WorldWideScience

Sample records for university motion

  1. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  2. Geodesic motion and confinement in Goedel's universe

    International Nuclear Information System (INIS)

    Novello, M.; Soares, I.D.; Tiomno, J.

    1982-01-01

    A complete study of geodesic motion in Goedel's universe, using the method of the Effective Potential is presented. It then emerges a clear physical picture of free motion and its stability in this universe. Geodesics of a large class have finite intervals in which the particle moves back in time (dt/ds [pt

  3. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Directory of Open Access Journals (Sweden)

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  4. University Students Alternative Conceptions On Circular Motion

    Directory of Open Access Journals (Sweden)

    Ian Phil Canlas

    2015-08-01

    Full Text Available This study attempted to find out university students alternative conceptions on circular motion. An 18-item researcher-compiled and content-validated questionnaire was administered to twenty-six 26 students taking up a program in Bachelor in Secondary Education-Physical Science in their second year enrolled in a course on mechanics. Results revealed that majority of the students possess alternative conceptions on circular motion specifically along velocity acceleration and force. Moreover results showed the inconsistencies in the students understanding of circular motion concepts.

  5. Reflected Brownian motions in the KPZ universality class

    CERN Document Server

    Weiss, Thomas; Spohn, Herbert

    2017-01-01

    This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the n-th Brownian motion is reflected from the Brownian motion with label n-1. This model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. In fact, because of the singular interaction, many universal properties can be established with rigor. They depend on the choice of initial conditions. Discussion addresses packed and periodic initial conditions (Chapter 5), stationary initial conditions (Chapter 6), and mixtures thereof (Chapter 7). The suitably scaled spatial process will be proven to converge to an Airy process in the long time limit. A chapter on determinantal random fields and another one on Airy processes are added to have the notes self-contained. These notes serve as an introduction to the KPZ universality class, illustrating the main concepts by means of a single model only. The notes will be of interest to readers from interacting diffusion processe...

  6. University Students Alternative Conceptions On Circular Motion

    OpenAIRE

    Ian Phil Canlas

    2015-01-01

    This study attempted to find out university students alternative conceptions on circular motion. An 18-item researcher-compiled and content-validated questionnaire was administered to twenty-six 26 students taking up a program in Bachelor in Secondary Education-Physical Science in their second year enrolled in a course on mechanics. Results revealed that majority of the students possess alternative conceptions on circular motion specifically along velocity acceleration and force. Moreover res...

  7. Universal CNC platform motion control technology for industrial CT

    International Nuclear Information System (INIS)

    Cheng Senlin; Wang Yang

    2011-01-01

    According to the more scanning methods and the higher speed of industrial CT, the higher precision of the motion location and the data collection sync-control is required at present, a new motion control technology was proposed, which was established based on the universal CNC system with high precision of multi-axis control. Aiming at the second and the third generation of CT scanning motion, a control method was researched, and achieved the demands of the changeable parameters and network control, Through the simulation of the second and the third generation of CT scanning motion process, the control precision of the rotation axis reached 0.001° and the linear axis reached 0.002 mm, Practical tests showed this system can meet the requirements of the multi-axis motion integration and the sync signal control, it also have advantages in the control precision and the performance. (authors)

  8. Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application.

    Science.gov (United States)

    Dos Santos, Rafael Aparecido; Derhon, Viviane; Brandalize, Michelle; Brandalize, Danielle; Rossi, Luciano Pavan

    2017-07-01

    Goniometers are commonly used to measure range of motion in the musculoskeletal system. Recently smartphone goniometry applications have become available to clinicians. Compare angular measures using a universal goniometer and a smartphone application. Thirty four healthy women with at least 20° of limited range of motion regarding knee extension were recruited. Knee flexion angles of the dominant limb were measured with a universal goniometer and the ROM © goniometric application for the smartphone. Three trained examiners compared the two assessment tools. Strong correlations were found between the measures of the universal goniometer and smartphone application (Pearson's correlation and interclass correlation coefficient > 0.93). The measurements with both devices demonstrated low dispersion and little variation. Measurements obtained using the smartphone goniometric application analyzed are as reliable as those of a universal goniometer. This application is therefore a useful tool for the evaluation of knee range of motion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effectiveness of ProTaper Universal retreatment instruments used with rotary or reciprocating adaptive motion in the removal of root canal filling material.

    Science.gov (United States)

    Capar, I D; Arslan, H; Ertas, H; Gök, T; Saygılı, G

    2015-01-01

    To compare the effectiveness of ProTaper Universal retreatment instruments with continuous rotation and adaptive motion (AM; a modified reciprocating motion that combines rotational and reciprocating motion) in the removal of filling material. Mesiobuccal root canals in 36 mandibular first molars were instrumented up to size F2 with the ProTaper Universal instrument (Dentsply Maillefer, Ballaigues, Switzerland) and filled using sealer and ProTaper Universal F2 gutta-percha cones. Gutta-percha was then down-packed and the root canal backfilled using the extruder hand-piece of the Elements Obturation System (SybronEndo, Orange, CA, USA). The teeth were assigned to two groups (n = 18), and removal of the root fillings was performed using one of the following techniques: group 1) ProTaper Universal retreatment files used with rotational motion (RM) and group 2) ProTaper Universal retreatment files used with adaptive motion (AM) (600° clockwise/0° counter-clockwise to 370° clockwise/50° counter-clockwise). The teeth were sectioned, and both halves were analysed at 8 × magnification. The percentage of remaining filling material was recorded. The data were analysed statistically using the Student's t-test at a 95% confidence level (P ProTaper Universal retreatment files with adaptive motion removed more filling materials from root canals than the rotational movement. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Universal current-velocity relation of skyrmion motion in chiral magnets

    Science.gov (United States)

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto

    2013-03-01

    Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.

  11. Motion-dependent levels of order in a relativistic universe.

    Science.gov (United States)

    Frieden, B Roy; Petri, Michael

    2012-09-01

    Consider a generally closed system of continuous three-space coordinates x with a differentiable amplitude function ψ(x). What is its level of order R? Define R by the property that it decreases (or stays constant) after the system is coarse grained. Then R turns out to obey R=8(-1)L(2)I,where quantity I=4∫dx[nabla]ψ(*)·[nabla]ψ is the classical Fisher information in the system and L is the longest chord that can connect two points on the system surface. In general, order R is (i) unitless, and (ii) invariant to uniform stretch or compression of the system. On this basis, the order R in the Universe was previously found to be invariant in time despite its Hubble expansion, and with value R=26.0×10(60) for flat space. By comparison, here we model the Universe as a string-based "holostar," with amplitude function ψ(x)[proportionality]1/r over radial interval r=(r(0),r(H)). Here r(0) is of order the Planck length and r(H) is the radial extension of the holostar, estimated as the known value of the Hubble radius. Curvature of space and relative motion of the observer must now be taken into account. It results that a stationary observer observes a level of order R=(8/9)(r(H)/r(0))(3/2)=0.42×10(90); while for a free-falling observer R=2(-1)(r(H)/r(0))(2)=0.85×10(120). Both order values greatly exceed the above flat-space value. Interestingly, they are purely geometric measures, depending solely upon ratio r(H)/r(0). Remarkably, the free-fall value ~10(120) of R approximates the negentropy of a universe modeled as discrete. This might mean that the Universe contains about equal amounts of continuous and discrete structure.

  12. Fatigue resistance of rotary ProTaper Universal instruments after use with and without lateral pressure motion

    OpenAIRE

    Vieira, Evandro Pires; Pereira, Érika Sales Joviano; Peixoto, Isabella Faria da Cunha; Buono, Vicente Tadeu Lopes; Bahia, Maria Guiomar de Azevedo

    2016-01-01

    Aim: To evaluate the fatigue resistance of rotary ProTaper Universal instruments after multiple clinical uses with and without lateral pressure motion. Methods: Thirty sets of ProTaper Universal (PTU) instruments (Dentsply-Maillefer, Ballaigues, Switzerland), types S1, S2, F1 and F2, totaling 120 files, were analyzed and divided into three groups, as follows: Control Group (CG), with 10 sets of new instruments, which were fatigue tested until rupture to determine their fatigue resistance; Lat...

  13. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  14. Retarded coordinates based at a world line and the motion of a small black hole in an external universe

    International Nuclear Information System (INIS)

    Poisson, Eric

    2004-01-01

    In the first part of this article I present a system of retarded coordinates based at an arbitrary world line of an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line's acceleration vector and the spacetime's Riemann tensor evaluated at the world line. The formalism is illustrated in two examples, the first involving a comoving world line of a spatially flat cosmology, the other featuring an observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented in the second part of the article, in which I consider the motion of a small black hole in an empty external universe. I use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal field of the external universe, and the metric of the external universe perturbed by the presence of the black hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole

  15. Development of a Motion Sensing and Automatic Positioning Universal Planisphere Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2017-01-01

    Full Text Available This study combines the augmented reality technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to develop a motion sensing and automatic positioning universal planisphere. It can create local star charts according to the current date, time, and position and help users locate constellations on the planisphere easily through motion sensing operation. By holding the mobile device towards the target constellation in the sky, the azimuth and elevation angles are obtained automatically for mapping to its correct position on the star chart. The proposed system combines observational activities with physical operation and spatial cognition for developing correct astronomical concepts, thus making learning more effective. It contains a built-in 3D virtual starry sky to enable observation in classroom for supporting teaching applications. The learning process can be shortened by setting varying observation date, time, and latitude. Therefore, it is a useful tool for astronomy education.

  16. Constraints on the nature of inertial motion arising from the universality of free fall and the conformal causal structure of space-time

    International Nuclear Information System (INIS)

    Coleman, R.A.; Korte, H.

    1984-01-01

    According to the principle of the universality of free fall, the motions of all neutral monopole particles are governed by one common path structure. This principle does not, however, require the path structure to be geodesic; that is, the path structure need not be a projective structure. It is shown that any equation of motion structure (either a curve or a path structure) that has sufficient microisotropy to be compatible with the conformal causal structure of space-time must be geodesic and must be unique. Hence, the empirically well-supported principles of conformal causality and of the universality of free fall together require the existence of a unique Weyl structure on space-time

  17. Smartphone and Universal Goniometer for Measurement of Elbow Joint Motions: A Comparative Study

    Science.gov (United States)

    Behnoush, Behnam; Tavakoli, Nasim; Bazmi, Elham; Nateghi Fard, Fariborz; Pourgharib Shahi, Mohammad Hossein; Okazi, Arash; Mokhtari, Tahmineh

    2016-01-01

    Background Universal goniometer (UG) is commonly used as a standard method to evaluate range of motion (ROM) as part of joint motions. It has some restrictions, such as involvement of both hands of the physician, leads to instability of hands and error. Nowadays smartphones usage has been increasing due to its easy application. Objectives The study was designed to compare the smartphone inclinometer-based app and UG in evaluation of ROM of elbow. Materials and Methods The maximum ROM of elbow in position of flexion and pronation and supination of forearm were examined in 60 healthy volunteers with UG and smartphone. Data were analyzed using SPSS (ver. 16) software and appropriate statistical tests were applied, such as paired t-test, ICC and Bland Altman curves. Results The results of this study showed high reliability and validity of smartphone in regarding UG with ICC > 0.95. The highest reliability for both methods was in elbow supination and the lowest was in the elbow flexion (0.84). Conclusions Smartphones due to ease of access and usage for the physician and the patient, may be good alternatives for UG. PMID:27625754

  18. Universal equations and constants of turbulent motion

    International Nuclear Information System (INIS)

    Baumert, H Z

    2013-01-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t −1 . With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/√(2 π)= 0.399. Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1/3 (4 π) 2/3 =1.802, well within the scatter range of observational, experimental and direct numerical simulation results. (paper)

  19. Universal equations and constants of turbulent motion

    Science.gov (United States)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  20. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  1. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  2. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  3. Individuality and togetherness in joint improvised motion.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  4. Individuality and togetherness in joint improvised motion.

    Science.gov (United States)

    Hart, Yuval; Noy, Lior; Feniger-Schaal, Rinat; Mayo, Avraham E; Alon, Uri

    2014-01-01

    Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  5. Universal self-similarity of propagating populations.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  6. Universal self-similarity of propagating populations

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  7. University physics

    CERN Document Server

    Arfken, George

    1984-01-01

    University Physics provides an authoritative treatment of physics. This book discusses the linear motion with constant acceleration; addition and subtraction of vectors; uniform circular motion and simple harmonic motion; and electrostatic energy of a charged capacitor. The behavior of materials in a non-uniform magnetic field; application of Kirchhoff's junction rule; Lorentz transformations; and Bernoulli's equation are also deliberated. This text likewise covers the speed of electromagnetic waves; origins of quantum physics; neutron activation analysis; and interference of light. This publi

  8. Brownian motion in Robertson-Walker spacetimes from electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Bessa, Carlos H. G.; Bezerra, V. B.; Ford, L. H.

    2009-01-01

    We consider the effects of the vacuum fluctuations of a quantized electromagnetic field on particles in an expanding universe. We find that these particles typically undergo Brownian motion and acquire a nonzero mean squared velocity that depends on the scale factor of the universe. This Brownian motion can be interpreted as due to noncancellation of anticorrelated vacuum fluctuations in the time-dependent background spacetime. Alternatively, one can interpret this effect as the particles acquiring energy from the background spacetime geometry, a phenomenon that cannot occur in a static spacetime. We treat several types of coupling between the electromagnetic field and the particles and several model universes. We also consider both free particles, which, on the average, move on geodesics, and particles in bound systems. There are significant differences between these two cases, which illustrates that nongeodesic motion alters the effects of the vacuum fluctuations. We discuss the possible applications of this Brownian motion effect to cosmological scenarios.

  9. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    Science.gov (United States)

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  10. Effects of interactive technology, teacher scaffolding and feedback on university students' conceptual development in motion and force concepts

    Science.gov (United States)

    Stecklein, Jason Jeffrey

    The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.

  11. Measurements of boat motion in waves at Durban harbour for qualitative validation of motion model

    CSIR Research Space (South Africa)

    Mosikare, OR

    2010-09-01

    Full Text Available in Waves at Durban Harbour for Qualitative Validation of Motion Model O.R. Mosikare1,2, N.J. Theron1, W. Van der Molen 1 University of Pretoria, South Africa, 0001 2Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, 0001... stream_source_info Mosikare_2010.pdf.txt stream_content_type text/plain stream_size 3033 Content-Encoding UTF-8 stream_name Mosikare_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Measurements of Boat Motion...

  12. Universe unfolding

    International Nuclear Information System (INIS)

    King, I.R.

    1976-01-01

    Topics covered the setting; looking at the stars; the earth; time, place and the sky; our satellite, the moon; orbits and motion; the motions of the planets; the Copernican revolution; the planets; the other bodies of the solar system; ages, origins, and life; introducing the stars; sorting out the stars; binary stars--two are better than one; variable stars--inconstancy as a virtue; the secrets of starlight--unraveling the spectrum; the sun--our own star; the structure of a star; interstellar material; the Milky Way, our home galaxy; galaxies--the stellar continents; cosmic violence--from radio galaxies to quasars; the universe; and epilogue. The primary emphasis is on how we have come to know what we know about the universe. Star maps are included

  13. Motion Control with Vision

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  14. Dance notations and robot motion

    CERN Document Server

    Abe, Naoko

    2016-01-01

    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  15. The link between Movability Number and Incipient Motion in river ...

    African Journals Online (AJOL)

    2009-06-05

    Jun 5, 2009 ... d. Median sediment diameter (mm or m). D. Hydraulic mean depth (m) d/Y. Relative ... Motion as well as a new bedload transportation equation. Additional ... Incipient Motion, in the context of sediment transport in rivers, ...... Eng. Part 2 59 827-835. ... Report of the Environmental Research Center, University.

  16. Newton's laws of motion in form of Riccati equation

    OpenAIRE

    Nowakowski, M.; Rosu, H. C.

    2001-01-01

    We discuss two applications of Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential $V(r)=k r^{\\epsilon}$. For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, ...

  17. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion

    Directory of Open Access Journals (Sweden)

    Apoorva Gaidhani

    2017-12-01

    Full Text Available Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.

  18. Brane-world motion in compact dimensions

    Science.gov (United States)

    Greene, Brian; Levin, Janna; Parikh, Maulik

    2011-08-01

    The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz

  19. InMotion : hybrid race car, beating F1 at LeMans

    NARCIS (Netherlands)

    Jacob, J.; Colin Navarrete, J.A.; Montemayor, H.; Sepac, D.; Trinh, H.D.; Voorderhake, S.F.; Zidkova, P.; Paulides, J.J.H.; Borisavljevic, A.; Lomonova, E.

    2013-01-01

    This paper presents the design of a hybrid electric powertrain for the InMotion IM01 race car. InMotion is a multidisciplinary project group of experienced master students, PhD students, and professors from Eindhoven University of Technology (TU/e). The authors of this paper were involved in the

  20. A comparative analysis of modal motions for the gyroscopic and non-gyroscopic two degree-of-freedom conservative systems

    Science.gov (United States)

    Yang, Xiao-Dong; An, Hua-Zhen; Qian, Ying-Jing; Zhang, Wei; Melnik, Roderick V. N.

    2016-12-01

    The synchronous in-unison motions in vibrational mechanics and the non-synchronous out-of-unison motions are the most frequently found periodic motions in every fields of science and everywhere in the universe. In contrast to the in-unison normal modes, the out-of-unison complex modes feature a π/2 phase difference. By the complex mode analysis we classify the out-of-unison planar motion into two types, gyroscopic motions and elliptic motions. It is found that the gyroscopic and elliptic motions have different characteristics for a two degree-of-freedom (2DOF) system. The gyroscopic motion involves two distinct frequencies with, respectively, two corresponding complex modes. However, the elliptic motion the nonlinear non-gyroscopic 2DOF system with repeated frequencies involves only single frequency with corresponding two complex modes. The study of the differences and similarities of the gyroscopic and elliptic modes sheds new light on the in-depth mechanism of the planar motions in the universe and the man-made engineering systems.

  1. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

    Science.gov (United States)

    Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2017-06-01

    Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc

  2. Reflections on Students’ Projects with Motion Sensor Technologies in a Problem-Based Learning Environment

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga; Triantafyllidis, George

    2014-01-01

    Game-based learning (GBL) has been applied in many fields to enhance learning motivations. In recent years, motion sensor technologies have been also introduced in GBL with the aim of using active, physical modalities to facilitate the learning process, while fostering social development...... and collaboration (when these activities involve more than one student at a time). The approaches described in literature, which used motion sensors in GBL, cover a broad spectrum of educational fields. These approaches investigated the effect of learning games using motion sensors on the development of specific...... skills or on the learning experience. This paper presents our experiences on the educational use of motion sensor technologies. Our research was conducted at the department of Medialogy in Aalborg University Copenhagen. Aalborg University applies a problem-based, project-organized model of teaching...

  3. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  4. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  5. Transition from AdS universe to DS universe in the BPP model

    International Nuclear Information System (INIS)

    Kim, Wontae; Yoon, Myungseok

    2007-01-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models

  6. Lumbar motion changes in chronic low back pain patients

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Hartvigsen, Jan; Boyle, Eleanor

    2014-01-01

    BACKGROUND CONTEXT: Several therapies have been used in the treatment of chronic low back pain, including various exercise strategies and spinal manipulative therapy. A common belief is that spinal motion changes in particular ways in direct response to specific interventions, such as exercise...... or spinal manipulation. PURPOSE: The purpose of this study was to assess changes in lumbar region motion over 12 weeks by evaluating four motion parameters in the sagittal plane and two in the horizontal plane in LBP patients treated with either exercise therapy or spinal manipulation. STUDY DESIGN......, and the University of Southern Denmark. No conflicts of interest. RESULTS: For the cohort as a whole, lumbar region motion parameters were altered over the 12-week period, except for the jerk index parameter. The group receiving spinal manipulation changed significantly in all, and the exercise groups in half...

  7. Image motion compensation on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    Science.gov (United States)

    Tarbell, T. D.; Duncan, D. W.; Finch, M. L.; Spence, G.

    1981-01-01

    The SOUP experiment on Spacelab 2 includes a 30 cm visible light telescope and focal plane package mounted on the Instrument Pointing System (IPS). Scientific goals of the experiment dictate pointing stability requirements of less than 0.05 arcsecond jitter over periods of 5-20 seconds. Quantitative derivations of these requirements from two different aspects are presented: (1) avoidance of motion blurring of diffraction-limited images; (2) precise coalignment of consecutive frames to allow measurement of small image differences. To achieve this stability, a fine guider system capable of removing residual jitter of the IPS and image motions generated on the IPS cruciform instrument support structure has been constructed. This system uses solar limb detectors in the prime focal plane to derive an error signal. Image motion due to pointing errors is compensated by the agile secondary mirror mounted on piezoelectric transducers, controlled by a closed-loop servo system.

  8. Considerations of an oscillating spiral universe cosmology

    International Nuclear Information System (INIS)

    Sachs, M.

    1989-01-01

    It is proposed that if the spiral configuration of galaxies is explicable in terms of the equations of motion of its constituent stars, as an expression of global laws of nature, then the universe as a whole may be similarly described in terms of the motions of its constituent galaxies with a similar spiral dynamics. With the functional form of the spiral paths in terms of Fresnel integrals, taken from solutions of equations in general relativity (from previous analyses of galactic configurations) the density of the universe at the big bang stage is determined. It is found to depend, numerically, on the neutron lifetime and the period of oscillation of the universe as a whole. There is some concluding discussion of the implications of this analysis of the matter of the universe at the big bang stage vis a vis the black hole state of matter

  9. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  10. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  11. WE-E-BRB-00: Motion Management for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  12. WE-E-BRB-00: Motion Management for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  13. Theory of gravitational-inertial field of universe. 2

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  14. On the 'relativistic' description of motion of soliton-like defects in elastic media

    International Nuclear Information System (INIS)

    Caccese, E.; Guarracino, F.

    2006-01-01

    An analysis of the manner of establishing a relativistic micro-universe with respect to the motion of soliton-like defects in elastic media is performed. It is demonstrated that the change of variables in the elastic-dynamic equations holding the motion of a screw dislocation must be complemented by the contraction law for the displacement vector and that a theory based on Lorentz's transformations is not the only possible framework for representing the motion of soliton-like defects

  15. The ballet of the planets a mathematician's musings on the elegance of planetary motion

    CERN Document Server

    Benson, Donald

    2012-01-01

    The Ballet of the Planets unravels the beautiful mystery of planetary motion, revealing how our understanding of astronomy evolved from Archimedes and Ptolemy to Copernicus, Kepler, and Newton. Mathematician Donald Benson shows that ancient theories of planetary motion were based on the assumptions that the Earth was the center of the universe and the planets moved in a uniform circular motion. Since ancient astronomers noted that occasionally a planet would exhibit retrograde motion--would seem to reverse its direction and move briefly westward--they concluded that the planets moved in epicyc

  16. Apsidal Motion Study of Close Binary System CW Cephei

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    2015-12-01

    Full Text Available New observations for the times of minimum lights of a well-known apsidal motion star CW Cephei were made using a 0.6 m wide field telescope at Jincheon station of Chungbuk National University Observatory, Korea during the 2015 observational season. We determined new times of minimum lights from these observations and analyzed O-C diagrams together with collected times of minima to study both the apsidal motion and the Light Time Effect (LTE suggested in the system. The new periods of the apsidal motion and the LTE were calculated as 46.6 and 39.3 years, respectively, which were similar but improved accuracy than earlier ones investigated by Han et al. (2002, Erdem et al. (2004 and Wolf et al. (2006.

  17. Rigid body motion in stereo 3D simulation

    International Nuclear Information System (INIS)

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.

  18. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  19. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  20. Newton's laws of motion in the form of a Riccati equation

    International Nuclear Information System (INIS)

    Nowakowski, Marek; Rosu, Haret C.

    2002-01-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr ε . For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems

  1. Newton's laws of motion in the form of a Riccati equation.

    Science.gov (United States)

    Nowakowski, Marek; Rosu, Haret C

    2002-04-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.

  2. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  3. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  4. WE-E-BRB-01: Personalized Motion Management Strategies for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  5. WE-E-BRB-01: Personalized Motion Management Strategies for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Zhu, X.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  6. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  7. Deterministic Brownian motion generated from differential delay equations.

    Science.gov (United States)

    Lei, Jinzhi; Mackey, Michael C

    2011-10-01

    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.

  8. Geodesic in Godel type universes

    International Nuclear Information System (INIS)

    Galvao, M.O.

    1985-01-01

    We find out the timelike and null geodesics of a certain family of Goedel-like universes, carrying out, at first, a qualitative analysis through the method of the effective potential and, subsequently, proceeding to the exact integration of the equations of motion. (author) [pt

  9. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  10. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  11. Quantum Darwinism in Quantum Brownian Motion

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  12. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  13. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  14. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  15. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  16. Patterns of ureteral motion: Data compression and statistics

    International Nuclear Information System (INIS)

    Mueller-Schauenburg, W.

    1981-01-01

    Images of ureteral peristaltics (ureteral kinetography) have been recorded at Tuebingen University Hospital since 1978. These images give a synoptical picture of ureteral motion in highly compressed form. Possibilities of data compression are discussed on the basis of functional path-time images, the ROI series, the in the path-time matrix, and the background subtraction. Particular attention is paid to problems of urethral activity statistics. (WU) [de

  17. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  18. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  19. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cone on the interlayer magnetoresistance in multilayer graphene like systems. This merging, which could be induced by a uniaxial strain, gives rise in monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase where Dirac points disappear. Based on a universal Hamiltonian proposed to describe the motion and the merging of Dirac points in two dimensional Dirac electron cr...

  20. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  1. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  2. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  3. On the stability of the Einstein universe

    International Nuclear Information System (INIS)

    Soares, I.D.

    1983-01-01

    It is shown sthat the Einstein Universe is stable by a large class of exact perturbations, which are made starting from a detailed exam of the topology of the model, and which include perturbations of the type considered by Lemaitre. The problem is reduced to the one-dimensional motion of a particle, in a potential well whose minimum corresponds to the configuration of the Einstein Universe. (Author) [pt

  4. A test case of computer aided motion planning for nuclear maintenance operation

    International Nuclear Information System (INIS)

    Schmitzberger, E.; Bouchet, J.L.; Schmitzberger, E.

    2001-01-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  5. Finding viscosity of liquids from Brownian motion at students' laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2005-01-01

    Brownian motion appears to be a good subject for investigation at advanced students' laboratory [1]. The paper presents such an investigation carried out in Physics Laboratory II at the Institute of Experimental Physics of Wroclaw University. The experiment has been designed to find viscosity of liquids from Brownian motion phenomenon. Authors use modern technology that helps to proceed with measurements and makes the procedure less time and effort consuming. Discussion of the process of setting up the experiment and the results obtained for three different solutions of glycerin in water are presented. Advantages and disadvantages of the apparatus are pointed out along with descriptions of possible future uses

  6. Motion Picture and Television Research Libraries in the Los Angeles Area.

    Science.gov (United States)

    Dumaux, Sally

    1979-01-01

    Discusses the changes in the major motion picture research collections during the past 15 years and describes the contents of the five largest remaining ones: Twentieth Century-Fox Research Library, Metro-Goldwyn-Mayer Research Library, Burbank Public Library--Warner Research Collection, Universal City Studios Research Library, Walt Disney…

  7. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  8. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  9. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Science.gov (United States)

    Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  10. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    International Nuclear Information System (INIS)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R

    2009-01-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  11. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: John.Votaw@Emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  12. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  13. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  14. Human detection and motion analysis at security points

    Science.gov (United States)

    Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.

    2003-08-01

    This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.

  15. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  16. Galaxy dynamics and the mass density of the universe.

    Science.gov (United States)

    Rubin, V C

    1993-06-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.

  17. Kinematics of Hooke universal joint robot wrists

    Science.gov (United States)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  18. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  19. Paradoxical vocal fold motion disorder in the elite athlete: experience at a large division I university.

    Science.gov (United States)

    Marcinow, Anna M; Thompson, Jennifer; Chiang, Tendy; Forrest, L Arick; deSilva, Brad W

    2014-06-01

    To review our experience at a large division I university with the diagnosis and management of paradoxical vocal fold motion disorder (PVFMD) in elite athletes. A single institution retrospective review and cohort analysis. All elite athletes (division I collegiate athletes, triathletes, and marathon runners) with a diagnosis of PVFMD were identified. All patients underwent flexible fiberoptic laryngoscopy (FFL) to confirm the diagnosis of PVFMD. The type of PVFMD therapy was identified and efficacy of treatment was graded based on symptom resolution. Forty-six consecutive athletes with PVFMD were identified. A total of 30/46 (65%) were division 1 collegiate athletes and 16/46 (35%) were triathletes or marathon runners. In comparison to a nonathlete PVFMD cohort, athletes were less likely to present with a history of reflux (P dysphagia (P < 0.01). The use of postexertion FFL provided additional diagnostic information in 11 (24%) patients. Laryngeal control therapy (LCT) was recommended for 45/46. A total of 36/45 attended at least one LCT session and 25 (69%) reported improvement of symptoms. Additionally, biofeedback, practice-observed therapy, and thyroarytenoid muscle botulinum toxin injection were required in three, two, and two patients, respectively. The addition of postexertion FFL improves the sensitivity to detect PVFMD in athletes. PVFMD in athletes responds well to LCT. However, biofeedback, practice-observed therapy, and botulinum toxin injection may be required for those patients with an inadequate response to therapy. 4. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  20. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  1. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  2. A test case of computer aided motion planning for nuclear maintenance operation

    Energy Technology Data Exchange (ETDEWEB)

    Schmitzberger, E.; Bouchet, J.L. [Electricite de France (EDF), Dept. Surveillance Diagnostic Maintenance, 78 - Chatou (France); Schmitzberger, E. [Institut National Polytechnique, CRAN, 54 - Vandoeuvre les Nancy (France)

    2001-07-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  3. The Great Attractor: At the Limits of Hubble's Law of the Expanding Universe.

    Science.gov (United States)

    Murdin, Paul

    1991-01-01

    Presents the origin and mathematics of Hubble's Law of the expanding universe. Discusses limitations to this law and the related concepts of standard candles, elliptical galaxies, and streaming motions, which are conspicuous deviations from the law. The third of three models proposed as explanations for streaming motions is designated: The Great…

  4. Newton's Path to Universal Gravitation: The Role of the Pendulum

    Science.gov (United States)

    Boulos, Pierre J.

    2006-01-01

    Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…

  5. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  6. CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Andersen, Torben O.; Hansen, Michael Rygaard

    2006-01-01

    of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from......The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...... to Conceive, Design, Implement and Operate related to en product design by them self in competition with others. The idea is based on the Danish implementation of a CDIO-Concept. A curriculum at Aalborg University, and Technical University of Denmark, offers courses for Motion Control, Fluid Power within...

  7. Pre-service Elementary Teachers Understanding on Force and Motion

    Science.gov (United States)

    Anggoro, S.; Widodo, A.; Suhandi, A.

    2017-09-01

    The research is done to investigate the understanding on the subtopic of Force and Motion that exists among the pre-services elementary teachers. The participants were 71 Elementary Teachers Study Program students in 6th and 77 one in 2nd semester at private university. Research instrument consisted of background information of respondents, belief of preconception and 8 questions that relates to Force and Motion with four alternative answers and their explained. Descriptive statistics such as percentage and bar chart were used for analyzing the data collected. Research findings have shown many participants have some misunderstand or misconception conception especially in free fall object, rest object, buoyant force and gravitation. This research recommends learning progression pre-services teachers to be exposed with conflict cognitive strategy for science conceptual change.

  8. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  9. Subatomic tracking finds clues to the unseen universe

    CERN Multimedia

    Glanz, J

    2004-01-01

    "An experiment that tracks subtle motions of subatomic particles called muons has found tantalizing evidence for a vast shadow universe of normally unseen matter existing side by side with ours, scientists at the Brookhaven National Laboratory said yesterday" (1 page)

  10. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  11. The Motion Path Study of Measuring Robot Based on Variable Universe Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Ma Guoqing

    2017-01-01

    Full Text Available For the problem of measuring robot requires a higher positioning, firstly learning about the error overview of the system, analysised the influence of attitude, speed and other factors on systematic errors. Then collected and analyzed the systematic error curve in the track to complete the planning process. The last adding fuzzy control in both cases, by comparing with the original system, can found that the method based on fuzzy control system can significantly reduce the error during the motion.

  12. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  13. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  14. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  15. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  16. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  17. Gauge theory of things alive and universal dynamics

    International Nuclear Information System (INIS)

    Mack, G.

    1994-10-01

    Positing complex adaptive systems made of agents with relations between them that can be composed, it follows that they can be described by gauge theories similar to elementary particle theory and general relativity. By definition, a universal dynamics is able to determine the time development of any such system without need for further specification. The possibilities are limited, but one of them - reproduction fork dynamics - describes DNA replication and is the basis of biological life on earth. It is a universal copy machine and a renormalization group fixed point. A universal equation of motion in continuous time is also presented. (orig.)

  18. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  19. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  20. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  1. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  2. Three Dimensional Numerical Code for the Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1987-12-01

    Full Text Available The current distribution of galaxies may contain clues to the condition of the universe when the galaxies condensed and to the nature of the subsequent expansion of the universe. The development of this large scale structure can be studied by employing N-body computer simulations. The present paper describes the code developed for this purpose. The computer code calculates the motion of collisionless matter action under the force of gravity in an expanding flat universe. The test run of the code shows the error less than 0.5% in 100 iterations.

  3. Universality of anomalous diffusion in extremely disordered systems

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Jacobsen, Jacob M.

    1996-01-01

    The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dy...

  4. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  5. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  6. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  7. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  8. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  9. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  10. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  11. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  12. The role of implied motion in engaging audiences for health promotion: encouraging naps on a college campus.

    Science.gov (United States)

    Mackert, Michael; Lazard, Allison; Guadagno, Marie; Hughes Wagner, Jessica

    2014-01-01

    Lack of sleep among college students negatively impacts health and academic outcomes. Building on research that implied motion imagery increases brain activity, this project tested visual design strategies to increase viewers' engagement with a health communication campaign promoting napping to improve sleep habits. PARTICIPANTS (N = 194) were recruited from a large southwestern university in October 2012. Utilizing an experimental design, participants were assigned to 1 of 3 conditions: an implied motion superhero spokes-character, a static superhero spokes-character, and a control group. The use of implied motion did not achieve the hypothesized effect on message elaboration, but superheroes are a promising persuasive tool for health promotion campaigns for college audiences. Implications for sleep health promotion campaigns and the role of implied motion in message design strategies are discussed, as well as future directions for research on the depiction of implied motion as it relates to theoretical development.

  13. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  14. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  15. Investigation of the density wave oscillation in ocean motions with reduced order models

    International Nuclear Information System (INIS)

    Yan, B.H.; Li, R.

    2018-01-01

    Highlights: •The parameter about the degree of instability is defined. •The results are in satisfactory agreement with experimental results. •The effect of ocean motions on DWO is analyzed quantitatively. •The results are of good universality and generality. -- Abstract: The two phase flow instability is an important phenomenon in nuclear power and thermal systems. In the research and design of small modular reactor, the effect of ocean motions on the two phase flow instability should be evaluated. In this work, the density wave oscillation in a uniformly heated channel in ocean motions is investigated with reduced order model by transforming the partial differential equations to ordinary differential equations. This kind of frequency domain method is complementary to the time domain analysis with system codes, not as alternatives. The parameter about the degree of instability is defined for the quantitative analysis of two phase flow instability. The results are in satisfactory agreement with experimental results. The effect of ocean motions on density wave oscillation in a uniformly heated channel is analyzed quantitatively. The parametric study is also carried out.

  16. Measurement of the extreme ankle range of motion required by female ballet dancers.

    Science.gov (United States)

    Russell, Jeffrey A; Kruse, David W; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew A

    2010-12-01

    Female ballet dancers require extreme ankle motion, especially plantar flexion, but research about measuring such motion is lacking. The purposes of this study were to determine in a sample of ballet dancers whether non-weight-bearing ankle range of motion is significantly different from the weight-bearing equivalent and whether inclinometric plantar flexion measurement is a suitable substitute for standard plantar flexion goniometry. Fifteen female ballet dancers (5 university, 5 vocational, and 5 professional dancers; age 21 ± 3.0 years) volunteered. Subjects received 5 assessments on 1 ankle: non-weight-bearing goniometry dorsiflexion (NDF) and plantar flexion (NPF), weight-bearing goniometry in the ballet positions demi-plié (WDF) and en pointe (WPF), and non-weight-bearing plantar flexion inclinometry (IPF). Mean NDF was significantly lower than WDF (17° ± 1.3° vs 30° ± 1.8°, P ballet proficiency. The authors conclude that assessment of extreme ankle motion in female ballet dancers is challenging, and goniometry and inclinometry appear to measure plantar flexion differently.

  17. The motion of an isolated gas group in expanding universe

    International Nuclear Information System (INIS)

    Zhang Banggu

    1993-01-01

    The contraction of an isolated gas group in the expanding universe has been discussed. It is found that in addition to the contracted conditions of the static isolated gas group, the initial gas group is straticulate statistical uniform and the initial radius is larger than a critical value D γ -1 , the contracted conditions of expanding case also include that the Hubble constant H is smaller than a constant D t

  18. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  19. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  20. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  1. Hot hadronic matter in the early universe

    International Nuclear Information System (INIS)

    Bowers, R.L.; Dykema, P.G.; Gleeson, A.M.

    1977-04-01

    A fully relativistic equation of state for hot baryonic matter was used to investigate the strong interaction contribution to the equation of motion of the Friedmann universe. A pronounced softening of the equation of state is observed near nuclear density. The significance of the results is analyzed in terms of analytic solutions for the Friedmann cosmology

  2. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.

    2009-01-01

    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency

  3. Inertial sensors as measurement tools of elbow range of motion in gerontology

    Directory of Open Access Journals (Sweden)

    Sacco G

    2015-02-01

    Full Text Available G Sacco,1–3,* JM Turpin,3,4,* A Marteu,5 C Sakarovitch,6 B Teboul,2 L Boscher,4,5 P Brocker,4 P Robert,1–3 O Guerin2,3,7 1Memory Center, Claude Pompidou Institut, Department of Geriatrics, University Hospital of Nice, Nice, France; 2Centre d’Innovation et d’Usages en Santé (CIU-S, University Hospital of Nice, Cimiez Hospital, Nice, France; 3CoBTeK Cognition Behaviour Technology EA 7276, Research Center Edmond and Lily Safra, Nice Sophia-Antipolis University, Nice, France; 4Rehabilitation Unit, Department of Geriatrics, University Hospital of Nice, Cimiez Hospital, Nice, France; 5Rehabilitation Unit, Department of Neurosciences, University Hospital of Nice, L’Archet Hospital, Nice, France; 6Department of Clinical Research and Innovation, University Hospital of Nice, Cimiez Hospital, Nice, France; 7Acute Geriatrics Unit, Department of Geriatrics, University Hospital of Nice, Cimiez Hospital, Nice, France *These authors contributed equally to this work Background and purpose: Musculoskeletal system deterioration among the aging is a major reason for loss of autonomy and directly affects the quality of life of the elderly. Articular evaluation is part of physiotherapeutic assessment and helps in establishing a precise diagnosis and deciding appropriate therapy. Reference instruments are valid but not easy to use for some joints. The main goal of our study was to determine reliability and intertester reproducibility of the MP-BV, an inertial sensor (the MotionPod® [MP] combined with specific software (BioVal [BV], for elbow passive range-of-motion measurements in geriatrics. Methods: This open, monocentric, randomized study compared inertial sensor to inclinometer in patients hospitalized in an acute, post-acute, and long-term-care gerontology unit. Results: Seventy-seven patients (mean age 83.5±6.4 years, sex ratio 1.08 [male/female] were analyzed. The MP-BV was reliable for each of the three measurements (flexion, pronation, and

  4. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    Science.gov (United States)

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent αmovement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  5. What motion is: William Neile and the laws of motion.

    Science.gov (United States)

    Kemeny, Max

    2017-07-01

    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  6. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    Science.gov (United States)

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  7. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  8. Models for universal reduction of macroscopic quantum fluctuations

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-10-01

    If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs

  9. Motion of small bodies in classical field theory

    International Nuclear Information System (INIS)

    Gralla, Samuel E.

    2010-01-01

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  10. The Grasp of Physics Concepts of Motion: Identifying Particular Patterns in Students' Thinking

    Science.gov (United States)

    Obaidat, Ihab; Malkawi, Ehab

    2009-01-01

    We have investigated the grasp of some of the basic concepts of motion by students taking the introductory physics course in Mechanics at United Arab Emirates University (UAEU). We have developed a short research-based multiple-choice test where we were able to extract some information about the state of knowledge of the students. In general, the…

  11. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    Science.gov (United States)

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  12. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  13. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  14. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  15. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    Science.gov (United States)

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  16. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish.

    Science.gov (United States)

    Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi

    2018-06-05

    Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.

  17. 41 CFR 60-30.8 - Motions; disposition of motions.

    Science.gov (United States)

    2010-07-01

    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  18. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  19. Visual search for motion-form conjunctions: is form discriminated within the motion system?

    Science.gov (United States)

    von Mühlenen, A; Müller, H J

    2001-06-01

    Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.

  20. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  1. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  2. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  3. Rethinking Faraday's law for teaching motional electromotive force

    International Nuclear Information System (INIS)

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena when teaching Faraday's law in introductory physics courses at university. We are not implying that Faraday's law should be revised, but we do want to set the stage for careful rethinking regarding the meaning and application of each term of the law as it appears in traditional introductory courses. (paper)

  4. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  5. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Valeriya Gritsenko

    Full Text Available To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery.Descriptive study of motion measured via 2 methods.Academic cancer center oncology clinic.20 women (mean age = 60 yrs were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery following mastectomy (n = 4 or lumpectomy (n = 16 for breast cancer.Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle.Correlation of motion capture with goniometry and detection of motion limitation.Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80, while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more.Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  6. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Science.gov (United States)

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  7. Cosmic strings in an open universe: Quantitative evolution and observational consequences

    International Nuclear Information System (INIS)

    Avelino, P.P.; Caldwell, R.R.; Martins, C.J.

    1997-01-01

    The cosmic string scenario in an open universe is developed - including the equations of motion, a model of network evolution, the large angular scale cosmic microwave background (CMB) anisotropy, and the power spectrum of density fluctuations produced by cosmic strings with dark matter. We first derive the equations of motion for a cosmic string in an open Friedmann-Robertson-Walker (FRW) space-time. With these equations and the cosmic string stress-energy conservation law, we construct a quantitative model of the evolution of the gross features of a cosmic string network in a dust-dominated, Ω 2 /Mpc. In a low density universe the string+CDM scenario is a better model for structure formation. We find that for cosmological parameters Γ=Ωh∼0.1 - 0.2 in an open universe the string+CDM power spectrum fits the shape of the linear power spectrum inferred from various galaxy surveys. For Ω∼0.2 - 0.4, the model requires a bias b approx-gt 2 in the variance of the mass fluctuation on scales 8h -1 Mpc. In the presence of a cosmological constant, the spatially flat string+CDM power spectrum requires a slightly lower bias than for an open universe of the same matter density. copyright 1997 The American Physical Society

  8. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  9. 12 CFR 747.23 - Motions.

    Science.gov (United States)

    2010-01-01

    ... written motions except as otherwise directed by the administrative law judge. Written memorandum, briefs... Procedure § 747.23 Motions. (a) In writing. (1) Except as otherwise provided herein, an application or request for an order or ruling must be made by written motion. (2) All written motions must state with...

  10. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  11. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons

    Directory of Open Access Journals (Sweden)

    Tselnik F.

    2015-01-01

    Full Text Available Comprised of rods and clocks, a reference system is a mere intermediary between the motion that is of interest in the problem and the motions of auxiliary test bodies the reference system is to be gauged with. However, a theory base d on such reference sys- tems might hide some features of this actual motion-to-motion correspondence, thus leaving these features incomprehensible. It is therefore d esirable to consider this corre- spondence explicitly, if only to substantiate a particular scheme. To this end, the very existence of a (local top-speed signal is shown to be sufficient to explain some peculiar- ities of the weak interaction using symmetrical configurations of auxiliary trajectories as a means for the gauge. In particular, the unification of the electromagnetic and weak interactions, parity violation, SU(2 L × U(1 group structure with the values of its cou- pling constants, and the intermediate vector boson are found to be a direct consequence of this gauge procedure.

  12. 6 CFR 13.28 - Motions.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Motions. 13.28 Section 13.28 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.28 Motions. (a) Any application to the ALJ for an order or ruling will be by motion. Motions will state the relief...

  13. 7 CFR 1.327 - Motions.

    Science.gov (United States)

    2010-01-01

    ... be in writing. The ALJ may require that oral motions be reduced to writing. (c) The ALJ may require written motions to be accompanied by supporting memorandums. (d) Within 15 days after a written motion is...) The ALJ may not grant a written motion prior to expiration of the time for filing responses thereto...

  14. General relativistic continuum mechanics and the post-Newtonian equations of motion

    International Nuclear Information System (INIS)

    Morrill, T.H.

    1991-01-01

    Aspects are examined of general relativistic continuum mechanics. Perfectly elastic materials are dealt with but not exclusively. The derivation of their equations of motion is emphasized, in the post-Newtonian approximation. A reformulation is presented based on the tetrad formalism, of Carter and Quintana's theory of general relativistic elastic continua. A field Lagrangian is derived describing perfect material media; show that the usual covariant conservations law for perfectly elastic media is fully equivalent to the Euler-Lagrange equations describing these same media; and further show that the equations of motion for such materials follow directly from Einstein's field equations. In addition, a version of this principle shows that the local mass density in curved space-time partially depends on the amount and distribution of mass energy in the entire universe and is related to the mass density that would occur if space-time were flat. The total Lagrangian was also expanded in an EIH (Einstein, Infeld, Hoffmann) series to obtain a total post-Newtonian Lagrangian. The results agree with those found by solving Einstein's equations for the metric coefficients and by deriving the post-Newtonian equations of motion from the covariant conservation law

  15. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  16. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  17. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  18. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  19. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  20. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  1. The moving minimum audible angle is smaller during self motion than during source motion.

    Directory of Open Access Journals (Sweden)

    W. Owen eBrimijoin

    2014-09-01

    Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.

  2. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    Science.gov (United States)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  3. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Science.gov (United States)

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  4. Dominant-limb range-of-motion and humeral-retrotorsion adaptation in collegiate baseball and softball position players.

    Science.gov (United States)

    Hibberd, Elizabeth E; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B

    2014-01-01

    Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Cross-sectional study. Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Baseball players had greater glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most

  5. Motion sickness: a negative reinforcement model.

    Science.gov (United States)

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  6. The phenomenological version of modified Newtonian dynamics from the relativity principle of motion

    International Nuclear Information System (INIS)

    Giné, Jaume

    2012-01-01

    In this paper, we show that it is possible to deduce the first phenomenological version of modified Newtonian dynamics (MOND) proposed by Milgrom from the relativity principle of motion in connection with the observed accelerated expansion of the universe. A new form of μ(x) in the Milgrom formula for Newton's second law is obtained. Moreover, we establish the relation between MOND and the deceleration parameter. (paper)

  7. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  8. P1-17: Pseudo-Haptics Using Motion-in-Depth Stimulus and Second-Order Motion Stimulus

    Directory of Open Access Journals (Sweden)

    Shuichi Sato

    2012-10-01

    Full Text Available Modification of motion of the computer cursor during the manipulation by the observer evokes illusory haptic sensation (Lecuyer et al., 2004 ACM SIGCHI '04 239–246. This study investigates the pseudo-haptics using motion-in-depth and second-order motion. A stereoscopic display and a PHANTOM were used in the first experiment. A subject was asked to move a visual target at a constant speed in horizontal, vertical, or front-back direction. During the manipulation, the speed was reduced to 50% for 500 msec. The haptic sensation was measured using the magnitude estimation method. The result indicates that perceived haptic sensation from motion-in-depth was about 30% of that from horizontal or vertical motion. A 2D display and the PHANTOM were used in the second experiment. The motion cue was second order—in each frame, dots in a square patch reverses in contrast (i.e., all black dots become white and all white dots become black. The patch was moved in a horizontal direction. The result indicates that perceived haptic sensation from second-order motion was about 90% of that from first-order motion.

  9. Prediction of Motion Induced Image Degradation Using a Markerless Motion Tracker

    DEFF Research Database (Denmark)

    Olsen, Rasmus Munch; Johannesen, Helle Hjorth; Henriksen, Otto Mølby

    In this work a markerless motion tracker, TCL2, is used to predict image quality in 3D T1 weighted MPRAGE MRI brain scans. An experienced radiologist scored the image quality for 172 scans as being usable or not usable, i.e. if a repeated scan was required. Based on five motion parameters......, a classification algorithm was trained and an accuracy for identifying not usable images of 95.9% was obtained with a sensitivity of 91.7% and specificity of 96.3%. This work shows the feasibility of the markerless motion tracker for predicting image quality with a high accuracy....

  10. Physical Pendulum Experiments to Enhance the Understanding of Moments of Inertia and Simple Harmonic Motion

    Science.gov (United States)

    Richardson, Tim H.; Brittle, Stuart A.

    2012-01-01

    This paper describes a set of experiments aimed at overcoming some of the difficulties experienced by students learning about the topics of moments of inertia and simple harmonic motion, both of which are often perceived to be complex topics amongst students during their first-year university courses. By combining both subjects in a discussion…

  11. The Dynamics of Large-Amplitude Motion in Energized Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).

  12. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  13. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  14. The Friedmann universe and the world potential

    International Nuclear Information System (INIS)

    Voracek, P.

    1981-01-01

    In Section 1 of the paper the energy equation of the Friedmann universe, when matter dominates over radiation, is discussed. It is known that the value of the world potential is constant everywhere in the Universe, despite the pulsation motion of the Universe or a possible transformation of pulsation energy into matter or vice versa. The condition for the Universe being closed is deduced. Furthermore, the possibility to define the mass-energy of the Universe is discussed; and the conclusion is arrived at the mass-energy of Universe relative to an observer in the non-metric space outside the Universe is equal to zero; i.e. the Universe orginated as a vacuum fluctation. Finally, the view-point of an external observer is described. Such an observer can claim that our closed Universe is a black hole in an non-metric empty space. Besides, the differences between such a black hole and the astrophysical black holes are indicated. In Section 2 the origin of the gravitational force retarding the expansion is discussed, using the properties of the relativistic gravitational potential. In contradiction to Section 1, the view-point of an inner observer (inside the Universe) is used here. It is concluded that the boundary of the closed Universe is an unlocalizable potential barrier. In Section 3 of the paper the apparent discrepancy between Mach's principle and the general theory of relativity is resolved. (orig./WL)

  15. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    Science.gov (United States)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  16. Damping forces—a friend or a foe in explaining mechanical motion?

    Science.gov (United States)

    Bartos, Jirí; Musilová, Jana

    2006-03-01

    This paper presents simple, cheap, easily accessible and, for students, impressive demonstration experiments for three typical examples of physical systems for which damping forces ought to be involved in the equations of motion: a body falling in air, a damped mechanical oscillator, and Foucault currents. The various models of such forces are studied using an elementary physical and mathematical approach. It appears, maybe as a slightly surprising result, that a commonly used model of damping forces in mechanics—air drag force linearly depending on velocity—is not realistic in many typical situations. Equations of motion are solved numerically with standard software packages, even in cases where an analytical solution exists. Thus, the explanation of solved problems is on a level corresponding to an undergraduate university course in general physics. The results of these demonstration experiments are compared with the graphical outputs of numerical solutions.

  17. Damping forces-a friend or a foe in explaining mechanical motion?

    International Nuclear Information System (INIS)

    Bartos, JirI; Musilova, Jana

    2006-01-01

    This paper presents simple, cheap, easily accessible and, for students, impressive demonstration experiments for three typical examples of physical systems for which damping forces ought to be involved in the equations of motion: a body falling in air, a damped mechanical oscillator, and Foucault currents. The various models of such forces are studied using an elementary physical and mathematical approach. It appears, maybe as a slightly surprising result, that a commonly used model of damping forces in mechanics-air drag force linearly depending on velocity-is not realistic in many typical situations. Equations of motion are solved numerically with standard software packages, even in cases where an analytical solution exists. Thus, the explanation of solved problems is on a level corresponding to an undergraduate university course in general physics. The results of these demonstration experiments are compared with the graphical outputs of numerical solutions

  18. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  20. How much motion is too much motion? Determining motion thresholds by sample size for reproducibility in developmental resting-state MRI

    Directory of Open Access Journals (Sweden)

    Julia Leonard

    2017-03-01

    Full Text Available A constant problem developmental neuroimagers face is in-scanner head motion. Children move more than adults and this has led to concerns that developmental changes in resting-state connectivity measures may be artefactual. Furthermore, children are challenging to recruit into studies and therefore researchers have tended to take a permissive stance when setting exclusion criteria on head motion. The literature is not clear regarding our central question: How much motion is too much? Here, we systematically examine the effects of multiple motion exclusion criteria at different sample sizes and age ranges in a large openly available developmental cohort (ABIDE; http://preprocessed-connectomes-project.org/abide. We checked 1 the reliability of resting-state functional magnetic resonance imaging (rs-fMRI pairwise connectivity measures across the brain and 2 the accuracy with which we can separate participants with autism spectrum disorder from typically developing controls based on their rs-fMRI scans using machine learning. We find that reliability on average is primarily sensitive to the number of participants considered, but that increasingly permissive motion thresholds lower case-control prediction accuracy for all sample sizes.

  1. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  2. From Moon-fall to motions under inverse square laws

    International Nuclear Information System (INIS)

    Foong, S K

    2008-01-01

    The motion of two bodies, along a straight line, under the inverse square law of gravity is considered in detail, progressing from simpler cases to more complex ones: (a) one body fixed and one free, (b) both bodies free and identical mass, (c) both bodies free and different masses and (d) the inclusion of electrostatic forces for both bodies free and different masses. The equations of motion (EOM) are derived starting from Newton's second law or from conservation of energy. They are then reduced to dimensionless EOM using appropriate scales for time and distance. Solutions of the dimensionless EOM as well as the original EOM are given. The time interval for the bodies to fall is expressed as a function of the distance fallen. Formulae for the inverse were obtained. The coalescence times for the different cases are (a) π/2√2 √(L 3 /(Gm 1 )) where L is the initial separation of the two bodies and m 1 is the mass of the fixed body, (b) and (c) t=π/2√2 √(L 3 /(Gm T )) where m T is the total mass of the two bodies and (d) t=π/2√2 √(L 3 /[Gm T (1-Λ)]) where Λ=(kq 1 q 2 )/(Gm 1 m 2 ) and is a measure of the ratio of the electrostatic force to gravity. The last formula may also be used when Λ≥1 with the interpretation that there is no collision if t is infinity or imaginary. We also discuss this motion along the straight line as a special case of the general elliptic motion of two bodies. I believe that this paper will be useful to university tutors as well as undergraduate and even graduate students who prefer to consider the special case before the general case, and their relationship

  3. Simple 3-D stimulus for motion parallax and its simulation.

    Science.gov (United States)

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces.

  4. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  5. Analytical Analysis of Motion Separability

    Directory of Open Access Journals (Sweden)

    Marjan Hadian Jazi

    2013-01-01

    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  6. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wang, H [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Bashir, M [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  7. Haptically Induced Illusory Self-motion and the Influence of Context of Motion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Nordahl, Rolf; Sikström, Erik

    2012-01-01

    of the feet. The experiment was based on the a within-subjects design and included four conditions, each representing one context of motion: an elevator, a train compartment, a bathroom, and a completely dark environment. The audiohaptic stimuli was identical across all conditions. The participants’ sensation...... of movement was assessed by means of existing measures of illusory self-motion, namely, reported self-motion illusion per stimulus type, illusion compellingness, intensity and onset time. Finally the participants were also asked to estimate the experienced direction of movement. While the data obtained from...

  8. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  9. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system

    NARCIS (Netherlands)

    Heitwerth, J.; Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of

  10. 19 CFR 210.15 - Motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Motions. 210.15 Section 210.15 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.15 Motions. (a) Presentation and disposition. (1) During the period...

  11. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  12. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    Science.gov (United States)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  13. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  14. 19 CFR 210.26 - Other motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Other motions. 210.26 Section 210.26 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.26 Other motions. Motions pertaining to discovery shall be filed in...

  15. Inertial motion capture system for biomechanical analysis in pressure suits

    Science.gov (United States)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  16. The Impact of Explicit Instruction and Metalinguistic Awareness on Crosslinguistic Interference: Path Framing in Motion Events

    Directory of Open Access Journals (Sweden)

    Abdurrahaman KİLİMCİ

    2017-10-01

    Full Text Available The study aimed to investigate the influence of the cross-linguistic variation on the construction of boundarycrossing motion events in the translation production of the Turkish speakers of L2 English and to measure the impact of explicit instruction and metalinguistic awareness on the learners’ understanding of typological differences and hence their development of L2 ways of expressing motion events. To this aim, the study followed a pre-test post-test quasi-experimental research design, involving a treatment and a control group. A total of 46 second-year university students participated in the study. They were all majoring in English at the English Language Teaching Department, at a state university in Turkey. The control (18 females and 5 males and the treatment group (14 females and 9 males received a two-week instructional treatment, the first group receiving an implicit instruction, and the second an explicit instruction of the boundary-crossing motion event constructions. Prior to the instructional intervention, a pre-test was administered to the participants. Mann-Whitney U test run on the mean scores obtained from the pre-tests indicated no significant differences between the control and the treatment group, U = 282.5, z = .416, p = .678. Within-group analysis based on post-test results after the termination of the instructional treatment revealed that while the implicit instruction had no effect on learners’ acquisition of motion events, z = 1.842, p = .066., the explicit instruction had a significant effect on L1 Turkish learners’ development of their knowledge of L2-like English patterns in construing motion events. Similarly, between-group analysis revealed that the treatment group (Mdn = 4.00, who received an explicit instruction significantly outperformed the control group (Mdn = 2.00, who received implicit instruction, U = 410.5, z = 3.257, p = .001. The study concluded with the implications of findings for English

  17. Motion systems providing three or four degrees of freedom

    Science.gov (United States)

    Chou, Richard C. (Inventor)

    1982-01-01

    A motion system is provided by a platform generally parallel to a base and connected thereto by a column and powered and controlled extensible members, at least three of which are connected between distributed points around the column. In a three degree of freedom device, the column is conical, rigidly supported at its base with a universal joint at its top. The points of attachment define triangles in the base and in the platform surrounding the column with one extensible member connected between each. In the four degree of freedom version, the column is modified by making it effectively a column which is pivoted or guided at the base or contains an extensible member, preferably retains its triangular shape and its universal joint connection to the platform at its apex. For stability four powered and controlled extensible members are provided between points in the base and platform distributed around the column, a preferred pattern of arrangement being a square with the column at the center.

  18. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  19. On the use of history of mathematics: an introduction to Galileo's study of free fall motion

    Science.gov (United States)

    Ponce Campuzano, Juan Carlos; Matthews, Kelly E.; Adams, Peter

    2018-05-01

    In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year university students through Galileo's experiments designed to investigate the motion of falling bodies, and his geometrical explanation of his results, via simple dynamic geometric applets designed with GeoGebra. Our goal was to enhance the students' development of mathematical thinking. Through a scholarship of teaching and learning study design, we captured data from students before, during and after the activity. Findings suggest that the historical development presented to the students helped to show the growth and evolution of the ideas and made visible authentic ways of thinking mathematically. Importantly, the activity prompted students to question and rethink what they knew about speed and acceleration, and also to appreciate the novel concepts of instantaneous speed and acceleration at which Galileo arrived.

  20. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  1. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  2. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Science.gov (United States)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  3. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  4. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  5. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  6. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  7. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  8. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  9. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  10. Synergetic structuralization of matter from the gaseous state in an expanding universe

    International Nuclear Information System (INIS)

    Krempasky, J.

    1988-01-01

    The equation of evolution for the density of matter in an expanding universe is derived. The theory is based on the assumption that the formation of matter structures (galaxies and stars) starts from a gas-like material which is in a hydrodynamical motion due to Hubble's velocity. The influence of gravitation, rotation, diffusion and the scattering of particles due to thermal motion is taken into account. It is shown that the equation of evolution has two bifurcation points. One of them corresponds to the formation of galaxies and the other to the formation of stars. The critical mass of galaxies and stars is determined by the formula which is practically identical to the well-known Jeans formula. The present approach allows to calculate the critical time of the structuralisation of matter in an expanding universe, to explain the shape of galaxies and potentially also the mass spectrum of galaxies and stars. (author). 20 refs

  11. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  12. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Science.gov (United States)

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was quality assurance and commissioning of motion management systems in radiation oncology.

  13. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  14. Human motion retrieval from hand-drawn sketch.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  15. Motion description for data compression and classification

    International Nuclear Information System (INIS)

    Lades, M.

    1998-01-01

    Data compression and processing of image sequences are becoming increasingly important in the era of the information superhighway. This project aims at the development and proof-of-principle of new methods for motion extraction, image sequence compression, and motion analysis. These methods will increase the efficiency of recognition systems and various database applications. The early research into such novel concepts at the forefront of computer vision will benefit LLNL and DOE in all areas associated with archived images and image sequence data. Automated security and surveillance applications are also of special interest in this context. In FY 1997, we started developing a parallel implementation of the face recognition paradigm on the message passing interface (MPI). A parallel implementation is essential to understanding the structure of large image-databases. Our algorithms are now available to interested parties for applications such as scientific data management (SDM). We also are implementing our new algorithms as a growing library of C++ objects. During FY 1997, we focused our research efforts on designing and delivering hardware. In particular, we (1) established the capability to design new retinas and other very-large-scale integrated (VLSI) hardware at LLNL's Institute for Scientific Computing Research (ISCR) and (2) fabricated prototypes through MOSIS, a University of Southern California center for experimental VLSI design. Leveraging our connections to the analog VLSI research community -- particularly connections with the California Institute of Technology, the University of Zurich, and the University of California, San Diego -- we collaborated with Southern Illinois University (SIU) to develop a novel silicon retina with mixed signal processing capabilities. The ITTRACS device delivers the equivalent of 50 x 10 9 operations (50 GOPS) per second. It performs light detection with logarithmic sensitivity, edge extraction, frame differencing, and

  16. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  17. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  18. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  19. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  20. Tongue motion variability with changes of upper airway stimulation electrode configuration and effects on treatment outcomes.

    Science.gov (United States)

    Steffen, Armin; Kilic, Ayse; König, Inke R; Suurna, Maria V; Hofauer, Benedikt; Heiser, Clemens

    2017-12-27

    Upper airway stimulation (UAS) is an effective treatment for obstructive sleep apnea (OSA). Previous data have demonstrated a correlation between the phenotype of tongue motion and therapy response. Closed loop hypoglossal nerve stimulation implant offers five different electrode configuration settings which may result in different tongue motion. Two-center, prospective consecutive trial in a university hospital setting. Clinical outcomes of 35 patients were analyzed after at least 12 months of device use. Tongue motion was assessed at various electrode configuration settings. Correlation between the tongue motion and treatment response was evaluated. OSA severity was significantly reduced with the use of UAS therapy (P < .001). Changes in tongue motion patterns were frequently observed (58.8%) with different electrode configuration settings. Most of the patients alternated between right and bilateral protrusion (73.5%), which are considered to be the optimal phenotypes for selective UAS responses. Different voltage settings were required to achieve functional stimulation levels when changing between the electrode settings. UAS is highly effective for OSA treatment in selected patients with an apnea-hypopnea index between 15 and 65 events per hour and higher body mass index. Attention should be given to patients with shifting tongue movement in response to change of electrode configuration. The intraoperative cuff placement should be reassessed when tongue movement shifting is observed. 4 Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  2. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  3. Cosmological evolution of a brane Universe in a type 0 string background

    International Nuclear Information System (INIS)

    Papantonopoulos, E.; Pappa, I.

    2002-01-01

    We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. For constant values of tachyon and dilaton an inflationary phase is appearing. For non constant values of tachyon and dilaton and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to 1/(log α) 4 indicating a slowly varying inflationary phase

  4. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  5. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  6. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.

    Science.gov (United States)

    Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred

    2006-08-15

    The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.

  7. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  8. Programmable motion of DNA origami mechanisms.

    Science.gov (United States)

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  9. Programmable motion of DNA origami mechanisms

    Science.gov (United States)

    Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.

    2015-01-01

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550

  10. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  11. Psychophysical evidence for auditory motion parallax.

    Science.gov (United States)

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  12. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  13. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  14. University physics Arfken Griffing Kelly Priest

    CERN Document Server

    Houk, T William; Snider, John W

    1984-01-01

    University Physics: Arfken Griffing Kelly Priest covers the concepts upon which the quantitative nature of physics as a science depends; the types of quantities with which physics deals are defined as well as their nature; and the concepts of units and dimensions. The book describes the concepts of scalars and vectors; the rules for performing mathematical operations on vector quantities; the concepts of force, torque, center of gravity, and types of equilibrium. The text also describes the concepts and quantities required to describe motion; the linear kinematical relationships to describe m

  15. Joint Motion Quality in Chondromalacia Progression Assessed by Vibroacoustic Signal Analysis.

    Science.gov (United States)

    Bączkowicz, Dawid; Majorczyk, Edyta

    2016-11-01

    Because of the specific biomechanical environment of the patellofemoral joint, chondral disorders, including chondromalacia, often are observed in this articulation. Chondromalacia via pathologic changes in cartilage may lead to qualitative impairment of knee joint motion. To determine the patellofemoral joint motion quality in particular chondromalacia stages and to compare with controls. Retrospective, comparative study. Voivodship hospitals, university biomechanical laboratory. A total of 89 knees with chondromalacia (25 with stage I; 30 with stage II and 34 with stage III) from 50 patients and 64 control healthy knees (from 32 individuals). Vibroacoustic signal pattern analysis of joint motion quality. For all knees vibroacoustic signals were recorded. Each obtained signal was described by variation of mean square, mean range (R4), and power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) parameters. Differences between healthy controls and all chondromalacic knees as well as chondromalacia patellae groups were observed as an increase of analyzed parameters (P chondromalacia patellae was found. All chondromalacia groups were differentiated by the use of all analyzed parameters (P chondromalacia. Chondromalacia generates abnormal vibroacoustic signals, and there seems to be a relationship between the level of signal amplitude as well as frequency and cartilage destruction from the superficial layer to the subchondral bone. IV. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  17. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  18. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  19. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  20. Improved motion description for action classification

    NARCIS (Netherlands)

    Jain, M.; Jégou, H.; Bouthemy, P.

    2016-01-01

    Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e., camera and scene

  1. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    International Nuclear Information System (INIS)

    Klein, P; Gröber, S; Kuhn, J; Fleischhauer, A; Müller, A

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue. (paper)

  2. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    Science.gov (United States)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  3. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  4. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  5. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  7. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  8. Motion camouflage in three dimensions

    OpenAIRE

    Reddy, P. V.; Justh, E. W.; Krishnaprasad, P. S.

    2006-01-01

    We formulate and analyze a three-dimensional model of motion camouflage, a stealth strategy observed in nature. A high-gain feedback law for motion camouflage is formulated in which the pursuer and evader trajectories are described using natural Frenet frames (or relatively parallel adapted frames), and the corresponding natural curvatures serve as controls. The biological plausibility of the feedback law is discussed, as is its connection to missile guidance. Simulations illustrating motion ...

  9. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  10. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  11. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  12. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  13. Analysis of motion in speed skating

    Science.gov (United States)

    Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei

    1997-03-01

    A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.

  14. The cosmological slingshot scenario: a stringy early times universe

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Grandi, Nicolas [SISSA, via Beirut 4, 34014 Trieste (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)], E-mail: Germani@sissa.it, E-mail: grandi@fisica.unlp.edu.ar, E-mail: kehagias@central.ntua.gr

    2008-07-07

    A cosmological model for the early time universe is proposed. In this model, the universe is a wandering brane moving in a warped throat of a Calabi-Yau space. A nonzero angular momentum induces a turning point in the brane trajectory, and leads to a bouncing cosmology as experienced by an observer living on the brane. The universe undergoes a decelerated contraction followed by an accelerating expansion and no big-bang singularity. Although the number of e-folds of accelerated motion is low (less than 2), standard cosmological problems are not present in our model; thanks to the absence of an initial singularity and the violation of energy conditions of mirage matter at high energies. Density perturbations are also calculated in our model and we find a slightly red spectral index with negligible tensorial perturbations in compatibility with WMAP data.

  15. ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

    OpenAIRE

    Brouard , Olivier; Delannay , Fabrice; Ricordel , Vincent; Barba , Dominique

    2007-01-01

    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  16. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  17. Nature of Time as the Wavy-like Motion of the Matter Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the time for an atom (body) becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity can be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time can be wavy-like and the nature of space can be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: HΨ + ∇t' = EΨ + ∂t' / ∂t , where t is time and t' is relative time: t' = t +/- Δt . AmirKabir University of Technology, Tehran, Iran.

  18. Figure-ground segregation modulates apparent motion.

    Science.gov (United States)

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  19. 39 CFR 959.26 - Motion for reconsideration.

    Science.gov (United States)

    2010-07-01

    ... clearly setting forth the points of fact and of law relied upon in support of said motion. ... 39 Postal Service 1 2010-07-01 2010-07-01 false Motion for reconsideration. 959.26 Section 959.26... PRIVATE EXPRESS STATUTES § 959.26 Motion for reconsideration. A party may file a motion for...

  20. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  1. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  2. Universality of isothermal fluid spheres in Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  3. The notion of the motion: the neurocognition of motion lines in visual narratives.

    Science.gov (United States)

    Cohn, Neil; Maher, Stephen

    2015-03-19

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Behind the scenes of the universe from the Higgs to dark matter

    CERN Document Server

    Bertone, Gianfranco

    2013-01-01

    An extraordinary discovery has recently shaken the foundations of Cosmology and Particle Physics, sparking a scientific revolution that has profoundly modified our understanding of our Universe and that is still far from over. Pioneering astronomers in the 1920s and 1930s had already noticed suspicious anomalies in the motion of celestial bodies in distant galaxies and clusters of galaxies, but it wasn't until the late 20th century that the scientific community was confronted withan astonishing conclusion: the Universe is filled with an unknown, elusive substance that is fundamentally differen

  5. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. I. Laws of motion

    International Nuclear Information System (INIS)

    Drechsler, W.; Havas, P.; Rosenblum, A.

    1984-01-01

    In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g

  6. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  7. On the Use of History of Mathematics: An Introduction to Galileo's Study of Free Fall Motion

    Science.gov (United States)

    Ponce Campuzano, Juan Carlos; Matthews, Kelly E.; Adams, Peter

    2018-01-01

    In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year…

  8. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  9. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  10. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  11. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  12. Galileo and the Problems of Motion

    Science.gov (United States)

    Hooper, Wallace Edd

    Galileo's science of motion changed natural philosophy. His results initiated a broad human awakening to the intricate new world of physical order found in the midst of familiar operations of nature. His thinking was always based squarely on the academic traditions of the spiritual old world. He advanced physics by new standards of judgment drawn from mechanics and geometry, and disciplined observation of the world. My study first determines the order of composition of the earliest essays on motion and physics, ca. 1588 -1592, from internal evidence, and bibliographic evidence. There are clear signs of a Platonist critique of Aristotle, supported by Archimedes, in the Ten Section Version of On Motion, written ca. 1588, and probably the earliest of his treatises on motion or physics. He expanded upon his opening Platonic -Archimedean position by investigating the ideas of scholastic critics of Aristotle, including the Doctores Parisienses, found in his readings of the Jesuit Professors at the Collegio Romano. Their influences surfaced clearly in Galileo's Memoranda on Motion and the Dialogue on Motion, and in On Motion, which followed, ca. 1590-1592. At the end of his sojourn in Pisa, Galileo opened the road to the new physics by solving an important problem in the mechanics of Pappus, concerning motion along inclined planes. My study investigates why Galileo gave up attempts to establish a ratio between speed and weight, and why he began to seek the ratios of time and distance and speed, by 1602. It also reconstructs Galileo's development of the 1604 principle, seeking to outline its invention, elaboration, and abandonment. Then, I try to show that we have a record of Galileo's moment of recognition of the direct relation between the time of fall and the accumulated speed of motion--that great affinity between time and motion and the key to the new science of motion established before 1610. Evidence also ties the discovery of the time affinity directly to Galileo

  13. Intelligent Motion and Interaction Within Virtual Environments

    Science.gov (United States)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  14. 39 CFR 952.27 - Motion for reconsideration.

    Science.gov (United States)

    2010-07-01

    ... forth the points of fact and of law relied upon in support of said motion. [36 FR 11563, June 16, 1971... 39 Postal Service 1 2010-07-01 2010-07-01 false Motion for reconsideration. 952.27 Section 952.27... REPRESENTATION AND LOTTERY ORDERS § 952.27 Motion for reconsideration. A party may file a motion for...

  15. Photon motion in Kerr-de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Charbulak, Daniel; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate 'effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the 'Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ, a. The motion can be of orbital type (crossing the equatorial plane, q > 0) and vortical type (tied above or below the equatorial plane, q < 0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon. (orig.)

  16. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  17. The Hubble law and the spiral structures of galaxies from equations of motion in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1975-01-01

    Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)

  18. Aristotle, Motion, and Rhetoric.

    Science.gov (United States)

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  19. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  20. Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del

    2009-01-01

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  1. Live Speech Driven Head-and-Eye Motion Generators.

    Science.gov (United States)

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  2. Evolution of universes in quadratic theories of gravity

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2006-01-01

    We use a dynamical systems approach to investigate Bianchi type I and II universes in quadratic theories of gravity. Because of the complicated nature of the equations of motion we focus on the stability of exact solutions and find that there exists an isotropic Friedmann-Robertson-Walker (FRW) universe acting as a past attractor. This may indicate that there is an isotropization mechanism at early times for these kind of theories. We also discuss the Kasner universes, elucidate the associated center manifold structure, and show that there exists a set of nonzero measure which has the Kasner solutions as a past attractor. Regarding the late-time behavior, the stability shows a dependence of the parameters of the theory. We give the conditions under which the de Sitter solution is stable and also show that for certain values of the parameters there is a possible late-time behavior with phantomlike behavior. New types of anisotropic inflationary behavior are found which do not have counterparts in general relativity

  3. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  4. On a PCA-based lung motion model

    Energy Technology Data Exchange (ETDEWEB)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B [Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843 (United States); Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110-1093 (United States); Liu Weifeng, E-mail: sbjiang@ucsd.edu [Amazon.com Inc., 701 5th Ave. Seattle, WA 98104 (United States)

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  5. On a PCA-based lung motion model.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  6. On a PCA-based lung motion model

    International Nuclear Information System (INIS)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B; Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A; Liu Weifeng

    2011-01-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  7. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    Science.gov (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mass motions in impulsive flarelike brightenings as observed by OSO 8

    International Nuclear Information System (INIS)

    Bruner, E.C. Jr.; Lites, B.W.

    1979-01-01

    CIV lambda1548 line profiles obtained with the University of Colorado spectrometer aboard OSO 8 reveal transient, redshifted brightenings in the chromosphere-corona transition region above active regions and sunspots. In these events the intensity rises by factors of up to 5 in less than the profile sampling interval of 27 s. These events indicate that the emitting material is moving downward at velocities of up to 30 km s -1 . The increase in line intensity and the amount of motion are consistent with the interpretation of these events as pressure waves propagating down magnetic flux loops

  9. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    Respiration affects the instantaneous position of almost all thoracic and abdominal structures (lung, breast, liver, pancreas, etc.), posing significant problems in the radiotherapy of tumors located at these sites. The diaphragm, for example, has been shown to move approximately 1.5 cm in the superior-inferior direction during normal breathing. During radiotherapy, margin expansion around the tumor, based on an estimate of the expected range of tumor motion, is commonly employed to ensure adequate dose coverage. Such a margin estimate may or may not encompass the 'current' extent of motion exhibited by the tumor, resulting in either a higher dose to the surrounding normal tissue or a cold spot in the tumor volume, leading to poor prognosis. Accounting for respiratory motion by active management during radiotherapy can, however, potentiate a reduction in the amount of high dose to normal tissue. Active management of respiratory motion forms the primary theme of this dissertation. Among the various techniques available to manage respiratory motion, our research focused on respiratory gated and respiration synchronized radiotherapy, with an external marker to monitor respiratory motion. Multiple session recordings of diaphragm and external marker motion revealed a consistent linear relationship, validating the use of external marker motion as a 'surrogate' for diaphragm motion. The predictability of diaphragm motion based on such external marker motion both within and between treatment sessions was also determined to be of the order of 0.1 cm. Gating during exhalation was found to be more reproducible than gating during inhalation. Although, a reduction in the 'gate' width achieved a modest reduction in the margins added around the tumor further reduction was limited by setup error. A motion phantom study of the potential gains from respiratory gating indicated margin reduction of 0.2-1.1 cm while employing gating. In addition, gating also improved the quality of

  10. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  11. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  12. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  13. Qué es Motion Graphics

    OpenAIRE

    Alonso Valdivieso, Concepción

    2016-01-01

    [EN] What exactly are ‘Motion Graphics’? Many people still aren’t entirely sure. Taken literally they are just graphics in motion, but they also mean much more than that. Motion graphics use incredibly expressive techniques and as a result are often found in advertising, corporate videos, credit sequences, etc. They can translate a complex idea into a clear message with just a few seconds of animation.At the same time they have a very particular, simple and stylish aesthetic. But, if any anim...

  14. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  15. Ion Motion in the Adiabatic Focuser

    International Nuclear Information System (INIS)

    Henestroza, E.; Sessler, A.M.; Yu, S.S.

    2006-01-01

    In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned

  16. Unconscious Local Motion Alters Global Image Speed

    Science.gov (United States)

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  17. O'Connell's process as a vicious Brownian motion

    International Nuclear Information System (INIS)

    Katori, Makoto

    2011-01-01

    Vicious Brownian motion is a diffusion scaling limit of Fisher's vicious walk model, which is a system of Brownian particles in one dimension such that if two motions meet they kill each other. We consider the vicious Brownian motions conditioned never to collide with each other and call it noncolliding Brownian motion. This conditional diffusion process is equivalent to the eigenvalue process of the Hermitian-matrix-valued Brownian motion studied by Dyson [J. Math. Phys. 3, 1191 (1962)]. Recently, O'Connell [Ann. Probab. (to be published)] introduced a generalization of the noncolliding Brownian motion by using the eigenfunctions (the Whittaker functions) of the quantum Toda lattice in order to analyze a directed polymer model in 1 + 1 dimensions. We consider a system of one-dimensional Brownian motions with a long-ranged killing term as a generalization of the vicious Brownian motion and construct the O'Connell process as a conditional process of the killing Brownian motions to survive forever.

  18. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  19. Spatial filtering precedes motion detection.

    Science.gov (United States)

    Morgan, M J

    1992-01-23

    When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.

  20. Capturing Motion and Depth Before Cinematography.

    Science.gov (United States)

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  1. Precision of working memory for visual motion sequences and transparent motion surfaces.

    Science.gov (United States)

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2011-12-01

    Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.

  2. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  3. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  4. Teasing Apart Complex Motions using VideoPoint

    Science.gov (United States)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  5. Improved motion description for action classification

    Directory of Open Access Journals (Sweden)

    Mihir eJain

    2016-01-01

    Full Text Available Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e.: camera and scene motion, significantly improves action recognition algorithms. This holds true both for the extraction of the space-time trajectories and for computation of descriptors.We designed a new motion descriptor – the DCS descriptor – that captures additional information on local motion patterns enhancing results based on differential motion scalar quantities, divergence, curl and shear features. Finally, applying the recent VLAD coding technique proposed in image retrieval provides a substantial improvement for action recognition. These findings are complementary to each other and they outperformed all previously reported results by a significant margin on three challenging datasets: Hollywood 2, HMDB51 and Olympic Sports as reported in (Jain et al. (2013. These results were further improved by (Oneata et al. (2013; Wang and Schmid (2013; Zhu et al. (2013 through the use of the Fisher vector encoding. We therefore also employ Fisher vector in this paper and we further enhance our approach by combining trajectories from both optical flow and compensated flow. We as well provide additional details of DCS descriptors, including visualization. For extending the evaluation, a novel dataset with 101 action classes, UCF101, was added.

  6. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  7. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  8. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  9. Artificial horizon effects on motion sickness and performance.

    Science.gov (United States)

    Tal, Dror; Gonen, Adi; Wiener, Guy; Bar, Ronen; Gil, Amnon; Nachum, Zohar; Shupak, Avi

    2012-07-01

    To investigate whether the projection of Earth-referenced scenes during provocative motion can alleviate motion sickness severity and prevent motion sickness-induced degradation of performance. Exposure to unfamiliar motion patterns commonly results in motion sickness and decreased performance. Thirty subjects with moderate-to-severe motion sickness susceptibility were exposed to the recorded motion profile of a missile boat under moderate sea conditions in a 3-degrees-of-freedom ship motion simulator. During a 120-minute simulated voyage, the study participants were repeatedly put through a performance test battery and completed a motion sickness susceptibility questionnaire, while self-referenced and Earth-referenced visual scenes were projected inside the closed simulator cabin. A significant decrease was found in the maximal motion sickness severity score, from 9.83 ± 9.77 (mean ± standard deviation) to 7.23 ± 7.14 (p pitch, and heave movements of the simulator. Although there was a significant decrease in sickness severity, substantial symptoms still persisted. Decision making, vision, concentration, memory, simple reasoning, and psychomotor skills all deteriorated under the motion conditions. However, no significant differences between the projection conditions could be found in the scores of any of the performance tests. Visual information regarding the vessel's movement provided by an artificial horizon device might decrease motion sickness symptoms. However, although this device might be suitable for passive transportation, the continued deterioration in performance measures indicates that it provides no significant advantage for personnel engaged in the active operation of modern vessels.

  10. Motion contrast using optical coherence tomography

    Science.gov (United States)

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  11. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  12. AMUC: Associated Motion capture User Categories.

    Science.gov (United States)

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  13. Unusual motions of a vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2003-10-01

    The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.

  14. The perception of object versus objectless motion.

    Science.gov (United States)

    Hock, Howard S; Nichols, David F

    2013-05-01

    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  15. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  16. Force and motion

    CERN Document Server

    Robertson, William C

    2002-01-01

    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  17. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  18. Design and modeling of an autonomous multi-link snake robot, capable of 3D-motion

    Directory of Open Access Journals (Sweden)

    Rizkallah Rabel

    2016-01-01

    Full Text Available The paper presents the design of an autonomous, wheeless, mechanical snake robot that was modeled and built at Notre Dame University – Louaize. The robot is also capable of 3D motion with an ability to climb in the z-direction. The snake is made of a series links, each containing one to three high torque DC motors and a gearing system. They are connected to each other through Aluminum hollow rods that can be rotated through a 180° span. This allows the snake to move in various environments including unfriendly and cluttered ones. The front link has a proximity sensor used to map the environment. This mapping is sent to a microcontroller which controls and adapts the motion pattern of the snake. The snake can therefore choose to avoid obstacles, or climb over them if their height is within its range. The presented model is made of five links, but this number can be increased as their role is repetitive. The novel design is meant to overcome previous limitations by allowing 3D motion through electric actuators and low energy consumption.

  19. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  20. An improvement of speed control performances of a two-mass system using a universal approximator

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blåbjerg, Frede

    2007-01-01

    A new control scheme using a universal approximator based on a radial basis ti.tnction network (RBFN) is proposed and investigated for improving the control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vi...

  1. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  2. DYNAMIC MAGNIFICATION OF BIOMECHANICAL SYSTEM MOTION

    Directory of Open Access Journals (Sweden)

    A. E. Pokatilov

    2017-01-01

    Full Text Available Methods for estimation of dynamic magnification pertaining to motion in biomechanics have been developed and approbаted in the paper. It has been ascertained that widely-used characteristics for evaluation of motion influence on mechanisms and machinery such as a dynamic coefficient and acceleration capacity factor become irrelevant while investigating human locomotion under elastic support conditions. The reason is an impossibility to compare human motion in case when there is a contact with elastic and rigid supports because while changing rigidity of the support exercise performing technique is also changing. In this case the technique still depends on a current state of a specific sportsman. Such situation is observed in sports gymnastics. Structure of kinematic and dynamic models for human motion has been investigated in the paper. It has been established that properties of an elastic support are reflected in models within two aspects: in an explicit form, when models have parameters of dynamic deformation for a gymnastic apparatus, and in an implicit form, when we have numerically changed parameters of human motion. The first part can be evaluated quantitatively while making comparison with calculations made in accordance with complete models. For this reason notions of selected and complete models have been introduced in the paper. It has been proposed to specify models for support and models of biomechanical system that represent models pertaining only to human locomotor system. It has been revealed that the selected models of support in kinematics and dynamics have structural difference. Kinematics specifies only parameters of elastic support deformation and dynamics specifies support parameters in an explicit form and additionally in models of human motion in an explicit form as well. Quantitative estimation of a dynamic motion magnification in kinematics and dynamics models has been given while using computing experiment for grand

  3. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  4. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songhua [ORNL; Fan, Rukun [University of North Carolina, Chapel Hill; Geng, Weidong [Zhejiang University

    2011-04-21

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  5. Example-based automatic music-driven conventional dance motion synthesis.

    Science.gov (United States)

    Fan, Rukun; Xu, Songhua; Geng, Weidong

    2012-03-01

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  6. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  7. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...

  8. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  9. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    International Nuclear Information System (INIS)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B

    2016-01-01

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  10. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  11. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  12. Kinesthetic information disambiguates visual motion signals.

    Science.gov (United States)

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  14. Proper motions and distances of quasars

    International Nuclear Information System (INIS)

    Varshni, Y.P.

    1982-01-01

    The author's theory that quasars are stars raises the question of their proper motions. From the evidence presented in a previous paper, it is hypothesised that planetary nuclei and quasars are related objects and that their distributions in the galaxy are not very different. Proper motions of 30 quasars, calculated from existing measurements, are discussed. It is shown that three of these, namely PHL 1033, LB 8956 and LB 8991, have proper motions comparable to the largest proper motion known amongst the planetary nuclei. From this it is estimated that these three quasars lie within a few hundred parsecs from the sun. The evidence presented in a previous paper and the present one clearly supports the theory that quasars are stars. The possibility of using the interstellar K and H lines as distance indicators of quasars is discussed and the available evidence summarised. The desirability of determining more accurate values of the proper motions of quasars is emphasised. (Auth.)

  15. Clustering Of Left Ventricular Wall Motion Patterns

    Science.gov (United States)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  16. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  17. Sustained attention to objects' motion sharpens position representations: Attention to changing position and attention to motion are distinct.

    Science.gov (United States)

    Howard, Christina J; Rollings, Victoria; Hardie, Amy

    2017-06-01

    In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  19. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    Science.gov (United States)

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  20. Motion simulator with exchangeable unit

    NARCIS (Netherlands)

    Mulder, J.A.; Beukers, A.; Baarspul, M.; Van Tooren, M.J.; De Winter, S.E.E.

    2001-01-01

    A motion simulator provided with a movable housing, preferably carried by a number of length-adjustable legs, in which housing projection means are arranged for visual information supply, while in the housing a control environment of a motion apparatus to be simulated is situated, the control

  1. Study on characteristics of vertical strong motions

    International Nuclear Information System (INIS)

    Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.

    1993-01-01

    Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)

  2. Ground-motion prediction from tremor

    Science.gov (United States)

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  3. Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions

    International Nuclear Information System (INIS)

    Hu, B.L.; Matacz, A.

    1994-01-01

    The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics

  4. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  5. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  6. 17 CFR 10.26 - Motions and other papers.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Motions and other papers. 10... PRACTICE Institution of Adjudica- tory Proceedings; Pleadings; Motions § 10.26 Motions and other papers. (a...) the authority relied upon. If a motion is supported by briefs, affidavits or other papers, they shall...

  7. 10 CFR 820.39 - Motions.

    Science.gov (United States)

    2010-01-01

    ... an enforcement adjudication except those made orally, shall be in writing, state the grounds therefor..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as otherwise... to file a written answer to the motion of another party within 10 days after the filing of such...

  8. Symmetries and conserved quantities in geodesic motion

    International Nuclear Information System (INIS)

    Hojman, S.; Nunez, L.; Patino, A.; Rago, H.

    1986-01-01

    Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry to the problem of geodesic motion in Riemannian space-times are applied. The construction of conserved quantities in geodesic motion as well as the deduction of geometrical statements about Riemannian space-times are achieved

  9. 29 CFR 1921.5 - Motions and requests.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Motions and requests. 1921.5 Section 1921.5 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... WORKERS' COMPENSATION ACT Prehearing Procedures § 1921.5 Motions and requests. Motions or requests shall...

  10. Hand Gesture Recognition with Leap Motion

    OpenAIRE

    Du, Youchen; Liu, Shenglan; Feng, Lin; Chen, Menghui; Wu, Jie

    2017-01-01

    The recent introduction of depth cameras like Leap Motion Controller allows researchers to exploit the depth information to recognize hand gesture more robustly. This paper proposes a novel hand gesture recognition system with Leap Motion Controller. A series of features are extracted from Leap Motion tracking data, we feed these features along with HOG feature extracted from sensor images into a multi-class SVM classifier to recognize performed gesture, dimension reduction and feature weight...

  11. Simulating intrafraction prostate motion with a random walk model.

    Science.gov (United States)

    Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O

    2017-01-01

    Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during

  12. Symposium on Molecular Spectroscopy (38th) Held at Ohio State University, Columbus, Ohio on June 13-17 1983.

    Science.gov (United States)

    1983-01-01

    AMPLITUDE INTERNAL MOTION INTERACTIONS..15 min.(l:30) C. RICHARD UADE and YUHUA GUAN, Department of Physics, Texas Tech University, Lubbock, Texas...128 REI. (1.30) THEORY FOR VIBRATION-ROTATION-LARGE AMPLITUDE ITkTERNAL MOTION INTERACTIONS C. RICAARD qUADE AND YUHUA GUAN A theory for vibration...Massachusetts 02139. Address of Cross: 32 Chadwick St., Hilton Park, WESTERN AUSTRALIA 6163. 160 FBIO. II:06) THE CaO c z:z - a 3 .ii SYSTEM J.B_. NORM4AN, K.J

  13. Motion artifacts in computed tomography

    International Nuclear Information System (INIS)

    Yang, C.K.

    1979-01-01

    In the year 1972, the first Computed Tomography Scanner (or CT) was introduced and caused a revolution in the field of Diagnostic Radiology. A tomogram is a cross-sectional image of a three-dimensional object obtained through non-invasive measurements. The image that is presented is very similar to what would be seen if a thin cross-sectional slice of the patient was examined. In Computed Tomography, x-rays are passed through the body of a patient in many different directions and their attenuation is detected. By using some mathematical theorems, the attenuation information can be converted into the density of the patient along the x-ray path. Combined with modern sophisticated computer signal processing technology, a cross-sectional image can be generated and displayed on a TV monitor. Usually a good CT image relies on the patient not moving during the x-ray scanning. However, for some unconscious or severely ill patients, this is very difficult to achieve. Thus, the motion during the scan causes the so-called motion artifacts which distort the displayed image and sometimes these motion artifacts make diagnosis impossible. Today, to remove or avoid motion artifacts is one of the major efforts in developing new scanner systems. In this thesis, a better understanding of the motion artifacts problem in CT scaning is gained through computer simulations, real scanner experiments and theoretical analyses. The methods by which the distorted image can be improved are simulated also. In particular, it is assumed that perfect knowledge of the patient motion is known since this represents the theoretical limit on how well the distorted image can be improved

  14. Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries.

    Science.gov (United States)

    Schwenke, Michael; Georgii, Joachim; Preusser, Tobias

    2017-07-01

    Focused ultrasound (FUS) is rapidly gaining clinical acceptance for several target tissues in the human body. Yet, treating liver targets is not clinically applied due to a high complexity of the procedure (noninvasiveness, target motion, complex anatomy, blood cooling effects, shielding by ribs, and limited image-based monitoring). To reduce the complexity, numerical FUS simulations can be utilized for both treatment planning and execution. These use-cases demand highly accurate and computationally efficient simulations. We propose a numerical method for the simulation of abdominal FUS treatments during respiratory motion of the organs and target. Especially, a novel approach is proposed to simulate the heating during motion by solving Pennes' bioheat equation in a computational reference space, i.e., the equation is mathematically transformed to the reference. The approach allows for motion discontinuities, e.g., the sliding of the liver along the abdominal wall. Implementing the solver completely on the graphics processing unit and combining it with an atlas-based ultrasound simulation approach yields a simulation performance faster than real time (less than 50-s computing time for 100 s of treatment time) on a modern off-the-shelf laptop. The simulation method is incorporated into a treatment planning demonstration application that allows to simulate real patient cases including respiratory motion. The high performance of the presented simulation method opens the door to clinical applications. The methods bear the potential to enable the application of FUS for moving organs.

  15. Predicting articulated human motion from spatial processes

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial...

  16. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  17. Universal short-time motion of a polymer in a random environment: Analytical calculations, a blob picture, and Monte Carlo results

    NARCIS (Netherlands)

    Ebert, U.; Baumgärtner, A.; Schäfer, L.

    1996-01-01

    Using a recently established renormalization group approach [U. Ebert, J. Stat. Phys. (to be published)], we analyze the center-of-mass motion of a polymer in a Gaussian disordered potential. While in the long-time limit normal diffusion is found, we concentrate here on shorter times. We discuss the

  18. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  19. Cervical motion testing: methodology and clinical implications.

    Science.gov (United States)

    Prushansky, Tamara; Dvir, Zeevi

    2008-09-01

    Measurement of cervical motion (CM) is probably the most commonly applied functional outcome measure in assessing the status of patients with cervical pathology. In general terms, CM refers to motion of the head relative to the trunk as well as conjunct motions within the cervical spine. Multiple techniques and instruments have been used for assessing CM. These were associated with a wide variety of parameters relating to accuracy, reproducibility, and validity. Modern measurement systems enable recording, processing, and documentation of CM with a high degree of precision. Cervical motion measures provide substantial information regarding the severity of motion limitation and level of effort in cervically involved patients. They may also be used for following up performance during and after conservative or invasive interventions.

  20. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory of mot...

  1. 14 CFR 406.141 - Motions.

    Science.gov (United States)

    2010-01-01

    ... cause shown, a party must file any prehearing motion with the Federal Docket Management System and serve... for more definite statement. A respondent may file a motion requesting a more definite statement of... pleading and must submit the details that the party believes would make the allegation or response definite...

  2. 45 CFR 672.9 - Motions.

    Science.gov (United States)

    2010-10-01

    ... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion within..., shall (1) be in writing; (2) state the basis or grounds with particularity; (3) set forth the relief or... response shall be accompanied by any affidavit, certificate, other evidence, or legal memorandum relied...

  3. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    Science.gov (United States)

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction.

    Science.gov (United States)

    Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2011-01-01

    Recently, radiosurgical treatment of cardiac arrhythmia, especially atrial fibrillation, has been proposed. Using the CyberKnife, focussed radiation will be used to create ablation lines on the beating heart to block unwanted electrical activity. Since this procedure requires high accuracy, the inevitable latency of the system (i.e., the robotic manipulator following the motion of the heart) has to be compensated for. We examine the applicability of prediction algorithms developed for respiratory motion prediction to the prediction of pulsatory motion. We evaluated the MULIN, nLMS, wLMS, SVRpred and EKF algorithms. The test data used has been recorded using external infrared position sensors, 3D ultrasound and the NavX catheter systems. With this data, we have shown that the error from latency can be reduced by at least 10 and as much as 75% (44% average), depending on the type of signal. It has also been shown that, although the SVRpred algorithm was successful in most cases, it was outperformed by the simple nLMS algorithm, the EKF or the wLMS algorithm in a number of cases. We have shown that prediction of cardiac motion is possible and that the algorithms known from respiratory motion prediction are applicable. Since pulsation is more regular than respiration, more research will have to be done to improve frequency-tracking algorithms, like the EKF method, which performed better than expected from their behaviour on respiratory motion traces.

  5. User-Independent Motion State Recognition Using Smartphone Sensors.

    Science.gov (United States)

    Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga

    2015-12-04

    The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users' data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people's motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human's motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.

  6. User-Independent Motion State Recognition Using Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Fuqiang Gu

    2015-12-01

    Full Text Available The recognition of locomotion activities (e.g., walking, running, still is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users’ data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people’s motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human’s motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.

  7. Multiparticle dynamics in an expanding universe

    Science.gov (United States)

    Anderson, James L.

    1995-11-01

    Approximate equations of motion for multiparticle systems in an expanding Einstein-deSitter universe are derived from the Einstein-Maxwell field equations using the Einstein-Infeld-Hoffmann surface integral method. At the Newtonian level of approximation one finds that, in comoving coordinates, both the Newtonian gravitational and Coulomb interactions in these equations are multiplied by the inverse third power of the scale factor R(t) appearing in the Einstein-deSitter field and they acquire a cosmic ``drag'' term. Nevertheless, both the period and luminosity size of bound two-body systems whose period is small compared to the Hubble time are found to be independent of t.

  8. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  9. Teaching Motion with the Global Positioning System

    Science.gov (United States)

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  10. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  11. Measurement and Quantification of Gross Human Shoulder Motion

    Directory of Open Access Journals (Sweden)

    Jeremy T. Newkirk

    2013-01-01

    Full Text Available The shoulder girdle plays an important role in the large pointing workspace that humans enjoy. The goal of this work was to characterize the human shoulder girdle motion in relation to the arm. The overall motion of the human shoulder girdle was characterized based on motion studies completed on test subjects during voluntary (natural/unforced motion. The collected data from the experiments were used to develop surface fit equations that represent the position and orientation of the glenohumeral joint for a given humeral pointing direction. These equations completely quantify gross human shoulder girdle motion relative to the humerus. The equations are presented along with goodness-of-fit results that indicate the equations well approximate the motion of the human glenohumeral joint. This is the first time the motion has been quantified for the entire workspace, and the equations provide a reference against which to compare future work.

  12. Stroboscopic Goggles for Reduction of Motion Sickness

    Science.gov (United States)

    Reschke, M. F.; Somers, Jeffrey T.

    2005-01-01

    A device built around a pair of electronic shutters has been demonstrated to be effective as a prototype of stroboscopic goggles or eyeglasses for preventing or reducing motion sickness. The momentary opening of the shutters helps to suppress a phenomenon that is known in the art as retinal slip and is described more fully below. While a number of different environmental factors can induce motion sickness, a common factor associated with every known motion environment is sensory confusion or sensory mismatch. Motion sickness is a product of misinformation arriving at a central point in the nervous system from the senses from which one determines one s spatial orientation. When information from the eyes, ears, joints, and pressure receptors are all in agreement as to one s orientation, there is no motion sickness. When one or more sensory input(s) to the brain is not expected, or conflicts with what is anticipated, the end product is motion sickness. Normally, an observer s eye moves, compensating for the anticipated effect of motion, in such a manner that the image of an object moving relatively to an observer is held stationary on the retina. In almost every known environment that induces motion sickness, a change in the gain (in the signal-processing sense of gain ) of the vestibular system causes the motion of the eye to fail to hold images stationary on the retina, and the resulting motion of the images is termed retinal slip. The present concept of stroboscopic goggles or eyeglasses (see figure) is based on the proposition that prevention of retinal slip, and hence, the prevention of sensory mismatch, can be expected to reduce the tendency toward motion sickness. A device according to this concept helps to prevent retinal slip by providing snapshots of the visual environment through electronic shutters that are brief enough that each snapshot freezes the image on each retina. The exposure time for each snapshot is less than 5 ms. In the event that a higher

  13. Commercially available video motion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended

  14. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...... can be implemented for real time motion correction....

  15. Open FRW universes and self-acceleration from nonlinear massive gravity

    International Nuclear Information System (INIS)

    Gümrükçüoğlu, A. Emir; Lin, Chunshan; Mukohyama, Shinji

    2011-01-01

    In the context of a recently proposed nonlinear massive gravity with Lorentz-invariant mass terms, we investigate open Friedmann-Robertson-Walker (FRW) universes driven by arbitrary matter source. While the flat FRW solutions were recently shown to be absent, the proof does not extend to the open universes. We find three independent branches of solutions to the equations of motion for the Stückelberg scalars. One of the branches does not allow any nontrivial FRW cosmologies, as in the previous no-go result. On the other hand, both of the other two branches allow general open FRW universes governed by the Friedmann equation with the matter source, the standard curvature term and an effective cosmological constant Λ ± = c ± m g 2 . Here, m g is the graviton mass, + and - represent the two branches, and c ± are constants determined by the two dimensionless parameters of the theory. Since an open FRW universe with a sufficiently small curvature constant can approximate a flat FRW universe but there is no exactly flat FRW solution, the theory exhibits a discontinuity at the flat FRW limit

  16. Human Perception of Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Zhang, Guan-Lu

    2010-01-01

    Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that

  17. Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data.

    Science.gov (United States)

    Pengpen, T; Soleimani, M

    2015-06-13

    Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Automatic Video-based Analysis of Human Motion

    DEFF Research Database (Denmark)

    Fihl, Preben

    The human motion contains valuable information in many situations and people frequently perform an unconscious analysis of the motion of other people to understand their actions, intentions, and state of mind. An automatic analysis of human motion will facilitate many applications and thus has...... received great interest from both industry and research communities. The focus of this thesis is on video-based analysis of human motion and the thesis presents work within three overall topics, namely foreground segmentation, action recognition, and human pose estimation. Foreground segmentation is often...... the first important step in the analysis of human motion. By separating foreground from background the subsequent analysis can be focused and efficient. This thesis presents a robust background subtraction method that can be initialized with foreground objects in the scene and is capable of handling...

  19. Frame by frame stop motion non-traditional approaches to stop motion animation

    CERN Document Server

    Gasek, Tom

    2011-01-01

    In a world that is dominated by computer images, alternative stop motion techniques like pixilation, time-lapse photography and down-shooting techniques combined with new technologies offer a new, tangible and exciting approach to animation. With over 25 years professional experience, industry veteran, Tom Gasek presents a comprehensive guide to stop motion animation without the focus on puppetry or model animation. With tips, tricks and hands-on exercises, Frame by Frame will help both experienced and novice filmmakers get the most effective results from this underutilized branch of animation

  20. Mental imagery of gravitational motion.

    Science.gov (United States)

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco

    2017-10-01

    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  2. Equations of motion in phase space

    International Nuclear Information System (INIS)

    Broucke, R.

    1979-01-01

    The article gives a general review of methods of constructing equations of motion of a classical dynamical system. The emphasis is however on the linear Lagrangian in phase space and the corresponding form of Pfaff's equations of motion. A detailed examination of the problem of changes of variables in phase space is first given. It is shown that the Linear Lagrangian theory falls very naturally out of the classical quadratic Lagrangian theory; we do this with the use of the well-known Lagrange multiplier method. Another important result is obtained very naturally as a by-product of this analysis. If the most general set of 2n variables (coordinates in phase space) is used, the coefficients of the equations of motion are the Poisson Brackets of these variables. This is therefore the natural way of introducing not only Poisson Brackets in Dynamics formulations but also the associated Lie Algebras and their important properties and consequences. We give then several examples to illustrate the first-order equations of motion and their simplicity in relation to general changes of variables. The first few examples are elementary (the harmonic Oscillator) while the last one concerns the motion of a rigid body about a fixed point. In the next three sections we treat the first-order equations of motion as derived from a Linear differential form, sometimes called Birkhoff's equations. We insist on the generality of the equations and especially on the unity of the space-time concept: the time t and the coordinates are here completely identical variables, without any privilege to t. We give a brief review of Cartan's 2-form and the corresponding equations of motion. As an illustration the standard equations of aircraft flight in a vertical plane are derived from Cartan's exterior differential 2-form. Finally we mention in the last section the differential forms that were proposed by Gallissot for the derivation of equations of motion

  3. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  4. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  5. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  6. Conserved linear dynamics of single-molecule Brownian motion

    Science.gov (United States)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  7. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  8. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  9. Storyboard dalam Pembuatan Motion Graphic

    Directory of Open Access Journals (Sweden)

    Satrya Mahardhika

    2013-10-01

    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  10. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  11. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    Winklhofer, S.; University Hospital Zurich; Schoth, F.; Stolzmann, P.; Krings, T.; Mull, M.; Wiesmann, M.; Stracke, C.P.; Alfried-Krupp-Hospital, Essen

    2014-01-01

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  12. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  13. General Automatic Components of Motion Sickness

    Science.gov (United States)

    Suter, S.; Toscano, W. B.; Kamiya, J.; Naifeh, K.

    1985-01-01

    A body of investigations performed in support of experiments aboard the space shuttle, and designed to counteract the symptoms of Space Adaptation Syndrome, which resemble those of motion sickness on Earth is reviewed. For these supporting studies, the automatic manifestations of earth-based motion sickness was examined. Heart rate, respiration rate, finger pulse volume and basal skin resistance were measured on 127 men and women before, during and after exposure to nauseogenic rotating chair tests. Significant changes in all autonomic responses were observed across the tests. Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed. Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome on Earth and in Space.

  14. Method through motion:structuring theory and practice for motion graphics in spatial contexts

    OpenAIRE

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design...

  15. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  16. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit.

    Science.gov (United States)

    Ramkumar, Prem N; Haeberle, Heather S; Navarro, Sergio M; Sultan, Assem A; Mont, Michael A; Ricchetti, Eric T; Schickendantz, Mark S; Iannotti, Joseph P

    2018-03-07

    Mobile technology offers the prospect of delivering high-value care with increased patient access and reduced costs. Advances in mobile health (mHealth) and telemedicine have been inhibited by the lack of interconnectivity between devices and software and inability to process consumer sensor data. The objective of this study was to preliminarily validate a motion-based machine learning software development kit (SDK) for the shoulder compared with a goniometer for 4 arcs of motion: (1) abduction, (2) forward flexion, (3) internal rotation, and (4) external rotation. A mobile application for the SDK was developed and "taught" 4 arcs of shoulder motion. Ten subjects without shoulder pain or prior shoulder surgery performed the arcs of motion for 5 repetitions. Each motion was measured by the SDK and compared with a physician-measured manual goniometer measurement. Angular differences between SDK and goniometer measurements were compared with univariate and power analyses. The comparison between the SDK and goniometer measurement detected a mean difference of less than 5° for all arcs of motion (P > .05), with a 94% chance of detecting a large effect size from a priori power analysis. Mean differences for the arcs of motion were: abduction, -3.7° ± 3.2°; forward flexion, -4.9° ± 2.5°; internal rotation, -2.4° ± 3.7°; and external rotation -2.6° ± 3.4°. The SDK has the potential to remotely substitute for a shoulder range of motion examination within 5° of goniometer measurements. An open-source motion-based SDK that can learn complex movements, including clinical shoulder range of motion, from consumer sensors offers promise for the future of mHealth, particularly in telemonitoring before and after orthopedic surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Second-order processing of four-stroke apparent motion.

    Science.gov (United States)

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  18. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  19. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  20. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition

    International Nuclear Information System (INIS)

    Lewis, John H; Li Ruijiang; Jia Xun; Watkins, W Tyler; Song, William Y; Jiang, Steve B; Lou, Yifei

    2011-01-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.

  1. Ground Motion Models for Future Linear Colliders

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  2. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  3. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    Werner, Rene

    2013-01-01

    Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the developed methods

  4. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  5. Annual Report on Electronics Research at The University of Texas at Austin.

    Science.gov (United States)

    1983-05-15

    Dimensional Information from Image and Motion Analysis." University of Texas Austin, Texas October 6, 1982 M. Fink, " Schopenhauer , Quantum Mechanics...Nonlinear Interactions During Natural Transition of a Wake." xxix PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS Los Alamos National Laboratory...filters. In particular, they present fundamental results on the nature of time-variant digital filters; they discuss the properties of the responses in

  6. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    Science.gov (United States)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  7. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  8. 13th International Conference on Motion and Vibration Control (MOVIC 2016) and the 12th International Conference on Recent Advances in Structural Dynamics (RASD 2016)

    International Nuclear Information System (INIS)

    2016-01-01

    This volume contains the papers presented at the Thirteenth International Conference on Motion and Vibration Control (MoViC), together with the Twelfth International Conference on Recent Advances in Structural Dynamics (RASD). MoViC is an event that started in Yokohama, Japan in 1992 and has been organised every two years alternating between Japan, USA and Europe. The eleven previous RASD conferences have been held every three years or so since 1980 primarily in Southampton, UK. The idea of joining the two conferences came quite naturally because of the common ground of the two conferences and the chances of cross-pollination between two otherwise separate research groups. This joint conference is devoted to theoretical, numerical and experimental developments in motion/vibration/structural dynamics, their control and application to all types of structures and dynamical systems. The conference reflects the state-of-the- art in these topics, and is an excellent opportunity to exchange scientific, technical and experimental ideas. The Conference Proceedings include over 250 papers by authors from over 20 countries, forty technical sessions and five plenary presentations. The five invited speakers are Professor Roger Goodall (Loughborough University, UK) presenting “Motion and vibration control for railway vehicles”, Professor Takeshi Mizuno (Saitama University, Japan) presenting “Recent advances in magnetic suspension technology”, Professor Kevin Murphy (University of Louisville, USA) presenting “Dynamics of Passive Balancing Rings for Rotating Systems”, Professor David Wagg (University of Sheffield, UK) presenting “Reducing vibrations in structures using structural control”, and Professor Kon-Well Wang (University of Michigan, USA) presenting “From Muscles to Plants - Nature-Inspired Adaptive Metastructures for Structural Dynamics Enhancement”. I would like to thank members of the Organising Committee for their help, over the last year or so, in

  9. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  10. Human sensitivity to vertical self-motion.

    Science.gov (United States)

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  11. On the absolute meaning of motion

    Directory of Open Access Journals (Sweden)

    H. Edwards

    Full Text Available The present manuscript aims to clarify why motion causes matter to age slower in a comparable sense, and how this relates to relativistic effects caused by motion. A fresh analysis of motion, build on first axiom, delivers proof with its result, from which significant new understanding and computational power is gained.A review of experimental results demonstrates, that unaccelerated motion causes matter to age slower in a comparable, observer independent sense. Whilst focusing on this absolute effect, the present manuscript clarifies its context to relativistic effects, detailing their relationship and incorporating both into one consistent picture. The presented theoretical results make new predictions and are testable through suggested experiment of a novel nature. The manuscript finally arrives at an experimental tool and methodology, which as far as motion in ungravitated space is concerned or gravity appreciated, enables us to find the absolute observer independent picture of reality, which is reflected in the comparable display of atomic clocks.The discussion of the theoretical results, derives a physical causal understanding of gravity, a mathematical formulation of which, will be presented. Keywords: Kinematics, Gravity, Atomic clocks, Cosmic microwave background

  12. Image-guided radiotherapy and motion management in lung cancer

    DEFF Research Database (Denmark)

    Korreman, Stine

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps...

  13. Understanding Motion Capture for Computer Animation

    CERN Document Server

    Menache, Alberto

    2010-01-01

    The power of today's motion capture technology has taken animated characters and special effects to amazing new levels of reality. And with the release of blockbusters like Avatar and Tin-Tin, audiences continually expect more from each new release. To live up to these expectations, film and game makers, particularly technical animators and directors, need to be at the forefront of motion capture technology. In this extensively updated edition of Understanding Motion Capture for Computer Animation and Video Games, an industry insider explains the latest research developments in digital design

  14. Untypical Undergraduate Research: Player Motion Analysis in Sports

    Science.gov (United States)

    Loerke, Dinah

    There is significant concern about the degree of attrition in STEM disciplines from the start of K-12 through to the end of higher education, and the analysis of the `leaky pipeline' from the various institutions has identified a critical decline - which may be as high as 60 percent - between the fraction of students who identify as having an interest in a science or engineering major at the start of college/university, and the fraction of students who ultimately graduate with a STEM degree. It has been shown that this decline is even more dramatic for women and underrepresented minorities (Blickenstaff 2005, Metcalf 2010). One intervention which has been proven to be effective for retention of potential STEM students is early research experience, particularly if it facilitates the students' integration into a STEM learning community (Graham et al. 2013, Toven-Lindsey et al. 2015). In other words, to retain students in STEM majors, we would like to encourage them to `think of themselves as scientists', and simultaneously promote supportive peer networks. The University of Denver (DU) already has a strong undergraduate research program. However, while the current program provides valuable training for many students, it likely comes too late to be effective for student retention in STEM, because it primarily serves older students who have already finished the basic coursework in their discipline; within physics, we know that the introductory physics courses already serve as gatekeeper courses that cause many gifted but `non-typical' students to lose interest in pursuing a STEM major (Tobias 1990). To address this issue, my lab is developing a small research spinoff program in which we apply spatiotemporal motion analysis to the motion trajectories of players in sports, using video recordings of DU Pioneer hockey games. This project aims to fulfill a dual purpose: The research is framed in a way that we think is attractive and accessible for beginning students who

  15. Impaired Perception of Biological Motion in Parkinson’s Disease

    Science.gov (United States)

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (pperception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  16. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  17. Perceived health from biological motion predicts voting behaviour.

    Science.gov (United States)

    Kramer, Robin S S; Arend, Isabel; Ward, Robert

    2010-04-01

    Body motion signals socially relevant traits like the sex, age, and even the genetic quality of actors and may therefore facilitate various social judgements. By examining ratings and voting decisions based solely on body motion of political candidates, we considered how the candidates' motion affected people's judgements and voting behaviour. In two experiments, participants viewed stick figure motion displays made from videos of politicians in public debate. Participants rated the motion displays for a variety of social traits and then indicated their vote preference. In both experiments, perceived physical health was the single best predictor of vote choice, and no two-factor model produced significant improvement. Notably, although attractiveness and leadership correlated with voting behaviour, neither provided additional explanatory power to a single-factor model of health alone. Our results demonstrate for the first time that motion can produce systematic vote preferences.

  18. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    International Nuclear Information System (INIS)

    Heß, Mirco; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-01-01

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical 18 F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found

  19. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  20. 3D Ground-Motion Simulations for Magnitude 9 Earthquakes on the Cascadia Megathrust: Sedimentary Basin Amplification, Rupture Directivity, and Ground-Motion Variability

    Science.gov (United States)

    Frankel, A. D.; Wirth, E. A.; Marafi, N.; Vidale, J. E.; Stephenson, W. J.

    2017-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for Mw 9 earthquakes on the Cascadia subduction zone by combining synthetics from 3D finite-difference simulations at low frequencies (≤ 1 Hz) and stochastic synthetics at high frequencies (≥ 1 Hz). These synthetic ground motions are being used to evaluate building response, liquefaction, and landslides, as part of the M9 Project of the University of Washington, in collaboration with the U.S. Geological Survey. The kinematic rupture model is composed of high stress drop sub-events with Mw 8, similar to those observed in the Mw 9.0 Tohoku, Japan and Mw 8.8 Maule, Chile earthquakes, superimposed on large background slip with lower slip velocities. The 3D velocity model is based on active and passive-source seismic tomography studies, seismic refraction and reflection surveys, and geologic constraints. The Seattle basin portion of the model has been validated by simulating ground motions from local earthquakes. We have completed 50 3D simulations of Mw 9 earthquakes using a variety of hypocenters, slip distributions, sub-event locations, down-dip limits of rupture, and other parameters. For sites not in deep sedimentary basins, the response spectra of the synthetics for 0.1-6.0 s are similar, on average, to the values from the BC Hydro ground motion prediction equations (GMPE). For periods of 7-10 s, the synthetic response spectra exceed these GMPE, partially due to the shallow dip of the plate interface. We find large amplification factors of 2-5 for response spectra at periods of 1-10 s for locations in the Seattle and Tacoma basins, relative to sites outside the basins. This amplification depends on the direction of incoming waves and rupture directivity. The basin amplification is caused by surface waves generated at basin edges from incoming S-waves, as well as amplification and focusing of S-waves and surface waves by the 3D basin structure. The inter-event standard deviation of response spectral

  1. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome

    OpenAIRE

    Go, T

    2009-01-01

    Tohshin Go1, Asako Mitani21Center for Baby Science, Doshisha University, Kizugawa, Kyoto, Japan; 2Independent Music Therapist (Poco A Poco Music Room), Tokyo, JapanAbstract: Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. W...

  2. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  3. Separating complex compound patient motion tracking data using independent component analysis

    Science.gov (United States)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  4. Contrast configuration influences grouping in apparent motion.

    Science.gov (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter

    2005-01-01

    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  5. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  6. Déjà vu: Motion Prediction in Static Images

    NARCIS (Netherlands)

    Pintea, S.L.; van Gemert, J.C.; Smeulders, A.W.M.; Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T.

    2014-01-01

    This paper proposes motion prediction in single still images by learning it from a set of videos. The building assumption is that similar motion is characterized by similar appearance. The proposed method learns local motion patterns given a specific appearance and adds the predicted motion in a

  7. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  8. Procedure to describe clavicular motion.

    Science.gov (United States)

    Gutierrez Delgado, Guivey; De Beule, Matthieu; Ortega Cardentey, Dolgis R; Segers, Patrick; Iznaga Benítez, Arsenio M; Rodríguez Moliner, Tania; Verhegghe, Benedict; Palmans, Tanneke; Van Hoof, Tom; Van Tongel, Alexander

    2017-03-01

    For many years, researchers have attempted to describe shoulder motions by using different mathematical methods. The aim of this study was to describe a procedure to quantify clavicular motion. The procedure proposed for the kinematic analysis consists of 4 main processes: 3 transcortical pins in the clavicle, motion capture, obtaining 3-dimensional bone models, and data processing. Clavicular motion by abduction (30° to 150°) and flexion (55° to 165°) were characterized by an increment of retraction of 27° to 33°, elevation of 25° to 28°, and posterior rotation of 14° to 15°, respectively. In circumduction, clavicular movement described an ellipse, which was reflected by retraction and elevation. Kinematic analysis shows that the articular surfaces move by simultaneously rolling and sliding on the convex surface of the sternum for the 3 movements of abduction, flexion, and circumduction. The use of 3 body landmarks in the clavicle and the direct measurement of bone allowed description of the osteokinematic and arthrokinematic movement of the clavicle. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  10. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  11. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. Motion discrimination under uncertainty and ambiguity.

    NARCIS (Netherlands)

    Kalisvaart, J.P.; Klaver, I.; Goossens, J.

    2011-01-01

    Speed and accuracy of visual motion discrimination depend systematically on motion strength. This behavior is traditionally explained by diffusion models that assume accumulation of sensory evidence over time to a decision bound. However, how does the brain decide when sensory evidence is ambiguous,

  13. Quantifying motion for pancreatic radiotherapy margin calculation

    International Nuclear Information System (INIS)

    Whitfield, Gillian; Jain, Pooja; Green, Melanie; Watkins, Gillian; Henry, Ann; Stratford, Julie; Amer, Ali; Marchant, Thomas; Moore, Christopher; Price, Patricia

    2012-01-01

    Background and purpose: Pancreatic radiotherapy (RT) is limited by uncertain target motion. We quantified 3D patient/organ motion during pancreatic RT and calculated required treatment margins. Materials and methods: Cone-beam computed tomography (CBCT) and orthogonal fluoroscopy images were acquired post-RT delivery from 13 patients with locally advanced pancreatic cancer. Bony setup errors were calculated from CBCT. Inter- and intra-fraction fiducial (clip/seed/stent) motion was determined from CBCT projections and orthogonal fluoroscopy. Results: Using an off-line CBCT correction protocol, systematic (random) setup errors were 2.4 (3.2), 2.0 (1.7) and 3.2 (3.6) mm laterally (left–right), vertically (anterior–posterior) and longitudinally (cranio-caudal), respectively. Fiducial motion varied substantially. Random inter-fractional changes in mean fiducial position were 2.0, 1.6 and 2.6 mm; 95% of intra-fractional peak-to-peak fiducial motion was up to 6.7, 10.1 and 20.6 mm, respectively. Calculated clinical to planning target volume (CTV–PTV) margins were 1.4 cm laterally, 1.4 cm vertically and 3.0 cm longitudinally for 3D conformal RT, reduced to 0.9, 1.0 and 1.8 cm, respectively, if using 4D planning and online setup correction. Conclusions: Commonly used CTV–PTV margins may inadequately account for target motion during pancreatic RT. Our results indicate better immobilisation, individualised allowance for respiratory motion, online setup error correction and 4D planning would improve targeting.

  14. [Restricted motion after total knee arthroplasty].

    Science.gov (United States)

    Kucera, T; Urban, K; Karpas, K; Sponer, P

    2007-10-01

    The aim of the study was to ascertain what proportion of patients undergoing total knee arthroplasty (TKA) complain of restricted knee joint motion, and to investigate options for improvement of this situation. Our evaluation included a group of 796 patients treated with TKA at our department in the period from January 1, 1990, to December 31, 2004. In all cases, a condylar implant with preservation of the posterior cruciate ligaments was used. In addition to medical history, the range of motion, knee joint malalignment and radiological findings were assessed before surgery. After THA, the type of implant and complications, if any, were recorded, and improvement in joint motion was followed up. Based on the results of Kim et al., flexion contracture equal to or higher than 15 degrees and/or flexion less than 75 degrees were made the criteria of stiffness after THA. Patients with restricted THA motion who had aseptic or septic implant loosening were not included. Of the 796 evaluated patients, 32 (4.14 %) showed restricted motion after total knee arthroplasty, as assessed by the established criteria. In 16 patients, stiffness defined by these criteria had existed before surgery, and three patients showed an excessive production of adhesions and heterotopic ossifications. In three patients, the implantation procedure resulted in an elevated level of the original joint line and subsequent development of patella infera and increased tension of the posterior cruciate ligament. Four patients declined physical therapy and, in six, the main cause of stiffness could not be found. Seventeen patients did not require surgical therapy for restricted motion; TKA provided significant pain relief and they considered the range of motion achieved to be sufficient. One patient underwent redress 3 months after surgery, but with no success. Repeated releases of adhesions, replacement of a polyethylene liner and revision surgery of the extensor knee structures were performed in 15

  15. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    , and for prostate cancer treatments, the proximity of the bladder and rectum makes radiotherapy treatment of this site a challenging task. Furthermore, the prostate may move during the radiation delivery and treatment margins are necessary to ensure that it is still receiving the intended dose. The main aim...... of the MLC on the performance of DMLC tracking were investigated. We found that for prostate motion, the main tracking error arose from the finite leaf width affecting the MLCs ability to construct the desired shape. Furthermore, we also attempted to model prostate motion using a random walk model. We found...... that for the slow and drifting motion, the model could satisfactory replicate the motion of the prostate, while the rapid and transient prostate motion observed in some cases was challenging for the model. We therefore added simulated transient motion to the random walk model, which slightly improved the results...

  16. Prediction of Critical Heat Flux under Rolling Motion

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jinseok; Lee, Yeongun; Park, Gooncherl [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    The aim to this paper may be summarized as follows: identify the flow regime compare with existing void-quality relationship and void fraction at OAF derived from the vapor superficial velocity obtained by the churn-to annular flow criterion, develop and evaluate the correlation for accurate prediction of CHF ratio under rolling motion. Experimentally measured CHF results from the previous study were not well-predicted by existing CHF correlations developed for wide range of pressure under rolling motion in vertical tube. Specifically, existing correlations do not account for the dynamic motion parameter, such as tangential and centrifugal force. This study reviewed some existing correlation and experimental studies related to reduction and enhancement of CHF and heat transfer and flow behavior under heaving and rolling motion, and developed a CHF ratio correlation for upward flow vertical tube under rolling motion. Based upon dimensionless groups, equations and interpolation factor, an empirical CHF correlation has been developed which is consistent with experimental data for uniformly heated tubes internally cooled by R-134 under rolling motion. Flow regime was determined through the prediction method for annular flow. Non-dimensional number and function were decided by CHF mechanism of each region. Interaction of LFD and DNB regions is taken into account by means of power interpolation which is reflected void fraction at OAF. The suggested correlation predicted the CHF Ratio with reasonable accuracy, showing an average error of -0.59 and 2.51% for RMS. Rolling motion can affect bubble motion and liquid film behavior complexly by combination of tangential and centrifugal forces and mass flow than heaving motion. Through a search of literature and a comparison of previous CHF ratio results, this work can contribute to the study of boiling heat transfer and CHF for the purpose of enhancement or reduction the CHF of dynamic motion system, such as marine reactor.

  17. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    International Nuclear Information System (INIS)

    Müller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Günter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-01-01

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  18. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Branchini, Enzo [Department of Physics, Universita Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States)

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  19. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  20. Airsickness and aircraft motion during short-haul flights.

    Science.gov (United States)

    Turner, M; Griffin, M J; Holland, I

    2000-12-01

    There is little quantitative information that can be used to predict the incidence of airsickness from the motions experienced in military or civil aviation. This study examines the relationship between low-frequency aircraft motion and passenger sickness in short-haul turboprop flights within the United Kingdom. A questionnaire survey of 923 fare-paying passengers was conducted on 38 commercial airline flights. Concurrent measurements of aircraft motion were made on all journeys, yielding approximately 30 h of aircraft motion data. Overall, 0.5% of passengers reported vomiting, 8.4% reported nausea (range 0% to 34.8%) and 16.2% reported illness (range 0% to 47.8%) during flight. Positive correlations were found between the percentage of passengers who experienced nausea or felt ill and the magnitude of low-frequency lateral and vertical motion, although neither motion uniquely predicted airsickness. The incidence of motion sickness also varied with passenger age, gender, food consumption and activity during air travel. No differences in sickness were found between passengers located in different seating sections of the aircraft, or as a function of moderate levels of alcohol consumption. The passenger responses suggest that a useful prediction of airsickness can be obtained from magnitudes of low frequency aircraft motion. However, some variations in airsickness may also be explained by individual differences between passengers and their psychological perception of flying.

  1. [Vestibular testing abnormalities in individuals with motion sickness].

    Science.gov (United States)

    Ma, Yan; Ou, Yongkang; Chen, Ling; Zheng, Yiqing

    2009-08-01

    To evaluate the vestibular function of motion sickness. VNG, which tests the vestibular function of horizontal semicircular canal, and CPT, which tests vestibulospinal reflex and judge proprioceptive, visual and vestibular status, were performed in 30 motion sickness patients and 20 healthy volunteers (control group). Graybiel score was recorded at the same time. Two groups' Graybiel score (12.67 +/- 11.78 vs 2.10 +/- 6.23; rank test P<0.05), caloric test labyrinth value [(19.02 +/- 8.59) degrees/s vs (13.58 +/- 5.25) degrees/s; t test P<0.05], caloric test labyrinth value of three patients in motion sickness group exceeded 75 degrees/s. In computerized posturography testing (CPT), motion sickness patients were central type (66.7%) and disperse type (23.3%); all of control group were central type. There was statistical significance in two groups' CTP area, and motion sickness group was obviously higher than control group. While stimulating vestibulum in CPT, there was abnormality (35%-50%) in motion sickness group and none in control group. Generally evaluating CPT, there was only 2 proprioceptive hypofunction, 3 visual hypofunction, and no vestibular hypofunction, but none hypofunction in control group. Motion sickness patients have high vestibular susceptible, some with vestibular hyperfunction. In posturography, a large number of motion sickness patients are central type but no vestibular hypofunction, but it is hard to keep balance when stimulating vestibulum.

  2. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  3. The relationship between ventilatory lung motion and pulmonary perfusion shown by ventilatory lung motion imaging

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Nakatsuka, Tatsuya; Yoshimura, Kazuhiko; Hirose, Yoshiki; Hirayama, Jiro; Kobayashi, Toshio; Handa, Kenjiro

    1991-01-01

    Using ventilatory lung motion imaging, which was obtained from two perfusion lung scintigrams with 99m Tc-macroaggregated albumin taken in maximal inspiration and maximal expiration, the lung motion (E-I/I) of the each unilateral lung was studied in various cardiopulmonary diseases. The sum of (E-I)/I(+) of the unilateral lung was decreased in the diseased lung for localized pleuropulmonary diseases, including primary lung cancer and pleural thickening, and in both lungs for heart diseases, and diffuse pulmonary diseases including diffuse interstitial pneumonia and diffuse panbronchiolitis. The sum of (E-I)/I(+) of the both lungs, which correlated with vital capacity and PaO 2 , was decreased in diffuse interstitial pneumonia, pulmonary emphysema, diffuse panbronchiolitis, primary lung cancer, pleural diseases and so on. (E-I)/I(+), correlated with pulmonary perfusion (n=49, r=0.51, p 81m Kr or 133 Xe (n=49, r=0.61, p<0.001) than pulmonary perfusion. The ventilatory lung motion imaging, which demonstrates the motion of the intra-pulmonary areas and lung edges, appears useful for estimating pulmonary ventilation of the perfused area as well as pulmonary perfusion. (author)

  4. Restoration of motion blurred images

    Science.gov (United States)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  5. Fuel-motion diagnostics and cineradiography

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1982-09-01

    Nuclear and non-nuclear applications of cineradiography are reviewed, with emphasis on diagnostic instrumentation for in-pile transient-reactor safety testing of nuclear fuel motion. The primary instrument for this purpose has been the fast-neutron hodoscope, which has achieved quantitative monitoring of time, location, mass, and velocity of fuel movement under the difficult conditions associated with transient-reactor experiments. Alternative diagnostic devices that have been developed have not matched the capabilities of the hodoscope. Other applications for the fuel-motion diagnostic apparatus are also evolving, including time-integrated radiography and direct time- and space-resolved fuel-pin power monitoring. Although only two reactors are now actively equipped with high-resolution fuel-motion diagnostic systems, studies and tests have been carried out in and for many other reactors

  6. The eigenmode analysis of human motion

    International Nuclear Information System (INIS)

    Park, Juyong; Lee, Deok-Sun; González, Marta C

    2010-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion

  7. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  8. Motion of particles and spin in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2003-01-01

    The equations of the particle and spin motion in media with polarized electrons placed in external fields are found. The exchange interaction affects the motion of electrons and their spin, and the annihilation interaction affects the motion of positrons and their spin. The second-order terms in spin are taken into account for particles with spin S ≥ 1. The found equations can be used for the description of the particle and spin motion in both magnetic and nonmagnetic media [ru

  9. Human motion sensing and recognition a fuzzy qualitative approach

    CERN Document Server

    Liu, Honghai; Ji, Xiaofei; Chan, Chee Seng; Khoury, Mehdi

    2017-01-01

    This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the ...

  10. Analysis of secondary motions in square duct flow

    Science.gov (United States)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  11. Motion sickness and postural sway in console video games.

    Science.gov (United States)

    Stoffregen, Thomas A; Faugloire, Elise; Yoshida, Ken; Flanagan, Moira B; Merhi, Omar

    2008-04-01

    We tested the hypotheses that (a) participants might develop motion sickness while playing "off-the-shelf" console video games and (b) postural motion would differ between sick and well participants, prior to the onset of motion sickness. There have been many anecdotal reports of motion sickness among people who play console video games (e.g., Xbox, PlayStation). Participants (40 undergraduate students) played a game continuously for up to 50 min while standing or sitting. We varied the distance to the display screen (and, consequently, the visual angle of the display). Across conditions, the incidence of motion sickness ranged from 42% to 56%; incidence did not differ across conditions. During game play, head and torso motion differed between sick and well participants prior to the onset of subjective symptoms of motion sickness. The results indicate that console video games carry a significant risk of motion sickness. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.

  12. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  13. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  14. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  15. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. V. Final Measurement for Fornax

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2007-03-01

    The measured proper motion of Fornax, expressed in the equatorial coordinate system, is (μα,μδ)=(47.6+/-4.6,-36.0+/-4.1) mas century-1. This proper motion is a weighted mean of four independent measurements for three distinct fields. Each measurement uses a quasi-stellar object as a reference point. Removing the contribution of the motion of the Sun and of the local standard of rest to the measured proper motion produces a Galactic rest-frame proper motion of (μGrfα,μGrfδ)=(24.4+/-4.6,-14.3+/-4.1) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-31.8+/-1.7 km s-1 and a tangential component of Vt=196+/-29 km s-1. Integrating the motion of Fornax in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 118 (66, 137) and 152 (144, 242) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.13 (0.11, 0.38), and the orbital period is 3.2 (2.5, 4.6) Gyr. The orbit is retrograde and inclined by 101° (94°, 107°) to the Galactic plane. Fornax could be a member of a proposed ``stream'' of galaxies and globular clusters; however, the membership of another proposed galaxy in the stream, Sculptor, has been previously ruled out. Fornax is in the Kroupa-Theis-Boily plane, which contains 11 of the Galactic satellite galaxies, but its orbit will take it out of that plane. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  16. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  17. Storyboard dalam Pembuatan Motion Graphic

    OpenAIRE

    Satrya Mahardhika; A.F. Choiril Anam Fathoni

    2013-01-01

    Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will ...

  18. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  19. 19 CFR 210.57 - Amendment of the motion.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Amendment of the motion. 210.57 Section 210.57 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Temporary Relief § 210.57 Amendment of the motion. A motion for...

  20. Operator Fractional Brownian Motion and Martingale Differences

    Directory of Open Access Journals (Sweden)

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  1. Differences between Perception and Eye Movements during Complex Motions

    Science.gov (United States)

    Holly, Jan E.; Davis, Saralin M.; Sullivan, Kelly E.

    2013-01-01

    During passive whole-body motion in the dark, the motion perceived by subjects may or may not be veridical. Either way, reflexive eye movements are typically compensatory for the perceived motion. However, studies are discovering that for certain motions, the perceived motion and eye movements are incompatible. The incompatibility has not been explained by basic differences in gain or time constants of decay. This paper uses three-dimensional modeling to investigate gondola centrifugation (with a tilting carriage) and off-vertical axis rotation. The first goal was to determine whether known differences between perceived motions and eye movements are true differences when all three-dimensional combinations of angular and linear components are considered. The second goal was to identify the likely areas of processing in which perceived motions match or differ from eye movements, whether in angular components, linear components and/or dynamics. The results were that perceived motions are more compatible with eye movements in three dimensions than the one-dimensional components indicate, and that they differ more in their linear than their angular components. In addition, while eye movements are consistent with linear filtering processes, perceived motion has dynamics that cannot be explained by basic differences in time constants, filtering, or standard GIF-resolution processes. PMID:21846952

  2. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  3. Audiovisual associations alter the perception of low-level visual motion

    Directory of Open Access Journals (Sweden)

    Hulusi eKafaligonul

    2015-03-01

    Full Text Available Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.

  4. Self-motion perception: assessment by real-time computer-generated animations

    Science.gov (United States)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  5. Necessary conditions for tumbling in the rotational motion

    Science.gov (United States)

    Carrera, Danny H. Z.; Weber, Hans I.

    2012-11-01

    The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.

  6. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  7. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  8. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  9. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  10. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  11. Cervical spine motion in manual versus Jackson table turning methods in a cadaveric global instability model.

    Science.gov (United States)

    DiPaola, Matthew J; DiPaola, Christian P; Conrad, Bryan P; Horodyski, MaryBeth; Del Rossi, Gianluca; Sawers, Andrew; Bloch, David; Rechtine, Glenn R

    2008-06-01

    A study of spine biomechanics in a cadaver model. To quantify motion in multiple axes created by transfer methods from stretcher to operating table in the prone position in a cervical global instability model. Patients with an unstable cervical spine remain at high risk for further secondary injury until their spine is adequately surgically stabilized. Previous studies have revealed that collars have significant, but limited benefit in preventing cervical motion when manually transferring patients. The literature proposes multiple methods of patient transfer, although no one method has been universally adopted. To date, no study has effectively evaluated the relationship between spine motion and various patient transfer methods to an operating room table for prone positioning. A global instability was surgically created at C5-6 in 4 fresh cadavers with no history of spine pathology. All cadavers were tested both with and without a rigid cervical collar in the intact and unstable state. Three headrest permutations were evaluated Mayfield (SM USA Inc), Prone View (Dupaco, Oceanside, CA), and Foam Pillow (OSI, Union City, CA). A trained group of medical staff performed each of 2 transfer methods: the "manual" and the "Jackson table" transfer. The manual technique entailed performing a standard rotation of the supine patient on a stretcher to the prone position on the operating room table with in-line manual cervical stabilization. The "Jackson" technique involved sliding the supine patient to the Jackson table (OSI, Union City, CA) with manual in-line cervical stabilization, securing them to the table, then initiating the table's lock and turn mechanism and rotating them into a prone position. An electromagnetic tracking device captured angular motion between the C5 and C6 vertebral segments. Repeated measures statistical analysis was performed to evaluate the following conditions: collar use (2 levels), headrest (3 levels), and turning technique (2 levels). For all

  12. Evaluation of motion management strategies based on required margins

    International Nuclear Information System (INIS)

    Sawkey, D; Svatos, M; Zankowski, C

    2012-01-01

    Strategies for delivering radiation to a moving lesion each require a margin to compensate for uncertainties in treatment. These motion margins have been determined here by separating the total uncertainty into components. Probability density functions for the individual sources of uncertainty were calculated for ten motion traces obtained from the literature. Motion margins required to compensate for the center of mass motion of the clinical treatment volume were found by convolving the individual sources of uncertainty. For measurements of position at a frequency of 33 Hz, system latency was the dominant source of positional uncertainty. Averaged over the ten motion traces, the motion margin for tracking with a latency of 200 ms was 4.6 mm. Gating with a duty cycle of 33% required a mean motion margin of 3.2–3.4 mm, and tracking with a latency of 100 ms required a motion margin of 3.1 mm. Feasible reductions in the effects of the sources of uncertainty, for example by using a simple prediction algorithm to anticipate the lesion position at the end of the latency period, resulted in a mean motion margin of 1.7 mm for tracking with a latency of 100 ms, 2.4 mm for tracking with a latency of 200 ms, and 2.1–2.2 mm for the gating strategies with duty cycles of 33%. A crossover tracking latency of 150 ms was found, below which tracking strategies could take advantage of narrower motion margins than gating strategies. The methods described here provide a means to guide selection of a motion management strategy for a given patient. (paper)

  13. High performance MRI simulations of motion on multi-GPU systems.

    Science.gov (United States)

    Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H

    2014-07-04

    MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation

  14. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  15. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  16. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  17. Compensation for incoherent ground motion

    International Nuclear Information System (INIS)

    Shigeru, Takeda; Hiroshi, Matsumoto; Masakazu, Yoshioka; Yasunori, Takeuchi; Kikuo, Kudo; Tsuneya, Tsubokawa; Mitsuaki, Nozaki; Kiyotomo, Kawagoe

    1999-01-01

    The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 10 33 to 10 34 cm -2 sec -1 . Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)

  18. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  19. Frame based Motion Detection for real-time Surveillance

    OpenAIRE

    Brajesh Patel; Neelam Patel

    2012-01-01

    In this paper a series of algorithm has been formed to track the feature of motion detection under surveillance system. In the proposed work a pixel variant plays a vital role in detection of moving object of a particular clip. If there is a little bit motion in a frame then it is detected very easily by calculating pixel variance. This algorithm detects the zero variation only when there is no motion in a real-time video sequence. It is simple and easier for motion detection in the fames of ...

  20. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)