) (UNCOVER-3) received ixekizumab Q4W; UNCOVER-1 and UNCOVER-2 included a blinded maintenance period in which static physician global assessment (sPGA) 0/1 responders were re-randomized to placebo, ixekizumab Q4W, or 80 mg ixekizumab every 12 weeks (Q12W) through Week 60. In patients with moderate-to-severe psoriasis with baseline scalp involvement, PSSI 90 and 100 were achieved at Week 12 in higher percentages of patients treated with ixekizumab Q2W (81.7% and 74.6%) or ixekizumab Q4W (75.6% and 68.9%) compared with patients treated with placebo (7.6% and 6.7%; p psoriasis in patients with moderate-to-severe psoriasis, with most patients achieving complete or near-complete resolution of scalp psoriasis and maintaining this response over 60 weeks.

  19. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  20. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  1. 2023 Goals of Rectors in Universities Established After 2006

    Directory of Open Access Journals (Sweden)

    Süleyman DOĞAN

    2017-04-01

    Full Text Available The purpose of the study was to determine the goals of the rectors of the universities established after 2006 and to identify what they can do in line with these goals. We also aimed to uncover the entrepreneurial qualities of the rectors having an administrative duty in the university climate and to determine the status of scientists who will guide the future of Turkey. The study was conducted between October 2014 and October 2016 through interviews with 37 rectors, 29 of which belonged to a state university and 8 of which belonged to a foundation university, among the total of 70 rectors from nationwide universities founded in every region of Turkey since 2006. The results of the study indicated that the various goals and visions of rectors included becoming a world university that is innovative and entrepreneurial, constructing the institutional identity of the university, being visionary and open to change and motivating the employees and students. It is considered that new universities will have an important catalyst role in local, regional and national development with the right development strategies. This research is important since there is no other study on university rectors’ 2023 visions and goals and also due to the contributions of the strategies to be developed in line with the findings of this study for the entrepreneurial and innovative university indexes.

  2. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  3. Gyöngyi Szabó Földesi as Scientist and University Teacher in Hungarian and International Perspective

    Directory of Open Access Journals (Sweden)

    Földesi Gyöngyi Szabó

    2017-03-01

    Full Text Available This is the third article of the cycle of portraits of the members of the Editorial Board and Editorial Advisory Board of the journal Physical Culture and Sport. Studies and Research, who are eminent social scientists researching the issue of sport. Among them, there are many world-class professors, rectors and deans of excellent universities, founders, presidents and secretaries-general of continental and international scientific societies and editors of high-scoring journals related to social sciences focusing on sport. The journal Physical Culture and Sport. Studies and Research started its activities in 2008 and gathered many readers, distinguished authors and outstanding reviewers. It is worth taking a moment to present the profiles of the individual editors, thanks to whom the journal keeps getting better and better. The journal is increasingly appreciated internationally particular among the scientists from the humanist and social areas of investigations. The rapidly increasing number of its readers and its surprisingly wide reception, indicated by the number of visits and downloads in English-speaking countries, including hundreds of universities (up to 791 were interested in the content of issue 62 of our magazine, research institutes and related libraries, as well as academics, researchers and students, should be celebrated. These data are derived only from one bibliographic data base (EBSCO. It must be noted that the journal is indexed in 41 bases.

  4. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  5. Uncovering Student Ideas in Astronomy 45 Formative Assessment Probes

    CERN Document Server

    Keeley, Page

    2012-01-01

    What do your students know-or think they know-about what causes night and day, why days are shorter in winter, and how to tell a planet from a star? Find out with this book on astronomy, the latest in NSTA's popular Uncovering Student Ideas in Science series. The 45 astronomy probes provide situations that will pique your students' interest while helping you understand how your students think about key ideas related to the universe and how it operates.

  6. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  7. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    Science.gov (United States)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our

  8. Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary

    2012-04-23

    In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.

  9. Education and training of future wetland scientists and managers

    Science.gov (United States)

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  10. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  11. Increasing Shore-based Participation of Scientists & Students in Telepresence-enabled Nautilus Expeditions

    Science.gov (United States)

    Bell, K. L. C.; Raineault, N.; Carey, S.; Eberli, G. P.; John, B. E.; Cheadle, M. J.; German, C. R.; Mirmalek, Z.; Pallant, A.

    2016-02-01

    As the US oceanographic research fleet shrinks, reducing seagoing opportunities for scientists and students, remote participation in cruises via telepresence will become increasingly vital. The Nautilus Exploration Program is improving the experience of shoreside participants through the development of new tools and methodologies for connecting them to expeditions in real time increasing accessibility to oceanographic cruises. The Scientist Ashore Program is a network of scientists around the world who participate in Exploration Vessel Nautilus expeditions from their own labs or homes. We have developed a suite of collaboration tools to allow scientists to view video and data in real time, as well as to communicate with ship-based and other shore-based participants to enable remote participation in cruises. Post-cruise, scientists and students may access digital data and biological and geological samples from our partner shore-based repositories: the University of Rhode Island Inner Space Center, Harvard Museum of Comparative Zoology, and URI Marine Geological Samples Lab. We present examples of successful shore-based participation by scientists and students in Nautilus expeditions. In 2013, Drs. Cheadle and John stood watch 24/7 with ten undergraduate and graduate students at the University of Wyoming, recording geologic features and samples, during a cruise to the Cayman Rise. The Straits of Florida & Great Bahama Bank cruise was co-led by Dr. Eberli at the University of Miami in 2014, greatly complementing existing data. That same year, the ISC hosted four early career scientists and their twelve undergraduate students who led dives from shore in collaboration with Dr. Carey, Lead Scientist at sea on the Kick'em Jenny Volcano & the Barbados Mud Volcanoes cruise. In 2015, 12 Scientists Ashore worked in collaboration with the ship-based team on the exploration of Galapagos National Park, and more than 20 are working with OET on post-cruise data & sample analysis.

  12. Living with Internationalization: The Changing Face of the Academic Life of Chinese Social Scientists

    Science.gov (United States)

    Xie, Meng

    2018-01-01

    Internationalization is an integral part of the strategies of leading Chinese universities to strive for world-class standing. It has left its marks on the academic life of China's social scientists. This article explores the impact of internationalization on the academic life of Chinese social scientists using Tsinghua University as an example.…

  13. Changing the Culture of Science Communication Training for Junior Scientists

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  14. Changing the Culture of Science Communication Training for Junior Scientists.

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  15. The expanding universe

    CERN Document Server

    Lew, Kristi

    2011-01-01

    People have always been fascinated with the stars above and the universe that contains them. Over the years, astronomers have developed numerous theories to explain how the universe began, how it works, and what its ultimate fate will be. But all of the scientists' questions are far from answered. The Expanding Universe goes beyond the creation of the universe to explain how scientists think the universe works, grows, and changes, including what great thinkers Isaac Newton and Albert Einstein had to say about its fate. Readers will also learn about how researchers are slowly shedding light on

  16. The Use of Internet by Academic Scientists in Modibbo Adama ...

    African Journals Online (AJOL)

    The internet is an important tool for communication and retrieval of information. This study examined the use of internet in communication and retrieval of information by scientists in Modibbo Adama University of Technology, Yola.The survey method was used for the study. A total of 95 scientists in the school of pure and ...

  17. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    Science.gov (United States)

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  19. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  20. The talent process of successful academic women scientists at elite research universities in New York state

    Science.gov (United States)

    Kaenzig, Lisa M.

    women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments

  1. Knowledge transfer activities of scientists in nanotechnology

    NARCIS (Netherlands)

    Zalewska-Kurek, Katarzyna; Egedova, Klaudia; Geurts, Petrus A.T.M.; Roosendaal, Hans E.

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists:

  2. Scientists develop the Universe's baby pictures

    CERN Multimedia

    Overbye, D

    2002-01-01

    Using a radio telescope high in the Andes, astronomers have mapped minute variations in the brightness of radio waves thought to be left over from the Big Bang. They reveal the universe when it was only some 300,000 years old and about as hot as a cool star (2 pages).

  3. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    Science.gov (United States)

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  4. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  5. Scientists “in the making” attend conference

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The aim of the "Be a scientist for a day" project, which began in January (see previous article), was to introduce 9 to 12-year-olds to the methods of experimental science. On Friday 24 June a full-scale conference for the schoolchildren who took part in the project was held at the Globe of Science and Innovation to mark the end of the project.   "So what do you think was in the box?" The answer was finally revealed to the 650 or so schoolchildren taking part in the "Be a scientist for a day" project. Since the beginning of the year, 29 classes from the Pays de Gex and the Canton of Geneva had been taking part in the project, run jointly by CERN, Geneva University's "PhysiScope" group, the education authorities of the Pays de Gex (Inspection de l’éducation nationale) and Geneva (Service de la coordination pédagogique de l’enseignement primaire) and Geneva University's Faculty of Scien...

  6. A course of mathematics for engineerings and scientists

    CERN Document Server

    Chirgwin, Brian H

    1984-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 2 continues the course of pure and applied mathematics for undergraduate science and engineering students. It contains further examples and exercises from examination papers from Oxford University, Cambridge University, and the University of London. The topics covered in this book include differential equations, linear equations, matrices and determinants, vector algebra and coordinate geometry, and differentiation and integration of functions of two or more variables. This book is intended as a reference for students taking science

  7. A Tale of Two scientists and their Involvement in Education & Outreach

    Science.gov (United States)

    McDonnell, J.

    2004-12-01

    Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or

  8. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  9. “I LIGHT MY CANDLE FROM YOURS…”: ANTHROPOLOGICAL ASPECTS OF MODERN LIBRARY SERVICES FOR SCIENTISTS

    Directory of Open Access Journals (Sweden)

    T. О. Kolesnykova

    2017-06-01

    Full Text Available Introduction. Integration of knowledge and communications, the movement for open access to knowledge lead to the emergence of factors that update the philosophy of functioning and development of university libraries. There is a need to comprehend the ongoing innovations in the activities of university libraries in the world. Purpose. The study assumes understanding of the substantial changes in the library services for scientists related to Open Access and the new role of university libraries – a partner in the production, preservation and spread of knowledge. Methodology. On the basis of empirical and theoretical methods, the features of modern university libraries are considered. They include shift of the priority vector towards the services for an author-scientist and support of the philosophy of open access to knowledge. The study identifies and analyzes the anthropological aspects of communicative and informational awareness of reality by university researchers and librarians. The realities of modern services for scientists of Ukraine are examined based on the experience of the Scientific and Technical Library of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The observations and surveys of scientists, librarians, publishers of scientific periodicals allow analyzing the anthropological aspects concerning new digital library services. The aspects affect: 1 relationship between communicants; 2 explanations of why it is the authors-researchers who have been at the center of the attention of libraries, why they are provided with exactly these services and exactly in this way; 3 levels of impact of new services on both scientists and librarians. Originality. It is established that in the process of communicative and informational awareness of reality, there are changes in the dimension of scientists and university librarians, namely, the ways of their behaviour and the communicative features

  10. Can a Diary Encourage Others to be Citizen Scientists?

    Directory of Open Access Journals (Sweden)

    Jerry H. Kavouras

    2015-08-01

    Full Text Available Review of: Diary of a Citizen Scientist Chasing Tiger Beetles and Other New Ways of Engaging the World; Sharman Apt Russell; (2014. Oregon State University Press, Corvallis, OR. 222 pages.

  11. Lauch of CERN particle accelerator delayed

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inSwitzerland yesterday confirmed a delay in tests of its massive new particle accelerator." (1 page)

  12. Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis

    NARCIS (Netherlands)

    Postema, Pieter G.; Vlaar, Alexander P. J.; DeVries, J. Hans; Tan, Hanno L.

    2011-01-01

    We describe a case of diabetic ketoacidosis with concomitant hyperkalaemia that uncovered a typical Brugada syndrome electrocardiogram (ECG). Further provocation testing in the patient and his son confirmed familial Brugada syndrome. Diabetic ketoacidosis with hyperkalaemia may uncover an

  13. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  14. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  15. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  16. Author Productivity and Collaboration Among Academic Scientists in ...

    African Journals Online (AJOL)

    A lot of researches on author productivity and collaboration were carried out in different fields. Many of the researches established that productive, active and prolific authors are also highly collaborative. This study determines whether the most productive author among the academic scientists in Modibbo Adama University ...

  17. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  18. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  19. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    CERN Document Server

    Boukhanovsky, Alexander V; Krzhizhanovskaya, Valeria V; Athanassoulis, Gerassimos A; Klimentov, Alexei A; Sloot, Peter M A

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The first YSC event was organized in 2012 by the University of Amsterdam, the Netherlands and ITMO University, Russia with the goal of opening a dialogue on the present and the future of computational science and its applications. We believe that the YSC conferences will strengthen the ties between young scientists in different countries, thus promoting future collaboration. In this paper we briefly introduce the challenges the millennial generation is facing; describe the YSC conference history and topics; and list the keynote speakers and program committee members. This volume of Procedia Computer Science presents selected papers from the 4th International Young Scientists Conference on Computational Science held on 25 ...

  20. Message from the ISCB: 2015 ISCB Accomplishment by a Senior Scientist Award: Cyrus Chothia.

    Science.gov (United States)

    Fogg, Christiana N; Kovats, Diane E

    2015-07-01

    The International Society for Computational Biology (ISCB; http://www.iscb.org) honors a senior scientist annually for his or her outstanding achievements with the ISCB Accomplishment by a Senior Scientist Award. This award recognizes a leader in the field of computational biology for his or her significant contributions to the community through research, service and education. Cyrus Chothia, an emeritus scientist at the Medical Research Council Laboratory of Molecular Biology and emeritus fellow of Wolfson College at Cambridge University, England, is the 2015 ISCB Accomplishment by a Senior Scientist Award winner.Chothia was selected by the Awards Committee, which is chaired by Dr Bonnie Berger of the Massachusetts Institute of Technology. He will receive his award and deliver a keynote presentation at 2015 Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Dublin, Ireland, in July 2015. dkovats@iscb.org. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  2. Scientists keep a hi-tech eye on the sky

    CERN Multimedia

    2003-01-01

    "Liverpool scientists are developing a technology that will make it easier to spot near-Earth asteroids. Astronomers at John Moores University are working on computer programmes that will speed up the detection of space objects that pose a threat to our planet" (1/2 page).

  3. Politics and scientific expertise: Scientists, risk perception, and nuclear waste policy

    International Nuclear Information System (INIS)

    Barke, R.P.; Jenkins-Smith, H.C.

    1993-01-01

    To study the homogeneity and influences on scientists' perspectives of environmental risks, the authors have examined similarities and differences in risk perceptions, particularly regarding nuclear wastes, and policy preferences among 1011 scientists and engineers. Significant differences (p<0.05) were found in the patterns of beliefs among scientists from different fields of research. In contrast to physicists, chemists, and engineers, life scientists tend to: (a) perceive the greatest risks from nuclear energy and nuclear waste management; (b) perceive higher levels of overall environmental risk; (c) strongly oppose imposing risks on unconsenting individuals; and (d) prefer stronger requirements for environmental management. On some issues related to priorities among public problems and calls for government action, there are significant variations among life scientists or physical scientists. It was also found that-independently of field of research-perceptions of risk and its correlates are significantly associated with the type of institution in which the scientist is employed. Scientists in universities or state and local governments tend to see the risks of nuclear energy and wastes as greater than scientists who work as business consultants, for federal organizations, or for private research laboratories. Significant differences also are found in priority given to environmental risks, the perceived proximity of environmental disaster, willingness to impose risks on an unconsenting population, and the necessity of accepting risks and sacrifices. 33 refs., 3 figs., 9 tabs

  4. Unfolding the Meaning of Public(s) in Universities: Toward the Transformative University

    Science.gov (United States)

    Guzmán-Valenzuela, Carolina

    2016-01-01

    Drawing upon perspectives from diverse disciplines, this paper critically examines some taken-for-granted definitions about what is understood by "public" and its relation to universities. It highlights the need to uncover assumptions and value orientations that are at the basis of these definitions and that tend to guide both…

  5. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  6. The Citizen-Scientist as Data Collector: GLOBE at Night, Part 1

    Science.gov (United States)

    Ward, D. L.; Henderson, S.; Meymaris, K.; Walker, C.; Pompea, S. M.; Gallagher, S.; Salisbury, D.

    2006-12-01

    ), Windows to the Universe, and ESRI. The GLOBE Program is an international inquiry-based program designed to engage teachers with their students in partnership with research scientists to better understand the environment at local, regional, and global scales. The GLOBE Program is managed by the University Corporation for Atmospheric Research and Colorado State University with funding from NASA, NSF, and the U.S. Department of State.

  7. Dwelling in the Anthropocene: Reimagining University Learning Environments in Response to Social and Ecological Change

    Science.gov (United States)

    Rousell, David

    2016-01-01

    Over the last three decades, scientists have uncovered the extent of human impacts on the earth's operating systems with increasing clarity and precision. These findings have prompted scientific claims that we have transitioned out of the Holocene and into the Anthropocene epoch in the earth's geological history (Crutzen & Stoermer, 2000). At…

  8. Web site lets solar scientists inform and inspire students

    Science.gov (United States)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  9. Will there be enough engineers and scientists to revive the nuclear industry?

    International Nuclear Information System (INIS)

    Cox, B.

    1991-01-01

    The author adduces statistics of university entry and graduation to predict a shortage of scientists and engineers available to enter the Canadian nuclear industry over the next ten years. Since the industry will need more than three times as many new engineers as new scientists, the shortage of engineers will be particularly acute. The cause of the trouble is partly the declining popularity of science and engineering, partly declining educational standards

  10. 20th International Conference for Students and Young Scientists: Modern Techniques and Technologies (MTT'2014)

    International Nuclear Information System (INIS)

    2014-01-01

    The active involvement of young researchers in scientific processes and the acquisition of scientific experience by gifted youth currently have a great value for the development of science. One of the research activities of National Research Tomsk Polytechnic University, aimed at the preparing and formation of the next generation of scientists, is the International Conference of Students and Young Scientists ''Modern Techniques and Technologies'', which was held in 2014 for the twentieth time. Great experience in the organization of scientific events has been acquired through years of carrying the conference. There are all the necessary resources for this: a team of organizers – employees of Tomsk Polytechnic University, premises provided with modern office equipment and equipment for demonstration, and leading scientists – professors of TPU, as well as the status of the university as a leading research university in Russia. This way the conference is able to attract world leading scientists for the collaboration. For the previous years the conference proved itself as a major scientific event at international level, which attracts more than 600 students and young scientists from Russia, CIS and other countries. The conference provides oral plenary and section reports. The conference is organized around lectures, where leading Russian and foreign scientists deliver plenary presentations to young audiences. An important indicator of this scientific event is the magnitude of the coverage of scientific fields: energy, heat and power, instrument making, engineering, systems and devices for medical purposes, electromechanics, material science, computer science and control in technical systems, nanotechnologies and nanomaterials, physical methods in science and technology, control and quality management, design and technology of artistic materials processing. The main issues considered by young researchers at the conference were related to the

  11. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  12. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  13. Learning with Teachers; A Scientist's Perspective

    Science.gov (United States)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  14. The Scientist and the Educational Development Team: An Impedance Mismatch?

    Science.gov (United States)

    Pompea, S. M.

    2001-05-01

    This talk describes my experiences and those of several other scientists who have worked on teams to develop new instructional materials and programs. At each stage of the development process we try to communicate our skills and experiences to the rest of the development team. In turn, the experiences of non-scientist educators on the team must be communicated to us. However, in many cases there is an "impedance mismatch" which makes communication difficult. One primary source of this mismatch is the scientist's lack of experience with schools, students, teachers, school administrators, museums, and the public. The result of this mismatch can leave the scientist in one limited, but useful role: proofreader and critic. Unfortunately, this can hardly be described as a partnership. This talk gives some advice, based on 25 years of educational materials and program development work, on how to avoid such a limited role. The talk would be appropriate for those scientists who want to lead, inspire, or significantly contribute to educational initiatives and to share in the frustration and the rewards enjoyed by professional educators and professional educational developers. S. Pompea is an adjunct faculty member of Steward Observatory of the University of Arizona.

  15. Symbiosis on Campus: Collaborations of Scientists and Science Educators.

    Science.gov (United States)

    Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John

    This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…

  16. MARS A Cosmic Stepping Stone Uncovering Humanity’s Cosmic Context

    CERN Document Server

    Nolan, Kevin

    2008-01-01

    The questions of our origin and cosmic abundance of life are among the most compelling facing humanity. We have determined much about the nature and origin of the Universe and our place in it, but with virtually all evidence of our origin long since gone from our world and an unimaginably vast Universe still to explore, defining answers are difficult to obtain. For all of the difficulties facing us however, the planet Mars may act as a ‘cosmic stepping stone’ in uncovering some of the answers. Although different today, the origin and early history of both Earth and Mars may have been similar enough to consider an origin to life on both. But because Mars’ planetary processes collapsed over three billion years ago – just as life was beginning to flourish on Earth – a significant and unique record of activity from that era perhaps relevant to the origin of life still resides there today. In recognition of this, both the US and Europe are currently engaged in one of the most ambitious programs of explor...

  17. Women scientists' scientific and spiritual ways of knowing

    Science.gov (United States)

    Buffington, Angela Cunningham

    While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.

  18. Gender differentials in ICT uptake rating among research scientists ...

    African Journals Online (AJOL)

    The study examined the challenge to ICT uptake rating among research scientists in the Nigerian Universities of Agriculture through gender inequality. Primary data were used for the study which was generated through the use of questionnaire. The study took a sample of 240 respondents from a population of 1758 from the ...

  19. Ivan Yakovych Gorbachevsky – Scientist, Patriot, Citizen

    Directory of Open Access Journals (Sweden)

    V. M. Danilova

    2014-10-01

    Full Text Available The article presents the facts about life and research activity of Ivan Ya. Gorbachevsky (1854-1942, the prominent scientist, Ukrainian by origin, doctor of medical sciences, professor, dean of the medical faculty and the rector of Charles University in Prague, member of the health board of the Czech Kingdom, a member of the Supreme Council of Health of Austria-Hungary in Vienna, a lifelong member of the House of Lords of the Austrian Parliament, first health minister of Austria-Hungary, rector of the Ukrainian Free University in Prague, professor of chemistry at the Padebradsk Economic Academy and the Ukrainian Pedagogical Dragomanov University, AUAS member in 1925, member of the Shevchenko Scientific Society. His research works were devoted to digestion of proteins, public and food hygiene. He was the first who synthesized uric acid (1882 and discovered xanthine oxidase (1889.

  20. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  1. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  2. Attitudes of Medical Students, Clinicians and Sports Scientists Towards Exercise Counselling

    OpenAIRE

    Gnanendran, Abbyrhamy; Pyne, David B.; Fallon, Kieran E.; Fricker, Peter A.

    2011-01-01

    We compared the amount of exercise undertaken by medical students, clinicians, and sport scientists with the National Australian Physical Activity (NAPA) Guidelines. A second aim was to compare attitudes to exercise counselling as preventive medicine between university- and clinic-based professionals. The research setting was a university medical school and a sports science sports medicine centre. A 20-item questionnaire was completed by 216 individuals (131 medical students, 43 clinicians an...

  3. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  4. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  5. Scientists Still Behaving Badly? A Survey Within Industry and Universities.

    Science.gov (United States)

    Godecharle, Simon; Fieuws, Steffen; Nemery, Ben; Dierickx, Kris

    2017-10-02

    Little is known about research misconduct within industry and how it compares to universities, even though a lot of biomedical research is performed by-or in collaboration with-commercial entities. Therefore, we sent an e-mail invitation to participate in an anonymous computer-based survey to all university researchers having received a biomedical research grant or scholarship from one of the two national academic research funders of Belgium between 2010 and 2014, and to researchers working in large biomedical companies or spin-offs in Belgium. The validated survey included questions about various types of research misconduct committed by respondents themselves and observed among their colleagues in the last three years. Prevalences of misconduct were compared between university and industry respondents using binary logistic regression models, with adjustments for relevant personal characteristics, and with significance being accepted for p industry. Response rates were 43 (767/1766) and 48% (123/255), and usable information was available for 617 and 100 respondents, respectively. In general, research misconduct was less likely to be reported by industry respondents compared to university respondents. Significant differences were apparent for one admitted action (gift authorship) and three observed actions (plagiarism, gift authorship, and circumventing animal-subjects research requirements), always with lower prevalences for industry compared to universities, except for plagiarism. This survey, based on anonymous self-report, shows that research misconduct occurs to a substantial degree among biomedical researchers from both industry and universities.

  6. The Universe in a nutshell

    International Nuclear Information System (INIS)

    Hawking, S.

    2002-01-01

    In this new book Hawking takes us to the cutting edge of theoretical physics, where truth is often stranger than fiction, to explain in laymen's terms the principles that control our universe. Like many in the community of theoretical physicists, Professor Hawking is seeking to uncover the grail of science -- the elusive Theory of Everything that lies at the heart of the cosmos. In his accessible and often playful style, he guides us on his search to uncover the secrets of the universe -- from supergravity to supersymmetry, from quantum theory to M-theory, from holography to duality. He takes us to the wild frontiers of science, where superstring theory and p-branes may hold the final clue to the puzzle. And he lets us behind the scenes of one of his most exciting intellectual adventures as he seeks t o combine Einstein's General Theory of Relativity and Richard Feynman's idea of multiple histories into one complete unified theory that will describe everything that happens in the universe. 'With characteristic exuberance, Professor Hawking invites us to be fellow travelers on this extraordinary voyage through space-time'. Copious four-color illustrations help clarify this journey into a surreal wonderland where particles, sheets, and strings move in eleven dimensions; where black holes evaporate and disappear, taking their secret with them; and where the original cosmic seed from which our own universe sprang was a tiny nut. The Universe in a Nutshell is essential reading for all of us who want to understand the universe in which we live

  7. The Role and Responsibility of the University Library in Publishing in a University

    Directory of Open Access Journals (Sweden)

    Bas Savenije

    2000-06-01

    Full Text Available As a consequence of developments in information technology, the traditional information chain is subject to change: the separate functions in this chain become more and more integrated and the roles played by the traditional parties are most uncertain. Several new models in scholarly publishing and communication are emerging, in which the scientific community and the scientists themselves play a central role. It is more than natural for universities to support these developments in order to realise new models of scientific communication that are more in tune with the needs of the academic community than the traditional model, which has led to a serious serials crisis. An important step in this direction is that each university encourages scientists to make more use of ICT in their research publications. However, it is also necessary to give serious attention to organisational matters: in this respect every university should take responsibility for collecting, archiving and disclosing the scientific output of its own scientists. The provision of scientific information is the traditional core business of university libraries and it is a natural extension of this role for university libraries to support this development and to organise the processes needed. The paper describes the role that universities and their libraries have to play. It also gives some examples of library initiatives in this field, including an evaluation of their impact on the innovation of scientific communication.

  8. Our Universe

    Science.gov (United States)

    Stern, Alan

    2001-03-01

    The Universe in which we live is unimaginably vast and ancient, with countless star systems, galaxies, and extraordinary phenomena such as black holes, dark matter, and gamma ray bursts. What phenomena remain mysteries, even to seasoned scientists? Our Universe is a fascinating collection of essays by some of the world's foremost astrophysicists. Some are theorists, some computational modelers, some observers, but all offer their insights into the most cutting-edge, difficult, and curious aspects of astrophysics. Compiled, the essays describe more than the latest techniques and findings. Each of the ten contributors offers a more personal perspective on their work, revealing what motivates them and how their careers and lives have been shaped by their desire to understand our universe. S. Alan Stern is Director of the Department of Space Studies at Southwest Research Institute in Boulder, Colorado. He is a planetary scientist and astrophysicist with both observational and theoretical interests. Stern is an avid pilot and a principal investigator in NASA's planetary research program, and he was selected to be a NASA space shuttle mission specialist finalist. He is the author of more than 100 papers and popular articles. His most recent book is Pluto & Charon (Wiley, 1997). Contributors: Dr. John Huchra, Harvard University Dr. Esther Hu, University of Hawaii, Honolulu Dr. John Mather, NASA Goddard Space Flight Center Dr. Nick Gnedin, University of Colorado, Boulder Dr. Doug Richstone, University of Michigan, Ann Arbor Dr. Bohdan Paczynski, Princeton University, NJ Dr. Megan Donahue, Space Telescope Science Institute, Baltimore, MD Dr. Jerry Ostriker, Princeton University, New Jersey G. Bothun, University of Oregon, Eugene

  9. REVIEW: EXPLORERS AND SCIENTISTS IN CHINA'S BORDERLANDS

    OpenAIRE

    Gregory Rohlf

    2013-01-01

    Review of: Denise M Glover, Stevan Harrel, Charles F McKhann, and Margaret Byrne Swain (eds). 2011. Explorers and Scientists in China's Borderlands, 1880-1950. Seattle: University of Washington Press. This collection of eight biographical essays from a 2007 symposium makes for engaging reading and holds together well as a book. The authors, mainly anthropologists, examine the lives of ten explorers who were active primarily in the first half of the twentieth century. Some worked for d...

  10. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  11. The transformative experiences of a scientist-professor with teacher candidates

    Science.gov (United States)

    Lashley, Terry Lee Hester

    This case study documented the pedagogical and philosophical change experiences of a senior research scientist-professor at a large Research I University as he implemented an open inquiry immersion course with secondary science teacher candidates. The 4-semester hour graduate-level credit course (Botany 531) is titled "Knowing and Teaching Science: Just Do-It!" The students were 5th-year education students who possessed an undergraduate degree in the biological sciences. The premise for the course is that to teach science effectively, one must be able to DO science. Students were provided with extensive opportunities to design and carry out experiments and communicate the results both orally and in a written format. The focus of this dissertation was on changes in the pedagogical philosophy and practice of the scientist-professor as he taught this course over a 4-year period, 1997--2000. The data used in this study include the scientist-professor's reflective journals (1997--2000), the students' journals (1997--2000), and interviews with the scientist-professor (2001--2002). HyperRESEARCH 2.03 software was used to code and analyze the reflective journals and transcribed interviews. Data were reviewed and then placed into original codes. The codes were then grouped into themes for analysis. Identified themes included (1) Reflective Practice, (2) Social Construction of Knowledge, (3) Legitimate Peripheral Participation, and (4) the Zone of Proximal Development. There is clear evidence that the scientist-professor experienced transformative changes in his philosophy and practice over the 4-year period. This is shown by (1) differences in learning outcomes and expectations for Do-It! course students and traditional course students, (2) documentation of the scientist-professor's movement through the Concerns Based Adoption Model (CBAM) Stages of Concern, (3) increased collaboration and support from the college of education, (4) development and delivery of two other

  12. Practicing Politics: Female Political Scientists as Candidates for Elective Office

    Science.gov (United States)

    Burrell, Barbara

    2012-01-01

    In 2007, University of Oklahoma political science professor Cindy Simon Rosenthal was elected mayor of Norman, Oklahoma, after having served as a member of its city council. Was her activity unique within the political science profession among female political scientists? Her election stimulated the curiosity of some of us in the…

  13. Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T P; Ball, D Y

    2008-06-05

    How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.

  14. Gap between science and media revisited: scientists as public communicators.

    Science.gov (United States)

    Peters, Hans Peter

    2013-08-20

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.

  15. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  16. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  17. English as an international language of science and its effect on Nordic terminology: the view of scientists

    OpenAIRE

    Hultgren, Anna Kristina

    2015-01-01

    This chapter is concerned with attitudes to English as an international language of science among Nordic scientists. It reports on a questionnaire completed by 200+ physicists, chemists and computer scientists at universities in five Nordic countries: Iceland, Norway, Denmark, Sweden and Finland. The purpose is two-fold: First, it investigates if claims made primarily by representatives of the national language councils about a lack of local language terminology are corroborated by scientists...

  18. Uncovering Wildlife

    Science.gov (United States)

    Travis, Holly

    2016-01-01

    Many ground-dwelling amphibians, reptiles, small mammals, insects, and other arthropods seek cover during their resting hours. Their natural hideaways include underground burrows, rotting logs, and leaf litter, which are widely distributed and difficult to discover and observe. To make observation easier, scientists, educators, and students can…

  19. Scientists' internal models of the greenhouse effect

    Science.gov (United States)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  20. From Traditional to Modern Universities

    DEFF Research Database (Denmark)

    Nielsen, Anja Birch; Sort, Jesper Chrautwald; Nielsen, Christian

    concludes that the performance management used today in universities in form of publications is overlooking the industries’ need of growth from the university knowledge. Hence motivating the scientists to engage in collaborations only from the university point of view and only to a limited extent concerning...... about the companies....

  1. Uncovering Black Womanhood in Engineering

    Science.gov (United States)

    Gibson, Sheree L.; Espino, Michelle M.

    2016-01-01

    Despite the growing research that outlines the experiences of Blacks and women undergraduates in engineering, little is known about Black women in this field. The purpose of this qualitative study was to uncover how eight Black undergraduate women in engineering understood their race and gender identities in a culture that can be oppressive to…

  2. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  3. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  4. CosmoAcademy Training and Certification for Scientists and Engineers

    Science.gov (United States)

    Noel-Storr, Jacob; Buxner, Sanlyn; Grier, Jennifer A.; Gay, Pamela L.; CosmoQuest Team

    2016-10-01

    CosmoQuest is a virtual research facility bringing together scientists, citizens, and learners of all ages. CosmoQuest offers classes, training, and learning opportunities online through CosmoAcademy, offering opportunities for all kinds of learners to become more connected to the science of the Universe. In this poster we describe CosmoAcademy opportunities for Subject Matter Experts (SMEs), scientists and engineers who are interested in broadening their impact of their work by providing learning opportunities for those outside of the scientific community. CosmoAcademy offers SME programs at a variety of levels and across a variety of topics in formal and informal education and outreach -- ranging from sharing the results of your work on social media, through delivering an online class series, to partnering with teachers and schools. SMEs may combine sequences of training to earn certification at various levels for their participation in the CosmoAcademy programs. SMEs who have been trained may also apply to teach CosmoAcademy classes for the community on subjects of their expertise to build a rich and engaging learning resource for members of society who wish to understand more about the Universe.

  5. IRANIAN SCIENCE: Iran's Scientists Cautiously Reach Out to the World.

    Science.gov (United States)

    Koenig, R

    2000-11-24

    Two decades after Iran's Islamic revolution, science in this politically isolated but oil-rich nation may be on the verge of resurgence. The nation's reform-minded president, Mohammad Khatami, and his allies are promising more money for R&D, reorganizing universities to beef up graduate education and research, and cracking open the door to closer cooperation with scientists abroad, including those in the United States. But Iran's government is walking a tightrope between hard-liners on the right who oppose reforms and liberal university students eager for change.

  6. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  7. Top scientists join Stephen Hawking at Perimeter Institute

    Science.gov (United States)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  8. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  9. Innovation activity of scientists as a factor in the development of academic entrepreneurship in Russia

    Directory of Open Access Journals (Sweden)

    L. N. Babak

    2016-01-01

    Full Text Available The development of academic entrepreneurship as a way of transfer of innovation is an urgent task. One of the main factors in the development of academic entrepreneurship is innovation-oriented staff of higher education institutions. Insufficient attention of the scientific literature to importance of this factor is thwarting progress of various forms of academic entrepreneurship. In connection with this proposed study is aimed at determining the degree of scientific innovation activity influence on the development of academic entrepreneurship in Russia. Academic entrepreneurship in Russia has been chosen as the object of study. Analysis of the basic research in the field of academic entrepreneurship for the period of 2011-2016 years was used to achieve this goal. Analysis of publications was revealed that the innovative activity of the teaching staff of universities is a critical factor in the development of academic entrepreneurship. However, Russian scientists are characterized by low innovation activity, resulting in academic entrepreneurship in Russia is weak. The researchers suggest the following solutions to eliminate or minimize the effects of this problem: full awareness and moral training of the scientists involved in the innovation process of higher education institutions; profit payment; creating a psychological climate that will affect the scientific process of self-realization; continuous training of employees involved in the innovation process of higher education institutions; the creation of conditions that will contribute to the manifestation of creative activity of scientists; provide greater confidence to young scientists, graduate students and undergraduates; providing moral and material encouragement of initiatives, experimentation and creativity of scientific and pedagogical staff; the allocation of free time for scientists to research and search activities and others. The data obtained can be used by the guidance of

  10. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  11. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  12. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  13. Scientist-Practitioner Engagement to Inform Regional Hydroclimate Model Evaluation

    Science.gov (United States)

    Jones, A. D.; Jagannathan, K. A.; Ullrich, P. A.

    2017-12-01

    Water mangers face significant challenges in planning for the coming decades as previously stationary aspects of the regional hydroclimate shift in response to global climate change. Providing scientific insights that enable appropriate use of regional hydroclimate projections for planning is a non-trivial problem. The system of data, models, and methods used to produce regional hydroclimate projections is subject to multiple interacting uncertainties and biases, including uncertainties that arise from general circulation models, re-analysis data products, regional climate models, hydrologic models, and statistical downscaling methods. Moreover, many components of this system were not designed with the information needs of water managers in mind. To address this problem and provide actionable insights into the sources of uncertainty present in regional hydroclimate data products, Project Hyperion has undertaken a stakeholder engagement process in four case study water basins across the US. Teams of water managers and scientists are interacting in a structured manner to identify decision-relevant metrics of model performance. These metrics are in turn being used to drive scientific investigations to uncover the sources of uncertainty in these quantities. Thus far, we have found that identification of climate phenomena of interest to stakeholders is relatively easy, but translating these into specific quantifiable metrics and prioritizing metrics is more challenging. Iterative feedback among scientists and stakeholders has proven critical in resolving these challenges, as has the roles played by boundary spanners who understand and can speak to the perspectives of multiple professional communities. Here we describe the structured format of our engagement process and the lessons learned so far, as we aim to improve the decision-relevance of hydroclimate projections through a collaborative process.

  14. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  15. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  16. [AN OVERALL SOUND PROCESS] Syntactic parameters, statistic parameters, and universals

    Directory of Open Access Journals (Sweden)

    Nicolas Meeùs

    2016-05-01

    My paper intends to show that comparative musicology, in facts if not in principles, appears inherently linked to the syntactic elements of music – and so also any encyclopedic project aiming at uncovering universals in music. Not that statistic elements cannot be universal, but that they cannot be commented as such, because they remain largely unquantifiable.

  17. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  18. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  19. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  20. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    Science.gov (United States)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  1. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    Science.gov (United States)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  2. To the Top. Micropolitics of Career Planning of Social Scientists

    Directory of Open Access Journals (Sweden)

    Jo Reichertz

    2004-05-01

    Full Text Available Science is a peculiar field of profession—with changing features depending on changing values and the role of media. The aim of this article is to demonstrate the current development in the field of German social scientists concerning the new conception of raising German higher education and science to the international standard. The introduction of associate professorship (Junior Professor, the standardization of departments at universities and the new way of distributing resources include only a few of the important factors that contribute in changing the values in science. As a result promising young scientists need to put much more scientific effort and much more micropolitics to work their way up and to get to the top. URN: urn:nbn:de:0114-fqs0402165

  3. Comparison between uncovered and covered self-expandable metal stent placement in malignant duodenal obstruction.

    Science.gov (United States)

    Kim, Ji Won; Jeong, Ji Bong; Lee, Kook Lae; Kim, Byeong Gwan; Ahn, Dong Won; Lee, Jae Kyung; Kim, Su Hwan

    2015-02-07

    To compare the clinical outcomes of uncovered and covered self-expandable metal stent placements in patients with malignant duodenal obstruction. A total of 67 patients were retrospectively enrolled from January 2003 to June 2013. All patients had symptomatic obstruction characterized by nausea, vomiting, reduced oral intake, and weight loss. The exclusion criteria included asymptomatic duodenal obstruction, perforation or peritonitis, concomitant small bowel obstruction, or duodenal obstruction caused by benign strictures. The technical and clinical success rate, complication rate, and stent patency were compared according to the placement of uncovered (n = 38) or covered (n = 29) stents. The technical and clinical success rates did not differ between the uncovered and covered stent groups (100% vs 96.6% and 89.5% vs 82.8%). There were no differences in the overall complication rates between the uncovered and covered stent groups (31.6% vs 41.4%). However, stent migration occurred more frequently with covered than uncovered stents [20.7% (6/29) vs 0% (0/38), P stent patency was longer in uncovered than in covered stents [251 d (95%CI: 149.8 d-352.2 d) vs 139 d (95%CI: 45.5 d-232.5 d), P stent (70 d) and covered stent groups (60 d). Uncovered stents may be preferable in malignant duodenal obstruction because of their greater resistance to stent migration and longer stent patency than covered stents.

  4. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  5. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  6. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  7. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  8. Educating the next generation of atmospheric scientists within a European Network of Excellence

    Science.gov (United States)

    Schuepbach, E.; Uherek, E.; Ladstätter-Weissenmayer, A.; Jacob, M. J.

    In order to promote the next generation of atmospheric scientists, the task Training and Education (T&E) in ACCENT, the European Network of Excellence in Atmospheric Composition Change ( www.accent-network.org) has developed and implemented an Integrated Learning Environment (ILE). For school teachers and their students, the Internet-based "Global Change Magazine" provides up-to-date and freely accessible scientific material in English and five other languages. Additionally, T&E has produced online teaching material for early-career scientists. These e-learning modules are now being used in University Master's courses across Europe. T&E also organised training events for early-career scientists, combining scientific content with development in transferable skills, to focus on interdisciplinary collaboration, interaction with senior scientists, communication with stakeholders, and dissemination to the general public. Evaluation based on participant feedback evidences the effectiveness of these events, e.g., in terms of motivation to remain in the field. Methodologies and materials from T&E are being published in a Handbook on Best Practice, intended for both educators and scientists around the globe who are involved in education in the field of air quality and climate change science.

  9. Investigation of Professors’ Opinions about ‘Scientist, Academic and Scholar’ Concepts According to Gender

    Directory of Open Access Journals (Sweden)

    Çiğdem APAYDIN

    2015-09-01

    Full Text Available Purpose of this study is to determine how university professors evaluate the concepts of ‘scientist, academic and scholar’ according to gender, which one they use to describe themselves and why they prefer to use it. As a qualitative research model was employed in this study which was designed. Data were collected via interviews. A total of 22 faculty members (11 female, 11 male from A University with görevprofessor title have participated the study. While determining the participants, gender equality and having Professor Doctor title were used as the two basic criteria. The reasons of including faculty members with professor title were; their existence in the academic hierarchy for a long time and their extensive experience and observations since they went through this process together with their colleagues. In this study, easily accessible sampling, which is one of the purposive sampling methods, was used as the sampling technique. Seven of the participants were working on Social Sciences; twelve of them were from Physical Sciences, whereas three of them were working on Health Science area. In average, overall seniority of the participants was 27 years, whereas their professional history at the university was 23 years. Participants’ career at A University was 15 years in average. Content analysis had been used in data analysis. According to the findings of the research, the majority of male and female professors see a difference between ‘scientist’ and ‘academic’. According to female professors, the main difference between scientist and academic is, ‘academics are specific to the university’. This is followed by ‘scientist can work in every environment’. According to male professors, the educator role of academic and his detaching himself from the events is the rationale of the distinction from the ‘scientist’ concept. For both male and female professors, ‘scientist’ has a more universal meaning, whereas

  10. ATTITUDES OF MEDICAL STUDENTS, CLINICIANS AND SPORTS SCIENTISTS TOWARDS EXERCISE COUNSELLING

    Directory of Open Access Journals (Sweden)

    Abbyrhamy Gnanendran

    2011-09-01

    Full Text Available We compared the amount of exercise undertaken by medical students, clinicians, and sport scientists with the National Australian Physical Activity (NAPA Guidelines. A second aim was to compare attitudes to exercise counselling as preventive medicine between university- and clinic-based professionals. The research setting was a university medical school and a sports science sports medicine centre. A 20-item questionnaire was completed by 216 individuals (131 medical students, 43 clinicians and 37 sports scientists. Self-reported physical activity habits, exercise counselling practices and attitudes towards preventive medicine were assessed. The physical activity undertaken by most respondents (70% met NAPA Guidelines. General practitioners had significantly lower compliance rates with NAPA Guidelines than other professionals. More than half of clinicians and medical students (54% were less active now compared with levels of activity undertaken prior to graduate training. Most physicians (68% reported they sometimes discuss physical activity with patients. In contrast, the majority of non-medically qualified respondents (60% said they never discuss physical activity with their doctor. Most respondents (70% had positive attitudes to exercise counselling. Sports scientists and respondents who were highly active in childhood had more positive attitudes to exercise counselling than others. Health professionals in this study were more active than the general population, however healthy exercise habits tend to deteriorate after the commencement of medical training. Despite the important role of doctors in health promotion, the degree of exercise counselling to patients is low

  11. A Synchronous Distance Education Course for Non-Scientists Coordinated among Three Universities

    Science.gov (United States)

    Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine

    2010-01-01

    A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…

  12. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists

    Science.gov (United States)

    Mhopjeni, Kombada

    2015-04-01

    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among

  13. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  14. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  15. Science Information Requirements of Scientists: The Need for an Interacting Request Receiver in an Information Clearinghouse, Technical Report 3.

    Science.gov (United States)

    Kinkade, Robert G.; Bedarf, Erwin W.

    Evaluated were the role and importance of request-receiver feedback in an information system. Participants were 50 university biological scientists who agreed to place requests for information by telephone with a specially established clearinghouse. One type of receiver was a scientist holding a Ph.D. in biochemistry, with over 20 years biological…

  16. A Guide for Scientists Interested in Researching Student Outcomes

    Science.gov (United States)

    Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David

    2015-11-01

    Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for

  17. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    Science.gov (United States)

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-01-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the…

  18. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  19. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  20. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  1. Training scientists as future industry leaders: teaching translational science from an industry executive's perspective.

    Science.gov (United States)

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, "Biotechnology Industry: Structure and Strategy" was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students' knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists' training and inspire them to become innovative leaders in the discovery and development of therapeutics.

  2. Teenagers as scientist - Learning by doing or doing without learning?

    Science.gov (United States)

    Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike

    2010-05-01

    Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that

  3. Scientists present their design for Einstein Telescope

    CERN Multimedia

    ASPERA Press Release

    2011-01-01

    Plans shape up for a revolutionary new observatory that will explore black holes and the Big Bang. This detector will ‘see’ the Universe in gravitational waves.   A new era in astronomy will come a step closer when scientists from across Europe present their design study today for an advanced observatory capable of making precision measurements of gravitational waves – minute ripples in the fabric of spacetime – predicted to emanate from cosmic catastrophes such as merging black holes and collapsing stars and supernovae. It also offers the potential to probe the earliest moments of the Universe just after the Big Bang, which are currently inaccessible. The Einstein Observatory (ET) is a so-called third-generation gravitational-wave (GW) detector, which will be 100 times more sensitive than current instruments. Like the first two generations of GW detectors, it is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the le...

  4. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  5. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    Science.gov (United States)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the

  6. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Covered versus uncovered self-expandable metal stents for malignant biliary strictures: A meta-analysis and systematic review.

    Science.gov (United States)

    Moole, Harsha; Bechtold, Matthew L; Cashman, Micheal; Volmar, Fritz H; Dhillon, Sonu; Forcione, David; Taneja, Deepak; Puli, Srinivas R

    2016-09-01

    Self-expandable metal stents (SEMS) are used for palliating inoperable malignant biliary strictures. It is unclear if covered metal stents are superior to uncovered metal stents in these patients. We compared clinical outcomes in patients with covered and uncovered stents. Studies using covered and uncovered metallic stents for palliation in patients with malignant biliary stricture were reviewed. Articles were searched in MEDLINE, PubMed, and Ovid journals. Fixed and random effects models were used to calculate the pooled proportions. Initial search identified 1436 reference articles, of which 132 were selected and reviewed. Thirteen studies (n = 2239) for covered and uncovered metallic stents which met the inclusion criteria were included in this analysis. Odds ratio for stent occlusion rates in covered vs. uncovered stents was 0.79 (95 % CI = 0.65 to 0.96). Survival benefit in patients with covered vs. uncovered stents showed the odds ratio to be 1.29 (95 % CI = 0.95 to 1.74). Pooled odds ratio for migration of covered vs. uncovered stents was 9.9 (95 % CI = 4.5 to 22.3). Covered stents seemed to have significantly lesser occlusion rates, increased odds of migration, and increased odds of pancreatitis compared to uncovered stents. There was no statistically significant difference in the survival benefit, overall adverse event rate, and patency period of covered vs. uncovered metal stents in patients with malignant biliary strictures.

  8. Use of (Time-Domain) Vector Autoregressions to Test Uncovered Interest Parity

    OpenAIRE

    Takatoshi Ito

    1984-01-01

    In this paper, a vector autoregression model (VAR) is proposed in order to test uncovered interest parity (UIP) in the foreign exchange market. Consider a VAR system of the spot exchange rate (yen/dollar), the domestic (US) interest rate and the foreign (Japanese) interest rate, describing the interdependence of the domestic and international financia lmarkets. Uncovered interest parity is stated as a null hypothesis that the current difference between the two interest rates is equal to the d...

  9. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  10. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  11. Uncovering changes in university teachers' professional networks during an instructional development program

    NARCIS (Netherlands)

    Van Waes, Sara; Van den Bossche, Piet; Moolenaar, Nienke M.|info:eu-repo/dai/nl/304352802; Stes, Ann; Van Petegem, Peter

    2015-01-01

    This study examined (1) the extent to which university teachers' networks changed while they participated in an instructional development program, (2) which mechanisms supported or constrained network change, and (3) the extent to which value was created through networks. Longitudinal social network

  12. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  13. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    Science.gov (United States)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  14. How NASA is building and sustaining a community of scientist-communicators through virtual technology, graphic facilitation and other community-building tools

    Science.gov (United States)

    DeWitt, S.; Bovaird, E.; Stewart, N.; Reaves, J.; Tenenbaum, L. F.; Betz, L.; Kuchner, M. J.; Dodson, K. E.; Miller, A.

    2013-12-01

    In 2013 NASA launched its first agency-wide effort to cultivate and support scientist-communicators. The multiple motivations behind this effort are complex and overlapping, and include a desire to connect the agency's workforce to its mission and to each other in the post-Space Shuttle era; a shift in how the agency and the world communicates about science; the current public perception of science and of NASA, and a desire to share the stories of the real people behind the agency's technical work. Leaders in the NASA science, communications and public outreach communities partnered with the agency's training and leadership development organization to: identify and fully characterize the need for training and development in science communication, experiment with various learning models, and invite early-adopter scientists to evaluate these models for future agency investment. Using virtual collaboration technology, graphic facilitation, and leadership development methods, we set out to create an environment where scientist-communicators can emerge and excel. First, we asked scientists from across the agency to identify their motivations, opportunities, barriers and areas of interest in science communication. Scientists identified a need to go beyond traditional media training, a need for continuous practice and peer feedback, and a need for agency incentives and sustained support for this kind of work. This community-driven approach also uncovered a serious need for communication support in the wake of diminishing resources for travel and conference attendance. As a first step, we offered a series of virtual learning events - highly collaborative working sessions for scientists to practice their communication technique, develop and apply new skills to real-world situations, and gain valuable feedback from external subject matter experts and fellow scientists from across the agency in a supportive environment. Scientists from ten NASA centers and a broad range of

  15. Comparison of Covered Versus Uncovered Stents for Benign Superior Vena Cava (SVC) Obstruction.

    Science.gov (United States)

    Haddad, Mustafa M; Simmons, Benjamin; McPhail, Ian R; Kalra, Manju; Neisen, Melissa J; Johnson, Matthew P; Stockland, Andrew H; Andrews, James C; Misra, Sanjay; Bjarnason, Haraldur

    2018-05-01

    To identify whether long-term symptom relief and stent patency vary with the use of covered versus uncovered stents for the treatment of benign SVC obstruction. We retrospectively identified all patients with benign SVC syndrome treated to stent placement between January 2003 and December 2015 (n = 59). Only cases with both clinical and imaging follow-up were included (n = 47). In 33 (70%) of the patients, the obstruction was due to a central line or pacemaker wires, and in 14 (30%), the cause was fibrosing mediastinitis. Covered stents were placed in 17 (36%) of the patients, and 30 (64%) patients had an uncovered stent. Clinical and treatment outcomes, complications, and the percent stenosis of each stent were evaluated. Technical success was achieved in all cases at first attempt. Average clinical and imaging follow-up in years was 2.7 (range 0.1-11.1) (covered) and 1.7 (range 0.2-10.5) (uncovered), respectively. There was a significant difference (p = 0.044) in the number of patients who reported a return of symptoms between the covered (5/17 or 29.4%) and uncovered (18/30 or 60%) groups. There was also a significant difference (p = stenosis after stent placement between the covered [17.9% (range 0-100) ± 26.2] and uncovered [48.3% (range 6.8-100) ± 33.5] groups. No significant difference (p = 0.227) was found in the time (days) between the date of the procedure and the date of clinical follow-up where a return of symptoms was reported [covered: 426.6 (range 28-1554) ± 633.9 and uncovered 778.1 (range 23-3851) ± 1066.8]. One patient in the uncovered group had non-endovascular surgical intervention (innominate to right atrial bypass), while none in the covered group required surgical intervention. One major complication (SIR grade C) occurred that consisted of a pericardial hemorrhagic effusion after angioplasty that required covered stent placement. There were no procedure-related deaths. Both covered and uncovered stents can be used for

  16. The Pennsylvania State University Child Sexual Abuse Scandal: An Analysis of Institutional Factors Affecting Response

    Science.gov (United States)

    Holland, Alice R.

    2015-01-01

    The outcomes of The Pennsylvania State University (Penn State) child sexual abuse scandal have left many scholars and individuals questioning the university's collective identity. The goal of this research was to uncover the dominant themes that describe a problematic institutional response to the child sexual abuse incidents in order to provide…

  17. Education for university students, high school teachers and the general public using the Kinki University Reactor

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2007-01-01

    Atomic Energy Research Institute of Kinki University is equipped with a nuclear reactor which is called UTR-KINKI. UTR is the abbreviation for University Teaching and Research Reactor. The reactor is the first one installed in Japanese universities. Though the reactor is owned and operated by Kinki University, its use is widely open to scientists and students from other universities and research institutions. The reactor is made the best of teaching instrument for the training of high school teachers. In addition, the reactor is utilized for general public education concerning atomic energy. (author)

  18. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  19. Parallel universes may be more than sci-fi daydreams

    CERN Document Server

    2007-01-01

    Is the universe -- correction: "our" universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians, cosmologists, and other scientists.

  20. Uncovering University Students' Readiness through Their Assessment of Workplace Communication Skills

    Science.gov (United States)

    Magogwe, Joel M.; Nkosana, Leonard B. M.; Ntereke, Beauty B.

    2014-01-01

    Employers in today's competitive and challenging global world prefer employees who possess "soft skills" in addition to "hard skills" because they make an impact and create a good impression in the workplace. This study examined employment readiness of the University of Botswana (UB) students who took the Advanced Communication…

  1. Lives in science how institutions affect academic careers

    CERN Document Server

    Hermanowicz, Joseph C

    2010-01-01

    What can we learn when we follow people over the years and across the course of their professional lives? Joseph C. Hermanowicz asks this question specifically about scientists and answers it here by tracking fifty-five physicists through different stages of their careers at a variety of universities across the country. He explores these scientists' shifting perceptions of their jobs to uncover the meanings they invest in their work, when and where they find satisfaction, how they succeed and fail, and how the rhythms of their work change as they age. His candid interviews with hi

  2. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  3. An Accidental Scientist: Chance, Failure, Risk-Taking, and Mentoring.

    Science.gov (United States)

    McGrath, Patrick J

    2018-04-06

    I never intended to become a scientist. My career developed on the basis of chance happenings, repeated failure, the willingness to take risks and the acceptance and provision of mentoring. My career has included periods of difficulty and shifted back and forth between academic health centers and universities in Canada. Although I have been amply recognized for my successes, my greatest learning has come from my failures. My greatest satisfaction has been in the development, evaluation and dissemination of interventions. The combination of intellectual stimulation and emotional gratification has meant a rewarding career.

  4. Long Term Follow-up of a Transjugular Intrahepatic Portosystemic Shunt: A Comparison of Covered and Uncovered Stents

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seung Moon; Park, Jae Hyung; Kim, Hyo Cheol; Jae, Hwan Jun; Chung, Jin Wook [Seoul National University Hospital, Seoul (Korea, Republic of)

    2009-01-15

    To evaluate the long term patency of transjugular intrahepatic portosystemic shunts (TIPS) and to compare the patency rate of covered and uncovered stents in TIPS. The study population included 78 patients with portal hypertension that underwent TIPS between January 1999 and July 2007 at our institution using uncovered stents in 53 patients and covered stents in 25 patients. The primary and secondary patency rates of TIPS were estimated to compare the uncovered and covered stent groups. The primary and secondary patency rates of the TIPS patients were found to be 83.9% and 93.9% at the 6 month follow-up and 73.5% and 88.5% at the12 month follow-up for uncovered and covered stents, respectively. A breakdown patency rates for the 12 month follow-up revealed that the primary patency rates were 76.6% and 66.3% for uncovered and covered stents, respectively; whereas, the secondary patency rates were 94.3% and 73.8% for the uncovered and covered stents, respectively. A comparative analysis did not provide evidence to suggest that a difference exists between the patency rates of the uncovered and covered stent groups (p>0.05). No significant difference was found between the patency rates of the uncovered and covered stent groups. A follow-up to this study would be a more thorough randomized evaluation of the different types of covered stents to compare long-term patency rates.

  5. Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.

    Science.gov (United States)

    Riveline, Daniel; Kruse, Karsten

    2017-08-01

    Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Guest Comment: Universal Language Requirement.

    Science.gov (United States)

    Sherwood, Bruce Arne

    1979-01-01

    Explains that reading English among Scientists is almost universal, however, there are enormous problems with spoken English. Advocates the use of Esperanto as a viable alternative, and as a language requirement for graduate work. (GA)

  7. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  8. Recoupling Lie algebra and universal ω-algebra

    International Nuclear Information System (INIS)

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  9. The uncovered parity properties of the Czech Koruna

    Czech Academy of Sciences Publication Activity Database

    Derviz, Alexis

    2002-01-01

    Roč. 11, č. 1 (2002), s. 17-37 ISSN 1210-0455 R&D Projects: GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : uncovered parity * asset prices * international consumption-based capital asset pricing model Subject RIV: AH - Economics

  10. Building the universe

    International Nuclear Information System (INIS)

    Sutton, Christine

    1985-01-01

    The book 'In Building the Universe' contains a collection of articles from the magazine 'New Scientist', compiled and edited to provide an overview of the field of particle physics. A picture of the basic constituents of matter (quarks and leptons) is given, together with the four fundamental forces that hold them together. The operation of these forces in the first instance of the hot young Universe is described. Also, the development of the accelerators and detectors used in elementary particle physics, is discussed. (UK)

  11. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  12. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  13. Helping Scientists Become Effective Partners in Education and Outreach

    Science.gov (United States)

    Laursen, Sandra L.; Smith, Lesley K.

    2009-01-01

    How does a scientist find herself standing before a group of lively third-graders? She may be personally motivated-seeking to improve public understanding of scientific issues and the nature of science, or to see her own children receive a good science education-or perhaps she simply enjoys this kind of work [Andrews et al., 2005; Kim and Fortner, 2008]. In addition to internal motivating factors, federal funding agencies have begun to encourage scientists to participate in education and outreach (E/O) related to their research, through NASA program requirements for such activities (see ``Implementing the Office of Space Science Education/Public Outreach Strategy,'' at http://spacescience.nasa.gov/admin/pubs/edu/imp_plan.htm) and the U.S. National Science Foundation's increased emphasis on ``broader impacts'' in merit review of research proposals (see http://www.nsf.gov/pubs/2003/nsf032/bicexamples.pdf). Universities, laboratories, and large collaboratives have responded by developing E/O programs that include interaction between students, teachers, and the public in schools; after-school and summer programs; and work through science centers, planetaria, aquaria, and museums.

  14. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  15. Partially Covered Metal Stents May Not Prolong Stent Patency Compared to Uncovered Stents in Unresectable Malignant Distal Biliary Obstruction

    Science.gov (United States)

    Kim, Jae Yun; Ko, Gyu Bong; Lee, Tae Hoon; Park, Sang-Heum; Lee, Yun Nah; Cho, Young Sin; Jung, Yunho; Chung, Il-Kwun; Choi, Hyun Jong; Cha, Sang-Woo; Moon, Jong Ho; Cho, Young Deok; Kim, Sun-Joo

    2017-01-01

    Background/Aims Controversy still exists regarding the benefits of covered self-expandable metal stents (SEMSs) compared to uncovered SEMSs. We aimed to compare the patency and stent-related adverse events of partially covered SEMSs (PC-SEMSs) and uncovered SEMSs in unresectable malignant distal biliary obstruction. Methods A total of 134 patients who received a PC-SEMS or uncovered SEMS for palliation of unresectable malignant distal biliary obstruction were reviewed retrospectively. The main outcome measures were stent patency, stent-related adverse events, and overall survival. Results The median stent patency was 118 days (range, 3 to 802 days) with PC-SEMSs and 105 days (range, 2 to 485 days) with uncovered SEMSs (p=0.718). The overall endoscopic revision rate due to stent dysfunction was 36.6% (26/71) with PC-SEMSs and 36.5% (23/63) with uncovered SEMSs (p=0.589). Tumor ingrowth was more frequent with uncovered SEMSs (4.2% vs 19.1%, p=0.013), but migration was more frequent with PC-SEMSs (11.2% vs 1.5%, p=0.04). The incidence of stent-related adverse events was 2.8% (2/71) with PC-SEMSs and 9.5% (6/63) with uncovered SEMSs (p=0.224). The median overall survival was 166 days with PC-SEMSs and 168 days with uncovered SEMSs (p=0.189). Conclusions Compared to uncovered SEMSs, PC-SEMSs did not prolong stent patency in unresectable malignant distal biliary obstruction. Stent migration was more frequent with PC-SEMSs. However, tumor ingrowth was less frequent with PC-SEMSs compared to uncovered SEMSs. PMID:28208003

  16. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  17. Educating elementary-aged English learners in science: Scientists and teachers working together

    Science.gov (United States)

    Banuelos, Gloria Rodriguez

    California's K-12 schools contain 40% of the nation's English learners, the majority of them enrolled at the elementary level. Traditionally, English learners in California have difficulty performing at the same level as their native English speaking counterparts on national achievement tests, such as the National Assessment of Educational Progress. In 1998, California voters passed Proposition 227 mandating that English learners be taught "overwhelmingly" in English, thus making teachers, many without expertise, responsible for teaching multilevel English proficient students subject matter. I studied the use of scientist-teacher partnerships as a resource for teachers of English learners. University scientists (graduate students) partnered with local elementary school teachers designed and implemented integrated science and English lessons for classrooms with at least 30% English learners. The study explored two major foci. First, integrated science and language lessons implemented by six scientist-teacher partnerships were investigated. Second, the responsibilities taken on by the team members during the implementation of integrated science and language lessons were examined. Three data sources were analyzed: (1) six lesson sequences comprised of 28 lessons; (2) 18 lesson worksheet; and (3) 24 participant Retrospective interview transcripts (12 scientists and 12 teachers). Lessons across were examined according to four analytical categories which included the following: (1) nature of the science activities (e.g. hands-on); nature of language activities (e.g. speaking); (2) nature of instructional practices (e.g. student grouping); and (3) responsibilities of teachers and scientists (e.g. classroom). A micro level analysis illustrates how one scientist-teacher team innovatively used a children's story, Goldilocks and the Three Bears, to teach the measurement of length and temperature. A macro level analysis identified three characteristics of science activities

  18. Scientists Must Not Film but Must Appear on Screen!

    Science.gov (United States)

    Gerdes, A.; Madlener, S.

    2013-12-01

    Film production in science has affected its subjects in a truly remarkable way. Where scientists were once perceived to be poor communicators with an overwhelming aptitude for numbers and figures, audiences now have access to scientists they can understand and even relate to. Over the years, scientists have grown accustomed to involving and using the media in their research and exposing their science to wider audiences, making them better communicators. This is a huge development, and one that is especially noticeable at MARUM, the Center for Marine Environmental Sciences at the University of Bremen/Germany. Over time, the collaboration between the scientists and public relations staff has taught us all to be better at what we do. A unique characteristic of MARUM TV is that more or less all videos are produced 'in house'; we have established the small yet effective infrastructure necessary do develop, execute, and distribute semi-professional videos to access broader audiences and increase world-wide visibility. MARUM TV relies on our research scientists to operate cameras and capture important moments offshore on expedition, and to cooperate with us as we shoot footage of them and conduct interviews onshore in the lab. In turn, we promote their research and help increase their accessibility. At the forefront of our success is the relatively recent implementation of HD cameras on MARUM's fleet of remotely operated vehicles, which capture stunning video footage of the deep sea. Furthermore, sustained collaborations with national tv stations, online media portals, and large production companies helps inform our process and increases MARUM's visibility. The result is an extensive suite of about 70 short and long format science videos with some of the highest view counts on YouTube compared to other marine institutes. In the session PA011 'Scientists must film!' we intent to address issues regarding roadblocks to bridging science and media: a) Science communication

  19. A data model for environmental scientists

    Science.gov (United States)

    Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.

    2008-12-01

    Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.

  20. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  1. Ethical Justification of Moral Norms in Scientific Research: Scientists' External Responsibilities

    Directory of Open Access Journals (Sweden)

    Mehmet AKÖZER

    2015-09-01

    Full Text Available Scientists' moral responsibilities have become a focus for the scientific community over the postwar decades. International and regional networks of leading academic bodies have responded to a widely perceived increase in scientific fraud and the ensued loss of public trust in science during the 1980s, and initiated a discussion with a view to codifying good practice in research. While scientists' “external” responsibilities towards society and the humankind have been variously addressed, codes drafted since then mainly dwell on problems of misconduct concerning scientists' “internal” responsibilities towards science and to the scientific community. They also reflect an ethical pluralism, which declines justifying moral standards in research with reference to universal ethical principles. However, the need for such justification has been first recognized decades ago, during the Doctor's Trial in Nuremberg, where the shortcomings of the established ethos of science and the inadequacy of the Hippocratic ethics in safeguarding human rights in research had become flagrant, with the resultant Nuremberg Code of 1947 introducing a human rights perspective into Hippocratic ethics. This paper argues for the necessity of an integral ethical justification of scientists' both external and inner responsibilities, as put down or assumed by internationally acclaimed codes of conduct. Such necessity is validated by the evidence that a historical current to monopolize ethical thinking in the name of science and nullify philosophical ethics lies at the root of an anti–morality that relativized human worth and virtually legitimized human rights violations in scientific practice. Kantian ethics based on humans' absolute inner worth, and Popperian epistemology rooted in respect for truth and for humans as rational beings, pledge an ethical justification of moral norms in science so as to reinforce the latter against intrusions of anti–morality. The paper

  2. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  3. Malignant Gastroduodenal Obstruction: Treatment with Self-Expanding Uncovered Wallstent

    International Nuclear Information System (INIS)

    Gutzeit, Andreas; Binkert, Christoph A.; Schoch, Eric; Sautter, Thomas; Jost, Res; Zollikofer, Christoph L.

    2009-01-01

    Purpose: To retrospectively evaluate the clinical effectiveness of a self-expanding uncovered Wallstent in patients with malignant gastroduodenal obstruction. Materials and Methods: Under combined endoscopic and fluoroscopic guidance, 29 patients with a malignant gastroduodenal stenosis were treated with a self-expanding uncovered metallic Wallstent. A dysphagia score was assessed before and after the intervention to measure the success of this palliative therapy. The dysphagia score ranged between grade 0 to grade 4: grade 0 = able to tolerate solid food, grade 1 = able to tolerate soft food, grade 2 = able to tolerate thick liquids, grade 3 = able to tolerate water or clear fluids, and grade 4 = unable to tolerate anything perorally. Stent patency and patients survival rates were calculated. Results: The insertion of the gastroduodenal stent was technically successful in 28 patients (96.5%). After stenting, 25 patients (86.2%) showed clinical improvement by at least one score point. During follow-up, 22 (78.5%) of 28 patients showed no stent occlusion until death and did not have to undergo any further intervention. In six patients (20.6%), all of whom were treated with secondary stent insertions, occlusion with tumor ingrowth and/or overgrowth was observed after the intervention. The median period of primary stent patency in our study was 240 days. Conclusion: Placement of an uncovered Wallstent is clinically effective in patients with malignant gastroduodenal obstruction. Stent placement is associated with high technical success, good palliation effect, and high durability of stent function.

  4. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  5. Uncovering Barriers to Teaching Assistants (TAs) Implementing Inquiry Teaching: Inconsistent Facilitation Techniques, Student Resistance, and Reluctance to Share Control over Learning with Students.

    Science.gov (United States)

    Gormally, Cara; Sullivan, Carol Subiño; Szeinbaum, Nadia

    2016-05-01

    Inquiry-based teaching approaches are increasingly being adopted in biology laboratories. Yet teaching assistants (TAs), often novice teachers, teach the majority of laboratory courses in US research universities. This study analyzed the perspectives of TAs and their students and used classroom observations to uncover challenges faced by TAs during their first year of inquiry-based teaching. Our study revealed three insights about barriers to effective inquiry teaching practices: 1) TAs lack sufficient facilitation skills; 2) TAs struggle to share control over learning with students as they reconcile long-standing teaching beliefs with newly learned approaches, consequently undermining their fledgling ability to use inquiry approaches; and 3) student evaluations reinforce teacher-centered behaviors as TAs receive positive feedback conflicting with inquiry approaches. We make recommendations, including changing instructional feedback to focus on learner-centered teaching practices. We urge TA mentors to engage TAs in discussions to uncover teaching beliefs underlying teaching choices and support TAs through targeted feedback and practice.

  6. Uncovering Barriers to Teaching Assistants (TAs Implementing Inquiry Teaching: Inconsistent Facilitation Techniques, Student Resistance, and Reluctance to Share Control over Learning with Students

    Directory of Open Access Journals (Sweden)

    Cara Gormally

    2016-05-01

    Full Text Available Inquiry-based teaching approaches are increasingly being adopted in biology laboratories. Yet teaching assistants (TAs, often novice teachers, teach the majority of laboratory courses in US research universities. This study analyzed the perspectives of TAs and their students and used classroom observations to uncover challenges faced by TAs during their first year of inquiry-based teaching. Our study revealed three insights about barriers to effective inquiry teaching practices: 1 TAs lack sufficient facilitation skills; 2 TAs struggle to share control over learning with students as they reconcile long-standing teaching beliefs with newly learned approaches, consequently undermining their fledgling ability to use inquiry approaches; and 3 student evaluations reinforce teacher-centered behaviors as TAs receive positive feedback conflicting with inquiry approaches. We make recommendations, including changing instructional feedback to focus on learner-centered teaching practices. We urge TA mentors to engage TAs in discussions to uncover teaching beliefs underlying teaching choices and support TAs through targeted feedback and practice.

  7. VII International Symposium and Young Scientists School “Modern Problems of Laser Physics”

    International Nuclear Information System (INIS)

    2017-01-01

    General Information This volume of the Journal is devoted to the VII International Symposium and Young Scientists School “Modern Problems of Laser Physics” (MPLP-2016). I was held in Novosibirsk Akademgorodok, Russia, 22–28 August 2016. Akademgorodok is the well-known Siberian Scientific Centre of Russian Academy of Sciences (RAS). It was founded in 1957. Since that time it is the place of many international scientific meetings, because it reflects the unique and fruitful symbiosis of many research institutions and Novosibirsk State University at one territory. Since the first MPLP meeting in 1995 the Symposium usually gathers scientists from many countries, carrying out their investigations at the forefront of laser physics, quantum metrology and high-resolution spectroscopy, physics of ultracold atoms, molecules and ions, atom optics, ultrafast phenomena and attoscience, quantum optics and information, nonlinear optics and applications of laser radiation from THz to UV radiation ranges in medicine, geophysics, chemistry and microbiology. Traditionally the Symposium is the place where scientists can discuss new trends in modern laser physics, generate new ideas as well as initiate further collaborations. (paper)

  8. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  9. Scientists, Citizens, and the Uses of Science in the Anti-Fracking Movement in New York State

    Science.gov (United States)

    Long, E.

    2013-12-01

    The anti-fracking movement in upstate New York is unusual for its grassroots mobilization and for the close relationship between scientists and activists. This paper, based on intensive fieldwork in the Finger Lakes region, will discuss the factors that have made scientists such an integral part of the movement, the organizations (from universities and NGOs dedicated to making science accessible, to town meetings and social media) that have facilitated dissemination of science to the citizenry, and the ways that knowledge has affected the movement's strategy and end goals, including a shift from anti-fracking to pro-renewables.

  10. University-industry coupling: exaggerated expectations

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.

    This coupling, formally disdainful to university presidents and leading scientists, is now all the rage, according to the author. The presidents' enthusiasm is sparked apparently by hopes of making killings on patents and gaining equity participation in the Silicon Valleys of the future, he notes. The reality of the situation, the cautions, is that all ventures are highly speculative; further, the performance of most universities in knowledge transfer is mixed. He supports research interactions between universities and industries where natural and effective, but warms against the public's grossly exaggerated expectations. 6 references

  11. APECS: A Network for Polar Early Career Scientist Professional Development

    Science.gov (United States)

    Enderlin, E. M.

    2014-12-01

    The Association of Polar Early Career Researchers (APECS) is an international and interdisciplinary organization for undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in the polar regions, alpine regions and the wider Cryosphere. APECS is a scientific, non-profit organization with free individual membership that aims to stimulate research collaborations and develop effective future leaders in polar research, education, and outreach. APECS grew out of the 4th International Polar Year (2007-08), which emphasized the need to stimulate and nurture the next generation of scientists in order to improve the understanding and communication of the polar regions and its global connections. The APECS organizational structure includes a Council and an elected Executive Committee that are supported by a Directorate. These positions are open to all individual members through a democratic process. The APECS Directorate is funded by the Norwegian Research Council, the University of Tromsø and the Norwegian Polar Institute and is hosted by the University of Tromsø. Early career scientists benefit from a range of activities hosted/organized by APECS. Every year, numerous activities are run with partner organizations and in conjunction with major polar conferences and meetings. In-person and online panels and workshops focus on a range of topics, from developing field skills to applying for a job after graduate school. Career development webinars are hosted each fall and topical research webinars are hosted throughout the year and archived online (http://www.apecs.is). The APECS website also contains abundant information on polar news, upcoming conferences and meetings, and job postings for early career scientists. To better respond to members' needs, APECS has national/regional committees that are linked to the international overarching organization. Many of these committees organize regional meetings or

  12. An innovative educational approach to professional development of medical laboratory scientists in Botswana

    Directory of Open Access Journals (Sweden)

    Magowe MK

    2014-04-01

    Full Text Available Mabel KM Magowe,1 Jenny H Ledikwe,2,3 Ishmael Kasvosve,1 Robert Martin,2 Kabo Thankane,3 Bazghina-werq Semo2,31Faculty of Health Sciences, University of Botswana, Gaborone, Botswana; 2Department of Global Health, University of Washington, Seattle, Washington, USA; 3Botswana International Training and Education Center for Health, Gaborone, BotswanaPurpose: To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor’s degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs.Methods: This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc Medical Laboratory Sciences (MLS bridging program, along with the graduates’ current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates’ confidence, in terms of key laboratory competencies.Results: The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05. Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for

  13. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  14. Subterranean secrets of the Universe

    CERN Multimedia

    Knight, Matthew

    2006-01-01

    "In a cosmic-sized cavern 100 meters beneath the French-Swiss border, scientists from aroung the globe are making final preparations for the largest experiment the world has ever seen in an attempt to unearth the origins of the Universe." (2/3 page)

  15. When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences.

    Science.gov (United States)

    Stuart, Toby E; Ding, Waverly W

    2006-07-01

    The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.

  16. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  17. «FREEDOM OF CONSCIENCE» AND «RELIGIOUS FREEDOM» IN THE UNDERSTANDING OF PRE-REVOLUTIONARY SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Nadezhda Yuryevna Zagaynova

    2015-02-01

    Full Text Available The article considers approaches to the understanding of the concepts of «freedom of conscience» and «religious freedom» on the basis of the analysis of works of pre-revolutionary scientists. Allocated General and special traits defining these phenomena.The aim of this article is (based on the works of pre-revolutionary scientists to analyze ideas about the concept of freedom of conscience and religious liberty. Previously, scientists no attempt has been made to summarize the theoretical aspects of these categories, this is the novelty of the article.The research methodology consists dialectical view on the process of cognition of objective reality. They are implemented on the basis of a systematic approach. The article relies on the basic provisions of philosophy, theology and law.The research methods are universal, scientific and astronaute methods of cognition.In the study we can conclude that the pre-revolutionary scientists have not developed a unified approach with respect to such legal categories as «freedom of conscience and religious liberty».The results can be used in research work and in the educational process.

  18. Uncovering Barriers to Teaching Assistants (TAs) Implementing Inquiry Teaching: Inconsistent Facilitation Techniques, Student Resistance, and Reluctance to Share Control over Learning with Students †

    Science.gov (United States)

    Gormally, Cara; Sullivan, Carol Subiño; Szeinbaum, Nadia

    2016-01-01

    Inquiry-based teaching approaches are increasingly being adopted in biology laboratories. Yet teaching assistants (TAs), often novice teachers, teach the majority of laboratory courses in US research universities. This study analyzed the perspectives of TAs and their students and used classroom observations to uncover challenges faced by TAs during their first year of inquiry-based teaching. Our study revealed three insights about barriers to effective inquiry teaching practices: 1) TAs lack sufficient facilitation skills; 2) TAs struggle to share control over learning with students as they reconcile long-standing teaching beliefs with newly learned approaches, consequently undermining their fledgling ability to use inquiry approaches; and 3) student evaluations reinforce teacher-centered behaviors as TAs receive positive feedback conflicting with inquiry approaches. We make recommendations, including changing instructional feedback to focus on learner-centered teaching practices. We urge TA mentors to engage TAs in discussions to uncover teaching beliefs underlying teaching choices and support TAs through targeted feedback and practice. PMID:27158302

  19. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  20. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  1. Drought Information Supported by Citizen Scientists (DISCS)

    Science.gov (United States)

    Molthan, A.; Maskey, M.; Hain, C.; Meyer, P.; Nair, U. S.; Handyside, C. T.; White, K.; Amin, M.

    2017-12-01

    Each year, drought impacts various regions of the United States on time scales of weeks, months, seasons, or years, which in turn leads to a need to document these impacts and inform key decisions on land management, use of water resources, and disaster response. Mapping impacts allows decision-makers to understand potential damage to agriculture and loss of production, to communicate and document drought impacts on crop yields, and to inform water management decisions. Current efforts to collect this information includes parsing of media reports, collaborations with local extension offices, and partnerships with the National Weather Service cooperative observer network. As part of a NASA Citizen Science for Earth Systems proposal award, a research and applications team from Marshall Space Flight Center, the University of Alabama in Huntsville, and collaborators within the NWS have developed a prototype smartphone application focused on the collection of citizen science observations of crop health and drought impacts, along with development of innovative low-cost soil moisture sensors to supplement subjective assessments of local soil moisture conditions. Observations provided by citizen scientists include crop type and health, phase of growth, soil moisture conditions, irrigation status, along with an optional photo and comment to provide visual confirmation and other details. In exchange for their participation, users of the app also have access to unique land surface modeling data sets produced at MSFC such as the NASA Land Information System soil moisture and climatology/percentile products from the Short-term Prediction Research and Transition (SPoRT) Center, assessments of vegetation health and stress from NASA and NOAA remote sensing platforms (e.g. MODIS/VIIRS), outputs from a crop stress model developed at the University of Alabama in Huntsville, recent rainfall estimates from the NOAA/NWS network of ground-based weather radars, and other observations made

  2. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    Science.gov (United States)

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  3. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    Science.gov (United States)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina

  4. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    Science.gov (United States)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  5. Universe in the theoretical model «Evolving matter»

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2013-04-01

    Full Text Available The article critically examines modern model of the Universe evolution constructed by efforts of a group of scientists (mathematicians, physicists and cosmologists from the world's leading universities (Oxford and Cambridge Universities, Yale, Columbia, New York, Rutgers and the UC Santa Cruz. The author notes its strengths, but also points to shortcomings. Author believes that this model does not take into account the most important achievements in the field of biochemistry and biology (molecular, physical, developmental, etc., as well as neuroscience and psychology. Author believes that in the construction of model of the Universe evolution, scientists must take into account (with great reservations the impact of living and intelligent matter on space processes. As an example, the author gives his theoretical model "Evolving matter". In this model, he shows not only the general dependence of the interaction of cosmic processes with inert, living and intelligent matter, but also he attempts to show the direct influence of systems of living and intelligent matter on the acceleration of the Universe's expansion.

  6. Conformable covered versus uncovered self-expandable metallic stents for palliation of malignant gastroduodenal obstruction: a randomized prospective study.

    Science.gov (United States)

    Lim, Sun Gyo; Kim, Jin Hong; Lee, Kee Myung; Shin, Sung Jae; Kim, Chan Gyoo; Kim, Kyung Ho; Kim, Ho Gak; Yang, Chang Heon

    2014-07-01

    A conformable self-expandable metallic stent was developed to overcome the limitation of previous self-expandable metallic stents. The aim of this study was to evaluate outcomes after placement of conformable covered and uncovered self-expandable metallic stents for palliation of malignant gastroduodenal obstruction. A single-blind, randomized, parallel-group, prospective study were conducted in 4 medical centres between March 2009 and July 2012. 134 patients with unresectable malignant gastroduodenal obstruction were assigned to a covered double-layered (n=66) or uncovered unfixed-cell braided (n=68) stent placement group. Primary analysis was performed to compare re-intervention rates between two groups. 120 patients were analysed (59 in the covered group and 61 in the uncovered group). Overall rates of re-intervention were not significantly different between the two groups: 13/59 (22.0%) in the covered group vs. 13/61 (21.3%) in the uncovered group, p=0.999. Stent migration was more frequent in the covered group than in the uncovered group (p=0.003). The tumour ingrowth rate was higher in the uncovered group than in the covered group (p=0.016). The rates of re-intervention did not significantly differ between the two stents. Conformable covered double-layered and uncovered unfixed-cell braided stents were associated with different patterns of stent malfunction. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  7. Big Food, Big Agra, and the Research University

    Science.gov (United States)

    Warren, Cat

    2010-01-01

    This article presents an interview with Marion Nestle, the New York University food scientist and author of "Food Politics." Marion Nestle is Paulette Goddard Professor in the Department of Nutrition, Food Studies, and Public Health at New York University. From 1986 to 1988, she was senior nutrition policy adviser in the Department of Health and…

  8. Uncovering the Density of Matter from Multiplicity Distribution

    International Nuclear Information System (INIS)

    Bialas, A.

    2010-01-01

    Multiplicity distributions in the form of superposition of Poisson distributions which are observed in multiparticle production are interpreted as reflection of a two-step nature of this process: the creation and evolution of the strongly interacting fluid, followed by its uncorrelated decay into observed hadrons. A method to uncover the density of the fluid from the observed multiplicity distribution is described. (author)

  9. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  10. Scientists and Faith Communities in Dialogue - Finding Common Ground to Care for our Common Home

    Science.gov (United States)

    Jablonski, L. M.

    2017-12-01

    World-wide, faith communities are a key place for education and outreach to the general adult population. The sacred responsibility to care for the earth, living sustainability and concern for the poor are nearly universal priorities across faith communities. Scientists and people of faith share in common experiences of awe and wonder and ethical roles as citizens. The majority of faith communities have statements on climate changes, environmental justice, and stewardship, and respond with education, action plans and advocacy. People of faith are increasingly seeking science expertise to better understand the science and best solutions to implement. Transformation of point of view often requires heart-felt motivation (domain of religion) as well as knowledge (science). Scientists can participate in alleviating environmental justice by providing data and education to communities. Expert testimony is a critical service. Pope Francis' environmental encyclical Laudato si, engaged diverse scientists in its writing and outreach. Francis invites our continued dialogue with people of faith and goodwill of all societal sectors and fields to achieve an integral ecology that integrates science, economics, and impacts on the poor. For scientists to be most effective in sharing expertise, and building understanding and trust in scientific findings, skill- building is needed in: communication, finding common ground, intercultural competency, working with diverse populations and religious literacy. Educational initiatives bridging scientists and faith-communities will be highlighted including within: the Ecological Society of America, American Assn for Advancement of Sustainability in Higher Education, faith-based & Environmental Justice networks, Nature centers, Higher Education (including Seminary) Initiatives and the Hanley Sustainability Institute, and interfaith religious organizations engaged with scientists. Bridge-building and ongoing partnerships of scientists, EJ

  11. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  12. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    Science.gov (United States)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  13. Science Education and the Emergence of the Specialized Scientist in Nineteenth Century Greece

    Science.gov (United States)

    Tampakis, Konstantinos

    2013-04-01

    In this paper, I describe the strong and reciprocal relations between the emergence of the specialized expert in the natural sciences and the establishment of science education, in early Modern Greece. Accordingly, I show how science and public education interacted within the Greek state from its inception in the early 1830, to the first decade of the twentieth century, when the University of Athens established an autonomous Mathematics and Physics School. Several factors are taken into account, such as the negotiations of Western educational theories and practices within a local context, the discourses of the science savants of the University of Athens, the role of the influential Greek pedagogues of the era, the state as an agent which imposed restrictions or facilitated certain developments and finally the intellectual and cultural aspirations of the nation itself. Science education is shown to be of fundamental importance for Greek scientists. The inclusion of science within the school system preceded and promoted the appearance of a scientific community and the institution of science courses was instrumental for the emergence of the first trained Greek scientists. Thus, the conventional narrative that would have science appearing in the classrooms as an aftermath of the emergence of a scientific community is problematized.

  14. The Seven Deadly Sins of World University Ranking: A Summary from Several Papers

    Science.gov (United States)

    Soh, Kaycheng

    2017-01-01

    World university rankings use the weight-and-sum approach to process data. Although this seems to pass the common sense test, it has statistical problems. In recent years, seven such problems have been uncovered: spurious precision, weight discrepancies, assumed mutual compensation, indictor redundancy, inter-system discrepancy, negligence of…

  15. Building baby universes

    Science.gov (United States)

    Coles, Peter

    2017-08-01

    The thought of a scientist trying to design a laboratory experiment in which to create a whole new universe probably sounds like it belongs in the plot of a science-fiction B-movie. But as author Zeeya Merali explains in her new book A Big Bang in a Little Room, there are more than a few eminent physicists who think that this is theoretically possible.

  16. David de Wied: Eminent scientist and academic leader: A personal note.

    Science.gov (United States)

    Gispen, Willem Hendrik

    2010-01-10

    David de Wied was a natural leader with many a talent. He was the director of the Rudolf Magnus Institute at Utrecht University and president of the Royal Netherlands Academy of Arts and Sciences. He coached over 75 Ph.D. students and hosted some 200 foreign scientists who joined him in his multidisciplinary neuropeptide research. Many of them became lifelong friends, frequenting the home of Liedje and David de Wied. Born in Deventer (The Netherlands) on January 12th, 1925, David de Wied's early boyhood first in Deventer and later in Leeuwarden appears to have been no different from that of any other provincial Dutch boys in pre-war Holland. After the war David enrolled at Groningen University to study medicine. Subsequently he specialized in experimental pharmacology. To understand the determination of David de Wied is to understand the drive of a Jewish young man, who during the war, had been forced to go underground and unable to develop in a free and independent manner. Therefore, later in life, time became very precious to him and everything that came across his path had to be taken seriously. In this short sketch of David de Wied I will try to highlight his outstanding scientific accomplishments as well as his personality as both have inspired a generation of young scientists. It is a great honour and a pleasure to be part of this meeting in memory of David de Wied.

  17. Gravity the quest for gravitational wave

    CERN Document Server

    Binétruy, Pierre

    2018-01-01

    What force do the Big Bang, the expansion of the Universe, dark matter and dark energy, black holes, and gravitational waves all have in common? This book uncovers gravity as a key to understanding these fascinating phenomena that have so captivated public interest in recent years. Readers will discover the latest findings on how this familiar force in our everyday lives powers the most colossal changes in the Universe. Written by the widely recognized French public scientist and leading astrophysicist Pierre Binetruy, the book also explains the recent experimental confirmation of the existence of gravitational waves.

  18. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  19. Scientists and science communication: a Danish survey (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2007-03-01

    Full Text Available This paper summarizes key findings from a web-based questionnaire survey among Danish scientists in the natural sciences and engineering science. In line with the Act on Universities of 2003 enforcing science communication as a university obligation next to research and teaching, the respondents take a keen interest in communicating science, especially through the news media. However, they also do have mixed feeling about the quality of science communication in the news. Moreover, a majority of the respondents would like to give higher priority to science communication. More than half reply that they are willing to allocate up to 2% of total research funding in Denmark to science communication. Further, the respondents indicate that they would welcome a wider variety of science communication initiatives aimed at many types of target groups. They do not see the news media as the one and only channel for current science communication.

  20. The need for scientists and judges to work together: regarding a new European network

    Science.gov (United States)

    Santosuosso, Amedeo; Redi, Carlo Alberto

    2003-01-01

    Is it always true to say that science is, by definition, universal whilst laws and the courts which apply them are a classic state and national expression? Yes and no. In recent years a new scenario has opened all over the world. Courts intervene more and more in disputes on matters related to scientific procedures in the biological field. In doing so the courts' decisions are affected by scientific issues and ways of reasoning and, on the other hand, affect the scientific field and its way of reasoning. While the old matter of bioethics was still alive and while judges were improving their skill in dealing with hard matters, like refusal of medical treatments, abortion, euthanasia et cetera, a new challenge appeared on the horizon, the challenge of biological sciences, and especially of the most troubled field of human genetics. A completely new awareness is developing among judges that they belong to an international judiciary community, as informal as it is real. Such a community is, even at an embryonic stage, sufficiently universal to be able to come together with the international scientific community. The authors maintain we are in urgent need for new interaction between judges and scientists and of new international means in the light of such cooperation. Judges and jurists need to become better acquainted with scientific questions and learn to exchange ideas with scientists. They also need to set themselves against the latters' conceptual systems and be willing to put their own up for discussion. A European Network for Life Sciences, Health and the Courts is taking its first steps, and judges and scientists are working side by side to tackle the new challenges. The provisional headquarters are located at the University of Pavia (I), Laboratorio di Biologia dello Sviluppo and Collegio Ghislieri (e-mail:. enlsc@unipv.it). ENLSC activity is inspired by the following idea: to be against science is as much antiscientific as to be acritically pro-science. PMID

  1. The need for scientists and judges to work together: regarding a new European network

    Directory of Open Access Journals (Sweden)

    Santosuosso Amedeo

    2003-07-01

    Full Text Available Abstract Is it always true to say that science is, by definition, universal whilst laws and the courts which apply them are a classic state and national expression? Yes and no. In recent years a new scenario has opened all over the world. Courts intervene more and more in disputes on matters related to scientific procedures in the biological field. In doing so the courts' decisions are affected by scientific issues and ways of reasoning and, on the other hand, affect the scientific field and its way of reasoning. While the old matter of bioethics was still alive and while judges were improving their skill in dealing with hard matters, like refusal of medical treatments, abortion, euthanasia et cetera, a new challenge appeared on the horizon, the challenge of biological sciences, and especially of the most troubled field of human genetics. A completely new awareness is developing among judges that they belong to an international judiciary community, as informal as it is real. Such a community is, even at an embryonic stage, sufficiently universal to be able to come together with the international scientific community. The authors maintain we are in urgent need for new interaction between judges and scientists and of new international means in the light of such cooperation. Judges and jurists need to become better acquainted with scientific questions and learn to exchange ideas with scientists. They also need to set themselves against the latters' conceptual systems and be willing to put their own up for discussion. A European Network for Life Sciences, Health and the Courts is taking its first steps, and judges and scientists are working side by side to tackle the new challenges. The provisional headquarters are located at the University of Pavia (I, Laboratorio di Biologia dello Sviluppo and Collegio Ghislieri (e-mail:. enlsc@unipv.it. ENLSC activity is inspired by the following idea: to be against science is as much antiscientific as to be

  2. The need for scientists and judges to work together: regarding a new European network.

    Science.gov (United States)

    Santosuosso, Amedeo; Redi, Carlo Alberto

    2003-07-01

    Is it always true to say that science is, by definition, universal whilst laws and the courts which apply them are a classic state and national expression? Yes and no. In recent years a new scenario has opened all over the world. Courts intervene more and more in disputes on matters related to scientific procedures in the biological field. In doing so the courts' decisions are affected by scientific issues and ways of reasoning and, on the other hand, affect the scientific field and its way of reasoning. While the old matter of bioethics was still alive and while judges were improving their skill in dealing with hard matters, like refusal of medical treatments, abortion, euthanasia et cetera, a new challenge appeared on the horizon, the challenge of biological sciences, and especially of the most troubled field of human genetics. A completely new awareness is developing among judges that they belong to an international judiciary community, as informal as it is real. Such a community is, even at an embryonic stage, sufficiently universal to be able to come together with the international scientific community. The authors maintain we are in urgent need for new interaction between judges and scientists and of new international means in the light of such cooperation. Judges and jurists need to become better acquainted with scientific questions and learn to exchange ideas with scientists. They also need to set themselves against the latters' conceptual systems and be willing to put their own up for discussion. A European Network for Life Sciences, Health and the Courts is taking its first steps, and judges and scientists are working side by side to tackle the new challenges. The provisional headquarters are located at the University of Pavia (I), Laboratorio di Biologia dello Sviluppo and Collegio Ghislieri (e-mail: enlsc@unipv.it). ENLSC activity is inspired by the following idea: to be against science is as much antiscientific as to be acritically pro-science.

  3. Parallel universes beguile science

    CERN Multimedia

    2007-01-01

    A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- as least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.

  4. The Robotic Scientist: Distilling Natural Laws from Experimental Data, from Cognitive Robotics to Computational Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, Hod [Cornell University

    2011-10-25

    Can machines discover analytical laws automatically? For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. By seeking dynamical invariants and symmetries, we show how we can go from finding just predictive models to finding deeper conservation laws. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the “alphabet” used to describe those systems. Application to modeling physical and biological systems will be shown.

  5. 27 November 2013 - Greek Deputy Minister of Health Z. Makri with Governor of Thessaly K. Agorastos visiting the LHC superconducting magnet test hall with Senior Scientists D. Delikaris, E. Hatziangeli and E. Tsesmelis. E. Gazis, ATLAS Collaboration, National Technical University of Athens also present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    27 November 2013 - Greek Deputy Minister of Health Z. Makri with Governor of Thessaly K. Agorastos visiting the LHC superconducting magnet test hall with Senior Scientists D. Delikaris, E. Hatziangeli and E. Tsesmelis. E. Gazis, ATLAS Collaboration, National Technical University of Athens also present.

  6. Between universalism and regionalism: universal systematics from imperial Japan.

    Science.gov (United States)

    Lee, Jung

    2015-12-01

    Historiographic discussions of the universality and regionality of science have to date focused on European cases for making regional science universal. This paper presents a new perspective by moving beyond European origins and illuminating a non-European scientist's engagement with the universality and regionality of science. It will examine the case of the Japanese botanist Nakai Takenoshin (1882-1952), an internationally recognized authority on Korean flora based at Tokyo Imperial University. Serving on the International Committee on Botanical Nomenclature in 1926, Nakai endorsed and acted upon European claims of universal science, whilst simultaneously unsettling them with his regionally shaped systematics. Eventually he came to promote his own systematics, built regionally on Korean flora, as the new universal. By analysing his shifting claims in relation to those of other European and non-European botanists, this paper makes two arguments. First, universalism and regionalism were not contradictory foundations of scientific practice but useful tools used by this non-European botanist in maintaining his scientific authority as a representative Japanese systematist. Second, his claims to universality and regionalism were both imperially charged. An imperially monopolized study of Korean plants left a regional imprint on Nakai's systematics. In order to maintain his scientific authority beyond its region of origin he had to assert either the expanding regionalism of 'East Asia' or universalism.

  7. Horizontal Stratification in Access to Danish University Programmes

    DEFF Research Database (Denmark)

    Munk, Martin D.; Thomsen, Jens Peter

    2018-01-01

    a relatively detailed classification of parents’ occupations to determine how students are endowed with different forms of capital, even when their parents would typically be characterised as belonging to the same social group. Second, we distinguish among disciplines and among university institutions...... to explain the dynamics of horizontal stratification in the Danish university system. Using unique and exhaustive register data, including all higher education institutions and the entire 1984 cohort as of the age of 24, we uncover distinct differences in the magnitude and type of horizontal stratification...... in different fields of study and university institutions. Most importantly, we find distinct patterns of horizontal stratification by field of study and parental occupation that would have remained hidden had we used more aggregated classifications for field of study and social origin....

  8. Access to Knowledge Southern Africa : Universities, Open Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Journal articles. Research productivity-visibility-accessibility and scholarly communication in Southern African universities. Download PDF ... Call for new OWSD Fellowships for Early Career Women Scientists now open. In partnership with ...

  9. Problems of university-based scientists associated with clinical trials.

    Science.gov (United States)

    Remington, R D

    1979-05-01

    University faculty members who participate in clinical trials face a number of difficulties in connection with this association. Publication opportunities are often limited, and individual scholarship is difficult to express and evaluate within the context of a cooperative trial. Merit increases, promotion, and the award of tenure will usually require evidence of scholarly achievement outside the trial setting. For this reason, it seems inadvisable to recommend that a young investigator devote a major portion of his scholarly and research time to such an activity. A possible exception may be a full-time appointment for 1 to 2 years. Nonetheless, cooperative clinical trials are an important investigative tool and they should continue to be associated with academic centers. If appropriate administrative arrangements can be made, it should be possible to solve the academic problems of the young investigator associated with such trials.

  10. Contract Faculty in Canada: Using Access to Information Requests to Uncover Hidden Academics in Canadian Universities

    Science.gov (United States)

    Brownlee, Jamie

    2015-01-01

    In Canada, universities are undergoing a process of corporatization where business interests, values and practices are assuming a more prominent place in higher education. A key feature of this process has been the changing composition of academic labor. While it is generally accepted that universities are relying more heavily on contract faculty,…

  11. Proceedings of international conference of young scientists 'Ecological problems of XXI century'

    International Nuclear Information System (INIS)

    Milyutin, A.A.; Chudakov, V.A.

    1999-11-01

    Now various ecological problems are rather topical practically for all fields of human activity. The amplification artificial influences on various ecosystems leads to modification and violation of their integrity. Therefore investigations of scientists in different fields are directed to study of both various aspects of ecology and correlation of natural singularities of ecosystems with activity of a man, and also directed to search of paths of environment rehabilitation etc. The present publication represents the collection of materials of a scientific conference of the young scientists, which was organized by Ministry for Education of the Republic of Belarus on the basis of International Sakharov Ecological University (Minsk, Republic of Belarus). The ecological problems were viewed on the following directions: ecology, radioecology, ecological monitoring, ecological information systems, eco priority power engineering, eco biology, medical ecology, molecular medicine, social ecology. The materials of a conference are intended for wide circle of the experts occupied with scientific and practical activity

  12. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  13. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    Science.gov (United States)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  14. [Academician Vladas Lasas -- distinguished Lithuanian scientist, organizer and educator].

    Science.gov (United States)

    Padegimas, Bernardas; Abraitis, Romualdas

    2002-01-01

    The material of this publication is dedicated to the memory of Professor Vladas Lasas, honored scientist of Lithuania, member of Lithuanian Academy of Sciences and corresponding member of the Academy of Medicine of the USSR. V. Lasas was born on January 13th, 1892, on a farmstead in Rokiskis region, Lithuania. He died on January 2nd, 1966 in Kaunas. V. Lasas studied medicine at the Faculty of Medicine of Tartu (Dorpat) University and graduated from it in 1918. In 1921 he was invited to deliver lectures on physiology at the newly organized Higher Courses in Kaunas. During 1920-1924 he attended higher educational establishments of Prague, Berlin, Lausanne and Paris. In 1924 V. Lasas worked on probation in Lausanne under supervision of famous scientist M. Arthus, the founder of experimental allergy--anaphylaxis, in the field of experimental anaphylaxis, desensibilization, enteral sensibilization and resorption of native albumins, transfer of allergic state from mother to fetus, the role of interoceptors and biologically active substances in the formation and development of anaphylaxis. Over 40 scientific papers were published and 12 doctoral these were maintained, dealing with these problems. From 1924 to 1940 and from 1944 to 1946 V. Lasas acted as dean of the Faculty of Medicine at Kaunas University. During this period he displayed great organizational talent, and on his initiative three basic clinical buildings were built for the Faculty of Medicine. In 1946 V. Lasas was elected as academician and appointed as secretary-in-charge of natural mathematical and applied science of the Academy of Sciences of Lithuania. V. Lasas was the founder and longstanding chairman of the Lithuanian Physiological Society. Alone and with coauthors he has published 16 original textbooks. The list of his bibliography accounts to 229 publications.

  15. A Tale of Two (or More Sustainabilities: A Q Methodology Study of University Professors’ Perspectives on Sustainable Universities

    Directory of Open Access Journals (Sweden)

    Paul Sylvestre

    2014-03-01

    Full Text Available If change for sustainability in higher education is to be effective, change efforts must be sensitive to the institutional culture in which they will be applied. Therefore, gaining insight into how institutional stakeholders engage with the concept of sustainable universities is an important first step in understanding how to frame and communicate change. This study employed Q methodology to explore how a group of professors conceptualize sustainable universities. We developed a Q sample of 46 statements comprising common conceptions of sustainable universities and had 26 professors from Dalhousie University rank-order them over a quasi-normal distribution. Our analysis uncovered four statistically significant viewpoints amongst the participants: ranging from technocentric optimists who stress the importance of imbuing students with skills and values to more liberal arts minded faculty suspicious of the potential of sustainability to instrumentalize the university. An examination of how these viewpoints interact on a subjective level revealed a rotating series of alignments and antagonisms in relation to themes traditionally associated with sustainable universities and broader themes associated with the identity of the university in contemporary society. Finally, we conclude by discussing the potential implications that the nature of these alignments and antagonisms may hold for developing a culturally sensitive vision of a sustainable university.

  16. Destroyed documents: uncovering the science that Imperial Tobacco Canada sought to conceal.

    Science.gov (United States)

    Hammond, David; Chaiton, Michael; Lee, Alex; Collishaw, Neil

    2009-11-10

    In 1992, British American Tobacco had its Canadian affiliate, Imperial Tobacco Canada, destroy internal research documents that could expose the company to liability or embarrassment. Sixty of these destroyed documents were subsequently uncovered in British American Tobacco's files. Legal counsel for Imperial Tobacco Canada provided a list of 60 destroyed documents to British American Tobacco. Information in this list was used to search for copies of the documents in British American Tobacco files released through court disclosure. We reviewed and summarized this information. Imperial Tobacco destroyed documents that included evidence from scientific reviews prepared by British American Tobacco's researchers, as well as 47 original research studies, 35 of which examined the biological activity and carcinogenicity of tobacco smoke. The documents also describe British American Tobacco research on cigarette modifications and toxic emissions, including the ways in which consumers adapted their smoking behaviour in response to these modifications. The documents also depict a comprehensive research program on the pharmacology of nicotine and the central role of nicotine in smoking behaviour. British American Tobacco scientists noted that ".. the present scale of the tobacco industry is largely dependent on the intensity and nature of the pharmacological action of nicotine," and that "... should nicotine become less attractive to smokers, the future of the tobacco industry would become less secure." The scientific evidence contained in the documents destroyed by Imperial Tobacco demonstrates that British American Tobacco had collected evidence that cigarette smoke was carcinogenic and addictive. The evidence that Imperial Tobacco sought to destroy had important implications for government regulation of tobacco.

  17. Study of Citizen Scientist Motivations and Effectiveness of Social Media Campaigns

    Science.gov (United States)

    Gugliucci, Nicole E.; Gay, P. L.; Bracey, G.; Lehan, C.; Lewis, S.; Moore, J.; Rhea, J.

    2013-01-01

    CosmoQuest is an online citizen science and astronomy education portal that invites users to explore the universe. Since its launch in January 2012, several thousand citizen scientists have participated in mapping and discovery projects involving the Moon, the Kuiper Belt, and asteroid Vesta. Since our goal is to support community building as well as involving users with citizen science tasks, we are interested in what motivates users to join the site, participate in the science, participate in the forums, and come back to the site over a period of time. We would also like to efficiently target our social media interactions towards activities that are more likely to bring new and existing users to the site. With those goals in mind, we analyze site usage statistics and correlate them with specific, targeted social media campaigns to highlight events or projects that CosmoQuest has hosted in its first year. We also survey our users to get a more detailed look at citizen scientist motivations and the efficacy of our community building activities.

  18. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  19. Partnering Students, Scientists, and the Local Community in a Regionally-focused Field Campaign

    Science.gov (United States)

    McLaughlin, J. W.; Lemone, M. A.; Seavey, M. M.; Washburne, J. C.

    2006-05-01

    The GLOBE Program (www.globe.gov) involves students and scientists in a worldwide environmental data collection effort. The GLOBE ONE field campaign (www.globe.gov/globeone) represents a model for a focused implementation of GLOBE via a geographically-specific project. The campaign, which occurred in Black Hawk County, Iowa from February 2004 to February 2006, was developed by GLOBE Principal Investigators (PIs), the GLOBE Program Office, and GLOBE Iowa. The central scientific objective was to compare quantitatively the environmental effects of various soil tillage techniques. In addition, student research projects were supported that spanned a variety of Earth science topics. The campaign established a partnership between students and scientists to collect a structured, multidisciplinary data set and also increase GLOBE visibility. The fact that GLOBE ONE occurred in a focused geographic area made it necessary to form a network for local support. This started with choosing an active GLOBE partner, namely the Iowa Academy of Science, who had the ability to oversee the local implementation of such a project. Once this partner was chosen, additional local groups needed to be recruited to support the project. The local network included K-12 schools, the County Conservation Board, the University of Northern Iowa, Hawkeye Community College, and community volunteers. This network collected data via automated instrumentation, first-hand observations, and through special events organized with a focus on a specific measurement. The first major step in supporting student research was a teacher training workshop held in March of 2006 that helped to provide tools for, and increase comfort levels with, promoting scientific inquiry in the classroom. Student-scientists interactions were promoted via scientist visits, video conferences, letters, and email exchanges. The culminating event was a Student Research Symposium held in February 2006 which gave students and scientists a

  20. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  1. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  2. Deviance and Crime in Colleges and Universities: What Goes on in the Halls of Ivy

    Science.gov (United States)

    Hickson, Mark, III; Roebuck, Julian B.

    2009-01-01

    This book provides potential answers to reduce deviant behavior and crime in colleges and universities. Claiming that the Virginia Tech and Northern Illinois shootings were aberrations, the authors have nevertheless uncovered offenses that presage major criminal incidents, such as students' engaging in cheating, plagiarism, binge drinking, date…

  3. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  4. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    Science.gov (United States)

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  5. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  6. [The role of world opinion in rescuing Krakow scientists involved in the "Sonderaktion Krakau"].

    Science.gov (United States)

    Bolewski, A

    1998-01-01

    The Author, participant and victim of the "Sonderaktion Krakau", remembers circumstances of insidious imprisonment of Krakow professors performed on November 6, 1939 by SS Operation Group under command of SS-Stumbannführer Bruno Müller. Based on archival research and relations of the participants of this action, he reconstructs fate of the imprisoned scientists and he analyses activities of political, governmental and diplomatic centers in Poland and particularly abroad towards liberation of the prisoners. A significant role in this international action was played by foreign scientific centers and universities as well as world press agencies. Due to this multinational solidarity, only 20 person out of 183 scientists imprisoned in the Sachsenhausen and Dachau Nazi camps lost their lives. The article is supplemented by a list of publications on the "Sonderaktion Krakau" written by ex-prisoners.

  7. Innovation from the Perspective of a Natural Scientist

    DEFF Research Database (Denmark)

    Kilstrup, Mogens

    2016-01-01

    Engineers and natural scientist are required to suggest successful utilization of their discoveries and secure property rights to their universities whenever possible. Here I develop a novel model that optimizes the process of innovation by dividing it into three separate phases following the pre...... all four elements (SAN D) need to be optimized by abduction.The present SAND model is different from all other innovative models in its focus on three separate creative abductive processes, yet current innovative theories can be described in the four dimensional innovation space by mapping along its...... in as specialized scenarios under the general model. A low level of redundancy was found between the SAND model and the Stage-Gate model, but the differing theoretical foundations have the effect that the two models are complementary rather than overlapping....

  8. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  9. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  10. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Dilemma of Scientists in the Nuclear Age

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    Scientists have made possible the nuclear arms race. The cases of some of the individual scientists are discussed. Most scientists on military work were and are not only justifying their work, but they are enjoying their lives. A general strike of the military scientists against the arms race is an illusion. A pragmatic approach to the problem is need. In any case it is imperative that concerned scientists concentrate on the struggle against the threat of nuclear war. They must interact with the people at large, especially the people in the mass organizations, and help them to judge the situation and to evolve suitable countermeasures. A few words are said about the possibility of world government. (author)

  12. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  13. The Uncovered Interest Parity in the Foreign Exchange (FX Markets

    Directory of Open Access Journals (Sweden)

    Silvio Ricardo Micheloto

    2004-12-01

    Full Text Available This work verifies the uncovered interest rates parity (UIP in the FX (foreign exchange emerging markets by using the panel cointegration technique. The data involves several developing countries that compose the EMBI+ Global Index. We compare the results of several panel estimators: OLS (ordinary list square, DOLS (dynamic OLS and FMOLS (fully modified OLS. This new panel technique can handle problems of either non-stationary series (spurious regression or small problem. This latter problem has being considered one of the main causes for distorting the UIP empirical results. By using this approach, we check the UIP in the FX (foreign exchange emerging markets. These markets are more critical because they have been subjected to changing FX regimes and speculative attacks. Our results do not corroborate the uncovered interest parity for the developing countries in the recent years. Thus, the forward premium puzzle may hold in the FX emergent markets.

  14. Comparison of covered and uncovered self-expandable stents in the treatment of malignant biliary obstruction.

    Science.gov (United States)

    Flores Carmona, Diana Yamel; Alonso Lárraga, Juan Octavio; Hernández Guerrero, Angélica; Ramírez Solís, Mauro Eduardo

    2016-05-01

    Drainage with metallic stents is the treatment of choice in malignant obstructive jaundice. Technical and clinical success with metallic stents is obtained in over 90% and 80% of cases, respectively. There are self-expandable metallic stents designed to increase permeability. The aim of this study was to describe the results obtained with totally covered self-expandable and uncovered self-expandable metallic stents in the palliative treatment of malignant biliary obstruction. Sixty eight patients with malignant obstructive jaundice secondary to pancreatobiliary or metastatic disease not amenable to surgery were retrospectively included. Two groups were created: group A (covered self-expandable metallic stents) (n = 22) and group B (uncovered self-expandable metallic stents) (n = 46). Serum total bilirubin, direct bilirubin, alkaline phosphatase and gamma glutamyl transferase levels decreased in both groups and no statistically significant difference was detected (p = 0.800, p = 0.190, p = 0.743, p = 0.521). Migration was greater with covered stents but it was not statistically significant either (p = 0.101). Obstruction was greater in the group with uncovered stents but it was not statistically significant either (p = 0.476). There are no differences when using covered self-expandable stents or uncovered self-expandable stents in terms of technical and clinical success or complications in the palliative treatment of malignant obstructive jaundice.

  15. Secrets of universe eyed as collider core installed

    CERN Document Server

    Evans, Robert

    2007-01-01

    "The world's leading centre for research into the origins of matter on Wedneday took a giant step towards completion of 1 15-year project which scientists hope will unlock many secrets of the universe."(1 page)

  16. Scientists as role models in space science outreach

    Science.gov (United States)

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  17. George's secret key to the universe

    CERN Document Server

    Hawking, Lucy; Galfard, Christophe; Parsons, Gary

    2007-01-01

    In their bestselling book for young readers, noted physicist Stephen Hawking and his daughter, Lucy, provide a grand and funny adventure that explains fascinating information about our universe, including Dr. Hawking's latest ideas about black holes. It's the story of George, who's taken through the vastness of space by a scientist, his daughter, and their super-computer named Cosmos. George's Secret Key to the Universe was a New York Times bestseller and a selection of Al's Book Club on the Today show.

  18. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  19. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  20. How to build a universe

    CERN Document Server

    Cox, Brian; Feachem, Alexandra

    2017-01-01

    The Infinite Monkey Cage, the legendary BBC Radio 4 programme, brings you this irreverent celebration of scientific marvels. Join us on a hectic leap through the grand and bizarre ideas conjured up by human imagination, from dark matter to consciousness via neutrinos and earthworms. Professor Brian Cox and Robin Ince muse on multifaceted subjects involved in building a universe, with pearls of wisdom from leading scientists and comedians peppered throughout. Covering billions of concepts and conundrums, they tackle everything from the Big Bang to parallel universes, fierce creatures to extraterrestrial life, brain science to artificial intelligence. How to Build a Universe is an illuminating and inspirational celebration of science - sometimes silly, sometimes astounding and very occasionally facetious.

  1. Secrets of universe eyed as collider core installed

    CERN Multimedia

    Evans, Robert

    2007-01-01

    "The world's leading centre for researach into the origins of matter on Wednesday took a giant step towards completion of a 15-year project which scientists hope will unlock many secrets of the universe." (1/2 page)

  2. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  3. Andrei Sakharov Prize Talk: Supporting Repressed Scientists: Continuing Efforts

    Science.gov (United States)

    Birman, Joseph L.

    2010-02-01

    Some years ago, Max Perutz asked ``By What Right Do We Scientists Invoke Human Rights?" My presentation will start with mentioning actions of the international community which relate to this question. Such action as the creation in 1919 of the International Research Council, and continuing on to the present with the UN sanctioned International Council of Scientific Unions [ICSU], and other Committees such as those formed by APS, CCS, NYAS, AAAS which give support to repressed scientists around the world now. My own work has attempted to combine my individual initiatives with work as a member and officer of these groups. Together with like minded colleagues who are deeply affected when colleagues are discharged from their positions, exiled, imprisoned and subject to brutal treatment, often after mock ``trials", we react. On visits in 1968 to conferences in Budapest, and then in 1969 to Moscow, Tallin and Leningrad I became personally and deeply touched by the lives of colleagues who were seriously constrained by living under dictatorships. I could move freely into and out of their countries,speak openly about my work or any other matter. They could not, under penalty of possibly serious punishment. Yet, I felt these people were like my extended family. If my grandparents had not left Eastern Europe for the USA in the late 189Os our situations could have been reversed. A little later in the 197O's, ``refusenik" and ``dissident" scientists in the USSR needed support. Colleagues like Andrei Sakharov, Naum Meiman, Mark Azbel, Yakov Alpert, Yuri Orlov and others were being punished for exercising their rights under the UN sanctioned international protocals on ``Universality of Science and Free Circulation of Scientists". Their own governments [which signed these agreements] ignored the very protections they had supported. On frequent trips to the USSR during the 7Os,and 8Os I also seized the opportunity for ``individual initiative" to help these colleagues. I asked for

  4. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  5. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  6. Universal varicella vaccine immunization in Japan.

    Science.gov (United States)

    Yoshikawa, Tetsushi; Kawamura, Yoshiki; Ohashi, Masahiro

    2016-04-07

    In 1974, Japanese scientists developed a live attenuated varicella vaccine based on the Oka strain. The efficacy of the vaccine for the prevention of varicella has been primarily demonstrated in studies conducted in the United States following the adoption of universal immunization using the Oka strain varicella vaccine in 1996. Although the vaccine was developed by Japanese scientists, until recently, the vaccine has been administered on a voluntary basis in Japan resulting in a vaccine coverage rate of approximately 40%. Therefore, Japan initiated universal immunization using the Oka strain varicella vaccine in November 2014. Given the transition from voluntary to universal immunization in Japan, it will also be important to monitor the epidemiology of varicella and herpes zoster. The efficacy and safety of co-administration of the varicella vaccine and measles, mumps, and rubella vaccine have been demonstrated in many countries; however, there was no data from Japan. In order to adopt the practice of universal immunization using the Oka strain varicella vaccine in Japan, data demonstrating the efficacy and safety of co-administration of varicella vaccine and measles and rubella (MR) vaccine were required. Additionally, we needed to elucidate the appropriate time interval between the first and second administrations of the vaccine. It is also important to differentiate between wild type and Oka vaccine type strains in herpes zoster patient with past history of varicella vaccine. Thus, there are many factors to consider regarding the adoption of universal immunization in Japan to control varicella zoster virus (VZV) infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Organization of physical interactomes as uncovered by network schemas.

    Science.gov (United States)

    Banks, Eric; Nabieva, Elena; Chazelle, Bernard; Singh, Mona

    2008-10-01

    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks.

  8. The 4-percent universe

    CERN Document Server

    Panek, Richard

    2012-01-01

    It is one of the most disturbing aspects of our universe: only four per cent of it consists of the matter that makes up every star, planet, and every book. The rest is completely unknown. Acclaimed science writer Richard Panek tells the story of the handful of scientists who have spent the past few decades on a quest to unlock the secrets of “dark matter" and the even stranger substance called “dark energy". These are perhaps the greatest mysteries in science,and solving them will reshape our understanding of the universe and our place in it. The stakes could not be higher. Panek's fast-paced

  9. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    lunar scientists. This panel judges the presentations and selects one team to present their research at the annual NLSI Forum. In addition to research, teams interact with lunar scientists during monthly webcasts in which scientists present information on lunar science and careers. Working with school guidance counselors, the CLSE staff assists interested students in making connections with lunar science faculty across the country. Evaluation data from the pilot program revealed that the program influenced some students to consider a career in science or helped to strengthen their current desire to pursue a career in science. The most common feedback from both teachers and mentors was that they would like more direction from CLSE staff. In light of these findings, a few questions arise when looking ahead. How do we meet the needs of our participants without compromising the program’s open inquiry philosophy? Are our expectations simply not clear? How do we keep students excited once the program ends? Is it feasible, as a community, to support them from the moment the program ends until they enter college? Finally, do we have a responsibility as a community to work together to connect students with university faculty?

  10. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  11. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  12. Beliefs of Chilean University English Teachers: Uncovering Their Role in the Teaching and Learning Process

    Directory of Open Access Journals (Sweden)

    Díaz Larenas Claudio

    2013-10-01

    Full Text Available Beliefs continue to be an important source to get to know teachers’ thinking processes and pedagogical decisions. Research in teachers’ beliefs has traditionally come from English-speaking contexts; however, a great deal of scientific work has been written lately in Brazil, Mexico, Colombia, and Argentina. This study elicits 30 Chilean university teachers’ beliefs about their own role in the teaching and learning of English in university environments. Through a qualitative research design, the data collected from interviews and journals were analyzed, triangulated, and categorized based on semantic content analysis. Results of the study indicate that university teachers reveal challenging and complex views about what it is like to teach English as a foreign language in a university context in Chile. The article concludes with a call to reflect on the importance of beliefs unravelling in teacher education programmes.Las creencias continúan siendo una fuente de importancia para conocer los procesos de pensamiento y los estilos pedagógicos de los docentes. Los estudios sobre las creencias docentes provienen en su mayoría de contextos angloparlantes; sin embargo, en los últimos años se ha escrito una gran cantidad de trabajos científicos en Brasil, México, Colombia y Argentina. Este estudio recoge las creencias de treinta docentes universitarios chilenos sobre su papel en la enseñanza y aprendizaje del inglés en ambientes universitarios. A partir de un diseño de investigación cualitativo, los datos recolectados por medio de entrevistas y diarios personales fueron analizados, triangulados y categorizados según el análisis de contenido semántico. Los resultados indicaron que los docentes de educación superior tienen visiones desafiantes y complejas sobre lo que significa enseñar inglés como lengua extranjera en un contexto universitario en Chile. El artículo concluye con una invitación a reflexionar sobre la importancia de

  13. Subatomic tracking finds clues to the unseen universe

    CERN Multimedia

    Glanz, J

    2004-01-01

    "An experiment that tracks subtle motions of subatomic particles called muons has found tantalizing evidence for a vast shadow universe of normally unseen matter existing side by side with ours, scientists at the Brookhaven National Laboratory said yesterday" (1 page)

  14. The origins of the universe for dummies

    CERN Document Server

    Pincock, Stephen

    2007-01-01

    Do you want to learn about the physical origin of the Universe, but don't have the rest of eternity to read up on it? Do you want to know what scientists know about where you and your planet came from, but without the science blinding you? 'Course you do - and who better than For Dummies to tackle the biggest, strangest and most wonderful question there is! The Origins of the Universe For Dummies covers: Early ideas about our universeModern cosmologyBig Bang theoryDark matter and gravityGalaxies and solar systemsLife on earthFi

  15. new scientist - singing in the name of climate change

    Science.gov (United States)

    Peragine, Marcel

    2015-04-01

    Basically what I am concerned with as composer, musician, film maker etc. is communicating in any way with the resources available the significance behind human civilization's impact on climate change. I accomplish this with the other components of my band, and the song that follows entitled New Scientist is an attempt to do this using the platform of the popular 3 minute rock song format. This Scientific Symposium is important no doubt, being a wonderful way of bringing creativity into science by inviting artists to participate. However time is running out and getting the message out on the scale necessary to start reversing the damage caused by modern man can only effectively be done with mass communication tools, hence broadcast and social media. The lyrics for New Scientist and other compositions we have in our repertoire try to provoke awareness by being set in the future, talking to the egocentric nature of mankind and to the small percentage of those who have the will and insight to attempt the almost supernatural feat of saving some semblance of human habitat either on Earth, or finding a new one elsewhere in the Universe. It is a bit satirical but oddly enough with world governments firmly in the hands of big business be it dirty oil or the factory farming of animals etc.,radical scientific solutions for the Earth seem to be mankind's only hope. It's great that NASA is finally making an attempt to reactivate manned space flights to Mars and deep space. In fact, nobody has ever taken seriously the impact of this research and technology on fighting climate change on Earth. To give an example, the hydrogen fuel cell is a technology not in use in everyday life in the modern world due to the lack of government special interests and subsidies. The good news however is that many of the scientific breakthroughs pioneered by NASA and its contractors have made available the ecologically friendly tools necessary to reverse climate change if only they would be made

  16. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  17. The first scientist Anaximander and his legacy

    CERN Document Server

    Rovelli, Carlo

    2011-01-01

    Carlo Rovelli, a leading theoretical physicist, uses the figure of Anaximander as the starting point for an examination of scientific thinking itself: its limits, its strengths, its benefits to humankind, and its controversial relationship with religion. Anaximander, the sixth-century BC Greek philosopher, is often called the first scientist because he was the first to explain that order in the world was due to natural forces, not supernatural ones. He is the first person known to rnunderstand that the Earth floats in space; to believe that the sun, the moon, and the stars rotate around it--seven centuries before Ptolemy; to argue that all animals came from the sea and evolved; and to posit that universal laws rncontrol all change in the world. Anaximander taught Pythagoras, who would build on Anaximander's scientific theories by applying mathematical laws to natural phenomena. rnrnIn the award-winning Anaximander and the Birth of Scientific Thought, Rovelli restores Anaximander to his place in the history of...

  18. THE GREAT RUSSIAN SCIENTIST M.V. LOMONOSOV

    Directory of Open Access Journals (Sweden)

    G.L. Mikirtichan

    2011-01-01

    Full Text Available This article presents reflections on the contribution of the great Russian scientist, one of the most prominent world science stars Mikhail Lomonosov (8/19.11.1711–4/15.04.1765 in connection with the 300th anniversary of his birth celebrated in 2011. Particular attention is paid to his role as an advocate for the development of domestic education and science, and his views on medicine. In the same year we are celebrating the 250 years anniversary since M. Lomonosov’s writing the letter to I.I. Shuvalov, «On the saving and reproduction of the Russian People» (1761, which contained an extensive program of increasing the country's population,  which included a range of legal, social and medical measures to help increase fertility and reduce child mortality. Key words: M. V. Lomonosov, I. I. Shuvalov, Moscow University, «On the saving and reproduction of the Russian people». (Pediatric pharmacology. — 2011; 8 (6: 136–140.

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  20. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  1. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  2. The droso4schools project: Long-term scientist-teacher collaborations to promote science communication and education in schools.

    Science.gov (United States)

    Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas

    2017-10-01

    Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All

  3. Engaging science communication that are time-saving for scientists using new online technology

    Science.gov (United States)

    Lilja Bye, Bente

    2016-04-01

    Science communication is a time consuming and challenging task. Communicating scientific results comes on top of doing science itself and the administrative work the modern day scientists have to cope with. The competition on peoples time and attention is also fierce. In order to get peoples attention and interest, it is today often required that there is a two-way communication. The audience needs and wants to be engaged, even in real-time. The skills and times required to do that is normally not included in the university curricula. In this presentation we will look at new technologies that can help scientists overcome some of those skills and time challenges. The new online technologies that has been tested and developed in other societal areas, can be of great use for research and the important science communication. We will illustrate this through an example from biodiversity, wetlands and these fields use of Earth observations. Both the scientists themselves representing different fields of research and the general public are being engaged effectively and efficiently through specifically designed online events/seminars/workshops. The scientists are able to learn from each other while also engaging in live dialogues with the audience. A cooperation between the Group of Earth Observations and the Ramsar Convention of Wetlands will be used to illustrate the method. Within the global Earth observation community, where this example comes from, there is a great potential for efficient capacity building, targeting both experts, decision-makers and the general public. The method presented is demonstrating one way of tapping into that potential using new online technologies and it can easily be transferred to other fields of geoscience and science in general.

  4. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  5. Women Young Scientists of INSA | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Women Young Scientists of INSA. Women Young Scientists of INSA. INSA - Indian National Science Academy .... Charusita Chakravarty, one of the stars of our community of women scientists, at a young ...

  6. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  7. Rising to the challenge: Training the next generation of clinician scientists for South Africa

    Directory of Open Access Journals (Sweden)

    B Kramer

    2015-12-01

    Full Text Available Background. A shortage of clinician scientists globally, particularly in the developing world, including Africa and South Africa (SA, is well known and was recently highlighted in a consensus report by the Academy of Science of South Africa. There is a need to find innovative ways to develop and advance clinician scientists in SA. Objective. To provide opportunities for young clinicians to develop research skills through enrolling for a PhD. Method. To address this need in SA, we developed an innovative programme over 2 years in collaboration with the Carnegie Corporation of New York to support and train young specialist clinicians in research as the next generation of clinician scientists, through a full-time PhD programme. Results. Since initiation of the programme in March 2011, 16 such specialists have been enrolled at intervals in the Fellowship programme, 5 have qualified with PhDs, while a further 3 are expected to qualify shortly. Publications and presentations at congresses have been recorded as well as grant applications. Discussion. Although the programme is seen as an important initial step in addressing the shortage of clinician scientists, its dependence on donor funding and the lack of a secure career path for clinicians wishing to spend more of their career in research pose problems for the programme’s sustainability. It is hoped that the positive outcomes of this experience will initiate further programmes of this kind at academic institutions and attract the attention of funders and universities in order to sustain and enlarge this initiative.

  8. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  9. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  10. Scientific collaboration and collective knowledge new essays

    CERN Document Server

    Mayo-Wilson, Conor; Weisberg, Michael

    2018-01-01

    Descartes once argued that, with sufficient effort and skill, a single scientist could uncover fundamental truths about our world. Contemporary science proves the limits of this claim. From synthesizing the human genome to predicting the effects of climate change, some current scientific research requires the collaboration of hundreds (if not thousands) of scientists with various specializations. Additionally, the majority of published scientific research is now co-authored, including more than 80% of articles in the natural sciences, meaning small collaborative teams have become the norm in science. This volume is the first to address critical philosophical questions regarding how collective scientific research could be organized differently and how it should be organized. For example, should scientists be required to share knowledge with competing research teams? How can universities and grant-giving institutions promote successful collaborations? When hundreds of researchers contribute to a discovery, how ...

  11. Photonics4All Crossword: Light Scientist

    OpenAIRE

    Dr. Adam, Aurèle

    2015-01-01

    Photonics4All developed the quiz “The Optics Scientist“. It tests our knowledge regarding famous people in optics & photonics. 14 famous scientists you should know, if you consider yourself a photoncis experts, are presented! For instance: Do you know the Dutch scientist who lived in Delft and invented the microscope? …find our more & test yourself, your friends, co-workers, students or family members!

  12. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  13. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  14. Motivation of Citizen Scientists Participating in Moon Zoo

    Science.gov (United States)

    Brown, Shanique; Gay, P. L.; Daus, C. S.

    2011-01-01

    Moon Zoo is an online citizen science project with the aim of providing detailed crater counts for as much of the Moon's surface as possible. In addition to focusing on craters, volunteers are encouraged to remain vigilant for sightings of atypical features which may lead to new discoveries. Volunteers accomplish these tasks by exploring images captured by NASA's Lunar Reconnaissance Orbiter (LRO) which has a resolution of 50cm per pixel. To be successful, Moon Zoo needs to attract and retain a large population of citizen scientists. In this study, we examine the factors motivating Moon Zoo participants who invest many hours exploring these images. In this, the first of a two-phased study, we conducted a qualitative analysis using semi-structured interviews as a means of data collection. A stratified sample of participants was used in an attempt to uncover the driving forces behind decisions to participate from a wide-range of participants. Inquiring and probing questions were asked about factors which led volunteers to Moon Zoo as well as reasons which kept them committed to exploring the Moon's surface through this online portal. Responses were then categorized using a grounded theory approach, and frequency distributions are calculated where appropriate. Aggregate results from these interviews are presented here including the demographics of the sample and motivators as per the content analysis. The information gathered from this phase will be used to guide the development of an online survey to further explore volunteers’ motivation based on the presented classification schemes. The survey will then be used to guide future research and development in the area of citizen science in the field of astronomy. These findings will also be useful in charting new boundaries for future research.

  15. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    Science.gov (United States)

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  16. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  17. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  18. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  19. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The Dark Universe Through Einstein's Lens

    Energy Technology Data Exchange (ETDEWEB)

    Bard, Deborah [SLAC; Kavli Institute for Particle Astrophysics and Cosmology

    2013-07-23

    Bard's talk explains the phenomenon known as gravitational lensing and how astrophysicists use it to explore the 95 percent of the universe that remains unseen: dark matter and dark energy. One of the most surprising predictions made by Einstein's theory of relativity is that light doesn't travel through the universe in a straight line. The gravitational field of massive objects will deflect the path of light traveling past, giving some very dramatic effects. We see multiple images of quasars, galaxies smeared into arcs and circles and magnified images of the most distant objects in the universe. This explains how gravitational lensing was first observed and discusses how scientists use this phenomenon to study everything from exoplanets to dark matter to the structure of the universe and the mysterious dark energy.

  1. Taking the Scientist's Perspective - The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  2. Taking the Scientist's Perspective. The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  3. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  4. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    Science.gov (United States)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school

  5. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  6. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  7. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist...

  8. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  9. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  10. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  11. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  12. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.

    Science.gov (United States)

    Warner, Jeremy L; Denny, Joshua C; Kreda, David A; Alterovitz, Gil

    2015-03-01

    Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor. Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adjacent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phenotype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers with the metabolic syndrome. Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis. Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Reuleaux models at St. Petersburg State University

    Science.gov (United States)

    Kuteeva, G. A.; Sinilshchikova, G. A.; Trifonenko, B. V.

    2018-05-01

    Franz Reuleaux (1829 - 1905) is a famous mechanical engineer, a Professor of the Berlin Royal Technical Academy. He became widely known as an engineer-scientist, a Professor and industrial consultant, education reformer and leader of the technical elite of Germany. He directed the design and manufacture of over 300 models of simple mechanisms. They were sold to many famous universities for pedagogical and scientific purposes. Today, the most complete set is at Cornell University, College of Engineering. In this article we discuss the history, the modern state and our using the Reuleaux models that survived at St. Petersburg State University for educational purposes. We present description of certain models and our electronic resource with these models. We provide the information of similar electronic resources from other universities.

  14. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  15. Proceedings of international conference of leading specialists, young scientists and students 'Ecological problems of XXI century'

    International Nuclear Information System (INIS)

    Milyutin, A.A.

    2002-05-01

    The present publication represents the collection of materials of a scientific conference of the leading specialists, young scientists and students, which was organized by Ministry for Education of the Republic of Belarus on the basis of International A. Sakharov Environmental University (Minsk, Republic of Belarus). The ecological problems were viewed on the following directions: ecology, radioecology, ecological monitoring, ecological information systems, eco priority power engineering, eco biology, medical ecology, molecular medicine, social ecology

  16. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  17. U.S. Directory of Marine Scientists 1982

    Science.gov (United States)

    1982-01-01

    Processes & Engineering. MACLEAN, SHARON A, Fishery Biologist. FINKELSTEIN, KENNETH, Coastal Geologist. Zooplankton; Crustacea. Sedimentology; Stratigraphy... SHARON T, Aszt Scientist. Pasadena, CA 91109 Taxonomy and Systematics; Zooplankton. HOWEY, TERRY W, Scientist. CHELTON, DUDLEY BOYD, JR, Senior...Oceanography. Monterey, CA 93940 Optics; Descriptive Physical Oceanography, Instrumentation Engineering. BOURKE , ROBERT H, Assoc Professor of VON SCHWIND

  18. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    Science.gov (United States)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  19. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  20. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  1. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  2. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  3. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    Science.gov (United States)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  4. Professional identity in clinician-scientists: brokers between care and science.

    Science.gov (United States)

    Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan

    2017-06-01

    Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care

  5. Smash! exploring the mysteries of the Universe with the Large Hadron Collider

    CERN Document Server

    Latta, Sara

    2017-01-01

    What is the universe made of? At CERN, the European Organization for Nuclear Research, scientists have searched for answers to this question using the largest machine in the world: the Large Hadron Collider. It speeds up tiny particles, then smashes them togetherand the collision gives researchers a look at the building blocks of the universe.

  6. A systematic identification and analysis of scientists on Twitter.

    Directory of Open Access Journals (Sweden)

    Qing Ke

    Full Text Available Metrics derived from Twitter and other social media-often referred to as altmetrics-are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually-we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

  7. A systematic identification and analysis of scientists on Twitter

    Science.gov (United States)

    Ke, Qing; Ahn, Yong-Yeol; Sugimoto, Cassidy R.

    2017-01-01

    Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics. PMID:28399145

  8. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  9. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  10. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Aratani, Michi; Sasagawa, Sumiko

    1999-01-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  11. The pupils of L.P. Ginsburg - The graduates of the faculty of mathematics and mechanics of Leningrad State University

    Science.gov (United States)

    Matveev, S. K.; Arkhangelskaya, L. A.; Akimov, G. A.

    2018-05-01

    Isaak Pavlovich Ginzburg (1910-1979) was a professor at the hydroaeromechanics department of Leningrad State University, a prominent scientist, an outstanding organizer and a brilliant educator, who had trained more than one generation of specialists in the field of fluid, gas and plasma mechanics. Many of his students became major scientists and organizers of science. The present paper is devoted to the students of I.P. Ginzburg graduated from the Mathematics and Mechanics Faculty of Leningrad State University.

  12. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  13. Academic Entrepreneurship and Exchange of Scientific Resources: Material Transfer in Life and Materials Sciences in Japanese Universities

    Science.gov (United States)

    Shibayama, Sotaro; Walsh, John P.; Baba, Yasunori

    2012-01-01

    This study uses a sample of Japanese university scientists in life and materials sciences to examine how academic entrepreneurship has affected the norms and behaviors of academic scientists regarding sharing scientific resources. Results indicate that high levels of academic entrepreneurship in a scientific field are associated with less reliance…

  14. Heart of darkness unraveling the mysteries of the invisible universe

    CERN Document Server

    Ostriker, Jeremiah P

    2013-01-01

    Heart of Darkness describes the incredible saga of humankind's quest to unravel the deepest secrets of the universe. Over the past thirty years, scientists have learned that two little-understood components--dark matter and dark energy--comprise most of the known cosmos, explain the growth of all cosmic structure, and hold the key to the universe's fate. The story of how evidence for the so-called "Lambda-Cold Dark Matter" model of cosmology has been gathered by generations of scientists throughout the world is told here by one of the pioneers of the field, Jeremiah Ostriker, and his coauthor Simon Mitton. From humankind's early attempts to comprehend Earth's place in the solar system, to astronomers' exploration of the Milky Way galaxy and the realm of the nebulae beyond, to the detection of the primordial fluctuations of energy from which all subsequent structure developed, this book explains the physics and the history of how the current model of our universe arose and has passed every test hurled at it b...

  15. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  16. The role of Geographic Information Systems in the Office of the Supervising Scientist

    International Nuclear Information System (INIS)

    Riley, S.J.

    1992-01-01

    A Geographic Information System (GIS), embedded in a Decision Support System linking spatial data bases and biophysical models of the environment, will be an important tool in the design and assessment of rehabilitation of uranium mines in the Alligator Rivers Region. The Office of the Supervising Scientist (OSS) and the Northern Territory of University are collaborating in the development of GIS and its introduction into rehabilitation planning. The achievements obtained to date are briefly outlined. There is every expectation that the system developed by OSS will be of general use in environmental assessment and management. 33 refs., 1 fig

  17. PUBLICATION OF SCIENTIFIC PERIODICALS AT UNIVERSITIES:NEW CHALLENGES, PARTICIPANTS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    T. О. Kolesnykova

    2015-11-01

    Full Text Available Purpose. Publication of scientific periodicals in the Universities is very important and necessary element in the infrastructure of scientific communication. The aim of the article is: 1 providing a new model of publication system of the University scientific periodicals (on the example of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan – DNURT; 2 studying the peculiarities of the «Library publishing» model (Library Publishing and library as a new participant in the publication of world scientific periodicals of the University; 3 description of the developed software automation typesetting of scientific articles and their integration into international databases of scientific and technical information. Methodology. The scientists investigated: 1 the system of publication of scientific periodicals at DNURT; 2 integration system of electronic versions of periodicals and individual articles of scientists from DNURT into the world scientific databases; 3 publishing activity of the scientific and technical library of the University. Findings. The authors proved the need for the fast updates in each higher education institution of Ukrainian management system of scientific periodicals and the creation of the periodicals development concept. The conditions for the occurrence of positive changes in the publishing process in Universities were determined and named as a new participant in these processes – University library. The list of new tasks inherent in the scientific periodicals of the Universities was presented. The software product «Digital designer» was created as a new applied information technology solution to extend the functionality of the basic system information of the publication according to its editorial policy. Originality. The scientists studied the transformation process of the organizational structure of scientific periodicals publishing in the Universities of Ukraine and the world

  18. A School in Siberia: 14-Year-Olds Take University Math Course.

    Science.gov (United States)

    Bogdanovsky, Georgy

    1978-01-01

    Ordinary students (n=40) are participating in a Soviet experiment wherein they are taught by well-known scientists and specialists in a math-intensive course comparable to that taught at the Kiev University. (JC)

  19. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    Science.gov (United States)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  20. Epistemically Virtuous Risk Management : Financial Due Diligence and Uncovering the Madoff Fraud

    NARCIS (Netherlands)

    de Bruin, Boudewijn; Luetge, Christoph; Jauernig, Johanna

    2014-01-01

    The chapter analyses how Bernard Madoff’s Ponzi scheme was uncovered by Harry Markopolos, an employee of Rampart Investment Management, LLC, and the contribution of so-called epistemic virtues to Markopolos’ success. After Rampart had informed the firm about an allegedly highly successful hedge fund

  1. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.

    Science.gov (United States)

    Shooshtari, Parisa; Huang, Hailiang; Cotsapas, Chris

    2017-07-06

    Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. The mentoring of male and female scientists during their doctoral studies

    Science.gov (United States)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional

  3. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  4. Stranger than fiction parallel universes beguile science

    CERN Multimedia

    2007-01-01

    A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- at least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.

  5. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  6. Quantum Physics for Scientists and Technologists Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

    CERN Document Server

    Sanghera, Paul

    2011-01-01

    Presenting quantum physics for the non-physicists, Quantum Physics for Scientists and Technologists is a self-contained, cohesive, concise, yet comprehensive, story of quantum physics from the fields of science and technology, including computer science, biology, chemistry, and nanotechnology. The authors explain the concepts and phenomena in a practical fashion with only a minimum amount of math. Examples from, and references to, computer science, biology, chemistry, and nanotechnology throughout the book make the material accessible to biologists, chemists, computer scientists, and non-techn

  7. When biological scientists become health-care workers: emotional labour in embryology.

    Science.gov (United States)

    Fitzgerald, R P; Legge, M; Frank, N

    2013-05-01

    Can biological scientists working in medically assisted reproduction (MAR) have a role as health-care workers and, if so, how do they engage in the emotional labour commonly associated with health-care work? The scientists at Fertility Associates (FA) in New Zealand perform the technical and emotional cares associated with health-care work in an occupationally specific manner, which we refer to as a hybrid care style. Their emotional labour consists of managing difficult patients, 'talking up' bad news, finding strategies to sustain hope and meaning, and 'clicking' or 'not clicking' with individual patients. Effective emotional labour is a key component of patient-centred care and is as important to the experience of high-quality MAR as excellent clinical and scientific technique. This is a qualitative study based on open-ended interviews and ethnographic observations with 14 staff in 2 laboratories conducted over 2 separate periods of 3 weeks duration in 2007. Analysis of fieldnotes and interviews was conducted using thematic analysis and an NVivo qualitative database and compared for consistency across each interviewer. The participants were consenting biological scientists working in one of the two laboratories. Semi-structured interviews were conducted in 'quiet' work times, and supervised access was allowed to all parts of the laboratories and meeting places. Opportunities for participant review of results and cross comparison of independent analysis by authors increases the faithfulness of fit of this account to laboratory life. The study suggests that emotional labour is a part of routinized scientific labour in MAR laboratories for FA. This is a qualitative study and thus the findings are not generalizable to populations beyond the study participants. While little has been published of the emotional component of scientist's working lives, there may be a New Zealand style of doing scientific work in MAR laboratories which is patient centred and which

  8. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  9. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  10. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  11. Physical protection of radioactive materials in a University Research Institute

    International Nuclear Information System (INIS)

    Boeck, H.

    1998-01-01

    Although nuclear research centers attached to universities usually do not keep large inventories of radioactive or special nuclear material, the mentioned material has still to be under strict surveillance and safeguards if applicable. One problem in such research centers is the large and frequent fluctuation of persons - mainly students, scientists or visiting guest scientists - using such materials for basic or applied research. In the present paper an overview of protective actions in such a research institute will be given and experience of more than 36 years will be presented. (author)

  12. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  13. On-the-job, real-time professional development for graduate students and early career scientists at the University of Hawaii

    Science.gov (United States)

    Bruno, B. C.; Guannel, M.; Wood-Charlson, E.; Choy, A.; Wren, J.; Chang, C.; Alegado, R.; Leon Soon, S.; Needham, H.; Wiener, C.

    2015-12-01

    Here we present an overview of inter-related programs designed to promote leadership and professional development among graduate students and early career scientists. In a very short time, these young scientists have developed into an impressive cohort of leaders. Proposal Writing. The EDventures model combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by program alumni to NSF, 50% were funded. (Wood Charlson & Bruno, in press; cmore.soest.hawaii.edu/education/edventures.htm)Mentoring. The C-MORE Scholars and SOEST Maile Mentoring Bridgeprograms give graduate students the opportunity to serve as research mentors and non-research mentors, respectively, to undergraduates. Both programs aim to develop a "majority-minority" scientist network, where Native Hawaiians and other underrepresented students receive professional development training and personal support through one-on-one mentoring relationships (Gibson and Bruno, 2012; http://cmore.soest.hawaii.edu/scholars; http://maile.soest.hawaii.edu).Outreach & Science Communication. Ocean FEST (Families Exploring Science Together), Ocean TECH (Technology Explores Career Horizons) and the Kapiolani Community College summer bridge program provide opportunities for graduate students and post-docs to design and deliver outreach activities, lead field trips, communicate their research, and organize events (Wiener et al, 2011, Bruno & Wren, 2014; http://oceanfest.soest.hawaii.edu; http://oceantech.soest.hawaii.edu)Professional Development Course. In this

  14. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  15. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  16. Clinician-scientists in Canada: barriers to career entry and progress.

    Directory of Open Access Journals (Sweden)

    Bryn Lander

    Full Text Available BACKGROUND: Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. METHODS: Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. RESULTS: Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3 than non-clinical scientists (3.2, potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001 suggesting that clinician-scientists may be shifting their attention to other research domains. CONCLUSION: While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of

  17. How do scientists perceive the current publication culture? A qualitative focus group interview study among Dutch biomedical researchers.

    Science.gov (United States)

    Tijdink, J K; Schipper, K; Bouter, L M; Maclaine Pont, P; de Jonge, J; Smulders, Y M

    2016-02-17

    To investigate the biomedical scientist's perception of the prevailing publication culture. Qualitative focus group interview study. Four university medical centres in the Netherlands. Three randomly selected groups of biomedical scientists (PhD, postdoctoral staff members and full professors). Main themes for discussion were selected by participants. Frequently perceived detrimental effects of contemporary publication culture were the strong focus on citation measures (like the Journal Impact Factor and the H-index), gift and ghost authorships and the order of authors, the peer review process, competition, the funding system and publication bias. These themes were generally associated with detrimental and undesirable effects on publication practices and on the validity of reported results. Furthermore, senior scientists tended to display a more cynical perception of the publication culture than their junior colleagues. However, even among the PhD students and the postdoctoral fellows, the sentiment was quite negative. Positive perceptions of specific features of contemporary scientific and publication culture were rare. Our findings suggest that the current publication culture leads to negative sentiments, counterproductive stress levels and, most importantly, to questionable research practices among junior and senior biomedical scientists. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  19. [The scientific conference: Konstanty Janicki (1876-1932): Professor of Warsaw University, eminent zoologist and protistologist, creator of the Polish parasitological school].

    Science.gov (United States)

    Moskwa, Bozena; Siński, Edward; Kazubski, Stanisław L

    2005-01-01

    The conference was organized for celebrating the memory of professor Konstanty Janicki, one of the most important Polish zoologist, protistologist and parasitologist. Professors Joanna Pijanowska, Edward Siński and Maria Doligalska were the hosts of the meeting at the Warsaw University. Four lectures were given during the conference. Professor Leszek Kuźnicki presented professor Janicki's life and followers who continued his research. Professor Stanisław Kazubski reminded the main topics of the parasitological studies conducted by professor Janicki. That lecture was illustrated by coloured diagrams taken from original papers published by Janicki. In the next lecture, professor Teresa Pojmańska reminded "the theory of the cercomer". She viewed some polemics and discussions made by the opponents of the theory. Professor Alicja Guttowa presented a paper on the history of the exploration of the D. latum life cycle and the main scientific researches carried out on each life stages of the broad tapeworm. Afterwards the lectures, professor Kazubski showed several pictures taken inside and outside of the Main School of the Warsaw University at the time when professor Janicki had been working there. The professor's students were also seen in these pictures. Next, associate professor Bozena Moskwa, the President of the Polish Parasitological Society presented the Konstanty Janicki Medal, awarded for outstanding activities for the benefit of parasitology. Up to data, 17 scientists and one school: the Warsaw Uniwersity was honored with this Medal. After the conference, participants visited the Powazki Cementary, where the renovated sepulchral monument of professor Konstanty Janicki was uncovered.

  20. Values in environmental research: Citizens’ views of scientists who acknowledge values

    Science.gov (United States)

    McCright, Aaron M.; Allen, Summer; Dietz, Thomas

    2017-01-01

    Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087

  1. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  2. [Start-up grants for young scientists in German medical universities : Can the clinical scientist be saved?

    Science.gov (United States)

    Pabst, R; Linke, P B; Neudeck, N B A; Schmiel, M; Ernst, S B

    2016-12-01

    German medical faculties currently have severe financial problems. There is the conflict between financing teaching medical students, inpatient and outpatient costs and supporting basic and applied research. Young postdocs can apply for a grant to start research projects to establish techniques on publishing data as a basis for applying for grants from the German Research Foundation or foundations with a critical review system. Successful applicants from the years 1998-2011 were asked to answer a questionnaire. The annual number of applications ranged from 28 to 96 per year. Within the first period of our analysis ranging from 1998 to 2004, a mean number of 69.5 % ± 14.0 % of submitted grant applications were approved annually in comparison to an average approval of 30.9 % ± 11 % in the years 2006-2001. In total 353 projects were funded with a mean amount of money for a project of approximately 18,640 EUR. The mean amount of external grant money following the start-up period was 7.2 times the money initially spent. That is an excellent return of investment. There were no differences between applicants from the department of surgery or department of internal medicine. In the meantime, 56 % of men and 42 % of women have achieved the academic degree university lecturer (privatdozent). Furthermore, 71 % of the participants evaluated this start-up research as supportive for their postdoctoral qualification (habilitation). The program for initial investment for young postdocs by internal start-up grants is overall successful.

  3. NASA's Universe of Learning: Engaging Learners in Discovery

    Science.gov (United States)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  4. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    Science.gov (United States)

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  5. The readability of expert reports for non-scientist report-users: reports of forensic comparison of glass.

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2014-03-01

    Scientific language contains features that may impede understanding for non-scientists. Forensic scientists' written reports are read by police, lawyers, and judges, and thus assessment of readability is warranted. Past studies of readability differed in background theory and approach, but analysed one or more of: content and sequence; language; and format. Using a holistic approach, we assessed the readability of expert reports (n=78) of forensic glass comparison from 7 Australian jurisdictions. Two main audiences for reports were relevant: police and the courts. Reports for police were presented either as a completed form or as a brief legal-style report. Reports for court were less brief and used either legal or scientific styles, with content and formatting features supporting these distinctions. Some jurisdictions prepared a single report to satisfy both the courts and police. In general, item list, analytical techniques, results, notes on interpretation, and conclusions were included in reports of all types. However, some reports omitted analytical techniques, and results and conclusions were sometimes combined. According to Flesch Reading Ease, language was difficult, with a Flesch-Kincaid grade level of university undergraduate. Sentences were long and contained undefined specialist terms. Information content per clause (lexical density), was typically high, as for other scientific texts. Uncertainty was expressed differently by jurisdiction. Reports from most jurisdictions were cluttered in appearance, with single-line spacing, narrow margins, and gridlines in tables. Simple suggestions, based on theory and past research, are provided to assist scientists to enhance the readability of expert reports for non-scientists. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Revisiting Uncovered Interest Rate Parity: Switching Between UIP and the Random Walk

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald)

    2007-01-01

    textabstractIn this paper, we examine in which periods uncovered interest rate parity was likely to hold. Empirical research has shown mixed evidence on UIP. The main finding is that it doesn’t hold, although some researchers were not able to reject UIP in periods with large interest differentials

  7. Challenges in translational research: the views of addiction scientists.

    Science.gov (United States)

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  8. Benefits and challenges of incorporating citizen science into university education.

    Science.gov (United States)

    Mitchell, Nicola; Triska, Maggie; Liberatore, Andrea; Ashcroft, Linden; Weatherill, Richard; Longnecker, Nancy

    2017-01-01

    A common feature of many citizen science projects is the collection of data by unpaid contributors with the expectation that the data will be used in research. Here we report a teaching strategy that combined citizen science with inquiry-based learning to offer first year university students an authentic research experience. A six-year partnership with the Australian phenology citizen science program ClimateWatch has enabled biology students from the University of Western Australia to contribute phenological data on plants and animals, and to conduct the first research on unvalidated species datasets contributed by public and university participants. Students wrote scientific articles on their findings, peer-reviewed each other's work and the best articles were published online in a student journal. Surveys of more than 1500 students showed that their environmental engagement increased significantly after participating in data collection and data analysis. However, only 31% of students agreed with the statement that "data collected by citizen scientists are reliable" at the end of the project, whereas the rate of agreement was initially 79%. This change in perception was likely due to students discovering erroneous records when they mapped data points and analysed submitted photographs. A positive consequence was that students subsequently reported being more careful to avoid errors in their own data collection, and making greater efforts to contribute records that were useful for future scientific research. Evaluation of our project has shown that by embedding a research process within citizen science participation, university students are given cause to improve their contributions to environmental datasets. If true for citizen scientists in general, enabling participants as well as scientists to analyse data could enhance data quality, and so address a key constraint of broad-scale citizen science programs.

  9. Continuous professional training of medical laboratory scientists in ...

    African Journals Online (AJOL)

    Background. Training and re-training of healthcare workers is pivotal to improved service delivery. Objective. To determine the proportion of practising medical laboratory scientists with in-service training in Benin City, Nigeria and areas covered by these programmes. Methods. Medical laboratory scientists from Benin City ...

  10. Representations of scientists in high school biology textbooks.

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    ABSTRACT: High school students’ images of scientists are reported as being stereotypic and narrow. We investigated in this study the potential of science textbooks to mediate the emergence of such images. We selected evidence for how ten noted scientists are represented in four widely used high

  11. Scientists as communicators: A randomized experiment to assess public reactions to scientists' social media communication along the science-advocacy continuum

    Science.gov (United States)

    Kotcher, J.; Vraga, E.; Myers, T.; Stenhouse, N.; Roser-Renouf, C.; Maibach, E.

    2014-12-01

    The question of what type of role scientists, or experts more generally, should play in policy debates is a perennial point of discussion within the scientific community. It is often thought that communication containing some form of policy advocacy is likely to compromise the perceived credibility of the individual scientist engaged in such behavior, with the possibility that it may also harm the credibility of the scientific community more broadly. Rather than evaluating statements in a binary fashion as representing either pure objectivity or pure advocacy, one recent model proposes that public communication by scientists should instead be thought of as falling along a continuum based upon the extent of normative judgment implicit in a statement. This approach predicts that as the extent of normative judgment increases, it poses a relatively greater risk to a scientist's perceived credibility. Though such a model is conceptually useful, little empirical social science research has systematically explored how individuals form judgments about different types of advocacy to examine common assumptions about the relative risks associated with such behaviors. In this presentation, we will report results from a national online experiment (N=1200) that examines audience responses to fictional social media posts written by either a climate scientist or a television weathercaster. Following the above model, the posts represent differing degrees of advocacy defined by the extent of normative judgment implicit in each statement. In instances where a specific policy is advocated, we examine whether participants' reactions are shaped by the extent to which the policy mentioned is congruent with one's political ideology. We hope this study will serve as an exemplar of applied science communication research that can begin to help inform scientists and other experts about the potential implications of different communication options they may choose from in deciding how to engage

  12. Relations between scientists and government: the case of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J E

    1982-05-01

    This article discusses the role and influence of the scientific communities in less-developed countries (LDC) on national high-technology policy by examining the particular case of nuclear energy. This area has been largely overlooked by other literature on LDC's scientific development. Based on an examination of scientific involvement in nuclear energy policy in selected countries, it becomes clear that the influence of scientists can range from making cardinal decisions about programs to simply legitimating or implementing decisions made by political or bureaucratic leaders. Within governmental structures, there are opportunities for scientists to incrementally shape technology policies, despite the fact that the magnitude of this influence is circumscribed by domestic considerations, not only of physical resources, but also intangibles such as national prestige and security. While a scientist can on rare occasion seize opportunities to dramatically restructure a nation's scientific or nuclear program, the overwhelming majority of scientists never exercise any such power. But even in day-to-day operations of government scientists can exert subtle influence, not only on nuclear energy programs, but also in an indirect way on the fabric of a nation's culture. Despite this significant impact, in any direct contest between the scientist and the politician, the scientist inevitably loses. In conclusion, scientists seem much more aware of their limitations rather than their potential to influence national technology policy, and tend to act in accord with priorities and goals as defined by their nation-state. 18 references.

  13. Partnerships and Grassroots Action in the 500 Women Scientists Network

    Science.gov (United States)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed

  14. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  15. Universal Internucleotide Statistics in Full Genomes: A Footprint of the DNA Structure and Packaging?

    OpenAIRE

    Bogachev, Mikhail I.; Kayumov, Airat R.; Bunde, Armin

    2014-01-01

    Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleot...

  16. Attitudes and working conditions of ICES advisory scientists

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Wilson, Douglas Clyde

    2009-01-01

    give a fuller picture. One important task is to compare the experience of fisheries scientists who are more involved in the advice generation system with that of their colleagues who are less involved. Most of the tables draw comparisons between scientists who work for different kinds of employers...

  17. Critical Success Factors in the Curriculum Alignment Process: The Case of the College of Business at Abu Dhabi University

    Science.gov (United States)

    Camba, Pitzel; Krotov, Vlad

    2015-01-01

    The main goals of this article are to (a) assist business schools in understanding the curriculum alignment process, and (b) uncover critical success factors in curriculum alignment. Based on a case study conducted at the College of Business at Abu Dhabi University, a detailed curriculum alignment process description is provided. The process…

  18. Sitting with the scientists: a collaborative approach to STEM content development

    Science.gov (United States)

    Mattson, Barbara

    2018-01-01

    For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.

  19. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    Science.gov (United States)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  20. Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Nievelstein, Fleurie; Giesbers, Bas; Fred, Paas

    2009-01-01

    Van Gog, T., Kester, L., Nievelstein, F., Giesbers, B., & Paas, F. (2009). Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction. Computers in Human Behavior, 25, 325-331.

  1. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    Science.gov (United States)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  2. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    Science.gov (United States)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher

  3. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  4. American and Greek Children's Visual Images of Scientists

    Science.gov (United States)

    Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro

    2016-08-01

    This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91 third-grade American ( N = 46) and Greek ( N = 45) pupils were examined. Data collection was conducted through a drawing task based on Chambers (1983) `Draw-A-Scientist-Test' (DAST) and a picture selection task during which the children selected between 14 pairs of illustrations those that were most probable to represent scientists. Analysis focused on stereotype indicators related with scientists' appearance and work setting. Results showed that the two groups' performance varied significantly across the tasks used to explore their stereotypic perceptions, although the overall stereotypy was not differentiated according to participants' ethnic group. Moreover, boys were found to use more stereotypic indicators than girls, while the picture selection task elicited more stereotypic responses than the drawing task. In general, data collected by the two instruments revealed convergences and divergences concerning the stereotypic indicators preferred. Similarities and differences between national groups point to the influence of a globalized popular culture on the one hand and of the different sociocultural contexts underlying science curricula and their implementation on the other. Implications for science education are discussed.

  5. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    Science.gov (United States)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  6. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    Science.gov (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  7. Dark Energy Found Stifling Growth in Universe

    Science.gov (United States)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  8. John P. Craig, MD, MPH. Physician-Scientist, Educator, and Mentor. 1923-2016.

    Science.gov (United States)

    Haseeb, M A; Imperato, Pascal James

    2017-10-01

    John P. Craig (1923-2016) was an eminent physician-scientist, gifted educator, and greatly valued mentor. Born in West Liberty, Ohio on 29 November 1923, he attended Oberlin College, and received his medical degree from Case Western Reserve University, School of Medicine. This was followed by an internship at Yale University Medical Center, and then service in the U.S. Army during the Korean War. He was a battalion surgeon, preventive medicine officer, and epidemiologist. While in Korea, he conducted important investigations of hemorrhagic fever among American troops. His observations led to the recognition of hemorrhagic fever with renal syndrome, now called Korean hemorrhagic fever. He also identified a new Hanta virus. Craig received his Master of Public Health degree magna cum laude from the Harvard School of Public Health. He then worked with Nobel Laureate, Max Theiler, at the Rockefeller Foundation. Soon afterwards, he joined the faculty of the Department of Microbiology and Immunology at the State University of New York, Downstate Medical Center, where he established a new research laboratory. Over the years, his research focused on diphtheria infections and cholera. He became internationally respected for his work on cholera, and specifically on cholera toxin and its relationship to vascular permeability. He served for over 6 years as the Chair of the Cholera Panel of the U.S.-Japan Cooperative Program, and in this position set the direction for future research. The author of over 100 articles published in the peer-reviewed scientific literature, he also gave numerous presentations at national and international scientific meetings on a wide range of microbial diseases. Craig was highly regarded by colleagues and students as a superb teacher. He was a leader in initiating patient-oriented problem-solving (POPS) exercises for medical students. He also led curricular reform in the medical school in the 1990s whose purpose was to reduce lecture hours and

  9. Impact on biochemical research of the discovery of stable isotopes: the outcome of the serendipic meeting of a refugee with the discoverer of heavy isotopes at Columbia University

    International Nuclear Information System (INIS)

    Shemin, D.

    1987-01-01

    As late as the 1930s, approaches to biochemical research not only were rather primitive, but a certain amount of mysticism still surrounded the biochemical events that occur in the living cell. To a great extent, this was due to the lack of techniques needed to uncover the subtle reactions in the living cell. In the early 1930s, an accidental meeting of two scientists revolutionized approaches in biochemical studies and led to the scientific explosion in molecular biology that has occurred during the last few decades. The dark political storm in Germany deposited Dr. Rudolf Schoenheimer on the New York shore, where he met Professor Urey, who recently had discovered ''heavy'' hydrogen. Schoenheimer suggested that biological compounds tagged with heavy atoms of hydrogen would enable investigators to follow their metabolic pathways. This intellectual leap revolutionized the thinking and design of experiments and made it possible to uncover the myriad reactions that occur in the living cell

  10. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  11. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  12. The seven secrets of how to think like a rocket scientist

    CERN Document Server

    Longuski, James

    2007-01-01

    This book explains the methods that rocket scientists use - expressed in a way that could be applied in everyday life. It's short and snappy and written by a rocket scientist. It is intended for general "armchair" scientists.

  13. QUALITY OF WORKING LIFE IN COMMODITIZED HOSPITALS AND UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Josep M. Blanch

    2014-01-01

    Full Text Available New Public Management (NPM turns public hospital and university services into market enterprises. The aim of the paper is to analyze and describe the impact of this metamorphosis on the labor subjectivity of the staff employed in such services. Empirical studies in Spanish and Latin American hospitals and universities uncover a paradoxical experience: relative manifest satisfaction with material and technical conditions allowing them to work harder and better, but also latent discomfort with the task overload, and professional and ethical dilemmas posed by new organizational demands, in the face of which staff develop ways of coping ranging from manifest obedience to latent resistance. This supports the reasons for the redesign of these services based on a better balance between commercial and social demands, managerial and professional values, and between business efficiency and quality of working life.

  14. Scientists' perspectives on consent in the context of biobanking research.

    Science.gov (United States)

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  15. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  16. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  17. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  18. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  19. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    Science.gov (United States)

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  20. Collaboration and Gender Equity among Academic Scientists

    Directory of Open Access Journals (Sweden)

    Joya Misra

    2017-03-01

    Full Text Available Universities were established as hierarchical bureaucracies that reward individual attainment in evaluating success. Yet collaboration is crucial both to 21st century science and, we argue, to advancing equity for women academic scientists. We draw from research on gender equity and on collaboration in higher education, and report on data collected on one campus. Sixteen focus group meetings were held with 85 faculty members from STEM departments, separated by faculty rank and gender (i.e., assistant professor men, full professor women. Participants were asked structured questions about the role of collaboration in research, career development, and departmental decision-making. Inductive analyses of focus group data led to the development of a theoretical model in which resources, recognition, and relationships create conditions under which collaboration is likely to produce more gender equitable outcomes for STEM faculty. Ensuring women faculty have equal access to resources is central to safeguarding their success; relationships, including mutual mentoring, inclusion and collegiality, facilitate women’s careers in academia; and recognition of collaborative work bolsters women’s professional advancement. We further propose that gender equity will be stronger in STEM where resources, relationships, and recognition intersect—having multiplicative rather than additive effects.

  1. Scientists' views of the philosophy of science

    OpenAIRE

    Riesch, H.

    2008-01-01

    Many studies in public understanding of science emphasise that learning how to do science also involves learning about the philosophical issues surrounding the nature of science. This thesis aims to find out how scientists themselves talk and write about these philosophical topics, and how these topics get used in scientific thought. It contrasts scientists' opinions on these issues with how they are portrayed in popular science, and also contrasts them with how philosophers themselves have j...

  2. Changes in Academic Entrepreneurship among Japanese University Bioscientists, 1980-2012

    Science.gov (United States)

    Kameo, Nahoko

    2014-01-01

    The dissertation examines how Japanese university scientists in the biosciences responded to legal and institutional changes in academic entrepreneurship. Beginning in the 1990s, the Japanese government initiated a series of policy initiatives that attempted to imitate the U.S. academic environment's approach to promoting entrepreneurship. Using…

  3. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    1977-01-01

    On the initiative of the JINR Directorate, which was supported by the Academy of Natural Sciences of Russia, the International University of Nature, Society and Man, was set up in 1991. Then, the JINR University Centre was established, where senior students of the leading Russian Physics institutes finish their education under the supervision of JINR scientists and attend practical studies in the JINR Laboratories. This new JINR development concept envisages a gradual conversion to an international centre which will integrate fundamental science, technological studies and education.

  4. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    On the initiative of the JINR Directorate, which was supported by the Academy of Natural Sciences of Russia, the International University of Nature, Society and Man, was set up in 1991. Then, the JINR University Centre was established, where senior students of the leading Russian Physics institutes finish their education under the supervision of JINR scientists and attend practical studies in the JINR Laboratories. This new JINR development concept envisages a gradual conversion to an international centre which will integrate fundamental science, technological studies and education.

  5. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  6. Intra-professional dynamics in translational health research: the perspective of social scientists.

    Science.gov (United States)

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Scientist-Image Stereotypes: The Relationships among Their Indicators

    Science.gov (United States)

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  8. Masters of the universe conversations with cosmologists of the past

    CERN Document Server

    Kragh, Helge

    2015-01-01

    How did our modern picture of the universe come into being? Masters of the Universe tells this fascinating story in an unusual format that blends factual and fictional elements. It is based on a series of interviews that a fictional person conducted with leading astronomers and physicists between 1913 and 1965. Among the interviewed scientists are giants such as Albert Einstein, Edwin Hubble, and George Gamow, but also scientists who are less well known today or not primarily known as cosmologists such as Karl Schwarzschild, Paul Dirac, and Svante Arrhenius. By following the interviews the reader gets a lively and "almost authentic" impression of the problems that faced this early generation of cosmologists. Although the interviews are purely fictional, a product of the author's imagination, they could have taken place in just the way that is described. They are solidly based on historical facts and, moreover, supplemented with careful annotations and references to the literature. In this way the book bridges...

  9. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  10. Scientists in an alternative vision of a globalized world

    Science.gov (United States)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  11. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  12. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Directory of Open Access Journals (Sweden)

    Bastiaan T Rutjens

    Full Text Available Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328 that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  13. One More Legacy of Paul F. Brandwein: Creating Scientists

    Science.gov (United States)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  14. Moving beyond the Lone Scientist: Helping 1st-Grade Students Appreciate the Social Context of Scientific Work Using Stories about Scientists

    Science.gov (United States)

    Sharkawy, Azza

    2009-01-01

    While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…

  15. Bridge over the quantum universe

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1992-01-01

    The principle that the observer effects a quantum event merely by observing the event has long plagued quantum theorists. This poses apparently insoluble problems to those scientists seeking to develop a quantum cosmology as they can never step outside the Universe's physical system in order to observe it externally. The author explains the ideas behind this quandry with reference to the ''Schroedinger's cat'' example and cites the work of various theorists seeking to overcome the dilemma by using the concept of deccherence. (UK)

  16. Caring for nanotechnology? Being an integrated social scientist.

    Science.gov (United States)

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration.

  17. Sky Fest: A Model of Successful Scientist Participation in E/PO

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.

    2014-12-01

    Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.

  18. The Role of the Physician-Scientist in Our Evolving Society

    OpenAIRE

    Michael R. Rosen

    2011-01-01

    The physician-scientist represents the medical-scientific version of the ?triple threat? athlete. Yet, in medicine as in sports, specialization and business are ever more in the forefront. As the field of medicine evolves, it is likely that the role of the physician, the scientist, and the physician-scientist will continue to change. Whether this is for the good or bad will only be known in hindsight.

  19. Uncovering the Motivating Factors behind Writing in English in en EFL Context

    Science.gov (United States)

    Büyükyavuz, Oya; Çakir, Ismail

    2014-01-01

    Writing in a language, whether the target or native, is regarded as a complex activity operating on multiple cognitive levels. This study aimed to uncover the factors which motivate teacher trainees of English to write in English in an EFL context. The study also investigated the differences in the ways teacher trainees are motivated in terms of…

  20. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds

    Science.gov (United States)

    Chacham, Helio; Barboza, Ana Paula M.; de Oliveira, Alan B.; de Oliveira, Camilla K.; Batista, Ronaldo J. C.; Neves, Bernardo R. A.

    2018-03-01

    In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force-strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0. We observe a more than tenfold increase of κ as h 0 increases in the 10-100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.

  1. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    Science.gov (United States)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  2. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  3. Search, access and dissemination of scientific information from scientists, social scientists and humanists

    Directory of Open Access Journals (Sweden)

    Fernando César Lima Leite

    2015-05-01

    Full Text Available This paper presents results of study on the characteristics of search activities, access to and use of information, and dissemination habits of researchers from scientific research institutes. From the methodological point of view, it is a mixed methods study which adopted the concurrent triangulation strategy. Data were collected through questionnaires, interviews and checklist, and then submitted to statistical and text analysis. The research sphere was consisted of researchers linked to the research units of the Ministry of Science, Technology and Innovation, and the sample basis were the researchers of the Brazilian Centre for Physics Research (CBPF and Museum of Astronomy and Related Sciences (MAST. Among other aspects, the findings shows that the safeguarded their disciplinary differences, search, access and communication activities, regardless of the knowledge area, occurring mainly in the digital environment; communication habits are stimulated by motives common to scientists and social scientists and humanists, share knowledge and visibility are the main reasons for the dissemination of research results, physicists are naturally within the open access context.

  4. How scientists view the public, the media and the political process.

    Science.gov (United States)

    Besley, John C; Nisbet, Matthew

    2013-08-01

    We review past studies on how scientists view the public, the goals of communication, the performance and impacts of the media, and the role of the public in policy decision-making. We add to these past findings by analyzing two recent large-scale surveys of scientists in the UK and US. These analyses show that scientists believe the public is uninformed about science and therefore prone to errors in judgment and policy preferences. Scientists are critical of media coverage generally, yet they also tend to rate favorably their own experience dealing with journalists, believing that such interactions are important both for promoting science literacy and for career advancement. Scientists believe strongly that they should have a role in public debates and view policy-makers as the most important group with which to engage. Few scientists view their role as an enabler of direct public participation in decision-making through formats such as deliberative meetings, and do not believe there are personal benefits for investing in these activities. Implications for future research are discussed, in particular the need to examine how ideology and selective information sources shape scientists' views.

  5. A distant light scientists and public policy

    CERN Document Server

    2000-01-01

    A collection of essays by a Nobel Prize Laureate on a wide range of critical issues facing the world, and the role of scientists in solving these problems. Kendall has been closely involved with the Union of Concerned Scientists, a group that began as an informal assocation at MIT in 1969 to protest US involvement in Vietnam and is today an organization with an annual budget exceeding $6 million, with 100,000 supporters worldwide. UCD is today a voice of authority in US government science policy, particularly with regard to environment issues, most recently the worldwide initiatives on global warming. Together, these essays represent both the sucessses and failures of science to impact public policy, the challenges facing scientists, and offers practical guidelines for involvement in science policy. The essays are roughly chronological, organized by subject with introductions, beginning with the controversies on nuclear power safety and Three Mile Island,then followed by sections on national security issues, ...

  6. Of Science and Scientists an Anthology of Anecdotes

    Science.gov (United States)

    Kothare, A. N.

    Although a lot is available in the form of biographies and writings of scientists, very little information is found on what made them not only great discoverers but humane too, blessed with humour, humility and humanism. This book helps to convey this very aspect of scientists who while being involved in their unique adventure are like us, the lesser mortals.

  7. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    Szasz, F.M.

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  8. British scientists and the Manhattan Project: the Los Alamos years

    Energy Technology Data Exchange (ETDEWEB)

    Szasz, F.M. (New Mexico Univ., Albuquerque, NM (United States))

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK).

  9. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  10. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    Science.gov (United States)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  11. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own...

  12. Proceedings of Republic conference (with participation of scientists from Commonwealth of Independent States countries) 'Modern problems of semiconductor physics', dedicated for twentieth anniversary of independence of Republic Uzbekistan

    International Nuclear Information System (INIS)

    Matchanov, A.T.; Tagaev, M.B.; Ismaylov, K.A.

    2011-11-01

    Republic conference with participation of scientists from Commonwealth of Independent States countries 'Modern problems of semiconductor physics', dedicated for twentieth anniversary of independence of Republic Uzbekistan was held on 23-25 November, 2011 in Nukus, Uzbekistan. Specialists and young scientists from universities and academic research institutes discussed various aspects of modern problems of semiconductor physics. More than 100 talks were presented in the meeting on the following subjects: solid state physics, physics of condensed matter and nano materials; educational tools and information technologies. (K.M.)

  13. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  14. Photo Animation Brings Scientists Back to Life in the Classroom

    Directory of Open Access Journals (Sweden)

    Lara K. Goudsouzian

    2017-05-01

    Full Text Available In biology textbooks and in lecture slides, it is customary to describe the significance of a historical scientific experiment alongside a still photograph of the scientist who performed the work.  This method communicates information about the scientists' works, but can be a dry method to describe an exciting and dynamic historical individual.  I have developed a method to animate still photographs and engravings of historical scientists and narrate them in the first person.  This method is rapid, inexpensive, and does not require more than average technical ability.  The animated historical scientists directly address the students to educate them about their own personal lives, struggles, and achievements.

  15. Expediency of Study of the Scientists' Biographies in Physics Course

    Directory of Open Access Journals (Sweden)

    Igor Korsun

    2017-04-01

    Full Text Available The aim of this article is a justification of the expediency of study of the scientists' biographies in physics course. Study of the biographic materials is one of the ways of motivation of learning and development of morality, humanity, internationalism. The selection criteria of biographic material have been allocated and method of study of the scientists' biographies has been described. Biographical data, scientific achievements and character traits are the components of “scientist's image”. Results proved that the use of the biographic materials raises the level of emotional component of learners' cognitive activity in physics teaching. Method of study of the scientists' biographies can be used in teaching of other school subjects.

  16. Preface : Levels of resentment in the University of the Third Age

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2016-06-01

    Full Text Available Resentment has a particular place in the University of the Third Age. Here, the activities of the organization come up against the developing personalities of the elderly and crises of personality, which intensify the phenomenon. Temporary resentment can in unfavourable circumstances escalate into permanent resentment, which is more difficult to alleviate. The task of the manager is to uncover this phenomenon at a relatively early stage, and to take appropriate preventative measures in the form of long-lasting negotiation of tasks and a suitable system of sharing rewards.

  17. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  18. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    Science.gov (United States)

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  19. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  20. Differential forms for scientists and engineers

    Science.gov (United States)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  1. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  2. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  3. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  4. A business strategy formulation for commercializing university-created technology: A university spin-offs

    Science.gov (United States)

    Saputra, Iqbal Wahyu; Sutopo, Wahyudi; Zakaria, Roni

    2018-02-01

    There are some mechanism to commercialize the innovations that have been developed by academic scientists in universities, i.e. patenting, licensing, start-up creation, and university-industry partnerships. The start-up creations or university spin-offs (USOs) company is a very special start-up company that is founded by an academic inventor and the university with the aim to commercialize the technological innovation that created by the university. However, it is not always as smooth as expected. The market competitiveness of the USOs obviously has many challenges to be able to compete with the existing companies, analysis need to be done to get the right business step so the business strategy will be efficient. In this article, we discuss a real case study of a university spin-off that owned by Sebelas Maret University for Commercializing Battery Lithium. The aim of our research is twofold: first, to identify the gap in the literature of business strategy formulation between a conventional and USOs. Second, to propose a business strategy formulation for commercializing university-created technology, i.e. battery lithium as core business of a university spin-off as a case study. We conduct surveys, observation and FGD in order to collect the data and information to build the company objective and goals. The analytical tools to generate the solution of business strategy are SWOT analysis, IFE-EFE matrix, and QSPM model so the result will be the most attractive and suitable for the company. The result shows that the case study of USO company is classified on conservative continuous improvement phase so the suitable strategy for this company are product development and business strategy integration.

  5. Pedagogy, or martial arts - the rivalry in quality, examples of Kazimierz Wielki University publications

    Directory of Open Access Journals (Sweden)

    Małgorzata Pujszo

    2017-07-01

    Conclusions: The result of the study of the scientific rivalry should be a source of discussion on ways and possibilities of improving the quality of emitted publications of scientists of Kazimierz Wielki University.

  6. Who believes in the storybook image of the scientist?

    NARCIS (Netherlands)

    Veldkamp, C.L S; Hartgerink, C.H.J.; van Assen, M.A.L.M.; Wicherts, J.M.

    2017-01-01

    Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the 'storybook image of the

  7. Interviewing German scientists on climate change. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung; Toronto Univ., Scarborough (Canada)

    2004-07-01

    This study is based on in-depth interviews with 25 German scientists at the Coastal Research Institute of the GKSS-Forschungszentrum. It takes as its context the differential rhetoric and planning on climate change found in Germany and North America. The interviews try to throw light on the early German decision to address climate change, and to assess the current attitudes, beliefs and experiences of these German scientists. The results reveal a degree of complacency among these scientists, including a sense that Germany is not particularly threatened by climate change and has the capacity to adapt to it. The scientists are critical of inaction among the German population, but themselves uphold a ''light version'' of the precautionary principle. They have great difficulty translating the idea of climate change into popular metaphors that can be grasped by children. They strongly reject any link between German leadership on the issue as a result of a sense of guilt about the German past. (orig.)

  8. Statistical regularities in the rank-citation profile of scientists.

    Science.gov (United States)

    Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro

    2011-01-01

    Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.

  9. Professionals and Emerging Scientists Sharing Science

    Science.gov (United States)

    Graff, P. V.; Allen, J. S.; Tobola, K.

    2010-01-01

    The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by

  10. Challenges before Women Scientists, Technologists & Engineers

    Indian Academy of Sciences (India)

    NATIONAL INSTITUTE OF TECHNOLOGY. ROURKELA ... oBjectives. To provide a common platform for women scientists, engineers and technologists ... particularly from companies involving women entrepreneurs and managers. expected ...

  11. The State of Young Scholars and Scientists in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... career decisions and research performance of young scientists in higher education, ... progression Researchers will examine the supporting and limiting factors. ... They will work with scientists, government agencies, and higher education ...

  12. Three steps to the Universe from the sun to black holes to the mystery of dark matter

    CERN Document Server

    Garfinkle, David

    2009-01-01

    If scientists can't touch the Sun, how do they know what it's made of? And if we can't see black holes, how can we be confident they exist? Gravitational physicist David Garfinkle and his brother, science fiction writer Richard Garfinkle, tackle these questions and more in Three Steps to the Universe, a tour through some of the most complex phenomena in the cosmos and an accessible exploration of how scientists acquire knowledge about the universe through observation, indirect detection, and theory. The authors begin by inviting readers to step away from the Earth and reconsider our Sun. What we can directly observe of this star is limited to its surface, but with the advent of telescopes and spectroscopy, scientists know more than ever about its physical characteristics, origins, and projected lifetime. From the Sun, the authors journey further out into space to explore black holes. The Garfinkle brothers explain that our understanding of these astronomical oddities began in theory, and growing mathematica...

  13. Scientists' Views about Attribution of Global Warming

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  14. Who Believes in the Storybook Image of the Scientist?

    NARCIS (Netherlands)

    Veldkamp, Coosje L S; Hartgerink, Chris H J; van Assen, Marcel A.L.M.; Wicherts, Jelte M.

    2017-01-01

    Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the “storybook image of the

  15. Uncovering the lived experiences of junior and senior undergraduate female science majors

    Science.gov (United States)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  16. Chandra Sees Shape of Universe During Formative, Adolescent Years

    Science.gov (United States)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the

  17. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  18. Using Text Mining to Uncover Students' Technology-Related Problems in Live Video Streaming

    Science.gov (United States)

    Abdous, M'hammed; He, Wu

    2011-01-01

    Because of their capacity to sift through large amounts of data, text mining and data mining are enabling higher education institutions to reveal valuable patterns in students' learning behaviours without having to resort to traditional survey methods. In an effort to uncover live video streaming (LVS) students' technology related-problems and to…

  19. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  20. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  1. Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

    OpenAIRE

    Bush, Seth D; Pelaez, Nancy; Rudd, James A, II; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy, PhD

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university ...

  2. THE TRAINING OF NEXT GENERATION DATA SCIENTISTS IN BIOMEDICINE.

    Science.gov (United States)

    Garmire, Lana X; Gliske, Stephen; Nguyen, Quynh C; Chen, Jonathan H; Nemati, Shamim; VAN Horn, John D; Moore, Jason H; Shreffler, Carol; Dunn, Michelle

    2017-01-01

    With the booming of new technologies, biomedical science has transformed into digitalized, data intensive science. Massive amount of data need to be analyzed and interpreted, demand a complete pipeline to train next generation data scientists. To meet this need, the transinstitutional Big Data to Knowledge (BD2K) Initiative has been implemented since 2014, complementing other NIH institutional efforts. In this report, we give an overview the BD2K K01 mentored scientist career awards, which have demonstrated early success. We address the specific trainings needed in representative data science areas, in order to make the next generation of data scientists in biomedicine.

  3. Perceptions on nuclear energy: scientists, media and the public

    International Nuclear Information System (INIS)

    Parthasarathy, K.S.

    2009-01-01

    Full text: In 1990, when the International Atomic Energy Agency (IAEA) held its first Public Information Forum 'Nuclear Power: Communicating for Confidence', in Vienna, it reflected the international recognition that public opinion is one of the factors that influence acceptance of nuclear power in the energy mix of a country. Atomic bomb, nuclear proliferation, nuclear waste, exploding reactor (Chernobyl) and now nuclear terrorism stigmatized nuclear industry. In spite of the notable records, large segments of society are still concerned about this form of energy. 'Lack of understanding and misconceptions contribute to this', the first IAEA Forum conceded. Many felt that nuclear community supported this mystique 'by shrouding its operations in a secrecy that could not be penetrated'. Is DAE secretive in publicizing safety-related information? Right from 1947, Nehru's vision an Bhabha's mission on atomic energy coincided. They set up a sound administrative mechanism to respond swiftly, effectively and decisively to the demands from this nascent field. Scientists could not have asked for more. My generation participated in or was witness to the momentous developments in the field. We had a unique opportunity to examine how various sections of the population perceived nuclear technology. How did scientists take up the challenge? The National Symposium of Atomic Energy (November 26-27, 1954) was the first effort to dispel the mood of discontent. Nuclear scientists in India largely remained out of public gaze for long. They were at a disadvantage. They were not used to disorderly democratic debate, other than attending a few press conferences; media paid no attention to atomic energy. Even mild criticism could upset scientists; they were not used to it. Some scientists portrayed journalists who challenged official views as trouble makers. Mixing with the media was considered a risky occupation. During the first half of the fifty years of atomic energy, the public

  4. Understanding Our Only Universe

    Directory of Open Access Journals (Sweden)

    Valerio Marra

    2017-09-01

    Full Text Available In an imaginary dialogue between a professor and a layman about the future of cosmology, the said professor relates the paradoxical story of scientist Zee Prime, a bold thinker of a future civilization, stuck in a lonely galaxy, forever unaware of the larger universe. Zee Prime comes to acknowledge his position and shows how important it is to question standard models and status quo, as only the most imaginative ideas give us the chance to understand what he calls “our only universe” — the special place and time in which we live.

  5. The scientist's role in the nuclear debate

    International Nuclear Information System (INIS)

    Blackstein, F.P.

    1981-01-01

    Until recently the public had little time for, or interest in, studying scientific developments. Details on topics such as medical research, energy developments and communications advances were left to scientific journals and specialist conferences. For the most part the public had faith in science and science was able to maintain that faith through developments which recognizably improved the lot of mankind. But faith is no longer sufficient; scientists must now interact with people if we are to fulfil our obligations in this new theatre of increased public awareness. Scientists and egineers like myself and my colleagues at Atomic Energy of Canada Ltd. are communicating with the public as one part of a broad programme of public information. This includes: operation of public information centres, visits to our laboratories, interaction with teachers, distribution of reports and hosting exhibits. Technical people have a lot to learn about communicating with the public, the media and the critics. It is an extremely difficult task, but as concerned scientists it is something we should and must do, openly and constructively

  6. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building

  7. [Al-Biruni--a universal scientist].

    Science.gov (United States)

    Kujundzić, E; Masić, I

    1999-01-01

    Al-Biruni's was of Persian descent. He was born in Horesmiya and had studied mathematics, history and medicine. Acquiring knowledge from these sciences, he wrote an outstanding work on chronology of several nations and devoted it to Ziyarit ruler Kabus. He made a chronological overview of calendars from many nations, including Persians, Greeks, Egyptians, Jews, Melkitian and Nestorian Christians, Sabeyaans as well as the old Arabs. Data presented in the work, according to the later authors, were taken from very reliable sources. He was contemporary of Ibn-Sina, and thanks to their friendship, they have discussed very much miscellaneous topics. He belonged to the group of scholars, taken by Gaznevian Soultan Mahmud to a long journey to India. Afterwards Al-Biruni wrote and published detailed work "Description of India"--a work on cultural history of India. Due to excellent abilities of Al-Biruni as a philosopher and scholar, there are still significant and reliable notes about buddhistic philosophy, structure of castes and Brahmans' life style. In this Al-Biruni's masterpiece, there are many comparative analysis of Suffism and certain Indian philosophical methods. Al-Biruni's most important work is "Pharmacopoeia"--"Kitab al-saydala", which brilliantly describes all medicaments. This work has been published in many languages. He also wrote few works on astronomy and astrology. In those works he has explained some astrological events through scientific approach in a such peculiar way that nobody has ever explained before. He was also interested in sciences like geology, mineralology, geography, mathematics, psychology and many others.

  8. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  9. Lessons Learned from L'Aquila Trial for Scientists' Communication

    Science.gov (United States)

    Koketsu, K.; Cerase, A.; Amato, A.; Oki, S.

    2017-12-01

    The Appeal and Supreme Courts of Italy concluded that there was no bad communication by defendants except for the "glass of wine interview" which was made by a government official before the scientists' meeting. This meeting was held 6 days before the 2009 L'Aquila earthquake to discuss the outlook for the seismic activity in the L'Aquila area. However, at least two TV stations and a newspaper reported the content of the "glass of wine interview" in the next morning as it was announced by the defendant scientists. The reports triggered a domino effect of misinterpretations, which may be well acknowledged in the light of the social amplification of risk framework. These TV stations and newspaper should be also considered responsible for the bad communication. This point was missing in the sentence documents by the Appeal and Supreme Courts. Therefore, for scientists, a lesson of communication, especially during a seismic hazard crisis, is that they must carefully craft their messages and the way they circulate, both in broadcast and digital media, and follow reports released by the media on their activities. As another lesson, scientists must be aware that key concepts of safety such as "no danger" and "favorable situation", which were used in the "glass of wine interview", and the idea of probability can have different meanings for scientists, media, and citizens.

  10. Finding Common Ground Between Earth Scientists and Evangelical Christians

    Science.gov (United States)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  11. Discovery Mondays: The very early Universe

    CERN Multimedia

    2003-01-01

    Copyright NASARetracing the very early Universe to understand why there is "something rather than nothing" is one of the challenges facing astrophysics today. It is also the theme of the third Discovery Monday, to be held in the Microcosm on 7 July, where you will be welcomed by a number of scientists. A professional astronomer will allow you to look through his telescope and explain how it works. A cosmologist will talk to you about the very early Universe and a CERN physicist will show you how it's possible to trap antimatter. The mirror of matter, antimatter should have existed in the same quantities as matter in the very early stages of the Universe but today it seems to have virtually disappeared. Perhaps the research being done at CERN will one day explain how an infinitesimal predominance of matter over antimatter resulted in such a richly structured Universe. Come along to the Microcosm on Monday, 7 July between 7.30 p.m. and 9.00 p.m. Entrance is free http://www.cern.ch/microcosm N.B.: The Discove...

  12. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    Science.gov (United States)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal

  13. Perplexed Particularity in the Clutches of Arrogant Generality?: Political Science as Science of Generality and Political Scientist as Expert for Generality

    Directory of Open Access Journals (Sweden)

    Dragutin Lalović

    2008-01-01

    science of generality” is thus reinforced. The science of generality as science of the political is constituted in autonomy (but also complementarity with regard to the science of “universality” (philosophy, ethics and law and to the science of particularity (special sectors of the political and social being. The general is real only in relation to the universal, as a particularisation of the universal, and to the particular, as a universalisation of the particular. On the one hand, this precludes the danger of sham universality, i.e. of arrogant aspiration of universality to pass for generality, and, on the other hand, the danger of false generality, i.e. of futile aspiration of particularity to be hypostasized as political generality. As a first-rate expert, the political scientist must therefore, simultaneously and necessarily – being an “expert for generality” – be an expert for both “universality” and “particularity”.

  14. Economists, social scientists root for basic income in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-08-06

    Aug 6, 2017 ... Economists and social scientists made a strong pitch for reducing expenditures on ... Economists, social scientists root for basic income in India ... in terms of competing development priorities and limited availability of funds.

  15. The Media: The Image of the Scientist is Bad

    Science.gov (United States)

    Maugh, Thomas H., II

    1978-01-01

    Many individuals are concerned with the erroneous image of science and scientists that is given to the public by the media. To improve the situation, it is suggested that individuals and organizations protest to movie studios and networks when inaccuracies appear and when scientists are portrayed in a denigrating manner. (Author/MA)

  16. NASA’s Universe of Learning: Engaging Learners in Discovery

    Science.gov (United States)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Cominsky, Lynn R.; Eisenhamer, Bonnie; NASA's Universe of Learning Team

    2016-06-01

    NASA’s Universe of Learning is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD’s newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  17. Can the biggest experiment ever tell us how the universe works?

    CERN Multimedia

    Eddy, Ian

    2008-01-01

    10 September will be a massive day for science and mankind. On that day, the largest machine ever built will begin an experiment to recreate the conditions that existed close to the dawn of time. Scientists hope that it will vastly improve our knowledge of the universe. (1 page)

  18. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  19. To Be or Not to Be... a Scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...

  20. To be or not to be... a scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...