WorldWideScience

Sample records for university plasma physics

  1. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  2. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1978

    International Nuclear Information System (INIS)

    1979-01-01

    Activities of Institute of Plasma Physics, Nagoya University, from April 1978 to March 1979, are described in individual short summaries. As a main project, the JIPP T-II program aims at confinement and heating of hot plasmas in a tokamak/stellarator hybrid system. The STP-3 system for high beta pinch plasma has now almost been completed. Installation of the RFC-XX is now complete with the delivery of two rf oscillators for point cusp plugs. In high energy beam experiment, toroidal magnetic configurations maintained by intense relativistic currents were demonstrated. The Nagoya Bumpy Torus is a race track convertible to a circular torus. In parallel with the above research projects, there continued experiments on basic plasma physics, laser-produced plasma, the atomic processes and the surface physics related to the plasma-wall interaction. Theoretical and computational divisions worked in close collaboration with the above. (J.P.N.)

  3. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  4. An archival study on the reacting plasma project (R-project) at the institute of plasma physics, Nagoya University. An interview with MATSUURA Kiyokata, professor emeritus at Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Nagoya Univ., Nagoya, Aichi (Japan); Obayashi, H; Fujita, J; Namba, C; Kimura, K; Matsuoka, K; Hanaoka, S [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2006-01-15

    An interview record with MATSUURA Kiyokata, Professor Emeritus at Nagoya University, is given on the Reacting Plasma Project (R-project), which was proposed and investigated in 1980's by the Institute of Plasma Physics, Nagoya University (IPP Nagoya). The project was planned to aim at producing a DT reacting plasma in tokamak to explore its physics and technology. But after intensive studies on design work, together with some R and D efforts and related investigations, the project could not be realized. The circumstances of the R-Project at its initiation and termination stages are the major topics of the present interview, held as a round-table talk with Prof. Matsuura, the project leader. (author)

  5. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  6. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  7. The physics of the low-temperature plasma in Czechoslovakia

    International Nuclear Information System (INIS)

    Kracik, J.

    1985-01-01

    A survey is given of low-temperature plasma research in Czechoslovakia since 1954 and its main results are pointed out. In the first years, various processes in electric discharges and electromagnetic acceleration of plasma clusters were studied at Czechoslovak universities and in the Institute of Physics. In the study of ionization waves, Czechoslovak physicists achieved world priority. Later on, low-temperature plasma investigation began in the Institute of Plasma Physics, founded in 1959. The issues of plasma interaction with the solid state and plasma applications in plasma chemistry were studied mainly by its Department of Applied Plasma Physics. The main effort of this group, transferred recently to the Institute of Physics, is aimed at thin film production and plasma-surface interactions; similar experimental studies are also carried out at universities in Brno and Bratislava. Last but not least, arc spraying of powder materials using water-cooled plasmatrons is being developed by the Department of Plasma Technology of the Institute of Plasma Physics. (J.U.)

  8. Fundamentals of Plasma Physics

    International Nuclear Information System (INIS)

    Cargill, P J

    2007-01-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, 'The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  9. Princeton University Plasma Physics Laboratory, Princeton, New Jersey

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program

  10. Plasma physics studies in Singapore

    International Nuclear Information System (INIS)

    Jones, R.

    1982-01-01

    We briefly outline the plasma physics research program being conducted in the Department of Physics of the National University of Singapore. The work places particular emphasis on open system end plugging, ion source development, and anomalous transport studies. (author)

  11. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  12. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  13. BOOK REVIEW: Fundamentals of Plasma Physics

    Science.gov (United States)

    Cargill, P. J.

    2007-02-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  14. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  15. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  16. Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del

    2009-01-01

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  17. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  18. Plasma state. The universe's fire

    International Nuclear Information System (INIS)

    Lehner, Th.

    2004-01-01

    The plasma is the fourth state of matter, obtained at a very high temperature by the separation of the electrons from their nuclei. Plasma represents 99% of the visible mass of our present day universe and was the unique state of matter at its very beginning. Plasmas are present in the core of stars and in the interstellar environment. More closer to us, they are responsible of spectacular phenomena, like aurora borealis, lightning, comet queues etc.. This book makes a review of the different types of plasmas (electromagnetic, Earth's plasmas, spatial plasmas, solar plasmas, astrophysical plasmas). One chapter presents the thermonuclear fusion as future energy source. Another one treats of the chaos and turbulence inside plasmas. Some applications of plasmas are reviewed: MHD and ionic propulsion systems, MHD energy conversion and MHD generators, thermo-ionic converters, solid-state plasmas, particle accelerators, coherent radiation sources, 'Zeta' machines, X-ray lasers, isotopic separation, non-neutral plasmas and charged beams, free-electrons lasers, electrons and positrons plasmas, industrial applications (etching and cleaning, manufacturing of solar cells, flat screens, industrial reactors, waste treatment, cold plasma-assisted sterilization, effluents decontamination etc.). A last chapter makes an overview of the modern research in plasma physics. (J.S.)

  19. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  20. Plasma physics: innovation in energy and industrial technology

    International Nuclear Information System (INIS)

    Harris, J.H.

    2000-01-01

    Full text: Plasmas-ionised gases-are truly ubiquitous. More than 99% of the matter in the universe is in the plasma state. All of the matter that comprises the Earth, and all of the energy that powers it, has been processed through plasma fusion reactions in stars. Plasmas also play a crucial role in the Earth's atmosphere, which screens out harmful radiation, and make long distance radio propagation possible. While the study of plasma physics was originally motivated by astrophysics, the discipline has grown to address terrestrial concerns. These include lighting, welding, the switching of large electrical currents, the processing of materials such as semiconductors, and the quest to build fusion power reactors artificial stars for low-emissions generation of electricity from hydrogen isotopes. Plasma physics is fundamentally multi-disciplinary. It requires understanding not only of the complex collective behaviour of ionised gases in unusual conditions, but also knowledge of the atomic and nuclear physics that determines how plasmas are formed and maintained, and the specialised engineering and instrumentation of the mechanical and electromagnetic containers needed to confine plasmas on Earth. These characteristics make plasma physics a fertile breeding ground for imagination and innovation. This paper draws together examples of innovation stimulated by plasma physics research in the areas of energy, materials, communications, and computation

  1. The plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The term 'Plasma Universe', coined by Hannes Alfven, emphasices the fact that plasma phenomena discovered in the laboratory and in accessible regions of space. must be important also in the rest of the universe, which consists almost entirely of matter in the plasma state. Relevant aspect of this concept will be discussed. They include the response of the plasma to electric currents, the support of magnetic-field aligned electric fields, violation of the frozen-field condition, rapid release of magnetically stored energy, acceleration of charged particles, chemical separation, and filamentary and cellular structures. (authors)

  2. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  3. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  4. Contemporary plasma physics

    International Nuclear Information System (INIS)

    Sodha, M.S.; Tewari, D.P.; Subbarao, D.

    1983-01-01

    The book consists of review articles on some selected contemporary aspects of plasma physics. The selected topics present a panoramic view of contemporary plasma physics and applications to fusion, space and MHD power generation. Basic non-linear plasma theory is also covered. The book is supposed to be useful for M.S./M.Sc. students specialising in plasma physics and for those beginning research work in plasma physics. It will also serve as a valuable reference book for more advanced research workers. (M.G.B.)

  5. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89)

  6. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  7. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  8. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  9. An introduction to the atomic and radiation physics of plasmas

    CERN Document Server

    Tallents, G J

    2018-01-01

    Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

  10. Plasma Physics Network Newsletter. No. 1

    International Nuclear Information System (INIS)

    1989-08-01

    This is the first issue of a quarterly newsletter published by the International Atomic Energy Agency in order to provide news of potential interest of fusion scientists in developing countries. According to the foreword to this first issue, the purpose of the newsletter, as well as the organization called ''Third World Network'', is to ''start the process of unifying the developing country fusion community into some type of cohesive entity and to bring the efforts of the developing countries in the plasma physics research area to the attention of the world fusion community at large''. Furthermore, this first issue contains information about (i) Nuclear Fusion Research in Argentina, (ii) Chinese Fusion Efforts, (iii) Plasma and Fusion Physics in Egypt, (iv) Fusion Research in India, (v) Fusion Research in the Republic of Korea, (vi) Fusion Programmes in Malaysia, (vi) the Agency's Fusion Programme, (vii) a proposal for a workshop on computational plasma physics, sponsored by the Third World Plasma Research Network, (viii) the announcement of the formation of the ''Asian African Association for Plasma Training'', - for the promotion of the initiation/strengthening of plasma research, especially experimental, in developing countries in Asia and Africa, as well as the cooperation and sharing of technology among plasma physicists in the developing countries in the region; (ix) a communication entitled ''Fusion Research in ''Small'' Countries'', I.R. Jones, School of Physical Sciences, The Flinders University of South Australia, Bedford Park, Australia, on the desirability of the pursuit of fusion research in ''small'' countries, i.e., those countries that do not have a national fusion research programme; (x) and, finally, a newsletter on the ITER project

  11. Eleven lectures on the physics of the quark-gluon plasma

    International Nuclear Information System (INIS)

    McLerran, L.

    1984-10-01

    These lectures are intended to be an introduction to the physics of the quark-gluon plasma, and were presented at a workshop on The Physics of the Quark-Gluon Plasma held at Hua-Zhong Normal University in Wuhan, People's Republic of China in September, 1983. The lectures cover perturbation theory of the plasma at high temperature as well as the non-perturbative methods and results of lattice gauge theory computations. Physical models of the confinement-deconfinement phase transition and the modes of chiral symmetry breaking are presented. The possibility that a quark-gluon plasma might be produced in ultra-relativistic nuclear collisions is analyzed. Separate entries were prepared for the data base for the eleven lectures

  12. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    As to the reacting plasma project, the design team performed the extensive analysis of highly elongated, high β plasma configuration in fiscal 1983. As physical issues, the experiments on lower hybrid wave current start-up and ion Bernstein wave heating were successfully carried out in the JIPP-T-2U tokamak device. For the research and development related to reacting plasma, a 1/4 module of a 120 keV neutral beam system was completed. The construction of a tritium handling facility, the development of fast pulsed superconduction and the development of new aluminum alloys were accomplished as the results of 3-year preparatory program ending in 1983. The Institute also tried to pursue the alternative concept on fusion plasma research by organizing the program based on a low β toroidal system, radio frequency containment, high energy beam experiment, Nagoya bumpy torus and high β pinch plasma. The scientific activities of the Institute related to reacting plasma physics, various preparatory experiments, various basic studies and plasma theory and computation are reported. Also the services of the Computer Center, the Research Information Center and other facilities are described. (Kako, I.)

  13. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  14. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  15. Fifth International Workshop and Summer School on Plasma Physics 2012

    International Nuclear Information System (INIS)

    Benova, Evgenia

    2016-01-01

    The Fifth International Workshop and Summer School on Plasma Physics (IWSSPP'12) was organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, on the Black Sea coast, from June 25-30, 2012. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology . The 4 th edition of the Workshop Plasmas for Environmental Issues was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As in the previous issues of this scientific meeting its aim was to stimulate the development of and support a new generation of young scientists to further advance plasma physics fundamentals and applications, as well as ensuring an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 12 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed

  16. Cosmology in the plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-05-01

    Space observations have opened the spectral regions of X-rays and γ-rays, which are produced by plasma processes. The Plasma Universe derived from observations in these regions is drastically different from the now generally accepted 'Visual Light Universe' based on visual light observations alone. Historically this transitions can be compared only to the transition from the geocentric to the heliocentric cosmology. The purpose of this paper is to discuss what criteria a cosmological theory must satisfy in order to be acceptable in the Plasma Universe. (author)

  17. Physical domains in plasma physics

    International Nuclear Information System (INIS)

    Liboff, R.L.

    1987-01-01

    Do the plasma in the sun's core and the electron-conduction plasma in a semiconductor behave in the same way? This question is both fundamental and practical, for plasma physics plays a role in a vast area of natural phenomena and in many engineering devices. Understanding the cosmos, or designing a computer chip or a thermonuclear fusion reactor, requires first of all a realization of equations of motion that are appropriate to the particular problem. Similar physical differences occur in engineered structures. The plasmas in most thermonuclear fusion devices are basically like the plasma in the core of the sun: weakly coupled and classical - that is, obeying Newton's laws and Maxwell's equations. The conduction electrons in a semiconductor, on the other hand, obey the laws of quantum mechanics

  18. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  19. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  20. [Research programs in plasma physics]: Annual report

    International Nuclear Information System (INIS)

    Weitzner, H.

    1988-01-01

    This paper contains a brief review of the work done in 1987 at New York University in plasma physics. Topics discussed in this report are: reduction and interpretation of experimental tokamak data, turbulent transport in tokamaks and RFP's, laminar flow transport, wave propagation in different frequency regimes, stability of flows, plasma fueling, magnetic reconnection problems, development of new numerical techniques for Fokker-Planck-like equations, and stability of shock waves. Outside of fusion there has been work in free electron lasers, heating of solar coronal loops and renormalized theory of fluid turbulence

  1. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  2. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  3. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  4. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  5. Frontiers of Physics and Plasma Science

    International Nuclear Information System (INIS)

    Sharma, Prerana

    2017-01-01

    Preface to the conference proceedingsWe are very pleased to introduce the proceeding of FPPS-2016; the international conference “Frontiers of Physics and Plasma Science” that took place on 7 and 8 November, 2016 in the campus of Ujjain Engineering College, Ujjain (India). The goal of the meeting was to provide a broad prospective to the plasma science emphasizing physics with a new plasma technologies. The scientific program of the conference focused on the advancement of the all branches of physics in achieving all applications of the plasma science. The conference spans a wide range of topics, reporting experiments, techniques and ideas that advance the plasma science worldwide.There were 20 invited lectures and 04 oral presentations covering the different area of the conference. The keynote lecture was delivered by Dr. Rajdeep Singh Rawat (NTU, Singapore) on “Density plasma focus: novel high energy density plasma device”. Prof. Y.C. Saxena (IPR, Gandhinagar, Ahmedabad), Prof. R. P. Sharma (IIT, New Delhi), Prof. Fernando Haas (Brazil), Prof. Davoud Dorranian (Tehran, Iran), Dr. Raju Khanal (Tribhuwan University, Nepal), Prof. Avinash Khare (IIT, New Delhi), Dr. Navin Dwivedi (Israel), Prof. V.K. Tripathi (IIT New Delhi), Dr. J. Ghosh (IPR, Gandhinagar, Gujarat), Dr. Devendra Sharma (IPR, Gandhinagar, Gujarat), Prof. R.K. Thareja (IIT Kanpur), Dr. Vipul Arora (RRCAT, Indore), Prof. M. P. Bora (Gauhati University, Guwahati) and many more have delivered their lecture in the field of plasma science and its applications. The program was chaired in a professional and efficient way by the session chairmen who were selected for their international standing in the subject.The 165 abstracts that were presented in two days (during parallel poster session) formed a heart of the conference and provided ample opportunity for the discussion. The 170 participants, 110 of whom were students had many fruitful discussions and exchange that contributed to the success of the

  6. Computations in plasma physics

    International Nuclear Information System (INIS)

    Cohen, B.I.; Killeen, J.

    1984-01-01

    A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application

  7. Physics of laser plasma

    International Nuclear Information System (INIS)

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  8. Plasma Physics Network Newsletter. No. 2

    International Nuclear Information System (INIS)

    1990-06-01

    The IAEA Fellowship Programme providing for in general up to two years of training at a host laboratory or university is accessible for Member State scientists (contact the editor); so are IAEA research contracts (up to $ 5000 per year for up to 3 years). An overview of meetings on fusion or fusion-related topics is given for June-October 1990. It is announced that the full IFCR status report on fusion is due to be published in the September issues of Nuclear Fusion, and that the ''Third World Plasma Research Network'' (TWPRN) has been set up to ''provide an international forum for plasma research centres of the Third World countries'' to promote ''closer interactions among them'' and to strengthen their scientific programmes. The network also ''envisages active participation of small scale research programmes from developed countries that pursue basic plasma studies and development objectives''. Furthermore, this newsletter contains (1) the minutes of the steering committee meeting of the TWPRN, New Delhi, November 1989; (2) a contribution from A. Rodrigo, Argentina, entitled ''Collaboration and Scientific Exchange in Latin American Plasma Physics Laboratories'', listing for each country (Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela) (i) key contact persons, (ii) main areas for collaboration/scientific exchange, and (iii) list of foreign laboratories having close contacts; (3) ''Plasma Research at the Institute of Nuclear Science and Technology of Bangladesh'', by U.A. Mofiz, giving an overview of plasma research activities there; (4) A summary by P.K. Kaw and A. Sen of the 1989 International Conference on Plasma Physics held in New Delhi; (5) the announcement of the first South-North International Workshop on Fusion Theory, Tipaza, Algeria, September 16-23, 1990

  9. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics

  10. Experimental plasma physics

    International Nuclear Information System (INIS)

    Dreicer, H.; Banton, M.E.; Ingraham, J.C.; Wittman, F.; Wright, B.L.

    1976-01-01

    The Experimental Plasma Physics group's main efforts continue to be directed toward the understanding of the mechanisms of electromagnetic energy absorption in a plasma, and the resultant plasma heating and energy transport. The high-frequency spectrum of plasma waves parametrically excited by the microwave signal at high powers has been measured. The absorption of a small test microwave signal in a plasma made parametrically unstable by a separate high-power driver microwave signal was also studied

  11. Plasma Physics. Lectures Presented at the Seminar on Plasma Physics

    International Nuclear Information System (INIS)

    1965-01-01

    The International Seminar on Plasma Physics held in Trieste during 5- 1 October 1964 was the first major activity of the International Atomic Energy Agency's new International Centre for Theoretical Physics. In bringing together plasma physicists belonging to three distinct schools, the American, West European and the Soviet schools, the Seminar provided a unique opportunity for extended contacts between physicists in this field. It is hoped that these Proceedings will be of permanent value in the literature of the subject

  12. Plasma Physics. Lectures Presented at the Seminar on Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-06-15

    The International Seminar on Plasma Physics held in Trieste during 5- 1 October 1964 was the first major activity of the International Atomic Energy Agency's new International Centre for Theoretical Physics. In bringing together plasma physicists belonging to three distinct schools, the American, West European and the Soviet schools, the Seminar provided a unique opportunity for extended contacts between physicists in this field. It is hoped that these Proceedings will be of permanent value in the literature of the subject.

  13. Plasma Physics Applied (New Book)

    Science.gov (United States)

    Grabbe, Crockett

    2007-03-01

    0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.

  14. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  15. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  16. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  17. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  18. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2012

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  19. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2013

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  20. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  1. Sixth International Workshop and Summer School on Plasma Physics 2014

    International Nuclear Information System (INIS)

    2016-01-01

    Evgenia Benova et al 2016 J. Phys.: Conf. Ser. VV The Sixth International Workshop and Summer School on Plasma Physics (IWSSPP'14) was organized by St. Kliment Ohridsky University of Sofia, with co-organizer PLASMER Foundation. It was held in Kiten, Bulgaria, at the Black Sea Coast, from June 30 to July 6, 2014. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. The Workshop Plasma for Sustainable Environment was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As with the previous issues of this scientific meeting, its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 19 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants

  2. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  3. International conference on plasma physics

    International Nuclear Information System (INIS)

    Silin, V.P.; Sitenko, A.G.

    1985-01-01

    A brief report on the 6th International conference on plasma physics and on the 6th International Congress on plasma waves and plasma instabilities, which have taken place in summer 1984 in Losanne, is presented. Main items of the conference are enlightened, such as the general theory of a plasma, laboratory plasma, thermonuclear plasma, cosmic plasma and astrophysics

  4. Physics and astrophysics of quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario.

  5. Physics and astrophysics of quark-gluon plasma

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario

  6. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  7. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  8. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  9. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  10. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  11. Technology and Plasma Physics Developments needed for DEMO

    International Nuclear Information System (INIS)

    Lackner, K.

    2006-01-01

    Although no universally agreed definition of the next step after ITER exists at present it is commonly accepted that significant progress beyond the ITER base-line operating physics modes and the technologies employed in it are needed. We first review the role of DEMO in the different proposed fusion road maps and derive from them the corresponding performance requirements. A fast track to commercial fusion implies that DEMO is already close to a first of a kind power plant in all aspects except average availability. Existing power plant studies give therefore also a good approximation to the needs of DEMO. We outline the options for achieving the needed physics progress in the different characteristic parameters, and the implications for the experimental programme of ITER and accompanying satellite devices. On the time scale of the operation of ITER and of the planning DEMO, ab-initio modelling of fusion plasmas is also expected to assume a qualitatively new role. Besides the mapping of the reactor regime of plasma physics and the integration of a burning plasma with the principal reactor technologies on ITER, the development of functional and structural materials capable of handling the high power fluxes and neutron fluences, respectively is also on the critical path to DEMO. Finally we discuss the potential contributions of other confinement concepts (stellarators and spherical tokamaks) to the design of DEMO. (author)

  12. Edge plasma physical investigations of tokamak plasmas in CRIP

    International Nuclear Information System (INIS)

    Bakos, J.; Ignacz, P.; Koltai, L.; Paszti, F.; Petravich, G.; Szigeti, J.; Zoletnik, S.

    1988-01-01

    The results of the measurements performed in the field of thermonuclear high temperature plasma physics in CRIP (Hungary) are summarized. In the field of the edge plasma physics solid probes were used to test the external zone of plasma edges, and atom beams and balls were used to investigate both the external and internal zones. The plasma density distribution was measured by laser blow-off technics, using Na atoms, which are evaporated by laser pulses. The excitation of Na atom ball by tokamak plasma gives information on the status of the plasma edge. The toroidal asymmetry of particle transport in tokamak plasma was measured by erosion probes. The evaporated and transported impurities were collected on an other part of the plasma edge and were analyzed by SIMS and Rutherford backscattering. The interactions in plasma near the limiter were investigated by a special limiter with implemented probes. Recycling and charge exchange processes were measured. Disruption phenomena of tokamak plasma were analyzed and a special kind of disruptions, 'soft disruptions' and the related preliminary perturbations were discovered. (D.Gy.) 10 figs

  13. Investigation of universal plasma instabilities. Final report

    International Nuclear Information System (INIS)

    Lashinsky, H.

    1977-01-01

    This project was undertaken in order to carry out a comprehensive experimental investigation of universal plasma instabilities under a variety of conditions and a wide range of experimental parameters to scale the results appropriately to make comparisons with plasmas of thermonuclear interest. Of particular importance are the roles played by collisions and resonance particles (Landau damping and excitation) and the various stages in the development of the instabilities i.e., the linear onset of the instability, the quasilinear stage, and the transition to turbulence. General nonlinear effects such as mode locking and mode competition, and the relation of these phenomena to plasma turbulence, are also of great interest and were studied experimentally. The ultimate aim was to measure certain plasma transport coefficients in the plasma under stable and turbulent conditions with the particular view of evaluating the effect of the universal plasma instabilities of plasma confinement in a magnetic field

  14. Physics through the 1990s: Plasmas and fluids

    International Nuclear Information System (INIS)

    1986-01-01

    This survey of plasma physics and fluid physics briefly describes present activities and recent major accomplishments. It also identifies research areas that are likely to lead to advances during the next decade. Plasma physics is divided into three major areas: general plasma physics, fusion plasma confinement and heating, and space and astrophysical plasmas. Fluid physics is treated as one topic, although it is an extremely diverse research field ranging from biological fluid dynamics to ship and aircraft performance to geological fluid dynamics. Subpanels, chosen for their technical expertise and scientific breadth, reviewed each of the four areas. The entire survey was coordinated and supervised by an Executive Committee, which is also responsible for the Executive Summary of this volume. Wherever possible, input from recent Advisory Committees was used, e.g., from the Magnetic Fusion Advisory Committee, the Space Science Board, and the Astronomy Survey Committee. This volume is organized as follows: An Introduction and Executive Summary that outlines (1) major findings and recommendations; (2) significant research accomplishments during the past decade and likely areas of future research emphasis; and (3) a brief summary of present funding levels, manpower resources, and institutional involvement; and the subpanel reports constitute Fluid Physics, General Plasma Physics, Fusion Plasma Confinement and Heating, and Space and Astrophysical Plasmas. An important conclusion of this survey is that both plasma physics and fluid physics are scientifically and intellectually well developed, and both ares are broad subdisciplines of physics. We therefore recommend that future physics surveys have separate volumes on the physics of plasmas and the physics of fluids

  15. Vol. 6: Plasma Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceeding are published in 6 volumes. The papers presented in this volume refer to plasma physics

  16. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  17. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  18. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  19. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  20. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  1. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  2. Plasma formulary for physics, astronomy, and technology

    CERN Document Server

    Diver, Declan

    2013-01-01

    This collection of fundamental formulae, up-to-date references and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering. Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings, with extended coverage of fusion plasma, plasma in stellar winds, reaction rates, engineering plasma and many other topics. The text is also unique in treating astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline.

  3. Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, V., E-mail: svoboda@fjfi.cvut.cz [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Kocman, J.; Grover, O. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Krbec, J.; Stöckel, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Institute of Plasma Physics AS CR, CZ-182 21 Prague (Czech Republic)

    2015-10-15

    Graphical abstract: * Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes.* Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform.* More than 20% plasma life prolongation with plasma position control in feedback mode. - Highlights: • Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes. • Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform. • More than 20% plasma life prolongation with plasma position control in feedback mode. - Abstract: The GOLEM tokamak at the Czech Technical University has been established as an educational tokamak device for domestic and foreign students. Remote participation in the scope of several laboratory practices, plasma physics schools and workshops has been successfully performed from abroad. A new enhancement allowing understandable remote control of vertical plasma position in two modes (i) predefined and (ii) feedback control is presented. It allows to drive the current in the stabilization coils in any time-dependent scenario, which can include as a parameter the actual plasma position measured by magnetic diagnostics. Arbitrary movement of the plasma column in a vertical direction, stabilization of the plasma column in the center of the tokamak vessel as well as prolongation/shortening of plasma life according to the remotely defined request are demonstrated.

  4. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  5. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  6. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  7. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  8. Plasma Physics Network Newsletter. No. 3

    International Nuclear Information System (INIS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the ''Buenos Aires Memorandum'' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a ''Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research''; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 - October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article ''Long-Term Physics R and D Planning (for ITER)'' by F. Engelmann; in the planned sequence of ''Reports on National Fusion Programmes'' contributions on the Chinese and Yugoslav programmes; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International Physics Group-a sub-unit of the American Physical Society) Newsletter

  9. Physics of Space Plasma Activity

    International Nuclear Information System (INIS)

    Cramer, N F

    2007-01-01

    This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. 'the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work '... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book. The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations. The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive

  10. The EPFL Plasma Physics Research Centre

    International Nuclear Information System (INIS)

    2001-01-01

    The Plasma Physics Research Centre (CRPP) is a non-departmental unit of the EPFL, and currently employs about 130 people, about 105 on the EPFL site and the rest at the Paul Scherrer Institute, PSI, in Villigen, Switzerland. The CRPP is a National Competence Centre in the field of Plasma Physics. In addition to plasma physics teaching, its missions are primarily the pursuit of scientific research in the field of controlled fusion within the framework of the EURATOM-Swiss Confederation Association and the development of its expertise as well as technology transfer in the field of materials research. As the body responsible for all scientific work on controlled fusion in Switzerland, the CRPP plays a national role of international significance. This document of 6 pages presents the explanation of the Plasma Physics Research Centre' activities (CRPP). (author)

  11. Evolution of the plasma universe: I. Double radio galaxies, quasars, and extragalactic jets

    International Nuclear Information System (INIS)

    Peratt, A.L.

    1986-01-01

    Cosmic plasma physics and our concept of the universe is in a state of rapid revision. This change started with in-situ measurements of plasmas in Earth's ionosphere, cometary atmospheres, and planetary magnetospheres; the translation of knowledge from laboratory experiments to astrophysical phenomena; discoveries of helical and filamentary plasma structures in the Galaxy and double radio sources; and the particle simulation of plasmas not accessible to in-situ measurement. Because of these, Birkeland (field-aligned) currents, double layers, and magnetic-field-aligned electric fields are now known to be far more important to the evolution of space plasma, including the acceleration of charged particles to high energies, than previously thought. This paper and its sequel investigate the observational evidence for a plasma universe threaded by Birkeland currents or filaments. This model of the universe was inspired by the advent of three-dimensional fully electromagnetic particle simulations and their application to the study of laboratory z pinches. This study resulted in totally unexpected phenomena in the data post-processed from the simulation particle, field, and history dumps. In particular, when the simulation parameters were scaled to galactic dimensions, the interaction between pinched filaments led to synchrotron radiation whose emission properties were found to share the following characteristics with double radio galaxies and quasars: power magnitude, isophotal morphology, spectra, brightness along source, polarization, and jets. The evolution of these pinched synchrotron emitting plasmas to elliptical, peculiar, and spiral galaxies by continuing the simulation run is addressed in a sequel paper

  12. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  13. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  14. Plasma Physics Network Newsletter, no. 5

    Science.gov (United States)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  15. Plasma physics network newsletter. No. 5

    International Nuclear Information System (INIS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, August 1992) includes the following topics: (i) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (ii) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from September 30 to October 7, 1992; (iii) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (iv) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (v) the initiation in 1993 of a new Coordinated Research Programme (CRP) on ''Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research'', as well as a proposed CRP on ''Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices''; (vi) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (vii) a report by W. Usada on Fusion Research in Indonesia; (viii) News on ITER; (ix) the Technical Committee Meeting planned September 8-12, 1992, Canada, on Tokamak Plasma Biasing; (x) software made available for the study of tokamak transport; (xi) the electronic mail address of the TWPRN; (xii) and the FAX, e-mail and postal address for contributions to this plasma physics network newsletter (FAX: (43-1)-234564)

  16. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  17. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included

  18. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Goutych, I F; Gresillon, D; Sitenko, A G

    1997-12-31

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas.

  19. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Goutych, I.F.; Gresillon, D.; Sitenko, A.G.

    1996-01-01

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  20. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  1. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  2. International Conference on Plasma Physics ICPP 1994. Proceedings

    International Nuclear Information System (INIS)

    Sakanaka, P.H.; Tendler, M.

    1995-01-01

    These proceedings represent the papers presented at the 1994 International Conference on Plasma Physics held in Foz do Iguacu, Brazil. The scope of the conference was broad and covered all aspects of plasma physics. Some of the topics discussed include space and astrophysical plasmas,fusion plasmas, small and large Tokamak plasmas, non-Tokamak plasmas, inertial confinement fusion plasmas, plasma based neutron sources and plasma applications. There are 60 papers in these proceedings and out of these, 35 have been abstracted for the Energy Science and Technology database

  3. Possible physical universes

    Directory of Open Access Journals (Sweden)

    Gordon McCabe

    2005-12-01

    Full Text Available The purpose of this paper is to discuss the various types of physical universe which could exist according to modern mathematical physics. The paper begins with an introduction that approaches the question from the viewpoint of ontic structural realism. Section 2 takes the case of the 'multiverse' of spatially homogeneous universes, and analyses the famous Collins-Hawking argument, which purports to show that our own universe is a very special member of this collection. Section 3 considers the multiverse of all solutions to the Einstein field equations, and continues the discussion of whether the notions of special and typical can be defined within such a collection.

  4. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  5. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  6. Developments in plasma physics and controlled fusion

    International Nuclear Information System (INIS)

    Thompson, W.B.

    1980-01-01

    Some developments in plasma physics over the past twenty years are considered from the theoretical physics standpoint under the headings; oscillations, waves and instabilities, plasma turbulence, basic kinetic theory, and developments in fusion. (UK)

  7. University physics

    CERN Document Server

    Arfken, George

    1984-01-01

    University Physics provides an authoritative treatment of physics. This book discusses the linear motion with constant acceleration; addition and subtraction of vectors; uniform circular motion and simple harmonic motion; and electrostatic energy of a charged capacitor. The behavior of materials in a non-uniform magnetic field; application of Kirchhoff's junction rule; Lorentz transformations; and Bernoulli's equation are also deliberated. This text likewise covers the speed of electromagnetic waves; origins of quantum physics; neutron activation analysis; and interference of light. This publi

  8. Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    Plasma Physics Division, Institute of Advanced Study in Science and Technology, Khanapara, ..... tic wave) to form a random collection of the nonlinear wave grains (like ... [8] M S Sodha and S Guha, in Advances in plasma phyiscs edited by A ...

  9. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  10. Computational plasma physics

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-08-01

    The behavior of a plasma confined by a magnetic field is simulated by a variety of numerical models. Some models used on a short time scale give detailed knowledge of the plasma on a microscopic scale, while other models used on much longer time scales compute macroscopic properties of the plasma dynamics. In the last two years there has been a substantial increase in the numerical modelling of fusion devices. The status of MHD, transport, equilibrium, stability, Vlasov, Fokker-Planck, and Hybrid codes is reviewed. These codes have already been essential in the design and understanding of low and high beta toroidal experiments and mirror systems. The design of the next generation of fusion experiments and fusion test reactors will require continual development of these numerical models in order to include the best available plasma physics description and also to increase the geometric complexity of the model. (auth)

  11. The physics of collective neutrino-plasma interactions

    International Nuclear Information System (INIS)

    Shukla, P.K.; Silva, L.O.; Dawson, J.M.; Bethe, H.; Bingham, R.; Stenflo, L.; Mendonca, J.T.; Dalhed, S.

    1999-01-01

    A review of recent work on collective neutrino-plasma interactions is presented. The basic physical concepts of this new field as well as some possible astrophysical problems where the physics of collective neutrino-plasma interactions can have a radical impact, are discussed. (author)

  12. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    1993-05-01

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  13. PlasmaPy: initial development of a Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community

    2017-10-01

    We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.

  14. Magnetospheric plasma physics

    International Nuclear Information System (INIS)

    Bingham, R.

    1989-09-01

    The discovery of the earth's radiation belts in 1957 by Van Allen marked the beginning of what is now known as magnetospheric physics. In this study of plasma physics in the magnetosphere, we shall take the magnetosphere to be that part of the earth's ionized atmosphere which is formed by the interaction of the solar wind with the earth's dipole-like magnetic field. It extends from approximately 100km above the earth's surface where the proton-neutral atom collision frequency is equal to the proton gyrofrequency to about ten earth radii (R E ∼ 6380km) in the sunward direction and to several hundred earth radii in the anti-sunward direction. The collision dominated region is called the ionosphere and is sometimes considered separate from the collisionless plasma region. In the ionosphere ion-neutral collisions are dominant and one may think of the ionosphere as a frictional boundary layer ∼ 1000km thick. Other planets are also considered. (author)

  15. Studies on laser–plasma interaction physics for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Maheut, Y.; Batani, D.; Nicolai, Ph.; Antonelli, L.; Krouský, Eduard

    2015-01-01

    Roč. 170, č. 4 (2015), s. 325-336 ISSN 1042-0150 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : shock ignition * plasma * hot electrons * shocks * fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.472, year: 2015

  16. Computing in plasma physics

    International Nuclear Information System (INIS)

    Nuehrenberg, J.

    1986-01-01

    These proceedings contain the articles presented at the named conference. These concern numerical methods for astrophysical plasmas, the numerical simulation of reversed-field pinch dynamics, methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, calculations of the resistive internal m=1 mode in tokamaks, parallel computing and multitasking, particle simulation methods in plasma physics, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, computing of rf heating and current drive in tokamaks, three-dimensional free boundary calculations using a spectral Green's function method, as well as the calculation of three-dimensional MHD equilibria with islands and stochastic regions. See hints under the relevant topics. (HSI)

  17. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  18. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  19. The division of plasma physics

    International Nuclear Information System (INIS)

    Evans, T.E.; Guilhem, D.; Klepper, C.C.

    1990-07-01

    The investigations presented in the 31th meeting on plasma physics were: the main results and observations during the ergodic divertor experiments in Tore Supra tokamak; the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the results of pressure measurements and particle fluxes in the Tore Supra pump limiter

  20. Industrial applications of low-temperature plasma physics

    International Nuclear Information System (INIS)

    Chen, F.F.

    1995-01-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. copyright 1995 American Institute of Physics

  1. Proceedings of the 1. Brazilian Congress on Plasma Physics

    International Nuclear Information System (INIS)

    1991-01-01

    The 1. Brazilian Congress on Plasma Physics proceedings presents technical papers on magnetohydrodynamics, plasma diagnostic, plasma waves, plasma impurities, plasma instabilities, and astrophysics plasma. (L.C.J.A.)

  2. Plasma physics aspects of ETF/INTOR

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Rutherford, P.R.; Schmidt, J.A.; Cohn, D.R.; Miller, R.L.

    1980-01-01

    In order to achieve their principle technical objectives, the Engineering Test Facility (ETF) and the International Tokomak Reactor (INTOR) will require an ignited (or near ignited) plasma, sustained for pulse lengths of at least 100 secs at a high enough plasma pressure to provide a neutron wall loading of at least 1.3 MW/m 2 . The ignited plasma will have to be substantially free of impurities. Our current understanding of major plasma physics characters is summarized

  3. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  4. Structure-preserving geometric algorithms for plasma physics and beam physics

    Science.gov (United States)

    Qin, Hong

    2017-10-01

    Standard algorithms in the plasma physics and beam physics do not possess the long-term accuracy and fidelity required in the study of multi-scale dynamics, because they do not preserve the geometric structures of the physical systems, such as the local energy-momentum conservation, symplectic structure and gauge symmetry. As a result, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty, since 2008 structure-preserving geometric algorithms have been developed. This new generation of algorithms utilizes advanced techniques, such as interpolating differential forms, canonical and non-canonical symplectic integrators, and finite element exterior calculus to guarantee gauge symmetry and charge conservation, and the conservation of energy-momentum and symplectic structure. It is our vision that future numerical capabilities in plasma physics and beam physics will be based on the structure-preserving geometric algorithms.

  5. Annual review of Plasma Physics Laboratory, Kyoto University, April, 1983

    International Nuclear Information System (INIS)

    1983-04-01

    The devices for additionally heating joul-heated plasma in the Heliotron E, such as electron cyclotron resonance heating and neutral beam injection, were in operation in 1982. In the ECRH experiment, the microwaves of 200 kW at 28 GHz were generated by a gyrotron, but the pulse width was extended from 10 ms to 40 ms this year. By this, a currentless plasma of Te-1 keV was achieved. In the NB1 experiment, the neutral beam of about 1.5 MW was injected into joule-heated plasma, and the plasma of Ti(O)-950 eV, Te(O)-800 eV and Ne = 3 x 10 19 /m 3 was attained. The first experiment to inject neutral beam into ECRH currentless plasma was carried out. By this method, the density of the plasma increased as well as the ion temperature and electron temperature. As to the theory, a critical beta was calculated by using stellarator expansion, which should be 3 to 7 % in the Heliotron E. Two gyrotrons of 200 kW at 53 GHz each and an ion cyclotron resonance heating equipment of 1.5 MW at 26.7 MHz are prepared. As to the reactor study, the design of Heliotron H in the first phase was completed. The location of impurity sources in NB1 ion sources and beam lines was found. (Kako, I.)

  6. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  7. Fundamentals of plasma physics and controlled fusion. The third edition

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2011-06-01

    Primary objective of this lecture note is to provide a basic text for the students to study plasma physics and controlled fusion researches. Secondary objective is to offer a reference book describing analytical methods of plasma physics for the researchers. This was written based on lecture notes for a graduate course and an advanced undergraduate course those have been offered at Department of Physics, Faculty of Science, University of Tokyo. In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits of ion and electron are described in several magnetic field configurations. Chapter 4 formulates Boltzmann equation of velocity space distribution function, which is the basic relation of plasma physics. From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equation of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic MHD equation of motion can be derived by taking an appropriate average of Boltzmann equation. This mathematical process is described in appendix A. The derivation of useful energy integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are described in app. B. From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity, the dielectric tensor of cold plasma can be easily derived and the properties of various wave can be discussed in the case of cold plasma. If the refractive index becomes large and the phase velocity of the

  8. Spring meeting of the scientific associations for atomic physics, high speed physics, mass spectrometry, molecular physics, plasma physics

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains the abstracts of the contributions to the Spring Meeting in Rostock with aspects of atomic physics, molecular physics, high speed physics, plasma physics and mass spectrometry. (MM)

  9. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  10. Annual review of Plasma Physics Laboratory, Kyoto University, July, 1981

    International Nuclear Information System (INIS)

    1981-07-01

    The construction of the Heliotron E was completed in June, 1980. After the preliminary examination for two months and the improvement of the power supply, the Joule heating experiment was carried out from September, 1980, to January, 1981. The experiment of electron cyclotron resonance heating was also carried out in January, 1981. Then, experiment was stopped to install the neutral beam injection apparatus. The results obtained by both experiments are reported. The target may be attained by producing high density plasma with low plasma current, and heating the plasma by NBI additionally. In the ECRH experiment, plasma was produced and heated successfully without Joule heating current, by the Gyrotron with 200 kW power output. The favorable results of the confinement experiment with current-free plasma indicate the possibility of a stationary fusion reactor of Heliotron type. The Heliotron magnetic field configuration was proposed in 1959, and since then, the experiments of Heliotron A, B, C, D and DM were carried out in succession. Now, the purpose of the experiment to prove the principle is being achieved with Heliotron E. Hope is placed on the NBI experiment in preparation. (Kako, I.)

  11. Frontiers of plasma physics. III. The implications of nonlinearity

    International Nuclear Information System (INIS)

    Bardwell, S.

    1977-01-01

    In the first two articles of this series, Bardwell reviewed the experimental evidence that points to an inherent nonlinear quality in plasmas. Evidence from strongly turbulent plasmas, where the energy in the plasma's collective motions is comparable to the energy in random motion, leads to the speculation that high energy-density plasmas can provide insight into previously inaccessible regimes of physical behavior. Both laboratory and astrophysical plasmas show a marked tendency to generate self-ordered, large-scale structures; islands of self-generated magnetic field, circulation cells, vortices, and filaments are among the most remarkable of these. These self-ordered phenomena, Bardwell reports, challenge in a fundamental way the conceptual tools of physics as they are presently understood. In part two of this series, Bardwell draws on the connection between linearity and entropy, a topic also examined in Levitt's companion piece in the September 1976 FEF Newsletter, to conclude that these difficulties in plasma physics stem from the invalid extension of contemporary physics, which is basically linear, to high-energy density regimes of a plasma; contemporary physics in these cases is inapplicable. Readers without a background in mathematics should not be deterred by the mathematical formalism in the last section of the article; the text can be understood without a detailed mastery of the mathematical formulae

  12. On the physics of electron beams in space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.

    2002-01-01

    This paper discusses the main physical processes related to the injection, the propagation and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the physical linear and nonlinear mechanisms involved in the generation, the stabilization and the saturation of the electromagnetic waves excited by the beams in wide frequency ranges. and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the

  13. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  14. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  15. APS presents prizes in fluid dynamics and plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation

  16. Plasma and the universe

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1988-01-01

    Hannes Alfven has enjoyed a long and spectacular career in which he has time and again pioneered the path that other workers were able fruitfully to exploit. One thinks of the Alven waves, the concept of gyrocenter drift and the perturbation theory based on it, and the critical velocity phenomenon in the interaction of a plasma with a neutral gas. All of these discoveries have been of fundamental importance. By no means content to rest on his laurels, Alfven has, during the last decade, contributed to science in a major sense, especially in the field of cosmogeny. For example, he has used the latest data from the Voyager spacecraft to test his detailed predictions of the structure of the Saturnian rings. Alfven's current preoccupation is with the Plasma Universe and, as may be expected, some of his concepts are receiving observational support, while others are still controversial

  17. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  18. Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka

    2011-01-01

    Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)

  19. Plasmas: from space to laboratory. 'Introduction to plasma physics' course

    International Nuclear Information System (INIS)

    Savoini, Philippe

    2011-01-01

    This course addresses the different basic concepts of plasma physics. After an introduction which addresses the plasma state, basic equations, the different theoretical approaches (orbitals, kinetic, multi-fluid, magnetohydrodynamics), and the different characteristic scales, waves are addressed and presented as a disordered electromagnetism: existence of plasma waves, generalities on waves, relationship of formal dispersion of plasmas, plasma without magnetic field (longitudinal, transverse, or low frequency wave), plasma with magnetic field (parallel, perpendicular, or arbitrary propagation). The next parts present various approaches: the particle-based approach (case of constant and uniform magnetic fields, case of non-uniform magnetic fields), the statistical approach (elements of kinetic theory, the collision phenomenon, the equilibrium state), and the fluid approach (fluid equations according to the multi-fluid theory, comparison with the particle-based approach, presentation of magnetohydrodynamics as the single-fluid model, validity of MHD)

  20. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  1. Plasma physics for controlled fusion

    International Nuclear Information System (INIS)

    Miyamoto, K.

    2010-01-01

    The primary objective of this lecture note is to present the theories and experiments of plasma physics for recent activities of controlled fusion research for graduate and senior undergraduate students. Chapters 1-6 describe the basic knowledge of plasma and magnetohydrodynamics (MHD). MHD instabilities limit the beta ratio (ratio of plasma pressure to magnetic pressure) of confined plasma. Chapters 7-9 provide the kinetic theory of hot plasma and discuss the wave heating and non-inductive current drive. The dispersion relation derived by the kinetic theory are used to discuss plasma waves and perturbed modes. Landau damping is the essential mechanism of plasma heating and the stabilization of perturbation. Landau inverse damping brings the amplification of waves and the destabilization of perturbed modes. Chapter 10 explains the plasma transport due to turbulence, which is the most important and challenging subject for plasma confinement. Theories and simulations including subject of zonal flow are introduced. Chapters 11, 12 and 13 describe the recent activities of tokamak including ITER as well as spherical tokamak, reversed field pinch (RFP) and stellarator including quasi-symmetric configurations. Emphasis has been given to tokamak research since it made the most remarkable progress and the construction phase of 'International Tokamak Experimental Reactor' called ITER has already started. (author)

  2. Inflating metastable quark-gluon plasma universe

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Kaempfer, B.; Sysoev, V.M.

    1990-01-01

    We show within the Friedmann model with the equation of state p(T)=aT 4 -AT that our universe has expanded exponentially when it was in a metastable quark-gluon plasma state. The scale factor during that epoch increased by many orders of magnitude. 13 refs.; 5 figs

  3. Status of plasma physics research activities in Egypt

    International Nuclear Information System (INIS)

    Masoud, M.M.

    1997-01-01

    The status of plasma physics research activities in Egypt is reviewed. There are nine institutes with plasma research activities. The largest is the Atomic energy Authority (AEA), which has activities in fundamental plasma studies, fusion technology, plasma and laser applications, and plasma simulation. The experiments include Theta Pinches, a Z Pinch, a coaxial discharge, a glow discharge, a CO 2 laser, and the EGYPTOR tokamak. (author)

  4. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  5. Polarization plasma spectroscopy (PPS) viewed from plasma physics and fusion research

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Recently the measurements of poloidal magnetic field become important in plasma physics and nuclear fusion research, since an improved confinement mode associating with a negative magnetic shear has been found. The polarization plasma spectroscopy is recognized to be a useful tool to measure poloidal magnetic field and pitch angle of magnetic field. (author)

  6. Basic plasma physics

    International Nuclear Information System (INIS)

    Galeev, A.A.; Sudan, R.N.

    1989-01-01

    Most of the chapters in this book are devoted to the theory of small amplitude perturbations which is the most well developed aspect of the subject. The remaining chapters are concerned with weak nonlinear waves, and collapse and self-focusing of Langmuir waves, two topics of widespread interest and application. A chapter on particle simulation has been included, as that numerical technique plays an essential role in the development an understanding of plasma physics

  7. Experiments on Plasma Physics : Experience is the Mother of Wisdom 5.What We Expect with Nonneutral Plasmas

    Science.gov (United States)

    Kiwamoto, Yasuhito

    The present status of nonneutral plasma science is reviewed with a particular interest in the pursuit of a new frontier for plasma physicists engaged in basic researches. The author does not intend to be exhaustive nor well balanced in the description, but tries to discuss where we are positioned and what we might be able to do to fruitfully enjoy plasma physics and extend its field of activity. Leaving most of topics to the cited references, the author describes characteristic features of nonneutral plasmas appearing in distinct confinement properties, equilibria, transport, nonlinear evolution of Kelvin-Helmholtz instability, and fluid echo phenomena. These examples may convey the significance of nonneutral plasma science as one of newly-rising branches of plasma physics and as a potentially relevant channel through which plasma physics could explore new dimensions.

  8. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  9. University Students' Attitudes toward Physical Education Teaching

    Science.gov (United States)

    Li, Fengjuan; Chen, Junjun; Baker, Miles

    2014-01-01

    While there have been many studies into students' attitudes toward Physical Education at the school level, far fewer studies have been conducted at the university level, especially in China. This study explored 949 students' attitudes toward their university Physical Education experiences in four Chinese universities. An intercorrelated model of…

  10. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Damage to plasma-facing components (PFCs) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called high energy interaction with general heterogeneous target systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed. (orig.)

  11. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.

    1998-01-01

    Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed

  12. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  13. Physics of the early universe

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    In this thesis, the author has assembled his papers on elementary particle physics which are of importance for studying cosmology viz. the physics of the early universe. A rather detailed introduction reviewing basic principles and current trends in the relation particle physics/cosmology precedes the papers. (Auth.)

  14. XXX Zvenigorod conference on plasma physics and CTS. Summaries of reports

    International Nuclear Information System (INIS)

    2003-01-01

    Summaries of reports made at the 30th Zvenigorod conference on plasma physics and controlled thermonuclear synthesis are presented. The conference took place February 24-28, 2003. The recent results of investigations on plasma physics in tokamak devices are considered. The problems of the magnetic confinement of high-temperature plasma in thermonuclear devices and inertial thermonuclear synthesis are discussed. The particular attention is given to physical essentials of plasma and beam technologies [ru

  15. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  16. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    International Nuclear Information System (INIS)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  17. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  18. Progress report : Plasma Physics Section

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Rohatgi, V.K.

    1975-08-01

    The activities of the plasma physics section of the Bhabha Atomic Research Centre, India over the last five years (1970-75) are reported. The R and D programme of the section has been divided into four cells mainly i.e., (i) Thermal plasma (ii) Relativistic Electron Beam (iii) Energetics and (iv) Electron beam technology. The salient features of the development activities carried out in these cells are outlined. In the Thermal plasma group, considerable research work has been done in (a) fundamental plasma studies, (b) industrial plasma technology and (c) open cycle MHD power generation project. The relativistic electron beam group is engaged in improving the technology to realize high power lasers, and pulsed thermonuclear fusion. The energetics programme is oriented to develop high voltage d.c. generators and pulse generators. The electron beam techniques developed here are routinely used for melting refractory and reactive metals. The technical know-how of the welding machines developed has been transfered to industries. Equipment developed by this section, such as, (1) electron beam furnace, (2) plasma cutting torch, (3) impulse magnet charger etc. are listed. (A.K.)

  19. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  20. Barriers to Physical Activity on University Student

    Science.gov (United States)

    Jajat; Sultoni, K.; Suherman, A.

    2017-03-01

    The purpose of the research is to analyze the factors that become barriers to physical activity in university students based on physical activity level. An internet-based survey was conducted. The participants were 158 University students from Universitas Pendidikan Indonesia. Barriers to Physical Activity Quiz (BPAQ) were used to assessed the factors that become barriers to physical activity in university students. IPAQ (short form) were used to assessed physical activity level. The results show there was no differences BPAQ based on IPAQ level. But when analyzed further based on seven factors barriers there are differences in factors “social influence and lack of willpower” based IPAQ level. Based on this it was concluded that the “influence from other and lack of willpower” an inhibiting factor on students to perform physical activity.

  1. Edge Plasma Physics and Relevant Diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hron, Martin; Ďuran, Ivan; Pánek, Radomír; Stejskal, Pavel; Adámek, Jiří

    2004-01-01

    Roč. 3, - (2004), s. 1-6 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR GA202/03/0786; GA ČR GP202/03/P062 Keywords : tokamak * edge plasma * probe diagnostics * biasing * turbulence * polarization Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Physics and Physics Education at Clarion University

    Science.gov (United States)

    Aravind, Vasudeva

    Clarion University is located in the rolling hills of western Pennsylvania. We are a primarily undergraduate public institution serving about 6000 students. We graduate students who take different career paths, one of them being teaching physics at high schools. Since educating teachers of tomorrow requires us to introduce currently trending, research proven pedagogical methods, we incorporate several aspects of physics pedagogies such as peer instruction, flipped classroom and hands on experimentation in a studio physics lab format. In this talk, I discuss some of our projects on physics education, and seek to find potential collaborators interested in working along similar lines.

  3. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  4. Real-time control of Tokamak plasmas: from control of physics to physics-based control

    International Nuclear Information System (INIS)

    Felici, F. A. A.

    2011-11-01

    Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in controller design. In this thesis, the two subjects have been merged, using control solutions as experimental tool for physics studies, and using physics knowledge for developing new advanced control solutions. The TCV tokamak at CRPP-EPFL is ideally placed to explore issues at the interface between plasma physics and plasma control, by combining a digital realtime control system with a flexible and powerful set of actuators, in particular the electron cyclotron heating and current drive system (ECRH/ECCD). This experimental platform has been used to develop and test new control strategies for three plasma physics instabilities: sawtooth, edge localized mode (ELM) and neoclassical tearing mode (NTM). The period of the sawtooth crash, a periodic MHD instability in the core of a tokamak plasma, can be varied by localized deposition of ECRH/ECCD near the q = 1 surface (q: safety factor). A sawtooth pacing controller was developed which is able to control the time of appearance of the next sawtooth crash. Each individual sawtooth period can be controlled in real-time. A similar scheme is applied to H-mode plasmas with type-I ELMs, where it is shown that pacing regularizes the ELM period. The regular, reproducible and therefore predictable sawtooth crashes have been used to study the relationship between sawteeth and NTMs. Postcrash MHD activity can provide the ‘seed’ island for an NTM, which then grows under its neoclassical bootstrap drive. The seeding of 3/2 NTMs by long sawtooth crashes can be avoided by preemptive, crash-synchronized EC power injection pulses at the q = 3/2 rational surface location. NTM stabilization experiments in which the ECRH deposition location is moved in real-time with steerable mirrors have

  5. Gravitational Contraction and Fusion Plasma Burn. Universal Expansion and the Hubble Law

    International Nuclear Information System (INIS)

    Wilhelmsson, Hans

    2002-01-01

    A dynamic approach is developed for the two principle phases of (i) gravitational condensation, and (ii) burning fusion plasma evolution. Comparison is made with conceptual descriptions of star formation and of subsequent decay towards red giant stars, white dwarfs, and other condensed core objects like neutron stars and black holes. The possibility of treating the expansion of the Universe by means of a similar approach is also discussed. The concept of negative diffusion is introduced for the contraction phase of star formation. The coefficients of defining the nonlinear diffusion are determined uniquely by physical conditions and for the case of the expansion of the universe, by the observation of the Hubble law. The contraction and evolution of large scale 3-D stars and 2-D galactic systems can thus be dynamically surveyed. In particular the time-scales can be determined

  6. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  7. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  8. Fourth Latin-American workshop on plasma physics. Contributed papers

    International Nuclear Information System (INIS)

    1990-01-01

    The main goal of this series of Workshops is to provide a periodic meeting place for Latin-American researchers in plasma physics together with colleagues from other countries around the world. This volume includes the contributed papers presented at the Workshop on Plasma Physics held in Buenos Aires in 1990. The scope of the Workshop can be synthesized in the following main subjects: Tokamak experiments and theory; alternative confinement systems and basic experiments; technology and applications; general theory; astrophysical and space plasmas

  9. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  10. Proceedings of the 1984 international conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. This is the second part of the conference

  11. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  12. Plasma Physics Department annual report, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The main fields in which researches have been carried out during 1990 at the Wills Plasma Physics Department are briefly discussed. These include investigations of shear Alfven waves at frequencies above the ion cyclotron frequency; the use of submillimetre lasers to detect by far forward scattering density fluctuation associated with waves in Tortus during Alfven wave heating experiments; basic physics of laser induced fluorescence in plasma and in particular the process which determine the population of excited states, as well as magnetron discharge studies and application of the vacuum arc as ion sources for accelerators and as sputtering device for producing thin film coating. A list of publications and papers presented at various conferences by the members of the Department is given in the Appendix

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    International Nuclear Information System (INIS)

    Finley, Virginia

    2001-01-01

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  15. An introduction to boundary plasma physics

    International Nuclear Information System (INIS)

    Shimizu, Katsuhiro; Takizuka, Tomonori

    2004-01-01

    History of tokamak experiments is briefly reviewed with a special focus on divertors. Two-point divertor model, which calculates plasma parameters up-stream and at the divertor plate for a given condition of particle flux and heat flux, is explained. The model is applied to ITER to discuss the heat flux onto the target plate. The important issues of divertor physics related to recycling, remote radiative cooling, detached plasma and MARFE are also introduced. (author)

  16. Education-oriented Physics-Chemistry for Universities

    Directory of Open Access Journals (Sweden)

    B. Spoelstra

    1985-03-01

    Full Text Available The shortage of well-qualified Science teachers is discussed, and possible contributing factors are mentioned. The need for an education-oriented university education in Physics and Chemistry, parallel to the existing courses in Physics and Chemistry, is justified. At the University of Zululand a subject called “Physical Science” (“Natuurwetenskap” was established, bearing in mind the specific requirements of a teaching career in Physical Science at secondary level. “Physical Science” is offered at second and third year level and the syllabus covers equal amounts of Chemistry and Physics. A less formal-mathematical and more descriptive approach is followed, and as wide a field as possible is covered which includes new developments in the physical sciences. We believe that this new course will enhance the training of well-prepared teachers of Physical Science for secondary schools, where a severe shortage prevails. Special reference is made here to the situation in Black schools.

  17. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

  18. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  19. Proceedings of the 1984 International Conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. The conference stressed the important role that ''basic plasma physics'' must play in fusion research. Recent theoretical and experimental developments in tokamaks, stellarators, mirrors, reversed field pinches, and other fusion devices were reported. The successful operation of two newly-built large tokamak devices, JET and TFTR, holds the promise that a host of new results of decisive importance for fusion research will become available in the next few years. This is the first part of the conference

  20. Abstracts of 7th Ukrainian conference on controlled nuclear fusion and plasma physics

    International Nuclear Information System (INIS)

    1999-01-01

    This conference discussed the main directions of plasma physics development in Ukraine. The experimental and theoretical research on stellarators and theoretical results of physical processes in tokamak plasma studied. The investigation of spherical tokamaks were plasma physics began

  1. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  2. The Framework of Plasma Physics

    CERN Document Server

    Hazeltine, Richard D

    2004-01-01

    Plasma physics is a necessary part of our understanding of stellar and galactic structure. It determines the magnetospheric environment of the earth and other planets; it forms the research frontier in such areas as nuclear fusion, advanced accelerators, and high power lasers; and its applications to various industrial processes (such as computer chip manufacture) are rapidly increasing. It is thus a subject with a long list of scientific and technological applications. This book provides the scientific background for understanding such applications, but it emphasizes something else: the intrinsic scientific interest of the plasma state. It attempts to develop an understanding of this state, and of plasma behavior, as thoroughly and systematically as possible. The book was written with the graduate student in mind, but most of the material would also fit into an upper-level undergraduate course.

  3. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas

  4. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2006-07-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas.

  5. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  6. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  7. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  8. Theoretical plasma physics. Final report

    International Nuclear Information System (INIS)

    Vahala, G.; Tracy, E.

    1996-04-01

    During the past year, the authors have concentrated on (1) divertor physics, (2) thermo-lattice Boltzmann (TLBE) approach to turbulence, and (3) phase space techniques in gyro-resonance problems in collaboration with Dieter Sigmar (MIT), Sergei Krasheninnikov (MIT), Linda Vahala (ODU), Joseph Morrison (AS and M/NASA-Langley), Pavol Pavlo and Josef Preinhaelter (institute of Plasma Physics, Czech Academy of Sciences) and Allan Kaufman (LBL/U.C.Berkeley). Using a 2-equation compressible closure model with a 2D mean flow, the authors are investigating the effects of 3D neutral turbulence on reducing the heat load to the divertor plate by various toroidal cavity geometries. These studies are being extended to examine 3D mean flows. Thermal Lattice Boltzmann (TLBE) methods are being investigated to handle 3D turbulent flows in nontrivial geometries. It is planned to couple the TLBE collisional regime to the weakly collisional regime and so be able to tackle divertor physics. In the application of phase space techniques to minority-ion RF heating, resonance heating is treated as a multi-stage process. A generalization of the Case-van Kampen analysis is presented for multi-dimensional non-uniform plasmas. Effects such as particle trapping and the ray propagation dynamics in tokamak geometry can now be handled using Weyl calculus

  9. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  10. Plasma Science Committee (PLSC)

    International Nuclear Information System (INIS)

    1990-01-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences--National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues. This report discusses ion of the PLSC work

  11. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2004-01-01

    Full text: In 2003, research activities in Dept. P-V embraced the continuation of previous studies in the field of high - temperature plasma physics and controlled nuclear fusion. Some new investigations were developed, particularly in the field of plasma technology. The main topics of the research activities were as follows: 1. Selected problems of plasma theory; 2. Investigation of plasma phenomena in pulse discharges of the Plasma-Focus (PF) and Z-Pinch type; 3. Development of selected methods of plasma diagnostics; 4. Research on experimental facilities for basic studies and industrial applications; 5. Modification of material surfaces by means of pulsed plasma-ion streams. Theoretical studies concerned the numerical modeling of discharges in a coaxial plasma accelerator of the IPD type. The modification of a 2-D model concerned mainly a plasma flow along the current sheath surface, taking into consideration the development of Rayleigh-Taylor instabilities. Several series of computations were performed and different parameters of the system were determined. As for experimental studies, we studied plasma phenomena which occur in high-current discharges of PF and Z-Pinch type. Measurements of pulsed electron beams, and their correlation with other plasma phenomena, were performed within the MAJA-PF device in Swierk and PF-1000 facility at IPPLM in Warsaw. Use was made of Cerenkov-type detectors and magnetic analyzers. It was confirmed that separate e-beams are generated in different hot-spots, and the electron energy spectrum ranges up to several hundreds keV (i.e. above the interelectrode voltage during the radial collapse phase). We also presented papers presenting results of previous research on polarization of X-ray lines emitted from the pinch column. Experimental studies of high-temperature plasma were also carried out within the PF-360 facility in Swierk. Several papers, describing the most important characteristics of this device and results of research

  12. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  13. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  14. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  15. On the universality of power laws for tokamak plasma predictions

    Science.gov (United States)

    Garcia, J.; Cambon, D.; Contributors, JET

    2018-02-01

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  16. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-01-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: electric double layers (like in the lower magnetosphere); thin current layer (like in the magnetopause) giving space a cellular structure; current produced filaments (e.g., in prominences, solar corona and interstellar clouds). Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. The pinch effect cannot be neglected as is now usually done. The critical velocity phenomenon is essential, for example for the band structure of solar system. Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of, e.g., the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Auth.)

  17. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    Plasma, the fourth state of matter, is actually the first state of Nature. The great fireball, the Sun, entirely decides the existence of our tiny planet immersed in the ocean of cosmic plasma. Mankind has also learnt how to produce and use plasma under terrestrial conditions, though it is not at all easy to domesticate this unstable ionized medium. Plasma finds countless applications that improve the quality of our daily life. Some of them, such as fluorescent light tubes, are so obvious to us that we do not give any thought to the processes underlying colourful neon signs. Another vast field is the production of materials with tailored-to-demand properties: mechanical, chemical, optical, electrical, magnetic, etc. Thin layers formed on solid surfaces by various plasma--material interactions play important roles in present-day computer technology, communication, space research, machinery and even many decorative items. However, the most demanding challenge in using plasma is to harness on Earth the processes that power stars. The endeavour is to confine and stabilize hot plasmas and to achieve the ultimate goal: to benefit from the might of thermonuclear reactions for environmentally benign energy production. The goal is clear, as the demand for energy is unquestionable. But the challenges are also enormous. Two basic plasma confinement schemes have been explored: inertial (using ultra-strong laser pulses or ion beams), and magnetic confinement (using strong magnetic fields). Hot plasma must be maintained in a vacuum vessel. The temperature gradients between the plasma and the surrounding wall are probably the greatest in the Universe. The history of fusion research began in the 1940s. Since then we have observed significant progress in fusion science and technology. We have come to the point when it has been decided to construct a reactor-class device. ITER International Thermonuclear Experimental Reactor will be built by seven co-operating parties: the EU, Japan

  18. A perspective on the contributions of Ronald C. Davidson to plasma physics

    Science.gov (United States)

    Wurtele, Jonathan S.

    2016-10-01

    Starting in the 1960s and continuing for half a century, Ronald C. Davidson made fundamental theoretical contributions to a wide range of areas of pure and applied plasma physics. Davidson was one of the founders of nonneutral plasma physics and a pioneer in developing and applying kinetic theory and nonlinear stability theorems to collective interaction processes and nonlinear dynamics of nonneutral plasmas and intense charged particle beams. His textbooks on nonneutral plasmas are the classic references for the field and educated generations of graduate students. Davidson was a strong advocate for applying the ideas of plasma theory to develop techniques that benefit other branches of science. For example, one of the major derivative fields enabled by nonneutral plasmas is the study of antimatter plasmas and the synthesis of antihydrogen. This talk will review a few highlights of Ronald Davidson's impact on plasma physics and related fields of science.

  19. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  20. CSSP implementation plan for space plasma physics programs

    International Nuclear Information System (INIS)

    Baker, D.N.; Williams, D.J.; Johns Hopkins Univ., Laurel, MD)

    1985-01-01

    The Committee on Solar and Space Physics (CSSP) has provided NASA with guidance in the areas of solar, heliospheric, magnetospheric, and upper atmospheric research. The budgetary sitation confronted by NASA has called for a prioritized plane for the implementation of solar and space plasma physics programs. CSSP has developed the following recommendations: (1) continue implementation of both the Upper Atmosphere Research Satellite and Solar Optical Telescope programs; (2) initiate the International Solar Terrestrial Physics program; (3) plan for later major free-flying missions and carry out the technology development they require; (4) launch an average of one solar and space physics Explorer per yr beginning in 1990; (5) enhance current Shuttle/Spacelab programs; (6) develop facility-class instrumentation; (7) augment the solar terrestrial theory program by FY 1990; (8) support a compute modeling program; (9) strengthen the research and analysis program; and (10) maintain a stable suborbital program for flexible science objectives in upper atmosphere and space plasma physics

  1. [The mission of Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following about Princeton Plasma Physics Laboratory: its mission; requirements and guidance documents for the QA program; architecture; assessment organization; and specific management issues

  2. Toward the automated analysis of plasma physics problems

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-04-01

    A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications in form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs

  3. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  4. Travel mode and physical activity at Sydney University.

    Science.gov (United States)

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-08-09

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the "Sit Less, Move More" sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed.

  5. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  6. Advanced computations in plasma physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2002-01-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  7. Advances of dense plasma physics with particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D. [DarmstadtTechnische Univ., Institut fur Kernphysik (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Patras Univ., Dept. of Physics (Greece); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2006-06-15

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  8. Advances of dense plasma physics with particle accelerators

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K.; Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D.; Jacoby, J.; Zioutas, K.; Sharkov, B.Y.

    2006-01-01

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  9. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  10. Physical properties of dense, low-temperature plasmas

    International Nuclear Information System (INIS)

    Redmer, R.

    1997-01-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied wthin linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). mercury within the MHNC scheme via effective ion-ion potentials which are derived from the polarization function within an extended RPA. The optical properties of dense plasmas, the shift

  11. Analysis of a Relaxation Scheme for a Nonlinear Schrödinger Equation Occurring in Plasma Physics

    KAUST Repository

    Oelz, Dietmar; Trabelsi, Saber

    2014-01-01

    This paper is devoted to the analysis of a relaxation-type numerical scheme for a nonlinear Schrödinger equation arising in plasma physics. The scheme is shown to be preservative in the sense that it preserves mass and energy. We prove the well-posedness of the semidiscretized system and prove convergence to the solution of the time-continuous model. © 2014 © Vilnius Gediminas Technical University, 2014.

  12. Analysis of a Relaxation Scheme for a Nonlinear Schrödinger Equation Occurring in Plasma Physics

    KAUST Repository

    Oelz, Dietmar

    2014-03-15

    This paper is devoted to the analysis of a relaxation-type numerical scheme for a nonlinear Schrödinger equation arising in plasma physics. The scheme is shown to be preservative in the sense that it preserves mass and energy. We prove the well-posedness of the semidiscretized system and prove convergence to the solution of the time-continuous model. © 2014 © Vilnius Gediminas Technical University, 2014.

  13. FOREWORD: International Workshop on Theoretical Plasma Physics: Modern Plasma Science. Sponsored by the Abdus Salam ICTP, Trieste, Italy

    Science.gov (United States)

    Shukla, P. K.; Stenflo, L.

    2005-01-01

    The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there

  14. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section

  15. Determination of composition and physical properties of partially ionized plasmas in the function of temperature

    International Nuclear Information System (INIS)

    Zaporowski, B.

    1992-01-01

    The investigations of various kinds of partially ionized plasma were conducted for the pressure of 0.1 MPa and in the range of temperature of 298.15 K to 24000 K. The physical properties of various kinds of partially ionized plasma depend mainly of their composition and temperature. The composition of particular kinds of partially ionized plasmas varies also in the function of temperature. Simultaneous going on of physical and chemical processes in plasma is the reason of difficulties in the calculations of plasma's physical properties. The use of the laws of macroscopic thermodynamics for the calculations of physical properties of partially ionized plasma is impossible. There are enough exact methods for measuring of physical properties of partially ionized plasma. For these reasons the theoretical method using the base of statistic physics was used to calculate the composition and physical properties of various kinds of partially ionized plasma. (author) 2 refs., 2 figs

  16. Nonlinear aspects of quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, Padma K; Eliasson, B

    2010-01-01

    Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser-solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted. (reviews of topical problems)

  17. Application studies of spherical tokamak plasma merging

    International Nuclear Information System (INIS)

    Ono, Yasushi; Inomoto, Michiaki

    2012-01-01

    The experiment of plasma merging and heating has long history in compact torus studies since Wells. The study of spherical tokamak (ST), starting from TS-3 plasma merging experiment of Tokyo University in the late 1980s, is followed by START of Culham laboratory in the 1900s, TS-4 and UTST of Tokyo University and MAST of Culham laboratory in the 2000s, and last year by VEST of Soul University. ST has the following advantages: 1) plasma heating by magnetic reconnection at a MW-GW level, 2) rapid start-up of high beta plasma, 3) current drive/flux multiplication and distribution control of ST plasma, 4) fueling and helium-ash exhaust. In the present article, we emphasize that magnetic reconnection and plasma merging phenomena are important in ST plasma study as well as in plasma physics. (author)

  18. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-06-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: 1) Electric double layers (like in the lower magnetosphere) 2) Thin current layer (like in the magnetopause) giving space a cellular structure. 3) Current produced filaments (e.g. in prominences, solar corona and interstellar clouds). 4) Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. 5) The pinch effect cannot be neglected as is now usually done. 6) The critical velocity phenomenon is essential, for example for the band structure of solar systems. 7) Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of e.g. the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Author)

  19. 28. Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Theses of reports, presented at the 28th Conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 19-23 February 2001) are published. 246 reports were heard at the following sections: magnetic confinement, theory and experiments; inertial thermonuclear synthesis; plasma processes and physics of gas-discharge plasma; physical bases of plasma technologies. 17 reports had the summarizing character [ru

  20. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  1. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  2. Variational integrators in plasma physics

    International Nuclear Information System (INIS)

    Kraus, Michael

    2013-01-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  3. Magnetospheric and atmospheric physics at the University of Natal

    International Nuclear Information System (INIS)

    Walker, A.D.M.

    1982-01-01

    A historical outline of geophysical work done at the University of Natal from 1938-1982 is given. Mention is also made of experimental work concerning whistlers and VLF, low-light level TV and geomagnetic pulsations. Current work on the magnetosphere, namely plasma convection in plasmasphere, auroral features, geomagnetic pulsations and the measuring of plasma properties is discussed

  4. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    range of topics with the common thread of non- equilibrium phenomena playing a major part in the basic physics and also in the technological applications. The universal symbol of non-equilibrium phenomena is Maxwell's demon and it was selected, as designed by Professor Rastko Ćirić (of Belgrade's University for Fine Arts), to be the symbol of the conference. In plasma physics, the field is usually divided between equilibrium and non-equilibrium plasmas. The advantage of studying plasmas in thermal equilibrium is that they may be described by universal laws, such as Saha and Boltzmann equations. The only problem is that, apart from the very early stages in the development of the universe, such plasmas do not exist, although there are plasmas that come very close and at least satisfy the thermal laws locally. Non-equilibrium plasmas have laws unique to each situation and studies of their idiosyncrasies continue to provide a lot of food for thought for scientists, possibilities for applications and job opportunities. Or as Tolstoy wrote, `Happy families are all alike; every unhappy family is unhappy in its own way?'. So, while making analogy of the non-equilibrium with the lack of happiness may sound discouraging, the scientists who try to observe these phenomena (like psychologists in the case of families) have plenty to study and are, therefore, likely to be happy. At the same time non-equilibrium phenomena in plasmas and in the atmosphere are extremely important. A fact we should be aware of every time we use an integrated circuit manufactured after the late 1970s or whenever weather changes, wind blows and pollution is carried in from some distant locations. This volume starts with a paper by D Batani (Milano, Italy) on shock waves, an example of plasmas that may be locally thermal but display very strong gradients, M Pinheiro (Lisboa, Portugal) contributed an article on anomalous diffusion in magnetized plasmas, a problem that has been addressed in the literature

  5. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  6. Cluster processes in gases and plasmas

    CERN Document Server

    Smirnov, Boris M

    2009-01-01

    Boris M. Smirnov received his Ph.D. in physics from Leningrad State University in 1968. After working in different research positions, he finally accepted a post as head of one of the divisions of the Institute for High Temperatures at the Russian Academy of Sciences in Moscow in 1986. Professor Smirnov is the author and co-author of approximately 50 books as well as 400 research articles in plasma physics, atomic physics, and atomic clusters. He is Vice Chairman of the National Council for Low Temperature Plasma and Chairman ofa Section on Elementary Processes in Plasma. Professor Smirnov`s r

  7. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  8. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  9. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  10. Feminist Teaching in University Physical Education Programs.

    Science.gov (United States)

    Bain, Linda L.; And Others

    1991-01-01

    Examines feminist teaching in university physical education. Three articles describe the personal experiences of physical educators who try to teach in ways that promote equality. The articles focus on social diversity and justice and feminist pedagogy in the sport sciences and physical education. (SM)

  11. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  12. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  13. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  14. VOA: a 2-d plasma physics code

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1975-12-01

    A 2-dimensional relativistic plasma physics code was written and tested. The non-thermal components of the particle distribution functions are represented by expansion into moments in momentum space. These moments are computed directly from numerical equations. Currently three species are included - electrons, ions and ''beam electrons''. The computer code runs on either the 7600 or STAR machines at LLL. Both the physics and the operation of the code are discussed

  15. III International Conference on Laser and Plasma Researches and Technologies

    Science.gov (United States)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of

  16. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  17. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  18. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  19. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2006-01-01

    In 2005 research activities in Department P-V were concentrated on the continuation of previous studies in the field of plasma physics and CNF, but new investigations were also undertaken, particularly in the field of plasma technology. The main tasks were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. As to the first task, particular attention was paid to studies of X-ray pulses and pulsed electron beams, by means of different diagnostic techniques. Measurements of the polarization of the selected X-ray spectral lines and their correlation with pulsed e-beams were performed in the MAJA-PF facility. Taking into account microscopic irreproducibility of so-called 'hot-spots', particular efforts were devoted to the correlation of the X-ray emission from a single hot-spot with corresponding non-thermal electron pulses. Some observations of X-rays were performed also at the PF-1000 facility at IPPLM in Warsaw. Other studies concerned the correlation of fast-neutron pulses with X-rays and other corpuscular emissions. Results of experimental studies carried out in the IPJ-IPPLM collaboration were analyzed and summarized. New measurements, carried out in the MAJA-PF facility, determined the temporal correlation of X-rays pulses, fusion-neutrons, fast electron beams and high-energy ion beams. Other efforts concerned studies of fast (ripple-born) electrons in tokamaks. An analysis of the capability of special Cerenkov-type detectors (based on diamond-crystal radiators) was performed, and measuring heads for the CASTOR and TORE-SUPRA facilities have been designed. Concerning the development of plasma diagnostic techniques, characteristics of PM-355 nuclear track detectors were analyzed and the calibrated detectors (with appropriate absorption filters) were used for measurements of fast (> 3 Me

  20. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  1. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  2. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  3. Correlation between physical activity and self-efficacy in Chinese university students

    OpenAIRE

    Liu, Hao

    2017-01-01

    Physical inactivity is becoming increasingly prevalent in Chinese university students. This study aims to assess the leisure-time physical activity level of the Chinese university students and to examine the correlation between the physical activity level and the self-efficacy to overcome barriers to physical activity. Five hundred and thirty Chinese university students participated in the study voluntarily. The International Physical Activity Questionnaire (IPAQ, Chinese Short version) and t...

  4. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  5. Alushta-2012. International Conference-School on Plasma Physics and Controlled Fusion and the Adjoint Workshop 'Nano-and micro-sized structures in plasmas'. Book of Abstracts

    International Nuclear Information System (INIS)

    Makhlaj, V.A.

    2012-01-01

    The Conference was devoted to a new valuable information about the present status of plasma physics and controlled fusion research. The main topics was : magnetic confinement systems; plasma heating and current drive; ITER and fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics; formation of nano-and micro-sized structures in plasmas; properties of plasmas with nano- and micro- objects

  6. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  7. Summary of the international 'Dawson' Symposium on the physics of plasmas

    International Nuclear Information System (INIS)

    Tajima, T.

    1990-12-01

    The ''Dawson'' Symposium was held on September 24 and 25, 1990 in honor of John Dawson's 60th birthday to reflect on various physics of plasma that he had pioneered. The international speakers touched on a wide range of subjects: magnetic fusion, laser fusion, isotope separation, computer simulation, basic plasma physics, accelerators and light sources, space physics, and international scientific collaboration. Highlighted in this article are magnetic fusion and laser fusion investigation that Dawson has been engaged in and the reviews of the present status of their development. The impact of the two-component fusion plasma idea, reactor concepts for advanced fuels, hot electron production by lasers and other nonlinear effects in laser fusion are discussed. Dawson's contributions in the allied areas are also reviewed

  8. The Universe Untangled; Modern physics for everyone

    Science.gov (United States)

    Pillitteri, Abigail

    2017-04-01

    Physics has always been a tricky subject for the general public. Millions are fascinated by the laws of the physical world, but there has been a lack of books written specifically for general readers. The Universe Untangled is for those who are curious; yet do not have an extensive mathematical background. It uses images, analogies and comprehensible language to cover popular topics of interest including the evolution of the Universe, fundamental forces, the nature of space and time, and the quest for knowing the unknown.

  9. Association Euratom - Risø National Laboratory, Technical University of Denmark - Annual Progress Report 2007

    DEFF Research Database (Denmark)

    Michelsen, Poul; Korsholm, Søren Bang; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the pla......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction...... phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007....

  10. Physics of the quark - gluon plasma

    International Nuclear Information System (INIS)

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p T physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B → J/Ψ production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation

  11. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  12. Renormalization and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  13. Renormalization and plasma physics

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields

  14. Investigating physics teaching and learning in a university setting

    International Nuclear Information System (INIS)

    Jenaro Guisasola, Jenaro; Zuza, Kristina; De Cock, Mieke; Bollen, Laurens; Kanim, Stephen; Ivanjek, Lana; Van Kampen, Paul

    2015-01-01

    Most of the initiatives taken by the European Community and by other countries internationally in the field of science education focus on elementary and secondary levels of education, and relatively few reports have analysed the state of science education in higher education. However, research in science education, and in particular in physics education, has shown repeatedly that the way teachers teach in elementary and secondary school is strongly influenced by their own prior experience as university students. The education that future professionals, such as scientists, engineers and science teachers, receive at the university is worthy of study, because it allows us to investigate student learning relatively independently of developmental issues, and because of the more rigorous treatment of physics topics at the university level. For these reasons, it seems appropriate to identify, analyse and provide solutions to the problems of teaching and learning related to the university physics curriculum. In this symposium, we present examples of physics education research from different countries that is focused on physics topics

  15. A comparison of physical self-concept between physical education and non-physical education university students

    Directory of Open Access Journals (Sweden)

    Hamid ARAZI

    2013-06-01

    Full Text Available The purpose of this study was to compare physical self-concept between physical education and non-physical education university students. The target population of this study was all male and female physical education and non-physical education university students in Rasht city of Iran. After translating the Physical Self-Description Questionnaire (PSDQ and adjusting some of the questions, the questionnaire was evaluated by the specialists in the context of validity and the reliability achieved by test-retest (Cronbach Alpha value of 0.84. We then, according to the Odineski table selected 180 physical education and non-physical education males and 190 physical education and non-physical education females opportunistically. The collected data was analyzed by 2×2 MANOVA for determine differences between genders and major. The results showed mean vector scores of physical education in the following scales: physical activity; global physical; competence; sports; strength; endurance and flexibility were significantly (p<0.05 higher than that of non-physical education major students. Also, the results shows that mean vector scores of male in the following scales: health; coordination; physical activity; body fat; global physical; competence; sports; global physical self-concept and global esteem were significantly (p<0.05 higher than female. Based on the result of our study the physical self-concept non-physical education and female is lower, than that physical education and male. The results may reflect that male and physical major education students, who usually spend more time on physical activity and sport training to have better fitness and skill oriented self concept than their counterparts.

  16. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    Science.gov (United States)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  17. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  18. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  19. Motivation, procedures and aims of reacting plasma experiments

    International Nuclear Information System (INIS)

    Miyahara, Akira

    1982-01-01

    A project of reacting plasma experiment (R-project) was proposed at the Institute of Plasma Physics (IPP), Nagoya University. It is necessary to bridge plasma physics and fusion engineering by means of a messenger wire like burning plasma experiment. This is a motivation of the R-project. The university linkage organization of Japan for fusion engineering category carried out a lot of contribution to R-tokamak design. The project consists of four items, namely, R-tokamak design, research and development (R and D), site and facilities, and international collaboration. The phase 1 experiment (R 1 - phase) corresponds to burning plasma experiment without D + T fuel, while the phase-2 experiment (R 2 -phase) with D + T fuel. One reference design was finished. Intensive efforts have been carried out by the R and D team on the following items, wall material, vacuum system, tritium system, neutronics, remote control system, pulsed superconducting magnet development, negative ion source, and alpha-particle diagnostics. The problems concerning site and major facilities are also important, because tritium handling, neutron and gamma-ray sky shines and the activation of devices cause impact to surrounding area. The aims of burning plasma experiment are to enter tritium into the fusion device, and to study burning plasma physics. (Kato, T.)

  20. 1984 Review of the Applied Plasma Physics Program

    International Nuclear Information System (INIS)

    1984-09-01

    This report describes the present and planned programs of the Division of Applied Plasma Physics (APP), Office of Fusion Energy. The major activities of the division include fusion theory, experimental plasma research, advanced fusion concepts, and the magnetic fusion energy computer network. The planned APP program is consistent with the recently issued Comprehensive Program Management Plan for Magnetic Fusion Energy, which describes the overall objectives and strategy for the development of fusion energy

  1. The BEAR program NRL plasma physics instrumentation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.N.; Baumback, M.M.; Haas, D.G.; Rodriguez, P.; Siefring, C.L.; Doggett, R.A. [Naval Research Lab., Washington, DC (United States)

    1989-11-15

    The BEAR program was a joint effort to launch, and demonstrate the feasibility of operating, a 1 MeV 10 ma Neutral Particle Beam (NPB) accelerator from a space platform. The accelerator design and manufacture were the responsibility of Los Alamos National Lab (LANL); diagnostics associated with accelerator operation and beam-plasma effects were also to be undertaken by LANL and NRL. Payload Integration and Telemetry was provided by the Air Force Geophysical Lab (AFGL) and Northeastern University (NEU). Beam effects on the local plasma in addition to accelerator produced vehicle effects (e.g., charging) were the responsibility of NRL as outlined herein. The BEAR rocket was launched successfully during the early morning hours of July 13 from White Sands Missile Range, White Sands, N.M. The NRL contribution to this effort included three instrument packages designed to diagnose beam-plasma and vehicle-plasma interactions. The instruments included: (1) Langmuir probe (LP) design consisting of 4 separate sensors; (2) High voltage (HIV) Langmuir Probe designed to monitor vehicle charging through current polarity changes; and (3) Plasma Wave Receive (PWR) designed to characterize the plasma wave emissions covering a broad frequency range from near DC to 50 MHz.

  2. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  3. Physics of high performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    McGuire, K.M.; Batha, S.

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I i ) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I i discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed

  4. Solitons and chaos in plasma

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.

    1990-09-01

    Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs

  5. Extended standard vector analysis for plasma physics

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-02-01

    Standard vector analysis in 3-dimensional space, as found in most tables and textbooks, is complemented by a number of basic formulas that seem to be largely unknown, but are important in themselves and for some plasma physics applications, as is shown by several examples. (orig.)

  6. Physics of the early universe

    International Nuclear Information System (INIS)

    Brandenberger, R.H.

    1987-01-01

    When studying the evolution of the very early universe it is necessary to use a description of matter which is appropriate at very high energies, namely in terms of quantum fields. In such models there may be a period during which the ratio of pressure and energy density is - 1, an equation of state which leads to an exponential expansion of the universe (inflation). There may also arise stable topological defects similar to vortex lines in condensed matter physics. These defects (cosmic strings) form seeds about which gas can accrete to form galaxies and clusters of galaxies. The author reviews inflation and cosmic strings, emphasizing their role in generating the energy density perturbations which are required in order to explain the existence of structures in the universe

  7. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1997-01-01

    In 1996 the main activities of Department P-5 (until December 1996 known as the Department of Thermonuclear Research) were concentrated on 5 topics: 1. Selected problems of plasma theory, 2. Studies of phenomena within high-current plasma concentrators, 3. Development of plasma diagnostic methods, 4. Studies in the field of fusion technology, 5. Research on new plasma-ion technologies. Theoretical studies mainly concerned elementary processes occurring within a plasma, and particularly those within near-electrode regions of microwave discharges as well as those within near-wall layers (SOL) of tokamaks. We also developed computational packages for parameter identification and modelling of physical phenomena in pulse plasma coaxial accelerators. Experimental studies were concentrated on the generation of a dense magnetized plasma in different high-current PF (Plasma Focus) facilities and small Z-Pinch devices. We carried out investigations of X-rays, relativistic electron beams (REBs), accelerated primary ions, and fast products of fusion reactions for deuterium discharges. Research on plasma diagnostics comprised the development of methods and equipment for studies of X-ray emission, pulsed electron beams, and fast ions, using special Cherenkov-type detectors of electrons and solid-state nuclear track detectors (SSNTDs) of ions. New diagnostic techniques were developed. Studies in the field of fusion technology concerned the design, construction, and testing of different high-voltage pulse generators. We also developed special opto-electronic systems for control and data transmission. Research on plasma-ion technology concentrated on the generation of pulsed high-power plasma-ion streams and their applications for the surface modification of semiconductors, pure metals and alloys. The material engineering studies were carried out in close collaboration with our P-9 Department and other domestic and foreign research centers

  8. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  9. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program

  10. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  11. Proceedings of JSPS-CAS Core University Program seminar on production and steady state confinement of high performance plasmas in magnetic confinement systems

    International Nuclear Information System (INIS)

    Wan Baonian; Toi, Kazuo

    2005-09-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and steady-state confinement of high performance plasmas in magnetic confinement systems' was held from 27 July to 29 July 2005 in Institute of Plasma Physics, the Chinese Academy of Sciences, Hefei, China. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. About 50 persons including 20 Japanese attendees attended this seminar. Long time sustainment of high confinement and high beta plasmas is crucial for realization of an advanced nuclear fusion reactor. This seminar was motivated to summarize the results of CUP obtained in four years activities of CUP, and to extract crucial issues to be resolved near future, which must drive near and mid- term collaborations in the framework of CUP. The 32 of presented papers are indexed individually. (J.P.N.)

  12. Physics options in the plasma code VOA

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1976-06-01

    A two dimensional relativistic plasma physics code has been modified to accomodate general electromagnetic boundary conditions and various approximations of basic physics. The code can treat internal conductors and insulators, imposed electromagnetic fields, the effects of external circuitry and non-equilibrium starting conditions. Particle dynamics options include a full microscopic treatment, fully relaxed electrons, a low frequency electron approximation and a combination of approximations for specified zones. Electromagnetic options include the full wave treatment, an electrostatic approximation and two varieties of magnetohydrodynamic approximations in specified zones

  13. Elementary particle physics at the University of Florida. Annual report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.

    1995-01-01

    This is the annual progress report of the University of Florida's elementary particle physics group. The theoretical high energy physics group's research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment's high-resolution spectrometer's assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University's three-year proposal to the United States Department of Energy to upgrade the University's high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group

  14. University physics Arfken Griffing Kelly Priest

    CERN Document Server

    Houk, T William; Snider, John W

    1984-01-01

    University Physics: Arfken Griffing Kelly Priest covers the concepts upon which the quantitative nature of physics as a science depends; the types of quantities with which physics deals are defined as well as their nature; and the concepts of units and dimensions. The book describes the concepts of scalars and vectors; the rules for performing mathematical operations on vector quantities; the concepts of force, torque, center of gravity, and types of equilibrium. The text also describes the concepts and quantities required to describe motion; the linear kinematical relationships to describe m

  15. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  16. 12th Czechoslovak seminar on plasma physics and technology

    International Nuclear Information System (INIS)

    1983-03-01

    The 12th Czechoslovak seminar on plasma physics and technology was oriented mainly to the problems of high-temperature plasmas and controlled thermonuclear fusion. The proceedings contain 27 invited papers and communications presented in three sections: 1) Inertial controlled fusion, 2) Tokamaks, 3) Theory and miscellaneous topics. The first group of papers deals with various problems of electron-beam, ion-beam, and laser fusion, including physical processes in fusion targets. The tokamak section discusses the latest experimental results achieved in the Russian tokamaks FT-2, Tuman 2-a, T-7 and T-10, in the Czechoslovak tokamak TM-1-MH, and in the Hungarian tokamak MT-1. A detailed survey is presented of work on neutral atom injectors in Novosibirsk. In the third section several papers on theoretical studies of nonlinear and turbulent processes in a hot plasma are presented together with a simulation study of a hybrid tokamak reactor. Several contributions on special diagnostic methods are presented. (J.U.)

  17. ITER-EDA physics design requirements and plasma performance assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Galambos, J.; Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S.

    1996-01-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R ampersand D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of ∼1.6 that produces a nominal fusion power of ∼1.5 GW for an ignited burn pulse length of ≥1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement (τ E = 0.85 x τ ITER93H ), helium exhaust (τ* He /τ E = 10), representative plasma impurities (n Be /n e = 2%), and beta limit [β N = β(%)/(I/aB) ≤ 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power (∼ 1--1.5 GW) and fluence (∼1 MWa/m 2 ) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust (τ* He /τ E ≤ 5) and potential operation in reverse-shear mode significantly improve ITER performance

  18. Long-range correlations and universality in plasma edge turbulence

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Pedrosa, M.A.; Carreras, B.A.

    1999-01-01

    Long-range correlations in turbulence, associated with self-similarity of the fluctuations, are a signature of transport by avalanches as occurs in Self-Organized Critical systems. We have investigated long-range correlations in plasma edge fluctuations in a variety of fusion devices, using the Rescaled-Range and similar techniques. We find that the degree of self-similarity in confining devices is high and similar between devices, and much different from non-confining devices where it is low. Likewise, we find that turbulent spectra show a high degree of similarity between devices. These findings strongly indicate the existence of universality in plasma edge (ohmic) turbulence, and demonstrate its non-Gaussian character. (author)

  19. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  20. Neoclassical Physics for Current Drive in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Duthoit, F.X.

    2012-03-01

    The Lie transform formalism is applied to charged particle dynamics in tokamak magnetic topologies, in order to build a Fokker-Planck type operator for Coulomb collisions usable for current drive. This approach makes it possible to reduce the problem to three dimensions (two in velocity space, one in real space) while keeping the wealth of phase-space cross-term coupling effects resulting from conservation of the toroidal canonical momentum (axisymmetry). This kinetic approach makes it possible to describe physical phenomena related to the presence of strong pressure gradients in plasmas of an unspecified form, like the bootstrap current which role will be paramount for the future ITER machine. The choice of coordinates and the method used are particularly adapted to the numerical resolution of the drift kinetic equation making it possible to calculate the particle distributions, which may present a strong variation with respect to the Maxwellian under the effect of an electric field (static or produced by a radio-frequency wave). This work, mainly dedicated to plasma physics of tokamaks, was extended to those of space plasmas with a magnetic dipole configuration. (author)

  1. Proceedings of the 21st symposium on plasma physics and technology

    International Nuclear Information System (INIS)

    Kulhanek, P.; Rezac, K.; Smetana, M.

    2004-01-01

    The supplement contains 159 papers out of the 229 papers presented at the conference; these papers were selected through the review process of the Czechoslovak Journal of Physics. The papers are divided into 5 categories corresponding to the main topics of the symposium, which covered all kinds of plasma research and associated applications: tokamaks and other magnetic confinement devices; short lived plasmas (plasma focus, z-pinch, X-ray sources); laser plasma; low temperature plasma; and plasma technology. All 22 papers dealing with tokamaks and other magnetic confinement devices were submitted to INIS as well as all 31 papers discussing short lived plasmas. (A.K.)

  2. Plasma focus - dense Z pinch and their applications

    International Nuclear Information System (INIS)

    Ishii, Shozo

    1986-02-01

    ''Workshop on the possibility of Z-pinch as a intense pulse light source'' in 1983 and ''Research meeting on plasma focus and Z-pinch'' in 1984 were held at Institute of Plasma Physics, Nagoya University under a collaborating research program. Research activities reported at the meetings on plasma focus, dense Z-pinch, and related phenomena are summerized. (author)

  3. Multi-Level iterative methods in computational plasma physics

    International Nuclear Information System (INIS)

    Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.

    1999-01-01

    Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD

  4. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  5. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  6. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  7. The development for the particle physics experiments platform in university

    International Nuclear Information System (INIS)

    Liang Futian; Yao Yuan; Wang Zhaoqi; Liu Yuzhe; Sang Ziru; Chen Lian; Wen Fei; Jin Ge; Liu Hongbin

    2012-01-01

    Nuclear science and particle physics is an important subject in physics, and it is important to launch particle physics experiments in university to training students. We design an experiments platform based on particle physics experiments in university. By employing digitalization and reconfiguration techniques in our design, we achieve all kinds of device functions with only one device. With the customized software for particular experiments and a website for teaching assistance, the platform is easy to be employed in universities. Students can accomplish a classical particle physics experiment in a modern way with the help of the platform, and they can also try new ideals. The experiments platform is ready to be used, and some of the lab sessions in USTC have already begin to use our experiments platform. (authors)

  8. Characterizing pedagogical practices of university physics students in informal learning environments

    Science.gov (United States)

    Hinko, Kathleen A.; Madigan, Peter; Miller, Eric; Finkelstein, Noah D.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] University educators (UEs) have a long history of teaching physics not only in formal classroom settings but also in informal outreach environments. The pedagogical practices of UEs in informal physics teaching have not been widely studied, and they may provide insight into formal practices and preparation. We investigate the interactions between UEs and children in an afterschool physics program facilitated by university physics students from the University of Colorado Boulder. In this program, physics undergraduates, graduate students, and postdoctoral researchers work with K-8 children on hands-on physics activities on a weekly basis over the course of a semester. We use an activity theoretic framework as a tool to examine situational aspects of individuals' behavior in the complex structure of the afterschool program. Using this framework, we analyze video of UE-child interactions and identify three main pedagogical modalities that UEs display during activities: instruction, consultation, and participation modes. These modes are characterized by certain language, physical location, and objectives that establish differences in UE-child roles and division of labor. Based on this analysis, we discuss implications for promoting pedagogical strategies through purposeful curriculum development and university educator preparation.

  9. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    Science.gov (United States)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied

  10. Views of Physics Teachers on How to Address the Declining Enrolment in Physics at the University Level

    Science.gov (United States)

    Oon, Pey-Tee; Subramaniam, R.

    2010-01-01

    Teachers' views are worth hearing in order to get ideas on how to address the trend of declining enrolment in physics at the university level, which is regarded as a global problem. This study explores physics teachers' views on how to encourage more students to study physics at the university level. A sample of 166 physics teachers in Singapore…

  11. Investigating plasma-rotation methods for the Space-Plasma Physics Campaign at UCLA's BAPSF.

    Science.gov (United States)

    Finnegan, S. M.; Koepke, M. E.; Reynolds, E. W.

    2006-10-01

    In D'Angelo et al., JGR 79, 4747 (1974), rigid-body ExB plasma flow was inferred from parabolic floating-potential profiles produced by a spiral ionizing surface. Here, taking a different approach, we report effects on barium-ion azimuthal-flow profiles using either a non-emissive or emissive spiral end-electrode in the WVU Q-machine. Neither electrode produced a radially-parabolic space-potential profile. The emissive spiral, however, generated controllable, radially-parabolic structure in the floating potential, consistent with a second population of electrons having a radially-parabolic parallel-energy profile. Laser-induced-fluorescence measurements of spatially resolved, azimuthal-velocity distribution functions show that, for a given flow profile, the diamagnetic drift of hot (>>0.2eV) ions overwhelms the ExB-drift contribution. Our experiments constitute a first attempt at producing controllable, rigid-body, ExB plasma flow for future experiments on the LArge-Plasma-Device (LAPD), as part of the Space-Plasma Physics Campaign (at UCLA's BAPSF).

  12. 20. AINSE plasma science and technology conference. Conference handbook

    International Nuclear Information System (INIS)

    1995-01-01

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants

  13. 20. AINSE plasma science and technology conference. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants.

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    Virginia L. Finley

    2002-04-01

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd

  16. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  17. II International Conference on Plasma and Laser Research and Technologies

    International Nuclear Information System (INIS)

    Kurnaev, V A; Dodulad, E I

    2016-01-01

    II Conference on Plasma and Laser Research and Technologies took place on January 25 th until January 27 th , 2016 at National Research Nuclear University “MEPhI” (NRNU MEPhI). It was organized by the Institute of Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The Conference consisted of four sections: Plasma physics and controlled nuclear fusion, Laser physics, Modern aspects of solid state matter physics and Charged particle accelerators. The Conference provided participants an opportunity to present their research results for the consideration of a wide audience from the sidelines of science. The main topics of the Conference were: • Controlled nuclear fusion with magnetic and inertial confinement; • Low-temperature plasma and its application in modern technology; • Laser physics and technologies for industry, environmental control and precise measurements; • Optical information control, holography, spintronics and photonics; • Modern aspects of solid state matter physics and nanophysics; • Charged particle accelerators. More than 200 specialists on plasma, laser and solid state physics took part in the II Conference. They represented leading Russian scientific research centres and universities (such as Troitsk Institute of Innovative and Thermonuclear Research, Institute of Crystallography, National Research Centre 'Kurchatov Institute', Institute of Physical Chemistry and Electrochemistry and others) and universities from Belarus, Ukraine, Germany, USA, Canada, Belgium, and Sweden. All report presentations were broadcasted online on the NRNU MEPhI official site. The translation was watched by viewers from Moscow, Prague, St. Petersburgh and other cities, who could not attend the Conference. We would like to thank heartily all of the speakers, participants and organizing committee members for their contribution to the conference. (paper)

  18. New physics beyond the standard model of particle physics and parallel universes

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Franzstr. 40, 53111 Bonn (Germany)]. E-mail: rainer.plaga@gmx.de

    2006-03-09

    It is shown that if-and only if-'parallel universes' exist, an electroweak vacuum that is expected to have decayed since the big bang with a high probability might exist. It would neither necessarily render our existence unlikely nor could it be observed. In this special case the observation of certain combinations of Higgs-boson and top-quark masses-for which the standard model predicts such a decay-cannot be interpreted as evidence for new physics at low energy scales. The question of whether parallel universes exist is of interest to our understanding of the standard model of particle physics.

  19. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  20. An exploration of university physics students’ epistemological mindsets towards the understanding of physics equations

    Directory of Open Access Journals (Sweden)

    Daniel Domert

    2012-07-01

    Full Text Available Students’ attitudes and beliefs about learning have been shown to affect learning outcomes. This study explores how university physics students think about what it means to understand physics equations. The data comes from semi-structured interviews with students from three Swedish universities. The analysis follows a data-based, inductive approach to characterise students’ descriptions of what it means to understand equations in terms of epistemological mindsets (perceived critical attributes of a learning, application, or problem-solving situation that are grounded in epistemology. The results are given in terms of different components of students’ epistemological mindsets. Relations between individuals and sets of components as well as differences across various stages of students’ academic career are then explored. Pedagogical implications of the findings are discussed and tentative suggestions for university physics teaching are made.

  1. Recent developments in quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, P K; Eliasson, B

    2010-01-01

    We present a review of recent developments in nonlinear quantum plasma physics involving quantum hydrodynamics and effective nonlinear Schroedinger equation formalisms, for describing collective phenomena in dense quantum plasmas with degenerate electrons. As examples, we discuss simulation studies of the formation and dynamics of dark solitons and quantum vortices, and of nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in dense quantum-electron plasmas with immobile ions. The electron dynamics of dark solitons and quantum vortices is governed by a pair of equations comprising the nonlinear Schroedinger and Poisson system of equations. Both dark solitons and singly charged electron vortices are robust, and the latter tend to form pairs of oppositely charged vortices. The two-dimensional quantum-electron vortex pairs survive during collisions under the change of partners. The dynamics of the CPEM waves is governed by a nonlinear Schroedinger equation, which is nonlinearly coupled with the Schroedinger equation of the EPOs via the relativistic ponderomotive force, the relativistic electron mass increase in the CPEM field, and the electron density fluctuations. The present governing equations in one-spatial dimension admit stationary solutions in the form of dark solitons. The nonlinear equations also depict trapping of localized CPEM wave envelopes in the electron density holes that are associated with a positive potential profile.

  2. Proceedings of the 20th symposium on plasma physics and technology

    International Nuclear Information System (INIS)

    2002-01-01

    The supplement contains 133 papers from those presented at the conference; these papers were selected through the review process of the Czechoslovak Journal of Physics. The papers are divided into 5 categories corresponding to the main topics of the symposium, which covered all kinds of plasma research and associated applications: tokamaks and other magnetic confinement devices; short lived plasmas (plasma focus, z-pinch, particle beamplasma interaction, Xray sources); laser plasma and research at the Prague Asterix Laser System (PALS); low temperature plasma; and plasma technology. All 10 papers dealing with tokamaks and other magnetic confinement devices were submitted to INIS, as were 17 papers out of the 28 papers discussing short lived plasmas. (A.K.)

  3. Outline of the relativistic electron beam (REB) generator at Institute of Plasma Physics, Nagoya University

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya

    1979-01-01

    The REB generators at the Institute of Plasma Physics are introduced. The generators Phoebus-2 and Phoebus-3 are main generators. The generators consist of a Marx generator (a condenser bank), a pulse forming line (PFL), a transmission line (TL) and a diode part. The rise time of current in the Marx generator must be short. The charge up time of the Phoebus-2 and the Phoebus-3 is less than 400 ns. The jitter is less than 10 ns. The dielectric material of the PFL is water, since the dielectric constant is large, and it makes self recovering. The inductance of gap at the edge of PFL should be small. The gap is useful for short rise time. The TL prevents the prepulse at the time of charging-up and works as an impedance transformer. The Phoebus-3 is connected to the torus system (SPAC-6) to make experiment on REB ring formation. (Kato, T.)

  4. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-15

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc.

  5. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    Science.gov (United States)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family

  6. Quality in university physics teaching: is it being achieved?

    Science.gov (United States)

    1998-11-01

    This was the title of a Physics Discipline Workshop held at the University of Leeds on 10 and 11 September 1998. Organizer Ashley Clarke of the university's Physics and Astronomy Department collected together an interesting variety of speakers polygonically targeting the topic, although as workshops go the audience didn't have to do much work except listen. There were representatives from 27 university physics departments who must have gone away with a lot to think about and possibly some new academic year resolutions to keep. But as a non-university no-longer teacher of (school) physics I was impressed with the general commitment to the idea that if you get the right quality of learning the teaching must be OK. I also learned (but have since forgotten) a lot of new acronyms. The keynote talk was by Gillian Hayes, Associate Director of the Quality Assurance Agency for Higher Education (QAA). She explained the role and implementation of the Subject Reviews that QAA is making for all subjects in all institutions of higher education on a five- to seven-year cycle. Physics Education hopes to publish an article about all this from QAA shortly. In the meantime, suffice it to say that the review looks at six aspects of provision, essentially from the point of view of enhancing students' experiences and learning. No doubt all participants would agree with this (they'd better if they want to score well on the Review) but may have been more worried by the next QAA speaker, Norman Jackson, who drummed in the basic facts of life as HE moves from an elite provision system to a mass provision system. He had an interesting graph showing how in the last ten years or so more students were getting firsts and upper seconds and fewer getting thirds. It seems that all those A-level students getting better grades than they used to are carrying on their good luck to degree level. But they still can't do maths (allegedly) and I doubt whether Jon Ogborn (IoP Advancing Physics Project

  7. Millimetre waves and plasma physics

    International Nuclear Information System (INIS)

    Brand, G.F.

    1999-01-01

    Full text: This talk is a review of the plasma-related presentations at the 23rd International Conference on Infrared and Millimeter Waves held at the University of Essex, Colchester, UK 7-11 September 1998. Of most relevance to fusion is the development of high-power sources for electron cyclotron resonance heating and current drive. The requirements for ITER are a total of 50 MW at 170 GHz. The state of the art is illustrated by (a) high-power gyrotrons that deliver 1 MW for 1 s at 170 GHz, and (b) a free-electron maser that has generated millimetre waves for the first time, 730 kW at 200 GHz. A number of papers describe new technologies that allow high powers to be achieved; internal mode converters to convert the whispering-gallery mode generated in the gyrotron cavity into a gaussian beam, depressed collectors to raise the efficiency from 1/3 to better than 1/2, CVD diamond output windows and coaxial gyrotrons with improved mode purity. Other papers describe transmission lines and steerable mirrors. Several papers deal with millimetre-wave plasma diagnostics for fusion such as electron cyclotron emission measurements and reflectometry. (author)

  8. Progress report 1990/91 of the Division of Fusion Plasma Physics

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-08-01

    A summary is given of the historical background, research, education and available resources of the Division of Fusion Plasma Physics at the newly established Alfven Laboratory. Experimental and theoretical research is performed, including basic physics of magnetized plasma as well as applications to magnetically confined fusion plasma, and to certain technical and cosmical problems. The major project consists of the 'Extrap' high-beta confinement scheme within which a large experimental facility, EXTRAP T2, is under preparation. This research is performed in terms of extensive international collaboration and commitments, in particular with the European Community (Euratom). The education includes pregraduate and postgraduate teaching, the latter being based on obligatory, optional and extra courses which are connected with the research activities

  9. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    Science.gov (United States)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  10. The Perception of University Teacher of Physical Education

    Directory of Open Access Journals (Sweden)

    Salvador Jesús López Alonzo

    2015-06-01

    Full Text Available Objective: to find out the epistemological perception of university teachers about Physical Education, to contrast this approach with current literature and the needs for this subject. Methodology: A review of the reforms, standards, policies and physical education premises for the construction of a survey as a measurement instrument was performed. 41 teachers, who teach in the Undergratuate Course of Study of Physical Education, were surveyed. Results: The reliability of the instrument shows a Cronbach's alpha (.611, 64.3% of teachers thinks that the control of motor skills and movement forms necessary to participate in a variety of physical activities is very important; 54.8% considers that the assessment of the components of fitness that improve the physical performance and health is very important; 45.2% believes that regular participation in a variety of physical activities is very important. Conclusion: epistemological perception of teachers surveyed is not fully consistent with the epistemological point of view that arises internationally, so work should be done on training and reorientation of university teachers to have an epistemological point of view along with the current Physical Education

  11. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  12. The 22nd AINSE plasma science and technology conference. Conference handbook

    International Nuclear Information System (INIS)

    1999-01-01

    These proceedings contain the extended abstracts of the papers and posters presented at the 22nd AINSE plasma science and technology conference hosted by the Australian National University in Canberra. Topics under discussion included: fusion devices and experiments; plasma production; plasma confinement; plasma heating and current drive; plasma waves; plasma diagnostics; basic collisionless plasma physics; laser produced plasmas and inertial confinement; low-temperature plasmas and interferometry. The individual papers were indexed separately

  13. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  14. Physics Incubator at Kansas State University

    Science.gov (United States)

    Flanders, Bret; Chakrabarti, Amitabha

    Funded by a major private endowment, the physics department at Kansas State University has recently started a physics incubator program that provides support to research projects with a high probability of commercial application. Some examples of these projects will be discussed in this talk. In a parallel effort, undergraduate physics majors and graduate students are being encouraged to work with our business school to earn an Entrepreneurship minor and a certification in Entrepreneurship. We will discuss how these efforts are promoting a ``culture change'' in the department. We will also discuss the advantages and the difficulties in running such a program in a Midwest college town.

  15. Curricular intersections of university extension and teaching in Physical Therapy programs

    Directory of Open Access Journals (Sweden)

    Shamyr Sulyvan de Castro

    Full Text Available Introduction University extension can be a vehicle for social change and aid in the education of university students; however, it is important to study how it is inserted in university programs so that educational actions and policies can be planned more adequately. Objectives To study the insertion of extension activities in undergraduate physical therapy curricula in Brazilian federal universities. Method Documentary research conducted by accessing files available on the Internet. Data were analyzed quantitatively in the form of numbers and percentages. We examined documents from 22 of the 29 federal universities that offered physical therapy programs. Results University extension takes the form of complementary academic activities together with other options such as participating in conferences, specific training courses and working as a teaching assistant. Undergraduate physical therapy courses have a 4,000h to 4,925h course load, of which 0.72% to 8.9% are dedicated to extension activities. Conclusion The data indicate that the insertion of extension activities in undergraduate physical therapy programs offered by Brazilian federal universities needs to be reassessed according to recommended policies and guidelines.

  16. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  17. PHYSICAL ACTIVITY AND EATING HABITS IN UNIVERSITY PROFESSORS: LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Hector Luiz Rodrigues Munaro

    2015-01-01

    Full Text Available Increasingly, university professors engage in academic tasks often stressful and sedentary behaviors, making the practice of physical activity and healthier eating habits. The aim of this study was to review the literature Brazilian studies on physical activity and eating habits of university professors .The search was conducted between March and May 2013, in electronic databases. For the delimitation of the study, was used as descriptors: Physical Activity, University Teachers and Eating Habits. At the end of the article selection process, remaining 06 studies that have been described and discussed in the text. And all of a descriptive nature, with small samples with some robust and consistent methodology. The selected studies, regardless of their qualities, point to the need of this population to engage in more physical activity and healthy eating habits programs

  18. PHYSICAL ACTIVITY AND EATING HABITS IN UNIVERSITY PROFESSORS: LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Hector Luiz Rodrigues Munaro

    2015-03-01

    Full Text Available Increasingly, university professors engage in academic tasks often stressful and sedentary behaviors, making the practice of physical activity and healthier eating habits. The aim of this study was to review the literature Brazilian studies on physical activity and eating habits of university professors .The search was conducted between March and May 2013, in electronic databases. For the delimitation of the study, was used as descriptors: Physical Activity, University Teachers and Eating Habits. At the end of the article selection process, remaining 06 studies that have been described and discussed in the text. And all of a descriptive nature, with small samples with some robust and consistent methodology. The selected studies, regardless of their qualities, point to the need of this population to engage in more physical activity and healthy eating habits programs.

  19. 50. Annual symposium of the Austrian Physical Society

    International Nuclear Information System (INIS)

    Lippitsch, M.E.

    2000-01-01

    The conference held from 25. - 29. 9. 2000 at the University of Graz was elaborated by the Austrian society of physics in the fields of solid state physics, polymers physics, quantum electronics, electrodynamics, optics, nuclear and particle physics, atomic, molecules and plasma physics, acoustics, physics - industry - energy and physics teaching. (botek)

  20. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  1. Plasma Physics Network Newsletter. No. 4

    International Nuclear Information System (INIS)

    1991-08-01

    This, fourth, issue of the Newsletter contains a (i) contribution in the series of reports on national fusion programmes from Algeria; (ii) a letter from Dr J.A.M. de Villiers, manager: fusion studies, at the Atomic Energy Corporation of South Africa Limited, informing about the close-down of the small tokamak project there, and soliciting ways to use some manpower and supportive sources to salvage the wealth of information still left behind in the project, and offering, in the possible absence of such manpower and supportive sources, the entire facility for sale (specifications of the Tokoloshe Tokamak plus diagnostic systems are enclosed); (iii) the e-mail address of the Third World Plasma Research Network (TWPRN), namely: ''PLASNET.NERUS.PFC.MIT.EDU''; (iv) minutes of the TWPRN Steering Committee Meeting held in May 1991, at the I.C.T.P., Trieste, Italy; (v) a news item on the ITER Tokamak project; (vi) a reiteration of the announcement of the 14th IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research, to be held in Wuerzburg, Germany, September 30 - October 7, 1992; (vii) a list of IAEA Technical Committee Meetings during 1991; (viii) the First Announcement of the V Latin American Workshop on Plasma Physics, to be held in Mexico City, July 21-30, 1992, accompanied with a call for papers; all correspondence on this conference should be addressed to: Dr. Julio Herrera, V LAWPP, ICN-UNAM, Apdo. Postal 70-543, Delegacion Coyoacan, 04510 Mexico, D.F. Mexico (e-mail: ''HERRE.UNAMVM1.BITNET''); (ix) the announcement for the Second South North International Workshop on Fusion Theory, Lisbon, Portugal, March 1993 (contact: Pr. Tito Mendonca, Centro de Electrodinamica, Instituto Superio Tecnico, 1096 Lisbon Codex, Portugal)

  2. Physical processes in spin polarized plasmas

    International Nuclear Information System (INIS)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained

  3. Institute of Physics, University of Aarhus, Denmark

    International Nuclear Information System (INIS)

    Knudsen, H.

    1991-01-01

    This annual report published by the Institute of Physics, University of Aarhus, is for the period January 1 - December 31, 1990. The report covers current research activities and is aimed at colleagues in Denmark and abroad. The research is essentially concentrated on research highlights, atomic physics, subatomic physics and condensed matter. At the end of the report are included lists of publications, employees, guests, graduate and post-graduate students together with a list of those students who graduated during 1990. (CLS)

  4. Beyond the dynamical universe unifying block universe physics and time as experienced

    CERN Document Server

    Silberstein, Michael; McDevitt, Timothy

    2018-01-01

    Theoretical physics and foundations of physics have not made much progress in the last few decades. Whether we are talking about unifying general relativity and quantum field theory (quantum gravity), explaining so-called dark energy and dark matter (cosmology), or the interpretation and implications of quantum mechanics and relativity, there is no consensus in sight. In addition, both enterprises are deeply puzzled about various facets of time including above all, time as experienced. The authors argue that, across the board, this impasse is the result of the "dynamical universe paradigm," the idea that reality is fundamentally made up of physical entities that evolve in time from some initial state according to dynamical laws. Thus, in the dynamical universe, the initial conditions plus the dynamical laws explain everything else going exclusively forward in time. In cosmology, for example, the initial conditions reside in the Big Bang and the dynamical law is supplied by general relativity. Accordingly, th...

  5. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  6. The thermodynamic universe exploring the limits of physics

    CERN Document Server

    Sidharth, B G

    2008-01-01

    Particle Physics and High Energy Physics have stagnated since the early 1970s. Now, the underlying principle of reductionism - so sacred to twentieth-century physics - is itself being questioned. This book examines these tumultuous developments that are leading to a paradigm shift and a new horizon for Physics.Presenting the new paradigm in fuzzy spacetime, this book is based on some 100 papers published in peer-reviewed journals including Foundations of Physics, Nuovo Cimento and The International Journal of Modern Physics (A&E), as well as two recently published books, The Chaotic Universe (

  7. University Student's Physical Strength and Amount of Exercise

    OpenAIRE

    高橋, ひとみ; Hitomi, TAKAHASHI; 桃山学院大学文学部

    1997-01-01

    To determine the importance of developing physical strength in health maintenance by unversity students, I conducted a simple examination of the physical strength and the living conditions of Momoyama Gakuin University students. I examined the relationship between the student's physical condition and the results of their strength test, between the importance of exercise and the student's evaluation of their own physical strength, and between the need for exercise and the test results. The res...

  8. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  9. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  10. The Physics of the Early Universe

    International Nuclear Information System (INIS)

    Scott, Douglas

    2007-01-01

    The physics of the very small and the very large were successfully brought together in the 1980s through the idea of 'the universe as a particle accelerator'. The manifesto of this new campaign was laid out in the book 'The Early Universe' by Kolb and Turner in 1990. For at least the next decade that book was to be found on the shelves of every theorist (and many experimentalists) who professed an interest in this topic. But science marches on, and the last 10-15 years has seen an explosion in our understanding of the physics of the very earliest times and the very largest scales. Experimentally our world-view has changed utterly, through exquisitely precise measurements of the cosmic microwave background, galaxy clustering and supernova distances, with a refinement of the basic inflationary big bang paradigm into the new 'standard cosmological model'. And in tandem with these changes has been the development of new theoretical ideas, particularly involving dark energy and connections between string/brane theory and cosmology. So what is the new book for the shelves of today's cohort of young Rockys and Mikes? Despite a recent number of promising-sounding cosmology books, there is nothing at the advanced level which is broad enough to be a general introduction to the 'early universe' topic. Perhaps the best of the bunch is 'The Physics of the Early Universe', edited by E Papantonopoulos as part of Springer's series 'Lecture notes in physics'. This is a set of 9 review articles given as part of a 2003 summer school on Syros Island, Greece. Although far from perfect, the core of this book provides a solid introduction to current research in early universe physics, which should be useful for PhD students or postdoctoral researchers who want the real thing. The book starts with a competent introduction by Kyriakos Tamvakis, serving essentially as a summary of where we were in Kolb and Turner's text. We have learned since then, however, that inflation is really all

  11. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  12. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  13. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  14. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  15. Geneva University - Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENÈVE 4 Tél. (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 13 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Exotic hadrons, Light Higgs and Dark Forces at BABAR Dr. Bertrand Echenard / California Institute of Technology From spectroscopy to search new physics, B-factories have explored many exciting topics besides establishing CP-violation in B decays. We will review recent results on spectroscopy, exotic hadrons and search for light Higgs. Current searches for dark forces and GeV-scale dark matter particles will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 20 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium The MINOS Experiment, Results and Future Plans Pro...

  16. 47. annual symposium of the Austrian Physical Society

    International Nuclear Information System (INIS)

    Kutschera, W.

    1997-01-01

    This volume contains lectures (short communications) of the 47. symposium of the Austrian Physical Society which had been held at the University of Vienna (Austria) in 1997. The following topics are included: atomic physics, molecular physics, plasma physics, solid state physics, nuclear and particle physics, biophysics, environmental physics, quantum electronics and quantum optics. (Suda)

  17. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations.A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days.Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively.Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  18. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  19. Predictors of leisure physical activity in a spanish university population

    Directory of Open Access Journals (Sweden)

    Ana Ponce-de-León Elizondo

    2014-06-01

    Full Text Available Objectives: To determine some predictors of leisure-time physical activity in the Spanish university environment. Participants: A total of 1340 participants (48% men, with an average age of 22 years. Variables: leisure-time physical activity practice; gender; civil status; place of residence; amount of leisuretime; leisure-time occupation; desire to perform physical activity; satisfaction with the use of leisure-time; leisure-time physical activity practice in the past; and years of physical activity practice. Method: Face-toface interviews were undertaken using a questionnaire with close-ended questions. Results: Fifty-eight percent of the subjects reported being physically inactive. Male gender, desire to perform physical activity, satisfaction with the use of leisure-time, and practice of sports in the past, were significantly associated with leisure-time physical activity. Conclusions: Physical activity practice during childhood and adolescence is the strongest predictor of current leisure-time physical activity for this university population.

  20. Divertor plasma physics experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E.

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model

  1. Optical Studies of Strong Coupling and Recombination in Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Killian, Thomas C.

    2004-01-01

    The ultracold atoms and plasmas research group at Rice University uses a combination of atomic and plasma physics techniques to create neutral plasmas that are orders of magnitude colder than have ever been studied before. Through this work, we probe the basic plasma physics of this exotic regime. During the past year, the major components of a new experiment were completed. We demonstrated a powerful new diagnostic, optical imaging of the plasma, which led to a paper that was published in Physical Review Letters. (Figure A, Phys. Rev. Lett. 92, 143001 (2004)) This was the central feature of my DOE Junior Faculty Award proposal. DOE funding has been used to support one postdoctoral researcher, multiple graduate students, the principle investigator, apparatus construction, and normal laboratory expenses

  2. 11th International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2016

    International Nuclear Information System (INIS)

    2017-01-01

    PREFACEThe Center for Space Plasma and Aeronomic Research (CSPAR) at the University of Alabama in Huntsville (UAH) and Maison de la Simulation at the French Alternative Energies and Atomic Energy Commission (Commissariat a l’energie atomique et aux energies alternatives, CEA) organized the 11th annual International Conference on Numerical Modeling of Space Plasma Flows (ASTRONUM-2016) on June 6—10, 2016 in Monterey, California, USA.The Program Committee consisted of Tahar Amari (CNRS Ecole Polytechnique, France), Edouard Audit (CEA/CNRS Maison de la Simulation, Gif-sur-Yvette, France, co-chair), Amitava Bhattacharjee (Princeton University, USA), Phillip Colella (Lawrence Berkeley National Laboratory, USA), Anthony Mezzacappa (University of Tennessee, Knoxville, USA), Ewald Müller (Max-Planck-Institute for Astrophysics, Garching, Germany), Nikolai Pogorelov (University of Alabama in Huntsville/CSPAR, USA, chair), Kazunari Shibata (Kyoto University, Japan), James Stone (Princeton University, USA), Jon Linker (Predictive Science, Inc., USA), and Gary P. Zank (University of Alabama in Huntsville, USA).The conference attracted 92 scientists representing different branches of the plasma simulation community. The distinctive feature of this conference is a combination of diverse research topics, all of which are essential for performing high-resolution, continuum mechanics and particle, simulations of physical phenomena in space physics and astrophysics. Among such topics were software packages for modeling and analyzing plasma flows; advanced numerical methods for space and astrophysical flows; large-scale fluid-based, kinetic, and hybrid simulations; turbulence and cosmic ray transport; and magnetohydrodynamics. The applications discussed included cosmology and galaxy formation, supernova explosions, physics of the Sun-heliosphere-magnetosphere environments, the interstellar medium and star formation, stellar physics, experimental plasma physics, astrophysical

  3. Theses of the reports of the XXXI Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Ivanov, V.A.; Nagaeva, M.L.; Aleksandrov, A.F.; Vorob'ev, V.S.; Ivanenkov, G.V.; Meshcheryakov, A.I.

    2004-01-01

    Theses of the reports of the 31th Zvenigorod Conference on the physics and controlled thermonuclear synthesis, presented by Russian and foreign scientists, are published. The total number of reports is 258, namely, summarizing ones 16, magnetic confinement of high temperature plasma - 98, inertial thermonuclear synthesis - 44, physical processes in low temperature plasma - 58, physical bases of plasma and beam technologies - 42 [ru

  4. International school of plasma physics course on instabilities and confinement in toroidal plasmas. Varenna (Italy), September 27-October 9, 1971

    International Nuclear Information System (INIS)

    1974-11-01

    The lectures of a Varenna Summer School about the theme Instabilities and Confinement in toroidal Plasmas are given. The topics included are: high-beta toroidal pinches, non-MHD instabilities and anomalous transport, analogy between turbulent transfer in velocity space and plasma collisioned transport in real space, the magnetohydrodynamic approach of plasma confinement in closed magnetic configurations, properties of isodynamical equilibrium configurations and their generalization, transport theory for toroidal plasmas, plasma physics, low-β toroidal machines, the neoclassical theory of transit time magnetic pumping, radio frequency heating of toroidal plasmas, plasma heating at lower hybrid frequency, RF-plasma heating with L-structures, numerical simulation, dynamical stabilization of low frequency waves in inhomogeneous plasmas, dynamic and feedback stabilization of plasmas and problems with nuclear fusion reactors

  5. The physics of megajoule, large-scale, and ultrafast short-scale laser plasmas

    International Nuclear Information System (INIS)

    Campbell, E.M.

    1992-01-01

    Recent advances in laser science and technology have opened new possibilities for the study of high energy density plasma physics. The advances include techniques to control the laser spatial and temporal coherence, and the development of laser architectures and optical materials that have led to the demonstration of compact, short pulse (τ≤10 -12 sec) high brightness lasers, capable of irradiating plasmas with intensities ≥10 18 W/cm 2 . Experiments with reduced laser coherence have shown a substantial decrease in laser-driven parametric instabilities and have extended the parameter range where inverse bremsstrahlung absorption is the dominant coupling process. Beam smoothing with short wavelength lasers should result in inverse bremsstrahlung dominated coupling in the irradiance parameter regimes of the millimeter scale-length plasmas envisioned for the megajoule class lasers for ignition and gain in inertial fusion. In addition new regimes of laser--plasma coupling will become experimentally accessible when plasmas are irradiated with I≥10 18 W/cm 2 . Relativistic effects, extreme profile modification, and electrons heated to energies exceeding 1 MeV are several of the phenomena that are expected. Numerous applications in basic and applied plasma physics will result from these new capabilities

  6. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  7. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  8. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  9. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  10. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  11. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  12. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  13. Physics and applications of micro and fast z-pinch plasmas

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2003-07-01

    This is the proceedings of symposium on 'Physics and Application of Micro and Fast z-Pinch Plasma' held at National Institute for Fusion Science. Recent progress of experimental and theoretical works on high energy density plasmas produced by pulsed power is presented. Separate abstracts were presented for 4 of the papers in this report. The remaining 14 were considered outside the subject scope of INIS. (J.P.N.)

  14. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  15. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  16. A physical model of Mirnov oscillations and plasma disruptions

    International Nuclear Information System (INIS)

    Cross, R.C.

    1983-07-01

    A physical model is proposed which accounts for the general behaviour of Mirnov oscillations and plasma disruptions in tokamak devices. The model also accounts for the stability of those devices which operate with edge safety factors less than 1.5. The model is based on the propagation of localized torsional Alfven and ion acoustic wavepackets. These packets remain phase coherent for considerable distances and are guided along helical field lines in toroidal plasmas, leading to the formation of standing waves on those field lines which close on themselves after one or more toroidal revolutions. Standing waves are driven resonantly on the rational surfaces by fluctuations in the poloidal field, causing localized heating and hence filamentation of the plasma current. This model indicates that Mirnov oscillations are produced by standing acoustic waves, while plasma disruptions occur as a result of the formation of MHD unstable current filaments

  17. Geneva University - Particle Physics seminar

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Geneva 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 8 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium A Novel Experiment for the Search muon -> eee Prof. Andre Schoening, University of Heidelberg The absence of lepton-flavor changing processes, like the non-observation of the radiative decay mu -> e gamma, has been a miracle since the dawn of the Standard Model of Particle Physics and lead to the introduction of the concept of lepton family numbers. Several experiments in the last decade have shown clear evidence for neutrino oscillations. The neutrino mixing angles measured are known to be large. However, the discovery of lepton flavor violating (LFV) effects in the charged lepton sector is yet owing. After motivating the search for LFV in general I will discuss the physics potential of a search m...

  18. Laboratory and space experiments as a key to the plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1993-08-01

    Almost all of the known matter in our universe is in the state of plasma. Because of the complexity of the plasma state, a reliable understanding has to be built on empirical knowledge, since theoretical models easily become misleading unless guided by experiment or observation. Cosmical plasmas cover a vast range of densities and temperatures, but in important respects they can be classified into three main categories: high, medium, and low density plasmas. The ability of a plasma to carry electric current is very different in different kinds of plasma, varying from high density plasmas, where the ordinary Ohms law applies to low density plasmas, where no local macroscopic relation needs to exist between electric field and current density. According to classical formulas, the electrical conductivity of many plasmas should be practically infinite. But on the basis of laboratory experiments and in situ measurements in space we now know that in important cases the plasmas ability to carry electric current can be reduced by many powers of ten, and even collisionless plasmas may support significant magnetic-field aligned electric fields. A small number of processes responsible for this have been identified. They include anomalous resistivity, magnetic mirror effect and electric double layers. One of the consequences is possible violation of the frozen field condition, which greatly simplifies the analysis but can be dangerously misleading. Another is the possibility of extremely efficient release of magnetically stored energy. Cosmical plasmas have a strong tendency to form filamentary and cellular structures, which complicates their theoretical description by making homogeneous models inappropriate. In situ observations in the Earths magnetosphere have revealed completely unexpected and still not fully understood chemical separation processes that are likely to be important also in astrophysical plasmas. 108 refs

  19. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  20. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  1. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  2. The teaching of high energy physics in British universities

    International Nuclear Information System (INIS)

    Barlow, R.

    1992-01-01

    An analysis is given of a survey of the teaching of high energy physics in British universities. The subject changes quickly, and there is a continual conflict between new and old material. Different courses may deal with this in different ways. To find out what is actually being taught to students, details were obtained from all 50 university physics departments in the United Kingdom (UK) by means of a questionnaire. This covered the course structure - whether it was optional or compulsory or contained both elements - the number of lectures given, and the topics covered in the syllabus. The replies give a comprehensive picture of the state of undergraduate teaching of high energy physics in the UK. (Author)

  3. PERCIVED STRESS AMONG PHYSICAL THERAPY STUDENTS OF ISRA UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Atiq ur Rehman memon

    2016-02-01

    Full Text Available Background: Recently increasing concern among stress is seen during health care undergraduate students but there is lack of such studies in physical therapy students in Pakistan. Higher stress levels the students in their education the effect of stress in physical therapy students throughout is well documented in western countries. This study aims at assessing the level of perceived stress among physical therapy students of Isra University. Method: It’s a Cross-sectional type of descriptive study that was conducted on hundred physical therapy students of Isra institute of rehabilitation sciences, ISRA University, Hyderabad. A Convenient, non-probability technique of sampling is used. All the Physical therapy students were included. Results: Overall response rate was 100%. Moderate level of stress was found in 73% students (scored between 51-75%, severe level of stress was found in 8% students (scored >75% whereas low level of stress was found in 19% of students (scored between 25-50%. Conclusion: The current study presents the level of stress perceived by physical therapy students of Isra University, Hyderabad. The findings of the study revealed higher levels of stress in the physical therapy students. Majority of student perceived moderate stress and about 8% of students reported severe stress. Further detailed and generalized studies are needed to evaluate the causes, effects and coping approaches adapted by the students. Furthermore level of stress should also be correlated with academic performance of the students. Findings of such studies may help to initiate certain strategies that may help students overcome their stress and cope efficiently with the upcoming problems.

  4. Hybrid modeling of plasma and applications to fusion and space physics

    International Nuclear Information System (INIS)

    Kazeminejad, F.

    1989-01-01

    Obtaining reasonable solutions to the nonlinear equations is crucial to the understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amount of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases the models demonstrate qualitative agreement with the experimental observations

  5. 48. annual symposium of the Austrian Physical Society

    International Nuclear Information System (INIS)

    Netzer, F.P.

    1998-01-01

    This volume contains short communications of lectures and posters of the 48 th Symposium of the Austrian Physical Society which had been held at the University of Graz (Austria) in 1998. The following topics are included: atomic physics, molecular physics, plasma physics, solid state physics, nuclear and particle physics, polymer physics, biophysics, environmental physics, quantum electronics and quantum optics. (Suda)

  6. 49. annual symposium of the Austrian Physical Society

    International Nuclear Information System (INIS)

    Blatt, R.; Maerk, T.

    1999-01-01

    This volume contains short communications of lectures and poster sessions of the 49th symposium of the Austrian Physical Society which has been held at the University of Innsbruck (Austria) in 1999. The following topics are included: atomic physics, molecular physics, plasma physics, solid state physics, nuclear and particle physics, polymer physics, biophysics, environmental physics, quantum electronics and quantum optics. (Suda)

  7. Physical Characterization of Florida International University Simulants

    Energy Technology Data Exchange (ETDEWEB)

    HANSEN, ERICHK.

    2004-08-19

    Florida International University shipped Laponite, clay (bentonite and kaolin blend), and Quality Assurance Requirements Document AZ-101 simulants to the Savannah River Technology Center for physical characterization and to report the results. The objectives of the task were to measure the physical properties of the fluids provided by FIU and to report the results. The physical properties were measured using the approved River Protection Project Waste Treatment Plant characterization procedure [Ref. 1]. This task was conducted in response to the work outlined in CCN066794 [Ref. 2], authored by Gary Smith and William Graves of RPP-WTP.

  8. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  9. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  10. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.

    Science.gov (United States)

    Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian

    2016-01-01

    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  11. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1991-01-01

    On JET results were presented on additional heating power, on a recently discovered regime of enhanced pellet performance (PEP), on low-density H-mode plasma confinement with hot ions, bounds on very high electric currents by material limiters, the first experiments on lower hybrid current drive, on the L-H transition threshold dependence on the direction of the gradient-B drift, and on alpha-particle physics issues. The TFTR presentations focused on transport. Particle loss ramifications of the toroidal Alfven eigenmodes were found to be small, while their threshold of excitation is lower than theoretically predicted. On DIII-D a scaling study of transport with gyroradius as the only variable was reported, with approximately Bohm scaling emerging; but the effective heat diffusivity scaling could not be established due to profile consistency effects. While beta-limit investigations with DIII-D generally confirm the ideal, MHD limit found by Troyon, evidence of a reduction of the accessible range for the internal inductance with the safety factor seems to favour current-density control in a steady-state D-T burner. Onset of strongly sheared poloidal rotation in a thin layer during the L-H mode transition was experimentally shown, while a new, so-called VH (''very high'') confinement mode was discovered by boronization of the wall. The JT-90 tokamak has recently been upgraded to JT-60-U. Presentations by the ASDEX team summarized the lack of agreement with theory of L-mode confinement. With TEXTOR, an improved mode (I-mode) of confinement was found by boronization. Finally, reviews are included on the status of impurity transport and helium removal in tokamaks, on stellarators, alternative magnetic confinement systems, inertial confinement, and non-fusion plasma physics. 2 tabs

  12. The Impact of the Louisiana State University Physics Entrance Requirement on Secondary Physics in Louisiana

    Science.gov (United States)

    McCoy, Michael Hanson

    State Department of Education data was examined to determine the number of students enrolled in physics, physics class number, physics teacher number, and physics teacher certification. Census data from public and nonpublic school teachers, principals, and superintendents was analyzed. Purposive sampling of seven public and four nonpublic schools was used for site visitation including observations of physics classes, interviews of teachers and principals, and document acquisition. The literature base was drawn from a call for an increase in academic requirements in the sciences by the National Commission on Excellence in Education, the Southern Regional Education Board, the American Association for Advancement in the Sciences, and numerous state boards of education. LSU is the only major state university to require physics as an academic admission standard. Curriculum changes which influenced general curriculum change were: leveling of physics classes; stressing concepts, algebra, and doing problems in level-one; stressing trigonometry and problem solving in level-two; and increased awareness of expectations for university admission. Certified physics teachers were positive toward the requirement. The majority adopted a "wait-and-see" attitude to see if the university would institute the physics standard. Some physics teachers, nonphysics majors, were opposed to the requirement. Those who were positive remained positive. Those who developed the wait-and-see adopted the leveled physics course concept in 1989 and were positive toward the requirement. College-bound physics was taught prior to the requirement. The State Department of Education leveled physics in 1989. Level-one physics was algebra and conceptual based, level-two physics was trigonometry based, and a level-three physics, advanced placement was added. Enrollment doubled in public schools and increased 40% in nonpublic schools. African-American enrollment almost doubled in public and nonpublic schools

  13. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  14. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  15. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  16. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2007-01-01

    In 2006 research activity of the P-V Department was concentrated on the continuation of previous studies in the field of plasma physics and controlled nuclear fusion (CNF), but several new topics concerning plasma technology were also investigated. The main tasks of the research activities were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. In a frame of the first task particular attention was paid to studies of X-ray pulses and fast electron beams emitted from different Plasma-Focus (PF) facilities. The correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions (i.e. accelerated primary ions and fusion reaction products) was investigated in the PF-360 device in Swierk. The X-ray and corpuscular emission was also studied in a PF-1000 facility at IPPLM in Warsaw. Separate efforts were devoted to the investigation of fast electrons escaping from Tokamak-type facilities. Such studies were carried out in a frame of the EURATOM program, using special Cerenkov-type detectors within the CASTOR tokamak, operated at IPP in Prague. Signals from the Cerenkov detector were recorded and interpreted. Other studies concerned the design and construction of a new 4-channel Cerenkov detection system for a TORE-SUPRA facility at CEA-Cadarache. Since thermal loads upon the Cerenkov probe within the TORE SUPRA facility can amount to 1 MW/cm 2 , it was necessary to perform detailed computations of heat transfer in various materials (i.e. diamond-radiators and the probe body). Some efforts were devoted to the calibration of new nuclear track detectors (NTD) and their application for measurements of fusion-produced protons emitted from PF-360 and PF-1000 facilities. In frame of the EURATOM program the calibrated NTD were also applied for measurements of fusion-protons in a TEXTOR

  17. Physics of plasma etching and plasma deposition

    NARCIS (Netherlands)

    Schram, D.C.; Hoog, de F.J.; Bisschops, T.J.; Kroesen, G.M.W.; Howorka, F.; Lindinger, W.; Maerk, T.D.

    1986-01-01

    The kinetics and mechanism of the title processes are discussed on the basis of a model in which the plasma-surface system is subdivided into 5 regions: (I) plasma prodn., (II) plasma flow plus radicals, (III) gas adsorbed layer, (IV) modified surface, and (V) undisturbed solid (or liq.) state.

  18. Pulsed x-ray generation from a plasma focus device

    International Nuclear Information System (INIS)

    Zambra, M; Bruzzone, H; Sidelnikov, Y; Kies, W; Moreno, C; Sylvester, G; Silva, P; Moreno, J; Soto, L

    2003-01-01

    Dynamical pinches coupled to electrodes like the dense Z-pinch or the dense plasma focus have been intensively studied in the last four decades for their high fusion efficiency and their application potential. Though the expectations of the eighties of the last century, scaling these pinches up to fusion reactors, did not come true, the development of fast and powerful experiments resulted in new insights in pinch physics and paved the way for developing compact dynamical pinches as pulsed neutron and X-radiation sources for many applications. There is a permanent and growing interest in the research community for understanding and determining the generation properties of X-rays, neutrons and charged particles emitted from a high-temperature high-density plasmas, especially in the plasma focus configuration. The Plasma Physics and Plasma Technology Group of the CCHEN has developed the SPEED4 fast-plasma focus device, in collaboration with the Plasma Physics Group of the Dusseldorf University, in order to perform experimental studies such as X-ray and neutron emission, and electron and ion beam characterization (author)

  19. Project of experimental study on plasma waves and plasma turbulence

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)

  20. Effect of Physical and Flexibility Exercise on Plasma Levels of Some ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of physical and flexibility exercise on plasma levels of some liver enzymes and biomolecules of young Nigerian adults. Methods: Participants were subjected to a 2-h daily continuous physical and flexibility exercise for 6 weeks. Pre- and post-exercise blood samples were obtained and the ...

  1. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  2. Chapter 8: Plasma operation and control [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E.A.; Lister, J.B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A.C.C.; Wesley, J.C.

    2007-01-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m -1 ), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape-the plasma magnetic control, as well as control of other plasma global parameters or their profiles-the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  3. Exploring extreme plasma physics in the laboratory and in astrophysics

    Science.gov (United States)

    Silva, L. O.; Grismayer, T.; Fonseca, R. A.; Cruz, F.; Gaudio, F. D.; Martins, J. L.; Vieira, J.; Vranic, M.

    2017-10-01

    The interaction of ultra intense fields with plasmas is at the confluence of several sub-fields ranging from QED, and nuclear physics to high energy astrophysics, and fundamental plasma processes. It requires novel theoretical tools, highly optimised numerical codes and algorithms tailored to these complex scenarios, where physical mechanisms at very disparate temporal and spatial scales are self-consistently coupled in multidimensional geometries. The key developments implemented in Osiris will be presented along with some examples of problems, relevant for laboratory or astrophysical scenarios, that are being addressed resorting to the combination of massively parallel simulations with theoretical models. The relevance for near future experimental facilities such as ELI will also be presented. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  4. New developments, plasma physics regimes and issues for the Ignitor experiment

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Cenacchi, G.; De Tommasi, G.; Bombarda, F.; Cardinali, A.; Detragiache, P.; DeVellis, A.; Frattolillo, A.; Frosi, P.; Bianchi, A.; Lazzaretti, M.; Costa, E.; Faelli, G.; Ferrari, A.; Mantovani, S.; Giammanco, F.; Grasso, G.

    2013-01-01

    The scientific goal of the Ignitor experiment is to approach, for the first time, the ignition conditions of a magnetically confined D–T plasma. The IGNIR collaboration between Italy and Russia is centred on the construction of the core of the Ignitor machine in Italy and its installation and operation within the Triniti site (Troitsk). A parallel initiative has developed that integrates this programme, involving the study of plasmas in which high-energy populations are present, with ongoing research in high-energy astrophysics, with a theory effort involving the National Institute for High Mathematics, and with INFN and the University of Pisa for the development of relevant nuclear and optical diagnostics. The construction of the main components of the machine core has been fully funded by the Italian Government. Therefore, considerable attention has been devoted towards identifying the industrial groups having the facilities necessary to build these components. An important step for the Ignitor programme is the adoption of the superconducting MgB 2 material for the largest poloidal field coils (P14) that is compatible with the He-gas cooling system designed for the entire machine. The progress made in the construction of these coils is described. An important advance has been made in the reconfiguration of the cooling channels of the toroidal magnet that can double the machine duty cycle. A facility has been constructed to test the most important components of the ICRH system at full scale, and the main results of the tests carried out are presented. The main physics issues that the Ignitor experiment is expected to face are analysed considering the most recent developments in both experimental observations and theory for weakly collisional plasma regimes. Of special interest is the I-regime that has been investigated in depth only recently and combines advanced confinement properties with a high degree of plasma purity. This is a promising alternative to the

  5. Influence of non-equilibrium effects on plasma property functions in hybrid water-argon plasma torch

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Hrabovský, Milan

    2010-01-01

    Roč. 14, 1-2 (2010), s. 95-100 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * material properties * non-equlibrium phenomena * dc arc torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.189, year: 2010 http://www.begellhouse.com/journals/57d172397126f956,227c67f42b79464a,5bbc4c7760b4b6cb.html

  6. 60th Scottish Universities Summer School in Physics: 6th Laser-plasma interactions

    CERN Document Server

    Cairns, R A; Jaroszinski, D A

    2009-01-01

    Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

  7. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  8. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  9. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  10. Physical activity and sedentary time: male perceptions in a university work environment.

    Science.gov (United States)

    George, Emma S; Kolt, Gregory S; Rosenkranz, Richard R; Guagliano, Justin M

    2014-03-01

    Promoting physical activity and reducing sedentary time in males can be challenging, and interventions tailored specifically for males are limited. Understanding male perceptions of physical activity and sedentary behavior is important to inform development of relevant interventions, especially for males working in an office setting. As part of a larger intervention study to increase physical activity and reduce sedentary time, male university employees aged 35 to 64 years were invited to partake in focus groups to discuss benefits, motivators, and barriers related to physical activity and sedentary time. Five semistructured focus group sessions, ranging from 50 to 70 minutes in duration, were conducted on two campuses at an Australian university. A total of 15 participants (9 academic/faculty staff and 6 professional staff), with a mean (± SD) age of 46.1 (±8.0) years took part in the study. Health and family were commonly discussed motivators for physical activity, whereas time constraints and work commitments were major barriers to physical activity participation. Sedentary time was a perceived "by-product" of participants' university employment, as a substantial proportion of their days were spent sitting, primarily at a computer. Participants believed that physical activity should be recognized as a legitimate activity at work, embedded within the university culture and endorsed using a top-down approach. It is important to encourage breaks in sedentary time and recognize physical activity as a legitimate health-promoting activity that is supported and encouraged during working hours. These findings can be used as a platform from which to develop targeted strategies to promote physical activity in male university employees.

  11. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  12. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  13. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  14. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    N L Singh1 S M Pelagade1 R S Rane2 S Mukherjee2 U P Deshpande3 V Ganeshan3 T Shripathi3. Department of Physics, M.S. University of Baroda, Vadodara 390 002, India; FCIPT, Institute for Plasma Research, Gandhinagar 382 044, India; UGC-DAE-CSR, University Campus, Khandawa Road, Indore 452 017, India ...

  15. Poor Physical Performance is Associated with Obesity Among University Students in China.

    Science.gov (United States)

    Du, Tianhua; Zhu, Ergang; Jiao, Suhua

    2017-05-05

    BACKGROUND The aim of this study was to explore the relationship between physical performance and BMI (body mass index) of university students in China. MATERIAL AND METHODS We conducted a cross-sectional study evaluating the physical performance and BMI of university students. BMI was calculated based on height and weight. Overweight and obesity were defined by the Working Group on Obesity references in China. RESULTS A total of 2313 participants (978 males and 1335 females) were recruited in our study. The mean value of the 50-meter dash and standing long jump in male students was higher than in female students (Pobesity) and obesity for male students were 17.9% and 4.2%, respectively, and 5.1% and 0.5%, respectively, for female university students. BMI was weakly positively associated with the 50-meter dash score, but was negatively associated with the score for standing long jump and pull-ups. CONCLUSIONS Our study suggested that overweight and obesity are associated with physical performance of university students, especially in male students. University students should exercise more to improve physical health.

  16. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    International Nuclear Information System (INIS)

    Meade, Dale M.

    2004-01-01

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm -3 and neutron wall loading from 2-4 MWm -2 which are at the levels expected from the ARIES-RS/AT design studies

  17. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  18. PANDORA, a new facility for interdisciplinary in-plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D.; Gammino, S. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Musumarra, A. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); Leone, F. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); INAF-OACT, Catania (Italy); Romano, F.P. [INFN-Laboratori Nazionali del Sud, Catania (Italy); CNR-IBAM, Catania (Italy); Galata, A. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); Massimi, C. [University of Bologna, Department of Physics and Astronomy, Bologna (Italy); INFN-Bologna, Bologna (Italy)

    2017-07-15

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as {sup 7}Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment (e.g., determination of solar neutrino flux and {sup 7}Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Lande factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry. (orig.)

  19. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  20. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  1. Plasma physics modeling and the Cray-2 multiprocessor

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-01-01

    The importance of computer modeling in the magnetic fusion energy research program is discussed. The need for the most advanced supercomputers is described. To meet the demand for more powerful scientific computers to solve larger and more complicated problems, the computer industry is developing multiprocessors. The role of the Cray-2 in plasma physics modeling is discussed with some examples. 28 refs., 2 figs., 1 tab

  2. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    Science.gov (United States)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent

  3. Geneva University: seminar of particle physics

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 9 May 2012 SEMINAR OF PARTICLE PHYSICS 11h15 - Science III, Auditoire 1S081 30 The Search for the Magnetic Monopole Dr Philippe Mermod - University of Geneva, DPNC It has long been realised that the existence of a magnetic monopole would be sufficient to explain the quantisation of electric charge, and to symmetrise Maxwell's equations. Furthermore, the monopole is an essential ingredient in Grand Unification theories. Primordial monopoles would have been produced in the Early Universe and still be present today, either in cosmic rays or trapped in matter. Monopoles of accessible masses would also be pair-produced at high-energy accelerators. Their remarkable properties can be exploited to devise various means of direct detection. After reviewin...

  4. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2003-01-01

    investigations were carried out in the PF-360 facility equipped with nuclear targets made of D 2 O-ice. The use of a high-speed framing camera enabled legible VR pictures and X-ray images to be obtained. These demonstrated some details of filamentary and spiral microstructures. Particular attention was paid to temporal changes in anisotropy of the fusion neutron emission. Another experimental aim concerned the development of plasma diagnostics. In the collaboration with Dept. P-I at IPJ and the Laboratory of Heavy Ions at Warsaw University, the calibration of selected solid-state nuclear track detectors (PM-355) was performed for energetic sulphur- and argon-ions. Also investigated was the influence of intense X-rays and electron beams on responses of the PM-355 detectors. Another task was an analysis of optical spectra recorded within the wavelength range from 200 nm to 1100 nm. Detailed optical measurements within the RPI-IBIS facility made it possible to investigate a dependence of intensities of the selected spectral lines and their FWHM values on the initial gas conditions. Particular attention was also paid to spectroscopic studies of early stages of a decay of pulsed plasma streams within the RPI-type devices. As for technological studies, there was continued research on plasma technology of different materials. In particular the erosion of some reversible getters was investigated in collaboration with the IPP KIPT in Kharkov (Ukraine). The use of vacuum arc discharges to the deposition of super-conductor (Nb) layers upon surfaces of RF accelerator cavities was investigated within the collaboration with the Tor-Vergata University in Rome (Italy) and DESY in Hamburg (Germany). A new UHV set-up with two planar arc sources was investigated in Rome, and a new UHV experimental stand was designed and constructed in Swierk. Other studies of plasma-ion techniques for the material engineering were carried out in collaboration with Dept. P-IX (another chapter of this report). The

  5. 51. Annual symposium of the Austrian Physical Society

    International Nuclear Information System (INIS)

    Oberhummer, H.

    2001-01-01

    The 51th Symposium of the Austrian Physical Society was held from 17-21 September 2001 at the Technical University of Vienna (Austria). The topics covered deal with: energy (greenhouse effect, climatic change, environment protection, energy system transformation, innovative energy technologies), neutrons and synchrotron radiation, quantum mechanics, microscopy, accelerator-driven systems, physics aspects of radiotherapy, nano world, micro cosmos, modern physics, life in the universe, x-ray fluorescence, heavy-ion accelerator mass spectrometry, acoustics, atomic-, molecular- and plasma physics, solid-state physics, nuclear and particle physics, medical-, bio-and environmental physics, quantum electronics, electrodynamics and optics. Those contributions which are in the INIS subject scope are indexed separately. (nevyjel)

  6. Initiating and Strengthening College and University Instructional Physical Activity Programs

    Science.gov (United States)

    Sweeney, Michelle M.

    2011-01-01

    The National Association for Sport and Physical Education supports the offering of strong college and university instructional physical activity programs (C/UIPAPs). With a rapid decline in physical activity levels, high stress levels, and unhealthy weight-loss practices among college-age students, it is apparent that C/UIPAPs embedded in the…

  7. Toward University Modeling Instruction--Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER)…

  8. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  9. Empowering University Students through Physical Fitness for ...

    African Journals Online (AJOL)

    This paper reports the findings of a study that investigated 252 University of Ilorin students' awareness of the benefits of physical fitness and the need for empowering them for lifetime productivity. Data were collected using a self developed questionnaire and analysed using frequency counts, percentage and chi-square.

  10. Physical-depth architectural requirements for generating universal photonic cluster states

    Science.gov (United States)

    Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry

    2018-01-01

    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.

  11. Annual report to DOE of the fusion programs in applied plasma physics and development and technology at GA Technologies Inc., fiscal 1984

    International Nuclear Information System (INIS)

    Ohkawa, T.

    1985-04-01

    The GA programs in Applied Plasma Physics and Development and Technology have registered substantial accomplishments during fiscal 1984. Theoretical work in the MHD area has contributed to further understanding of the physics governing low-q, high-β tokamak discharges, including the effects of a cold plasma mantle and an edge-temperature pedestal. The universal scaling law for the maximum β stable to ideal-MHD modes has been verified for Doublet III and has also been validated for JET, DIII-D, and a Double Dee configuration. Experimental work in Applied Plasma Physics included the development of two new high-energy diagnostics, one for gamma rays and one for tritons (or, in a reactor, alpha particles), both of which can yield essential physics information that is not readily obtainable from the panoply of existing diagnostic instruments. The development of a current-density profile diagnostic continued, and it was found that the instrument could also be used to obtain relative density profiles throughout a tokamak discharge. And tests of an ergodic magnetic limiter scheme indicated that the configuration has the potential to create a stable, radiating boundary layer while reducing the heat load to the walls in future high-power devices. The work carried out in the area of Development and Technology included a group of reactor systems design studies that bring into focus some of the challenges that will be faced by the engineers of fusion power equipment. Closer to realization are advanced rf equipment and superconducting magnet developments, both under design in the area of plasma technologies. Technological developments that apply directly to current experiments as well as to future devices comprise the rest of the GA D and T program

  12. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  13. [Eating habits, physical activity and socioeconomic level in university students of Chile].

    Science.gov (United States)

    Rodríguez, Fernando; Palma, Ximen; Romo, Angela; Escobar, Daniela; Aragú, Bárbara; Espinoza, Luis; McMillan, Norman; Gálvez, Jorge

    2013-01-01

    University students are vulnerable to poor nutrition; they don't eat snacks between meals, don't eat breakfast or fast for long hours, prefer fast food and don't exercise. University students is considered the key young adult population group for health promotion and prevention for future generations, so it's crucial identify the current nutritional status and frequency of physical activity. To determine the factors involved in the choice of food and frequency of physical activity in university students. 799 volunteers were evaluated from four universities of the fifth region of Chile. Instrument was applied to determine the level of physical activity and eating habits, KIDMED test to determine adherence to the Mediterranean diet and Adimark instrument to determinate the socioeconomic status of the subjects. Finally, anthropometric evaluation to determinate BMI, fat mass and muscle mass. Physical inactivity is higher in women than in men and that the main reason for not exercising is lack of time and laziness. In both sexes don't read nutrition labels and have a low and average adherence to the Mediterranean diet. The low knowledge of nutrition is the cause of the poor food quality of subjects and there isn't greater motivation to perform physical activity.Socioeconomic status isn't related to eating habits and physical activity. It's necessary to integrate programs regular and permanent healthy lifestyle in all universities. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  14. Partnership for Edge Physics (EPSI), University of Texas Final Report

    International Nuclear Information System (INIS)

    Moser, Robert; Carey, Varis; Michoski, Craig; Faghihi, Danial

    2017-01-01

    Simulations of tokamak plasmas require a number of inputs whose values are uncertain. The effects of these input uncertainties on the reliability of model predictions is of great importance when validating predictions by comparison to experimental observations, and when using the predictions for design and operation of devices. However, high fidelity simulation of tokamak plasmas, particular those aimed at characterization of the edge plasma physics, are computationally expensive, so lower cost surrogates are required to enable practical uncertainty estimates. Two surrogate modeling techniques have been explored in the context of tokamak plasma simulations using the XGC family of plasma simulation codes. The first is a response surface surrogate, and the second is an augmented surrogate relying on scenario extrapolation. In addition, to reduce the costs of the XGC simulations, a particle resampling algorithm was developed, which allows marker particle distributions to be adjusted to maintain optimal importance sampling. This means that the total number of particles in and therefore the cost of a simulation can be reduced while maintaining the same accuracy.

  15. Partnership for Edge Physics (EPSI), University of Texas Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Robert [Univ. of Texas, Austin, TX (United States); Carey, Varis [Univ. of Texas, Austin, TX (United States); Michoski, Craig [Univ. of Texas, Austin, TX (United States); Faghihi, Danial [Univ. of Texas, Austin, TX (United States)

    2017-11-03

    Simulations of tokamak plasmas require a number of inputs whose values are uncertain. The effects of these input uncertainties on the reliability of model predictions is of great importance when validating predictions by comparison to experimental observations, and when using the predictions for design and operation of devices. However, high fidelity simulation of tokamak plasmas, particular those aimed at characterization of the edge plasma physics, are computationally expensive, so lower cost surrogates are required to enable practical uncertainty estimates. Two surrogate modeling techniques have been explored in the context of tokamak plasma simulations using the XGC family of plasma simulation codes. The first is a response surface surrogate, and the second is an augmented surrogate relying on scenario extrapolation. In addition, to reduce the costs of the XGC simulations, a particle resampling algorithm was developed, which allows marker particle distributions to be adjusted to maintain optimal importance sampling. This means that the total number of particles in and therefore the cost of a simulation can be reduced while maintaining the same accuracy.

  16. Magnetosphere-ionosphere interactions: Near earth manifestations of the plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.; Brenning, N.

    1994-01-01

    Cosmical plasmas cover a large range of densities and temperatures, but in important respects they can be classified into three main categories: high, medium and low density plasmas. Virtually without exception cosmical plasmas are magnetized. Because of the key role played by the magnetic fields -- and by the electric currents, without which they would not exist -- it is obvious that the ability of the cosmical plasma to carry electric current is a property of crucial importance. Intimately related to this property is the plasma's ability to support magnetic-field aligned electric fields -- for brevity often called ''parallel'' electric fields. Such fields are now believed to play an important role in the auroral process. The evidence includes measurements of naturally occurring fields and particles as well as results of active experiments in the magnetosphere. The dc magnetic-field aligned electric fields are accompanied by a variety of wave fields, which are also important, for example in modifying the distribution function of accelerated particle populations. For a magnetic-field aligned electric field to exist other than as a brief transient, the momentum that such a field continually imparts to the charged particles must be balanced by some other force. In the very nearly collisionless plasmas that occupy most of the universe, this cannot be achieved by collisional friction, and something else is required. A small number of processes responsible for this has been identified. They include anomalous resistivity, magnetic mirror effect, and electric double layers. One of the consequences is possible violation of the frozen field condition, which greatly simplifies the analysis but can be dangerously misleading. Another is the possibility of extremely efficient release of magnetically stored energy

  17. Plasma position control in TCABR Tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu. K.; Nascimento, I.C.; Fonseca, A.M.M.; Silva, R.P. da; Ruchko, L.F.; Tuszel, A.G.; Reis, A.P. dos; Sanada, E.K.

    1998-01-01

    The plasma control position in the TCABR tokamak is described. The TCA tokamak was transferred from the Centre de Recherches en Physique des Plasmas, Lausanne, to the Institute of Physics of University of Sao Paulo, renamed TCABR (α=0.18 m, R = 0.62 m, B = 1 T,I p = 100 kA). The control system was reconstructed using mainly components obtained from the TCA tokamak. A new method of plasma position determination is used in TCABR to improve its accuracy. A more detailed theoretical analysis of the feed forward and feedback control is performed as compared with. (author)

  18. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers

    International Nuclear Information System (INIS)

    Umstadter, Donald

    2001-01-01

    As tabletop lasers continue to reach record levels of peak power, the interaction of light with matter has crossed a new threshold, in which plasma electrons at the laser focus oscillate at relativistic velocities. The highest forces ever exerted by light have been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. Not only is this acceleration gradient up to a thousand times greater than in radio-frequency-based sources, but the transverse emittance of the particle beams is comparable or lower. Additionally, laser-based accelerators have been demonstrated to work at a repetition rate of 10 Hz, an improvement of a factor of 1000 over their best performance of just a couple of years ago. Anticipated improvements in energy spread may allow these novel compact laser-based radiation sources to be useful someday for cancer radiotherapy and as injectors into conventional accelerators, which are critical tools for x-ray and nuclear physics research. They might also be used as a spark to ignite controlled thermonuclear fusion. The ultrashort pulse duration of these particle bursts and the x rays they can produce, hold great promise as well to resolve chemical, biological or physical reactions on ultrafast (femtosecond) time scales and on the spatial scale of atoms. Even laser-accelerated protons are soon expected to become relativistic. The dense electron-positron plasmas and vast array of nuclear reactions predicted to occur in this case might even help bring astrophysical phenomena down to Earth, into university laboratories. This paper reviews the many recent advances in this emerging discipline, called high-field science

  19. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  20. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  1. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  2. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  3. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  4. High Energy Physics at the University of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Tony M. [University of Illinois; Thaler, Jon J. [University of Illinois

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  5. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  6. Unifying the Universe the physics of heaven and earth

    CERN Document Server

    Padamsee, Hasan S

    2003-01-01

    Unifying the Universe: The Physics of Heaven and Earth provides a solid background in basic physics. With a humanistic perspective, it shows how science is significant for more than its technological consequences. The book includes clear and well-planned links to the arts and philosophies of relevant historical periods to bring science and the humanities together.

  7. Physical activity and health promotion in Italian university students.

    Science.gov (United States)

    Teleman, Adele Anna; de Waure, Chiara; Soffiani, Valentina; Poscia, Andrea; Di Pietro, Maria Luisa

    2015-01-01

    Physical activity, diet plans, the mantainment of a certain Body Mass Index (BMI) and the use of various types of supplementation are common elements in the search for disease prevention, health promotion and well-being. We analyzed the data regarding Italian university students' BMI, dieting behaviour, personal body perception, exercise habits, and use of dietary supplements and of doping substances. 13.7% resulted being underweight, 75.1% was in the normal range, 9.8% was overweight, and 1.4% was obese. 11.0% were on a diet. 25.8% of the students reported never doing any type of physical activity. 0.9% admitted consuming doping substances. The percentage of overweight/obese students increases from 8.8% of the 18-21 year olds to 18.1% of the 25-30 year olds. Similarly, the prevalence of overweight/obesity was 18.5% among male population and 7.5% among the female one. The data deriving from this questionnaire showed that while the majority of university students has a BMI in the normal range, 11.2% of the study population is overweight/obese. Males present a higher risk of being overweight or obese. An important part of the population showed to be sedentary even though data coming from our study are aligned to further evidence. The most important concern arising from the questionnaire is represented by physical inactivity. Indeed, it is necessary to encourage and plan initiatives aimed at promoting physical activity in university students.

  8. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  9. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  10. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  11. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  12. MHD description of plasma: handbook of plasma physics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1980-10-01

    The basic sets of MHD equations for the description of a plasma in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional plasma, the two fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless plasma and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center theory and double adiabatic theory

  13. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  14. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  15. Students' attitudes to learning physics at school and university levels in Scotland

    Science.gov (United States)

    Skryabina, Elena

    The department of Physics of the University of Glasgow was concerned about losing students after the end of the level 1 Physics course. The current research project started as an attempt to find out the reasons for this, but moved to investigate attitudes towards Physics at several stages during secondary school and attitudes towards science with primary pupils. Analyses of factors, which influence students' intentions towards studying Physics, were performed against the background of the Theory of Planned Behaviour, which interprets people's behaviour by considering three factors: attitude towards behaviour (advantages or disadvantages of being involved in the behaviour, e.g. studying Physics for Honours); subjective norm (approval or disapproval of important people towards engaging in the behaviour, e.g. parents, teacher, general norms of the society); perceived behavioural control (skills, knowledge, cooperation of others, abilities, efforts required to perform the behaviour). Analysis of these factors revealed some reasons for students' withdrawal from Physics after level 1 and pointed to factors which may facilitate students' persistence in the subject. A general analysis of level 1 and level 2 students' attitudes towards different aspects of the university Physics course revealed that the level 1 students' attitudes towards their university course of lectures and course of laboratories tended to be negatively polarised. Recommendations were suggested on the basis of the gathered evidence about how to make students' experience in university Physics more satisfactory for them. The data obtained from the separate analyses of females' and males' attitudes towards university Physics course have showed that attitudes of females and males were similar. The only significant difference between level 1 females and males was found to be the perceived behavioural control factor (students' attitudes towards course difficulty, attitudes towards work load in the course

  16. 46th annual symposium of the Austrian Physical Society. Programme and abstracts

    International Nuclear Information System (INIS)

    Schindler, H.G.

    1996-01-01

    This volume contains lectures (short communications) of the 46 th symposium of the Austrian Physical Society which had been held at the University of Linz (Austria) in 1996. The following topics are included: atomic physics, molecular physics, plasma physics, solid state physics, nuclear and particle physics, biophysics, environmental physics, quantum electronics and quantum optics. (Suda)

  17. A university system-wide qualitative investigation into student physical activity promotion conducted on college campuses.

    Science.gov (United States)

    Milroy, Jeffrey J; Wyrick, David L; Bibeau, Daniel L; Strack, Robert W; Davis, Paul G

    2012-01-01

    This study aimed to examine college student physical activity promotion. A cross-sectional approach to qualitative research was used. Southeastern state university system. Fourteen of 15 (93%) universities recruited were included in this study; 22 university employees participated in a semistructured interview. Nonprobabilistic purposive and snowball sampling strategies were used to recruit individuals who were likely to be engaged in physical activity promotion efforts on their respective campuses. Thematic analyses lead to the identification of emerging themes that were coded and analyzed using NVivo software. Themes informed three main areas: key personnel responsible for promoting physical activity to students, actual physical activity promotion efforts implemented, and factors that influence student physical activity promotion. Results suggest that ecological approaches to promote physical activity on college campuses are underused, the targeting of mediators of physical activity in college students is limited, and values held by university administration influence campus physical activity promotion. Findings support recommendations for future research and practice. Practitioners should attempt to implement social ecological approaches that target scientifically established mediators of physical activity in college students. Replication of this study is needed to compare these findings with other types of universities, and to investigate the relationship between promotion activities (type and exposure) and physical activity behaviors of college students.

  18. TELEMATICS APPLICATIONS REMOT: Description of the intended plasma physics demonstrator

    NARCIS (Netherlands)

    Kemmerling, G.; van der Meer, E.; Ephraïm, M.; Balke, C.; Lourens, W.; Korten, M.

    2012-01-01

    This document presents the intended plasma physics demonstator in the REMOT Project. Due to the complexity of the system the demonstrator should be kept as simple as possible without sacrificing flexibility. The demonstrator should be made in such a way that it can easily be modified and expanded.

  19. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Dept. of Physics and Astronomy; Hsu, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Cassibry, Jason [Univ. of Alabama, Huntsville, AL (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States)

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  20. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  1. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  2. A distributed atomic physics database and modeling system for plasma spectroscopy

    International Nuclear Information System (INIS)

    Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W.; Salter, J.M.

    1995-08-01

    We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community

  3. Quantum effects on the temperature relaxation in plasmas

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Aono, Osamu.

    1979-03-01

    This work was carried out under the collaborating Research Program at Institute of Plasma Physics, Nagoya University. Further communication about this report is to be sent to the Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan. The rate of equilibration of difference between the ion and electron temperatures is obtained on the basis of the unified theory, in which the collective and binary interactions are both treated properly. The electrons obey the Fermi distribution of arbitrary degeneracy. The rate decreases owing to the degeneracy. Even in the nondegenerated case, the quantum effect appeares in the argument of the Coulomb logarithm. When the de Broglie wave length of the electron is much longer than the radius of close collision, the results agree with those obtained on the Born approximation. In the opposite limit, the classical theory applies. For other cases, graphical examples are given. (author)

  4. The effects of diet and physical activity on plasma homovanillic acid in normal human subjects.

    Science.gov (United States)

    Kendler, K S; Mohs, R C; Davis, K L

    1983-03-01

    This study examines the effect of diet and moderate physical activity on plasma levels of the dopamine metabolite homovanillic acid (HVA) in healthy young males. At weekly intervals, subjects were fed four isocaloric meals: polycose (pure carbohydrate), sustecal, low monoamine, and high monoamine. Moderate physical activity consisted of 30 minutes of exercise on a bicycle ergometer. The effect of diet on plasma HVA (pHVA) was highly significant. Compared to the polycose meal, the high monoamine meal significantly increased pHVA. Moderate physical activity also significantly increased pHVA. Future clinical studies using pHVA in man as an index of brain dopamine function should control for the effects of both diet and physical activity.

  5. The REU Program in Solar Physics at Montana State University

    Science.gov (United States)

    Martens, Petrus C.; Canfield, R. C.; McKenzie, D. M.

    2007-05-01

    The Solar Physics group at Montana State University has organized an annual summer REU program in Solar Physics, Astronomy, and Space Physics since 1999, with NSF funding since 2003. The number of students applying and being admitted to the program has increased every year, and we have been very successful in attracting female participants. A great majority of our REU alumni have chosen career paths in the sciences, and, according to their testimonies, our REU program has played a significant role in their decisions. From the start our REU program has had an important international component through a close collaboration with the University of St. Andrews in Scotland. In our poster we will describe the goals, organization, scientific contents, international aspects, and results, and present statistics on applications, participants, gender balance, and diversity.

  6. The plasma physics of plasma processing

    International Nuclear Information System (INIS)

    Shohet, L.

    1991-01-01

    Plasma processing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. It has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both high-technology and the more traditional industries. Plasma processing takes on a wide variety of apparently different forms in industry, but the techniques share many common characteristics and problems. Control of the generation and flux of ions, electrons and free radicals in the plasma and their incidence on a surface is vital. Diagnostics, sensors, modeling techniques, and associated statistical methods are needed. However, without an in-depth understanding of the variety of phenomena taking place and their application to the industrial environment, advances in this technology, and its efficient use, will occur at a diminishing rate

  7. Mapping University Students' Epistemic Framing of Computational Physics Using Network Analysis

    Science.gov (United States)

    Bodin, Madelen

    2012-01-01

    Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students' beliefs about the domains as well as about learning. These knowledge and beliefs components are…

  8. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  9. Preparing Students for Careers in Science and Industry with Computational Physics

    Science.gov (United States)

    Florinski, V. A.

    2011-12-01

    Funded by NSF CAREER grant, the University of Alabama (UAH) in Huntsville has launched a new graduate program in Computational Physics. It is universally accepted that today's physics is done on a computer. The program blends the boundary between physics and computer science by teaching student modern, practical techniques of solving difficult physics problems using diverse computational platforms. Currently consisting of two courses first offered in the Fall of 2011, the program will eventually include 5 courses covering methods for fluid dynamics, particle transport via stochastic methods, and hybrid and PIC plasma simulations. The UAH's unique location allows courses to be shaped through discussions with faculty, NASA/MSFC researchers and local R&D business representatives, i.e., potential employers of the program's graduates. Students currently participating in the program have all begun their research careers in space and plasma physics; many are presenting their research at this meeting.

  10. Physical activity and health promotion in Italian university students

    Directory of Open Access Journals (Sweden)

    Adele Anna Teleman

    2015-06-01

    Full Text Available INTRODUCTION: Physical activity, diet plans, the mantainment of a certain Body Mass Index (BMI and the use of various types of supplementation are common elements in the search for disease prevention, health promotion and well-being. MATERIALS AND METHODS: We analyzed the data regarding Italian university students' BMI, dieting behaviour, personal body perception, exercise habits, and use of dietary supplements and of doping substances. RESULTS: 13.7% resulted being underweight, 75.1% was in the normal range, 9.8% was overweight, and 1.4% was obese. 11.0% were on a diet. 25.8% of the students reported never doing any type of physical activity. 0.9% admitted consuming doping substances. The percentage of overweight/obese students increases from 8.8% of the 18-21 year olds to 18.1% of the 25-30 year olds. Similarly, the prevalence of overweight/obesity was 18.5% among male population and 7.5% among the female one. DISCUSSION: The data deriving from this questionnaire showed that while the majority of university students has a BMI in the normal range, 11.2% of the study population is overweight/obese. Males present a higher risk of being overweight or obese. An important part of the population showed to be sedentary even though data coming from our study are aligned to further evidence. CONCLUSION: The most important concern arising from the questionnaire is represented by physical inactivity. Indeed, it is necessary to encourage and plan initiatives aimed at promoting physical activity in university students.

  11. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  12. Nonlinear physics of plasmas. Spatiotemporal structures in strong turbulence. Lecture notes

    International Nuclear Information System (INIS)

    Skoric, Milos M.

    2008-05-01

    This material has been prepared and partly delivered in a series of lectures given at NIFS to Doctor course students of the SOKENDAI (Graduate University of Advanced Studies, Japan) in academic 2007/08 year. Special gratitude is due to colleagues for fruitful collaboration: Profs. K. Mima, Lj. Hadzievski, S. Ishiguro, A. Maluckov, M. Rajkovic and Dr Li Baiwen and Dr Lj. Nikolic, in particular, and to Prof. Mitsuo Kono for motivating the work on this text. I wish to pay unique tribute to close friends and longtime collaborators, Prof. Dik ter Haar and Prof. Moma Jovanovic who are no longer with us. This report contains Chapter 1 (Strong Langmur Turbulence), Chapter 2 (Wave Collapse in Plasmas), Chapter 3 (Spatiotemporal Complexity in Plasmas), Chapter 4 (Relativistic Plasma Interactions) and Chapter 5 (Ponderomotive Potential and Magnetization). (J.P.N.)

  13. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  14. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    Science.gov (United States)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  15. Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations

    International Nuclear Information System (INIS)

    Boeuf, J. P.; Pitchford, L. C.

    2005-01-01

    Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control. However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years. Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of micro-discharges arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of micro-discharges or filaments. In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how

  16. Initiation of a Nuclear Research Program at Fisk University in Cooperation with the Nuclear Physics Group at Vanderbilt University, August 15, 1997 - January 14, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W.E.; Hamilton, J.H.

    2002-10-01

    Carrying a spirit of a long history of cooperation in physics education and research between Fisk University and Vanderbilt University, the Nuclear Research Program in the Department of Physics at Fisk University was proposed in 1996 in cooperation with the Nuclear Physics Group at Vanderbilt University. An initial NRP program was commissioned in 1997 with the financial support from DOE. The program offers a great opportunity for students and faculty at Fisk University to directly access experimental nuclear data and analyzing facilities within the Nuclear Physics Group at Vanderbilt University for a quick start. During the program Fisk Faculty and students (along with the colleagues at Vanderbilt University) have achieved progress in a few areas. We have (a) established an in-house nuclear data processing and analysis program at Fisk University, (b) conducted hands-on nuclear physics experiments for a Fisk undergraduate student at Vanderbilt University, (c) participated in the UNIRIB research with radioactive ion beam and Recoil Mass Spectrometer at Oak Ridge National Laboratory, and (d) studied {sup 252}Cf spontaneous fission and in-beam nuclear reactions for exotic nuclei. Additionally, this work has produced publication in conference proceedings as well as referred journals. [2-7].

  17. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  18. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    International Nuclear Information System (INIS)

    Osuch, S.

    1995-01-01

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: i) Reaction Mechanism and Nuclear Structure (12 articles); ii) Experimental Methods and Instrumentation (2 articles); iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented

  19. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  20. Highly ionized physical vapor deposition plasma source working at very low pressure

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Herrendorf, A.-P.; Drache, S.; Čada, Martin; Hubička, Zdeněk; Tichý, M.; Hippler, R.

    2012-01-01

    Roč. 100, č. 14 (2012), "141604-1"-"141604-3" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetron * ECWR * low-pressure * sputtering * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.3699229

  1. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  2. 50. Annual symposium of the Austrian Physical Society; 50. Jahrestagung der Oesterreichischen Physikalischen Gesellschaft

    Energy Technology Data Exchange (ETDEWEB)

    Lippitsch, M E [Institut fuer Experimentalphysik, Karl-Franzens-Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2000-07-01

    The conference held from 25. - 29. 9. 2000 at the University of Graz was elaborated by the Austrian society of physics in the fields of solid state physics, polymers physics, quantum electronics, electrodynamics, optics, nuclear and particle physics, atomic, molecules and plasma physics, acoustics, physics - industry - energy and physics teaching. (botek)

  3. Assessment of Communication Skills of Physical Education and Sport Students in Turkish Universities

    Science.gov (United States)

    Aydin, Ali Dursun

    2015-01-01

    This study assessed the communication skills of the students studying in physical education and sports schools in various universities in Turkey. A total of 1,854 Physical Education and Sports students in five Turkish universities participated in the study. The instrument used to gather information for this study comprised the demographic…

  4. Universal few-body physics in a harmonic trap

    International Nuclear Information System (INIS)

    Tolle, S.; Hammer, H.W.; Metsch, B.Ch.

    2011-01-01

    Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters. (authors)

  5. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  6. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  7. 10. LAWPP: Latin American workshop on plasma physics; 7. EBFP: Brazilian meeting on plasma physics. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Theoretical and experimental short communications are presented on plasma and fusion covering the following subjects: plasma production, confinement, plasma waves, diagnostics, heating, tokamak, impurities, astrophysics plasma and technological applications

  8. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report

  9. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  10. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1998-01-01

    (full text) In 1997, theoretical studies mainly concerned the verification of physical models on the basis of experimental data, an analysis of plasma behaviour within regions close to electrode surfaces during quasi-continuous discharges induced by microwaves , as well as modelling of a discharge development within coaxial plasma injectors. Another direction of theoretical studies concerned elementary processes of importance for plasma research, and in particular those taking into consideration the role of spin within a classical model of proton - hydrogen atom collisions. Experimental studies comprised measurements of pulsed electron beams and effects of the polarization of X-rays emitted from Plasma Focus (PF) facilities, research on emission characteristics of different PF devices, as well as measurements of pulsed electron and ion-beams emitted from various devices of the PF and Z-Pinch type. An important direction of experimental studies concerned X-ray and ion measurements at a large PF-1000 facility. In the field of plasma diagnostics, efforts were devoted to an analysis of the results obtained from time-resolved measurements of nitrogen ions and deuterons within PF-type devices. Within a frame of diagnostics, a substantial achievement was also the design and construction of a new measuring equipment for studies of plasma dynamics and X-ray emissions. Particular attention was also paid to studies connected with the calibration of various solid-state nuclear track detectors (NTDs), particularly modern plastic detectors of the CR-39, PM-355 and PM-500 type. Studies in the field of fusion technology concerned the design and construction of a special pulse generator for the simulation of electromagnetic interference, as well as other efforts connected with research on electromagnetic compatibility of electronic and electrotechnical devices. Research on new types of HV pulse generators were carried out partially under contracts with industrial laboratories. In

  11. Annual report:- Autumn 78 - Spring 79; Institute of Physics, Oslo University

    International Nuclear Information System (INIS)

    The main purpose is to give a survey of the research activities at the Institute and other activities are only summarily treated in the introductory chapter. Research in biophysics includes theoretical studies of positron annihilation and positronium formation and the study of radiation injuries using NMR. Experimental work in elementary particles is done at CERN. The main work in nuclear physics is based on the new 35 MeV cyclotron. Research is also done in plasma diagnostics, the ionosphere and aurorae. Theoroetical physics projects cover a wide range of subjects in nuclear, atomic and particle physics. (JIW)

  12. Distance learning for University Physics in South Africa

    Science.gov (United States)

    Cilliers, J. A.; Basson, I.

    1997-03-01

    The University of South Africa (Unisa) is one of the largest distance education universities in the world. Teaching physics at a distance is a complex and multifaceted problem which is compounded in the South African context by the diversity of educational backgrounds of the learners involved. The fact that students are distributed over a vast geographical area, presents unique problems for the incorporation of the practical component into the curriculum. Current research involves a fundamental evaluation of the aims and objectives of the introductory laboratory. The project is based on the notion that practicals, as they have been used in most physics curricula, are not particularly effective or efficient, although they are costly both financially and logistically. Design, development and delivery of efficient study material imply that there should be agreement between what the student knows and can do, and what the material offers. An in depth profile that takes into account biographic as well as cognitive characteristics of the target group, is therefore being compiled. This paper gives an overview of the specific problems and circumstances that were identified for distance education in physics in a multi-cultural society, and proposes a new model for the incorporation of the introductory laboratory into the curriculum.

  13. Physical Activity for Campus Employees: A University Worksite Wellness Program.

    Science.gov (United States)

    Butler, Carling E; Clark, B Ruth; Burlis, Tamara L; Castillo, Jacqueline C; Racette, Susan B

    2015-04-01

    Workplaces provide ideal environments for wellness programming. The purpose of this study was to explore exercise self-efficacy among university employees and the effects of a worksite wellness program on physical activity, cardiorespiratory fitness, and cardiovascular disease (CVD) risk factors. Participants included 121 university employees (85% female). The worksite wellness program included cardiovascular health assessments, personal health reports, 8 weeks of pedometer-based walking and tracking activities, and weekly wellness sessions. Daily step count was assessed at baseline, Week 4, and Week 8. Exercise self-efficacy and CVD risk factors were evaluated at baseline and follow-up. Daily step count increased from 6566 ± 258 (LSM ± SE) at baseline to 8605 ± 356 at Week 4 and 9107 ± 388 at Week 8 (P physical activity, cardiorespiratory fitness, and CVD risk factors among university employees. Exercise barriers and outcome expectations were identified and have implications for future worksite wellness programming.

  14. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  15. Physics of high performance JET plasmas in D-T

    International Nuclear Information System (INIS)

    2001-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB ''Gas Box'' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling ''Wind Tunnel'' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in

  16. Physics of high performance jet plasmas in D-T

    International Nuclear Information System (INIS)

    1999-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB 'Gas Box' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling 'Wind Tunnel' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in such

  17. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  18. Applications of Oregon State University's TRIGA reactor in health physics education

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1990-01-01

    The Oregon State University TRIGA reactor (OSTR) is used to support a broad range of traditional academic disciplines, including anthropology, oceanography, geology, physics, nuclear chemistry, and nuclear engineering. However, it also finds extensive application in the somewhat more unique area of health physics education and research. This paper summarizes these health physics applications and briefly describes how the OSTR makes important educational contributions to the field of health physics

  19. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  20. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  1. ATLAS virtual visit features Al-Quds University, a Palestinian university with campuses in Abu Dis and al-Bireh.

    CERN Multimedia

    claudia marcelloni

    2012-01-01

    Mon, 02 Apr - 14:00 CET (15:00 local) ATLAS virtual visit features Al-Quds University, a Palestinian university with campuses in Abu Dis and al-Bireh. As part of the "Physics Without Frontiers" project, funded by ICTP, Al-Quds is hosting a one day particle physics masterclass. During the day the students are given an introduction to particle physics, the LHC and the ATLAS Experiment, before having the chance to analyse real LHC data. This virtual visit comprises of a live tour around the ATLAS control room and the opportunity to ask questions to the ATLAS physicists. Al-Quds Physics has active research in accelerators, biophysics, laser, nuclear & particle, plasma, and solid state. A new collaboration is underway Forschungszentrum Jülich in spintronics, bioelectronics Alquds Physics is involved in the regional synchrotron SESAME in Jordan. Members include nine states from the region and over 10 observers worldwide. SESAME was established a long the same philosophy behind building CERN.

  2. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1987

    International Nuclear Information System (INIS)

    Akaishi, K.; Midzuno, Y.; Namba, C.

    1988-01-01

    During the past three years, the Institute acquired 47ha of land for the new site in Toki City. The new plan of a large helical system which will be undertaken in the Toki site has been developed by a special committee under the Ministry of Education, Science and Culture. After the 11th IAEA Conference held in Kyoto last autumn, the Institute started under the new organization in order to concentrate effort to the comprehensive study on toroidal confinement including the design study of the large herical system. The new organization and the related research program in this fiscal year were torus projects (NTX/JIPP T-11U tokamak, compact helical system, advanced torus experiment), RF heating, plasma and fusion technologies, theory and computer simulation, various centers and others. This report presents the summary of these research subjects. Nagoya torus experiment (NTX) and helical island diverter experiment (HIDEX) using the JIPP T-11U device, the compact helical system of Torsatron/Heliotron type, the RF system for fast wave current drive and ion Bernstein wave heating experiments in JIPP T-11U, wall-plasma interaction, NBI heating, the development of a long pulse positive ion source and a high current negative ion source, tritium diffusion and so on are reported. (K.I.)

  3. Plasma physics and instabilities

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.

    1981-01-01

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  4. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    Science.gov (United States)

    2014-06-01

    papers that are selected via strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This proceeding offers an overview on the recent advances in thermal and non-equilibrium plasmas as well as the challenges ahead in the field of plasma research and applications among engineers and scientists. It is an honor to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. The editors hope that this proceeding will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, I would like to thank the organizing committee and organizing secretariat of SPSM-26, and the participants of the conference for contribution to a successful and exciting meeting. The conference was chaired by Prof. Masaharu Shiratani, Kyushu University. I would also like to thank the financial support from The 153rd Committee on Plasma Materials Science. Editors of SPMS-26 Prof Takayuki Watanabe, Kyushu University, Japan Prof Makoto Sekine, Nagoya University, Japan Prof Takanori Ichiki, The University of Tokyo, Japan Prof Masaharu Shiratani, Kyushu University, Japan Prof Akimitsu Hatta, Kochi University of Technology, Japan Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science

  5. IPP Max Planck Institute of Plasma of Physics at Garching

    International Nuclear Information System (INIS)

    1979-01-01

    The cost accounting system of the IPP Max Planck Institute of Plasma Physics at Garching is described with all details as there are cost class accounting, cost centers, cost units and resulting overall cost summary. Detailed instructions are given about the implementation of this cost accounting system into the organisational structure of the IPP. (A.N.)

  6. Plasma chemerin in young untrained men: association with cardio-metabolic traits and physical performance, and response to intensive interval training.

    Science.gov (United States)

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-02-01

    Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, pHIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.

  7. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  8. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  9. Abstracts of annual physics conference of Iran 1373, Kordestan University, Sanandaj, 19 Aug - 1 Sep 1994

    International Nuclear Information System (INIS)

    Mirzabeygui, Jahanshah

    1994-08-01

    Collection of separate abstracts written in the proceedings of Annual Physics Conference of Iran,1373 covered following topics: Mathematical methods in physics, relativity and gravitation; The physics of elementary particles; Nuclear physics and nuclear engineering; Atomic and molecular physics, optics and magnetism; Fluids, plasma, and electric discharges; Condensed matter; Astronomy and astrophysics

  10. Wills Plasma Physics Department annual report, 1989

    International Nuclear Information System (INIS)

    1991-01-01

    An overview of the collaborative researches carried out during the 1989 at the Wills Plasma Physics Department is given. The main activities included the study of hydromagnetic surface waves and RF heating using the Tortus tokamak; the development of diagnostic techniques, particularly those based on submillimetre lasers and tunable gyrotrons; gas discharge studies and investigations of apparent cold nuclear fusion in deuterated palladium. The small research tokamak Tortus was upgraded during the year, thus enabling the machine to be routinely and reliably operated at toroidal currents around 40 kA. A list of papers published or presented at various conferences during the year is included in the Appendix

  11. Contributions to 30th European Physical Society conference on controlled fusion and plasma physics (St. Petersburg, Russia, 7-11 July 2003) from NIFS

    International Nuclear Information System (INIS)

    2003-08-01

    25 contributed papers to the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics (St. Petersburg, Russia, 7-11 July 2003) from the activity of NIFS are collected in this report. (author)

  12. Mapping university students’ epistemic framing of computational physics using network analysis

    Directory of Open Access Journals (Sweden)

    Madelen Bodin

    2012-04-01

    Full Text Available Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.

  13. Poor Physical Performance is Associated with Obesity Among University Students in China

    OpenAIRE

    Du, Tianhua; Zhu, Ergang; Jiao, Suhua

    2017-01-01

    Background The aim of this study was to explore the relationship between physical performance and BMI (body mass index) of university students in China. Material/Methods We conducted a cross-sectional study evaluating the physical performance and BMI of university students. BMI was calculated based on height and weight. Overweight and obesity were defined by the Working Group on Obesity references in China. Results A total of 2313 participants (978 males and 1335 females) were recruited in ou...

  14. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  15. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  16. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    Science.gov (United States)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  17. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  18. Moscow State University physics alumni and the Soviet Atomic Project

    International Nuclear Information System (INIS)

    Kiselev, Gennadii V

    2005-01-01

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics. (from the history of physics)

  19. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    Science.gov (United States)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  20. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    2001-01-01

    Full text: In 2000 the research activity in the Dept. P-V was concentrated upon studies in the field of high-temperature plasma physics, nuclear fusion, and plasma technology. The main topics were as follows: l. Analysis of selected problems of plasma theory, 2. Investigation of phenomena in high-current pulse discharges of the Plasma-Focus (PF) and Z-Pinch type, 3. Development of the selected methods and equipment for plasma diagnostics, 4. Research on technology of experimental facilities for basic studies and applications, 5. Studies of the modification of material surfaces by means of pulse plasma-ion streams. In a frame of theoretical studies the numerical modeling was continued for discharges in coaxial plasma accelerators. The second theoretical aim was the description of some elementary atomic processes in the quasi- classical approach. A paper on the electron scattering on the atoms and molecules was published. In the quasi- classical model, the electron spin was taken into account and trajectories of 2 electrons in the helium atom were analyzed. In the frame of experimental studies, various phenomena were investigated in PF and Z-Pinch systems. The emission of pulse electron beams and ions as well as polarized X-rays were investigated in the MAFA-PF facility. New data about polarization of selected X-ray lines were obtained (2 papers at conferences and 2 publications). Ion emission measurements performed in small-scale PF-devices at INFIP and IFAS (Argentina), and in the Micro-Capillary device at Ecole Politechnique (France), were elaborated (5 papers at conferences and 2 publications). New measurements were also performed in the Capillary Z-Pinch device at IPP in Prague. With partial support of a US research contract, studies of the optimization of a neutron yield were performed in the PF-360 facility with special cryogenic targets (made of h eavy ice'' layers) or deuterium-gas targets (10 presentations at conferences, 2 reports for EOARD, and 7 papers