Unified universal quantum cloning machine and fidelities
Energy Technology Data Exchange (ETDEWEB)
Wang Yinan; Shi Handuo; Xiong Zhaoxi; Jing Li; Mu Liangzhu [School of Physics, Peking University, Beijing 100871 (China); Ren Xijun [School of Physics and Electronics, Henan University, Kaifeng 4750011 (China); Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-09-15
We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.
International Nuclear Information System (INIS)
Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco
2010-01-01
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
International Nuclear Information System (INIS)
Simon, C.; Weihs, G.; Zeilinger, A.
1999-01-01
We discuss the close connections between cloning of quantum states and superluminal signaling. We present an optimal universal cloning machine based on stimulated emission recently proposed by the authors. As an instructive example, we show how a scheme for superluminal communication based on this cloning machine fails. (Authors)
Asymmetric quantum cloning machines
International Nuclear Information System (INIS)
Cerf, N.J.
1998-01-01
A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)
Unified Approach to Universal Cloning and Phase-Covariant Cloning
Hu, Jia-Zhong; Yu, Zong-Wen; Wang, Xiang-Bin
2008-01-01
We analyze the problem of approximate quantum cloning when the quantum state is between two latitudes on the Bloch's sphere. We present an analytical formula for the optimized 1-to-2 cloning. The formula unifies the universal quantum cloning (UQCM) and the phase covariant quantum cloning.
International Nuclear Information System (INIS)
Pelliccia, D.; Schettini, V.; Sciarrino, F.; Sias, C.; De Martini, F.
2003-01-01
A simultaneous, contextual experimental demonstration of the two processes of cloning an input qubit vertical bar Ψ> and of flipping it into the orthogonal qubit vertical bar Ψ perpendicular> is reported. The adopted experimental apparatus, a quantum-injected optical parametric amplifier is transformed simultaneously into a universal optimal quantum cloning machine and into a universal-NOT quantum-information gate. The two processes, indeed forbidden in their exact form for fundamental quantum limitations, were found to be universal and optimal, i.e., the measured fidelity of both processes F<1 was found close to the limit values evaluated by quantum theory. A contextual theoretical and experimental investigation of these processes, which may represent the basic difference between the classical and the quantum worlds, can reveal in a unifying manner the detailed structure of quantum information. It may also enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics
Quantum cloning machines and the applications
Energy Technology Data Exchange (ETDEWEB)
Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Wang, Yi-Nan; Jing, Li [School of Physics, Peking University, Beijing 100871 (China); Yue, Jie-Dong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu [School of Physics, Peking University, Beijing 100871 (China)
2014-11-20
No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.
Quantum cloning machines and the applications
International Nuclear Information System (INIS)
Fan, Heng; Wang, Yi-Nan; Jing, Li; Yue, Jie-Dong; Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu
2014-01-01
No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results
Multipartite asymmetric quantum cloning
International Nuclear Information System (INIS)
Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.
2005-01-01
We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized
High-dimensional quantum cloning and applications to quantum hacking.
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim
2017-02-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
International Nuclear Information System (INIS)
Zou Xubo; Pahlke, K.; Mathis, W.
2003-01-01
We propose a scheme to implement the 1→2 universal quantum cloning machine of Buzek and Hillery [Phys. Rev. A 54, 1844 (1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened
Quantum cloning without external control
International Nuclear Information System (INIS)
Chiara, G. de; Fazio, R.; Macchiavello, C.; Montangero, S.; Palma, G.M.
2005-01-01
Full text: In this work we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1 → 2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N → M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10 % off that of the optimal cloner. (author)
Quantum cloning machines for equatorial qubits
International Nuclear Information System (INIS)
Fan Heng; Matsumoto, Keiji; Wang Xiangbin; Wadati, Miki
2002-01-01
Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal one to M phase-covariant quantum cloning transformations are given
Generation of phase-covariant quantum cloning
International Nuclear Information System (INIS)
Karimipour, V.; Rezakhani, A.T.
2002-01-01
It is known that in phase-covariant quantum cloning, the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite z component of spin. It is shown that once we know the z component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states that give rise to a separable density matrix for the outputs
Cloning of a quantum measurement
International Nuclear Information System (INIS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal
2011-01-01
We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1→2 learning of the measurement, otherwise the task is called 1→2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1→2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1→2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.
Cloning of a quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Bisio, Alessandro; D' Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal [QUIT Group, Dipartimento di Fisica ' ' A. Volta' ' and INFN, via Bassi 6, I-27100 Pavia (Italy); QUIT Group, Dipartimento di Fisica ' ' A. Volta' ' via Bassi 6, I-27100 Pavia (Italy) and Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 11 Bratislava (Slovakia)
2011-10-15
We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.
Phase-covariant quantum cloning of qudits
International Nuclear Information System (INIS)
Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin
2003-01-01
We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation
Economical quantum cloning in any dimension
International Nuclear Information System (INIS)
Durt, Thomas; Fiurasek, Jaromir; Cerf, Nicolas J.
2005-01-01
The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine for qubits found in Phys. Rev. A 60, 2764 (1999). We prove the impossibility of constructing an economical version of the optimal universal 1→2 cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional 1→2 phase-covariant cloner, which optimally clones all balanced superpositions with arbitrary phases, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a slightly lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the 1→2 Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2
Quantum cloning machines and their implementation in physical systems
International Nuclear Information System (INIS)
Wu Tao; Ye Liu; Fang Bao-Long
2013-01-01
We review the basic theory of approximate quantum cloning for discrete variables and some schemes for implementing quantum cloning machines. Several types of approximate quantum clones and their expansive quantum clones are introduced. As for the implementation of quantum cloning machines, we review some design methods and recent experimental results. (topical review - quantum information)
Quantum cloning of mixed states in symmetric subspaces
International Nuclear Information System (INIS)
Fan Heng
2003-01-01
Quantum-cloning machine for arbitrary mixed states in symmetric subspaces is proposed. This quantum-cloning machine can be used to copy part of the output state of another quantum-cloning machine and is useful in quantum computation and quantum information. The shrinking factor of this quantum cloning achieves the well-known upper bound. When the input is identical pure states, two different fidelities of this cloning machine are optimal
Probabilistic cloning and deleting of quantum states
International Nuclear Information System (INIS)
Feng Yuan; Zhang Shengyu; Ying Mingsheng
2002-01-01
We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines proposed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily presumed number of the input states are linearly independent. This simply generalizes some results for cloning. We also derive an upper bound for the success probability of the cloning and deleting machine
Reversibility of continuous-variable quantum cloning
International Nuclear Information System (INIS)
Filip, Radim; Marek, Petr; Fiurasek, Jaromir
2004-01-01
We analyze a reversibility of optimal Gaussian 1→2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anticlone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial reversal of the cloning using only local operations and classical communication (LOCC) and we show that this procedure converts the symmetric cloner to an asymmetric cloner. Further, we discuss a distributed LOCC reversal in optimal 1→M Gaussian cloning of coherent states which transforms it to optimal 1→M ' cloning for M ' < M. Assuming the quantum cloning as a possible eavesdropping attack on quantum communication link, the reversibility can be utilized to improve the security of the link even after the attack
Experimental eavesdropping based on optimal quantum cloning
Czech Academy of Sciences Publication Activity Database
Bartkiewicz, K.; Lemr, K.; Černoch, Antonín; Soubusta, Jan; Miranowicz, A.
2013-01-01
Roč. 110, č. 17 (2013), "173601-1"-"173601-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum cryptography * qubits * eavesdropping * quantum cloning Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.728, year: 2013
Information-theoretic limitations on approximate quantum cloning and broadcasting
Lemm, Marius; Wilde, Mark M.
2017-07-01
We prove quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed states. The results are based on information-theoretic (entropic) considerations and generalize the well-known no-cloning and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning machine on the symmetric subspace of n qudits and symmetrized partial trace channels are dual to each other. This duality manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational sense that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial trace channel and vice versa. The duality extends to give control of the performance of generalized universal quantum cloning machines (UQCMs) on subspaces more general than the symmetric subspace. This gives a way to quantify the usefulness of a priori information in the context of cloning. For example, we can control the performance of an antisymmetric analog of the UQCM in recovering from the loss of n -k fermionic particles.
International Nuclear Information System (INIS)
Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.
2004-01-01
To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored
Cloning the entanglement of a pair of quantum bits
International Nuclear Information System (INIS)
Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir
2004-01-01
It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone
Some analogies between quantum cloning and quantum deleting
International Nuclear Information System (INIS)
Qiu Daowen
2002-01-01
We further verify the impossibility of deleting an arbitrary unknown quantum state, and also show it is impossible to delete two nonorthogonal quantum states as a consequence of unitarity of quantum mechanics. A quantum approximate (deterministic) deleting machine and a probabilistic (exact) deleting machine are constructed. The estimation for the global fidelity characterizing the efficiency of the quantum approximate deleting is given. We then demonstrate that unknown nonorthogonal states chosen from a set with their multiple copies can evolve into a linear superposition of multiple deletions and failure branches by a unitary process if and only if the states are linearly independent. It is notable that the proof for necessity is somewhat different from Pati's [Phys. Rev. Lett. 83, 2849 (1999)]. Another deleting machine for the input states that are unnecessarily linearly independent is also presented. The bounds on the success probabilities of these deleting machines are derived. So we expound some preliminary analogies between quantum cloning and deleting
Determining Complementary Properties with Quantum Clones
Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.
2017-08-01
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Quantum correlations support probabilistic pure state cloning
Energy Technology Data Exchange (ETDEWEB)
Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)
2014-02-01
The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.
Combinations of probabilistic and approximate quantum cloning and deleting
International Nuclear Information System (INIS)
Qiu Daowen
2002-01-01
We first construct a probabilistic and approximate quantum cloning machine (PACM) and then clarify the relation between the PACM and other cloning machines. After that, we estimate the global fidelity of the approximate cloning that improves the previous estimation for the deterministic cloning machine; and also derive a bound on the success probability of producing perfect multiple clones. Afterwards, we further establish a more generalized probabilistic and approximate cloning and deleting machine (PACDM) and discuss the connections of the PACDM to some of the existing quantum cloning and deleting machines. Finally the global fidelity and a bound on the success probability of the PACDM are obtained. Summarily, the quantum devices established in this paper improve and also greatly generalize some of the existing machines
Performance of quantum cloning and deleting machines over coherence
Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis
2017-10-01
Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.
Twelve years before the quantum no-cloning theorem
Ortigoso, Juan
2018-03-01
The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.
International Nuclear Information System (INIS)
Uiler, Dzh.
1982-01-01
General approach to the structure of the Universe is discussed. Two properties of physical laws: symmetry and changeability are considered from this view point. Each physical law permits simpler formulation in the notion of symmetry. But the simplicity of this description conceals interval mechanisms which make up the base of the physical law. The problem of physical law stability is analyzed. It is concluded that unrestricted changeability is the main property of physics. Primary attention is paid to the problem of ''quantum and Universe''. The effect of measuring process on the experimental results is the most difficult problem of quantum mechanisms. The quantum principle rejected an attempt to conceptually present the reality as it is pictured independently from its observation and it made the description of the Universe structure still more complicated and confused
Probabilistic quantum cloning of a subset of linearly dependent states
Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun
2018-02-01
It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.
Universality of clone dynamics during tissue development
Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.
2018-05-01
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
No-cloning theorem on quantum logics
International Nuclear Information System (INIS)
Miyadera, Takayuki; Imai, Hideki
2009-01-01
This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.
Experimental reversion of the optimal quantum cloning and flipping processes
International Nuclear Information System (INIS)
Sciarrino, Fabio; Secondi, Veronica; De Martini, Francesco
2006-01-01
The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and nonlinear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication, and feedforward. This nonlocal method demonstrates how the information on the input qubit can be restored after the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multipartite quantum cryptography
Counterfactual quantum cloning without transmitting any physical particles
Guo, Qi; Zhai, Shuqin; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2017-11-01
We propose a counterfactual 1 →2 economical phase-covariant cloning scheme. Compared with the existing protocols using flying qubits, the main difference of the presented scheme is that the cloning can be achieved without transmitting the photon between the two parties. In addition, this counterfactual scheme does not need to construct controlled quantum gates to perform joint logical operations between the cloned qubit and the blank copy. We also numerically evaluate the performance of the present scheme in the practical experiment, which shows this cloning scheme can be implemented with a high success of probability and the fidelity is close to the optimal value in the ideal asymptotic limit.
Efficient amplification of photonic qubits by optimal quantum cloning
Czech Academy of Sciences Publication Activity Database
Bartkiewicz, K.; Černoch, A.; Lemr, K.; Soubusta, Jan; Stobińska, M.
2014-01-01
Roč. 89, č. 6 (2014), "062322-1"-"062322-10" ISSN 1050-2947 Institutional support: RVO:68378271 Keywords : optimal quantum cloning * cryptography * qubit * phase-independent quantum amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014
Universal quantum computation by discontinuous quantum walk
International Nuclear Information System (INIS)
Underwood, Michael S.; Feder, David L.
2010-01-01
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Photonic quantum simulator for unbiased phase covariant cloning
Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.
2018-01-01
We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.
Experimental continuous-variable cloning of partial quantum information
DEFF Research Database (Denmark)
Sabuncu, Metin; Leuchs, Gerd; Andersen, Ulrik Lund
2008-01-01
The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior partial information. More specifically, we propose...... two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics...
Interfacing external quantum devices to a universal quantum computer.
Directory of Open Access Journals (Sweden)
Antonio A Lagana
Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Unconditional quantum cloning of coherent states with linear optics
International Nuclear Information System (INIS)
Leuchs, G.; Andersen, U.L.; Josse, V.
2005-01-01
Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)
Hey, Anthony J. G.; Walters, Patrick
This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Implementing phase-covariant cloning in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)
2016-10-15
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Bridge over the quantum universe
International Nuclear Information System (INIS)
Padmanabhan, T.
1992-01-01
The principle that the observer effects a quantum event merely by observing the event has long plagued quantum theorists. This poses apparently insoluble problems to those scientists seeking to develop a quantum cosmology as they can never step outside the Universe's physical system in order to observe it externally. The author explains the ideas behind this quandry with reference to the ''Schroedinger's cat'' example and cites the work of various theorists seeking to overcome the dilemma by using the concept of deccherence. (UK)
Universal signatures of quantum chaos
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.; Steiner, F.
1994-02-01
We discuss fingerprints of classical chaos in spectra of the corresponding bound quantum systems. A novel quantity to measure quantum chaos in spectra is proposed and a conjecture about its universal statistical behaviour is put forward. Numerical as well as theoretical evidence is provided in favour of the conjecture. (orig.)
Experimental asymmetric phase-covariant quantum cloning of polarization qubits
Czech Academy of Sciences Publication Activity Database
Soubusta, Jan; Bartůšková, L.; Černoch, Antonín; Dušek, M.; Fiurášek, J.
2008-01-01
Roč. 78, č. 5 (2008), 052323/1-052323/7 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) 1M06002 Grant - others:GAMŠk(CZ) LC06007 Program:LC Institutional research plan: CEZ:AV0Z10100522 Keywords : phase-covariant cloning * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.908, year: 2008
Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED
International Nuclear Information System (INIS)
Da-Wei, Zhang; Xiao-Qiang, Shao; Ai-Dong, Zhu
2008-01-01
A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. (general)
Quantum cosmology and baby universes
International Nuclear Information System (INIS)
Grishchuk, L.P.
1990-01-01
The contributed papers presented to the workshop on ''Quantum Cosmology and Baby Universes'' have demonstrated the great interest in, and rapid development of, the field of quantum cosmology. In my view, there are at least three areas of active research at present. The first area can be defined as that of practical calculations. Here researchers are dealing with the basic quantum cosmological equation, which is the Wheeler-DeWitt equation. They try to classify all possible solutions to the Wheeler-DeWitt equation or seek a specific integration contour in order to select one particular wave function or generalize the simple minisuperspace models to more complicated cases, including various inhomogeneities, anisotropies, etc. The second area of research deals with the interpretational issues of quantum cosmology. There are still many questions about how to extract the observational consequences from a given cosmological wave function, the role of time in quantum cosmology, and how to reformulate the rules of quantum mechanics in such a way that they could be applicable to the single system which is our Universe. The third area of research is concerned with the so-called ''third quantization'' of gravity. In this approach a wave function satisfying the Wheeler-DeWitt equation becomes an operator acting on a Wave Function of the many-universes system. Within this approach one operates with Euclidean worm-holes joining different Lorentzian universes. (author)
Quantum learning and universal quantum matching machine
International Nuclear Information System (INIS)
Sasaki, Masahide; Carlini, Alberto
2002-01-01
Suppose that three kinds of quantum systems are given in some unknown states vertical bar f> xN , vertical bar g 1 > xK , and vertical bar g 2 > xK , and we want to decide which template state vertical bar g 1 > or vertical bar g 2 >, each representing the feature of the pattern class C 1 or C 2 , respectively, is closest to the input feature state vertical bar f>. This is an extension of the pattern matching problem into the quantum domain. Assuming that these states are known a priori to belong to a certain parametric family of pure qubit systems, we derive two kinds of matching strategies. The first one is a semiclassical strategy that is obtained by the natural extension of conventional matching strategies and consists of a two-stage procedure: identification (estimation) of the unknown template states to design the classifier (learning process to train the classifier) and classification of the input system into the appropriate pattern class based on the estimated results. The other is a fully quantum strategy without any intermediate measurement, which we might call as the universal quantum matching machine. We present the Bayes optimal solutions for both strategies in the case of K=1, showing that there certainly exists a fully quantum matching procedure that is strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on the learning process
Inter-Universal Quantum Entanglement
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Mysteries of the quantum universe
Damour, Thibault
2017-01-01
Famous explorer Bob and his dog Rick have been around the world and even to the Moon, but their travels through the quantum universe show them the greatest wonders they've ever seen. As they follow their tour guide, the giddy letter h (also known as the Planck constant), Bob and Rick have crepes with Max Planck, talk to Einstein about atoms, visit Louis de Broglie in his castle, and hang out with Heisenberg on Heligoland. On the way, we find out that a dog - much like a cat - can be both dead and alive, the gaze of a mouse can change the universe, and a comic book can actually make quantum physics fun, easy to understand and downright enchanting.
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2007-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2006-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
Quantum creation of an inflationary Universe
International Nuclear Information System (INIS)
Linde, A.D.
1984-01-01
The problem of quantum creation of the Universe is discussed. It is shown that the process of quantum creation of the Universe in a wide class on elementary particle theories leads with a high probability to the creation of an exponentially expanding (inflationary) Universe. Universe size after expansion should exceed l approximately 10 28 cm
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...
Efficient universal quantum channel simulation in IBM's cloud quantum computer
Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu
2018-07-01
The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.
Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.
Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan
2016-10-01
This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.
Geneva University - Superconducting flux quantum bits: fabricated quantum objects
2007-01-01
Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...
Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine
Lin, Jin-Zhong
2018-05-01
We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.
A quantum computer only needs one universe
Steane, A. M.
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to "perform many computations simultaneously" except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. Rather, entanglement makes available types of computation processes which, while not exponentially larger than classical ones, are unavailable to classical systems. The essence of quantum computation is that it uses entanglement to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.
Electron quantum interferences and universal conductance fluctuations
International Nuclear Information System (INIS)
Benoit, A.; Pichard, J.L.
1988-05-01
Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr
Universality of quantum gravity corrections.
Das, Saurya; Vagenas, Elias C
2008-11-28
We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.
Construction of a universal quantum computer
International Nuclear Information System (INIS)
Lagana, Antonio A.; Lohe, M. A.; Smekal, Lorenz von
2009-01-01
We construct a universal quantum computer following Deutsch's original proposal of a universal quantum Turing machine (UQTM). Like Deutsch's UQTM, our machine can emulate any classical Turing machine and can execute any algorithm that can be implemented in the quantum gate array framework but under the control of a quantum program, and hence is universal. We present the architecture of the machine, which consists of a memory tape and a processor and describe the observables that comprise the registers of the processor and the instruction set, which includes a set of operations that can approximate any unitary operation to any desired accuracy and hence is quantum computationally universal. We present the unitary evolution operators that act on the machine to achieve universal computation and discuss each of them in detail and specify and discuss explicit program halting and concatenation schemes. We define and describe a set of primitive programs in order to demonstrate the universal nature of the machine. These primitive programs facilitate the implementation of more complex algorithms and we demonstrate their use by presenting a program that computes the NAND function, thereby also showing that the machine can compute any classically computable function.
International Nuclear Information System (INIS)
Chen, Haixia; Zhang, Jing
2007-01-01
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning
Universality of measurements on quantum markets
Pakuła, Ireneusz; Piotrowski, Edward W.; Sładkowski, Jan
2007-11-01
Two of the authors have recently discussed financial markets operated by quantum computers-quantum market games. These “new markets” cannot by themselves create opportunity of making extraordinary profits or multiplying goods, but they may cause the dynamism of transaction which would result in more effective markets and capital flow into hands of the most efficient traders. Here we focus upon the problem of universality of measurement in quantum market games offering a possible method of implementation if the necessary technologies would be available. It can be also used to analyse material commitments that elude description in orthodox game-theoretic terms.
Universal dephasing control during quantum computation
International Nuclear Information System (INIS)
Gordon, Goren; Kurizki, Gershon
2007-01-01
Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity
Universal quantum computation in a semiconductor quantum wire network
International Nuclear Information System (INIS)
Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta
2010-01-01
Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.
Bogoliubov quasiparticles in quantum universe
International Nuclear Information System (INIS)
Pawlowski, M.; Papoyan, V.; Pervushin, V.; Smirichinski, S.; )
2000-01-01
A powerful apparatus of the Bogoliubov transformations is used to get conserved quantum numbers of a set of free fields in the Friedmann-Robertson-Walker (FRW) metric with the back-reaction of the cosmic evolution. It is shown how the Bogoliubov vacuum of the Heisenberg equations of motion creates particles detected by an observer in the frame of reference at the present-day stage. The equations for coefficient of the Bogoliubov transformations reproduce the equations of states of the FRW classical cosmology in its conformal version [ru
Fractal universe and quantum gravity.
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
The quantum cosmology of an anisotropic universe
International Nuclear Information System (INIS)
Duncan, M.J.; Jensen, L.G.
1989-01-01
Surveys of the microwave background indicate that the universe is isotropic to more than one part in 10 5 . Due to the arbitrariness of the initial conditions of the universe at the big bang singularity one cannot predict this; it is usually put in by hand. We therefore construct the quantum cosmology of an anisotropic universe according to the 'no-boundary' prescription of Hartle and Hawking. Such a model has a well-defined behavior at the classical singularity. We then show it also implies that a large universe, such as ours, is isotropic. (orig.)
Quantum cosmology of an anisotropic universe
Energy Technology Data Exchange (ETDEWEB)
Duncan, M.J.; Jensen, L.G.
1989-01-23
Surveys of the microwave background indicate that the universe is isotropic to more than one part in 10/sup 5/. Due to the arbitrariness of the initial conditions of the universe at the big bang singularity one cannot predict this; it is usually put in by hand. We therefore construct the quantum cosmology of an anisotropic universe according to the 'no-boundary' prescription of Hartle and Hawking. Such a model has a well-defined behavior at the classical singularity. We then show it also implies that a large universe, such as ours, is isotropic.
Universal quantum computation with metaplectic anyons
Energy Technology Data Exchange (ETDEWEB)
Cui, Shawn X., E-mail: xingshan@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, California 93106 (United States); Wang, Zhenghan, E-mail: zhenghwa@math.ucsb.edu, E-mail: zhenghwa@microsoft.com [Department of Mathematics, University of California, Santa Barbara, California 93106 (United States); Microsoft Research Station Q, University of California, Santa Barbara, California 93106 (United States)
2015-03-15
We show that braidings of the metaplectic anyons X{sub ϵ} in SO(3){sub 2} = SU(2){sub 4} with their total charge equal to the metaplectic mode Y supplemented with projective measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal anyonic computing models can be constructed for all metaplectic anyon systems SO(p){sub 2} for any odd prime p ≥ 5. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.
Discovering the quantum universe the role of particle colliders
2006-01-01
What does "Quantum Universe" mean? To discover what the universe is made of and how it works is the challenge of particle physics. "Quantum Universe" defines the quest to explain the universe in terms of quantum physics, which governs the behavior of the microscopic, subatomic world. It describes a revolution in particle physics and a quantum leap in our understanding of the mystery and beauty of the universe.
Weak universality in inhomogeneous Ising quantum chains
International Nuclear Information System (INIS)
Karevski, Dragi
2006-01-01
The Ising quantum chain with arbitrary coupling distribution {λ i } leading to an anisotropic scaling is considered. The smallest gap of the chain is connected to the surface magnetization by the relation Λ 1 = m s ({λ i })m s ({λ -1 i }). For some aperiodic distribution {λ i }, a weak universality of the critical behaviour is found. (letter to the editor)
Quantum cosmology and the early universe
International Nuclear Information System (INIS)
Hartle, J.B.
1983-01-01
Despite the absence of a complete and manageable quantum theory of gravity, it is shown that considerable progress has been made in constructing cosmological models displaying the possible implications such a theory might have for the structure and dynamics of the very early universe. (U.K.)
Limits to the universality of quantum mechanics
International Nuclear Information System (INIS)
Josephson, B.D.
1988-01-01
Niels Bohr's arguments indicating the non-applicability of quantum methodology to the study of the ultimate details of life, given in his book Atomic Physics and Human Knowledge, conflict with the commonly held opposite view. The bases for the usual beliefs are examined and shown to have little validity; significant differences do exist between the living organism and the type of system studied successfully in the physics laboratory. Dealing with living organisms in quantum-mechanical terms with the same degree of rigor as is normal for non-living systems would seem not to be possible without considering also questions of the origins of life and of the universe
Universality of black hole quantum computing
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); New York Univ., NY (United States). Center for Cosmology and Particle Physics; Gomez, Cesar [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Luest, Dieter [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Omar, Yasser [Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico; Richter, Benedikt [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico
2017-01-15
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
'Big bang' of quantum universe
International Nuclear Information System (INIS)
Pawlowski, M.; Pervushin, V.N.
2000-01-01
The reparametrization-invariant generating functional for the unitary and causal perturbation theory in general relativity in a finite space-time is obtained. The classical cosmology of a Universe and the Faddeev-Popov-DeWitt functional correspond to different orders of decomposition of this functional over the inverse 'mass' of a Universe. It is shown that the invariant content of general relativity as a constrained system can be covered by two 'equivalent' unconstrained systems: the 'dynamic' (with 'dynamic' time as the cosmic scale factor and conformal field variables) and 'geometric' (given by the Levi-Civita type canonical transformation to the action-angle variables which determine initial cosmological states with the arrow of the proper time measured by the watch of an observer in the comoving frame). 'Big Bang', the Hubble evolution, and creation of 'dynamic' particles by the 'geometric' vacuum are determined by 'relations' between the dynamic and geometric systems as pure relativistic phenomena, like the Lorentz-type 'relation' between the rest and comoving frames in special relativity
Phase-Covariant Cloning and EPR Correlations in Entangled Macroscopic Quantum Systems
de Martini, Francesco; Sciarrino, Fabio
2007-03-01
Theoretical and experimental results on the Quantum Injected Optical Parametric Amplification (QI-OPA) of optical qubits in the high gain regime are reported. The large size of the gain parameter in the collinear configuration, g = 4.5, allows the generation of EPR nonlocally correlated bunches containing about 4000 photons. The entanglement of the related Schroedinger Cat-State (SCS) is demonstrated as well as the establishment of Phase-Covariant quantum cloning. The cloning ``fidelity'' has been found to match the theoretical results. According to the original 1935 definition of the SCS, the overall apparatus establishes for the first time the nonlocal correlations between a microcopic spin (qubit) and a high J angular momentum i.e. a mesoscopic multiparticle system close to the classical limit. The results of the first experimental realization of the Herbert proposal for superluminal communication via nonlocality will be presented.
Quantum singularities in the FRW universe revisited
International Nuclear Information System (INIS)
Letelier, Patricio S.; Pitelli, Joao Paulo M.
2010-01-01
The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.
Universal signatures of fractionalized quantum critical points.
Isakov, Sergei V; Melko, Roger G; Hastings, Matthew B
2012-01-13
Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.
The universe within from quantum to cosmos
Turok, Neil
2012-01-01
A visionary look at the way the human mind can shape the future by world-renowned physicist Neil Turok. Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come. In this personal and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries -- from classical mechanics, to the nature of light, to the bizarre world of the quantum, and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current, dissatisfying digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed...
International Nuclear Information System (INIS)
Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou
2011-01-01
A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.
Energy Technology Data Exchange (ETDEWEB)
Shao, Xiao-Qiang, E-mail: xqshao83@yahoo.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zheng, Tai-Yu, E-mail: zhengty@nenu.edu.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)
2011-09-19
A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.
Universal features of quantum bounce in loop quantum cosmology
Directory of Open Access Journals (Sweden)
Tao Zhu
2017-10-01
Full Text Available In this Letter, we study analytically the evolutions of the flat Friedmann–Lemaitre–Robertson–Walker (FLRW universe and its linear perturbations in the framework of the dressed metric approach in loop quantum cosmology (LQC. Assuming that the evolution of the background is dominated by the kinetic energy of the inflaton at the quantum bounce, we find that both evolutions of the background and its perturbations are independent of the inflationary potentials during the pre-inflationary phase. During this period the effective potentials of the perturbations can be well approximated by a Pöschl–Teller (PT potential, from which we find analytically the mode functions and then calculate the corresponding Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary model with a single scalar field. Imposing the Bunch–Davies (BD vacuum in the contracting phase prior to the bounce when the modes are all inside the Hubble horizon, we show that particles are generically created due to the pre-inflation dynamics. Matching them to those obtained in the slow-roll inflationary phase, we investigate the effects of the pre-inflation dynamics on the scalar and tensor power spectra and find features that can be tested by current and forthcoming observations. In particular, to be consistent with the Planck 2015 data, we find that the universe must have expanded at least 141 e-folds since the bounce.
Quantum jointly assisted cloning of an unknown three-dimensional equatorial state
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-02-01
We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to create a perfect copy of the unknown state at her location. The scheme consists of two stages. The first stage of the scheme requires the usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform single-qutrit projective measurements on their own qutrits from the sender, then the sender can acquire a perfect copy of the unknown state. It is shown that, only if the two state preparers collaborate with each other, the sender can create a copy of the unknown state by means of some appropriate unitary operations. In the second scheme, we generalized the jointly assisted cloning in the first scheme to the case of N state prepares. In the present schemes, the total probability of success for assisted cloning of a perfect copy of the unknown state can reach 1.
Emergence of a classical Universe from quantum gravity and cosmology.
Kiefer, Claus
2012-09-28
I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.
Fundamentals of universality in one-way quantum computation
International Nuclear Information System (INIS)
Nest, M van den; Duer, W; Miyake, A; Briegel, H J
2007-01-01
In this paper, we build a framework allowing for a systematic investigation of the fundamental issue: 'Which quantum states serve as universal resources for measurement-based (one-way) quantum computation?' We start our study by re-examining what is exactly meant by 'universality' in quantum computation, and what the implications are for universal one-way quantum computation. Given the framework of a measurement-based quantum computer, where quantum information is processed by local operations only, we find that the most general universal one-way quantum computer is one which is capable of accepting arbitrary classical inputs and producing arbitrary quantum outputs-we refer to this property as CQ-universality. We then show that a systematic study of CQ-universality in one-way quantum computation is possible by identifying entanglement features that are required to be present in every universal resource. In particular, we find that a large class of entanglement measures must reach its supremum on every universal resource. These insights are used to identify several families of states as being not universal, such as one-dimensional (1D) cluster states, Greenberger-Horne-Zeilinger (GHZ) states, W states, and ground states of non-critical 1D spin systems. Our criteria are strengthened by considering the efficiency of a quantum computation, and we find that entanglement measures must obey a certain scaling law with the system size for all efficient universal resources. This again leads to examples of non-universal resources, such as, e.g. ground states of critical 1D spin systems. On the other hand, we provide several examples of efficient universal resources, namely graph states corresponding to hexagonal, triangular and Kagome lattices. Finally, we consider the more general notion of encoded CQ-universality, where quantum outputs are allowed to be produced in an encoded form. Again we provide entanglement-based criteria for encoded universality. Moreover, we present a
Realization of universal optimal quantum machines by projective operators and stochastic maps
International Nuclear Information System (INIS)
Sciarrino, F.; Sias, C.; Ricci, M.; De Martini, F.
2004-01-01
Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal antiunitary map. In addition, the contextual realization of the N→M cloning map and of the teleportation of the N→(M-N) universal-NOT (UNOT) gate is analyzed by a very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1→2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits
Quantum aspects of early universe thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Drewes, Marco
2010-03-15
Various features of the observable universe can be understood as the result of nonequilibrium processes during the early stages of its history, when it was filled with a hot primordial plasma. In many cases, including cosmological freezeout processes, only a few degrees of freedom were out of equilibrium and the background plasma can be viewed as a large heat bath to which these couple. We study scalar and fermionic quantum fields out of thermal equilibrium that are weakly coupled to a large thermal bath with the goal to formulate a full quantum mechanical description of such processes. The bath composition need not be specified. Our analysis is based on Kadanoff-Baym equations, which are the exact equations of motion for the correlation functions in a nonequilibrium quantum system. We solve the equations of motion for the most general Gaussian initial density matrix, without a specific ansatz or a-priori parameterisation and for arbitrarily large deviations from equilibrium. The solutions depend on integral kernels that contain memory effects. These can in good approximation be solved analytically when the field excitations have a small decay width. The full solutions are compared to results obtained by other methods. We prove that the description in terms of a stochastic Langevin equation is equivalent to the Kadanoff-Baym equations. We show the emergence of standard Boltzmann equations as a limit of the Kadanoff-Baym equations in a dilute gas when coherences play no role and discuss quantum Boltzmann equations as an intermediate step. We analyse the properties of the solutions in terms of the equation of state and investigate the validity and implications of quasiparticle approximations. We find that the equation of state can deviate significantly from that of a gas of quasiparticles even if the resonances in the plasma show quasiparticle behaviour in decays and scatterings. A detailed discussion is devoted to the influence of modified dispersion relations and
A quantum computer only needs one universe
Steane, A. M.
2000-01-01
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to ``perform many computations simultaneously'' except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of ...
Universal quantum gates for Single Cooper Pair Box based quantum computing
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Decoding reality the universe as quantum information
Vedral, Vlatko
2010-01-01
In Decoding Reality, Vlatko Vedral offers a mind-stretching look at the deepest questions about the universe--where everything comes from, why things are as they are, what everything is. The most fundamental definition of reality is not matter or energy, he writes, but information--and it is the processing of information that lies at the root of all physical, biological, economic, and social phenomena. This view allows Vedral to address a host of seemingly unrelated questions: Why does DNA bind like it does? What is the ideal diet for longevity? How do you make your first million dollars? We can unify all through the understanding that everything consists of bits of information, he writes, though that raises the question of where these bits come from. To find the answer, he takes us on a guided tour through the bizarre realm of quantum physics. At this sub-sub-subatomic level, we find such things as the interaction of separated quantum particles--what Einstein called "spooky action at a distance." In fact, V...
Scientific Challenges for Understanding the Quantum Universe
Energy Technology Data Exchange (ETDEWEB)
Khaleel, Mohammad A.
2009-10-16
A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.
Universe before Planck time: A quantum gravity model
International Nuclear Information System (INIS)
Padmanabhan, T.
1983-01-01
A model for quantum gravity can be constructed by treating the conformal degree of freedom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution in this quantum gravity model is presented. The spacetime is nonsingular for all the three possible values of three-space curvature, and agrees with the classical solution for time scales larger than the Planck time scale. A possibility of quantum fluctuations creating the matter in the universe is suggested
International Nuclear Information System (INIS)
De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo
2009-01-01
The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.
Human body motion tracking based on quantum-inspired immune cloning algorithm
Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing
2009-10-01
In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.
Accidental cloning of a single-photon qubit in two-channel continuous-variable quantum teleportation
International Nuclear Information System (INIS)
Ide, Toshiki; Hofmann, Holger F.
2007-01-01
The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentally feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones
A universal quantum module for quantum communication, computation, and metrology
Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae
2017-08-01
In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.
Quantum theories of the early universe - a critical appraisal
International Nuclear Information System (INIS)
Hu, B.L.
1988-01-01
A critical appraisal of certain general problems in the study of quantum processes in curved space as applied to the construction of theories of the early universe is presented. Outstanding issues in different cosmological models and the degree of success of different quantum processes in addressing these issues are summarized. (author)
Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms
Ye, Mengdie
2017-05-01
In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Modular Universal Scalable Ion-trap Quantum Computer
2016-06-02
SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11
Consistent Quantum Histories: Towards a Universal Language of Physics
International Nuclear Information System (INIS)
Grygiel, W.P.
2007-01-01
The consistent histories interpretation of quantum mechanics is a reformulation of the standard Copenhagen interpretation that aims at incorporating quantum probabilities as part of the axiomatic foundations of the theory. It is not only supposed to equip quantum mechanics with clear criteria of its own experimental verification but, first and foremost, to alleviate one of the stumbling blocks of the theory - the measurement problem. Since the consistent histories interpretation operates with a series of quantum events integrated into one quantum history, the measurement problem is naturally absorbed as one of the events that build up a history. The interpretation rests upon the two following assumptions, proposed already by J. von Neumann: (1) both the microscopic and macroscopic regimes are subject to the same set of quantum laws and (2) a projector operator that is assigned to each event within a history permits to transcribe the history into a set of propositions that relate the entire course of quantum events. Based on this, a universal language of physics is expected to emerge that will bring the quantum apparatus back to common sense propositional logic. The basic philosophical issue raised this study is whether one should justify quantum mechanics by means of what emerges from it, that is, the properties of the macroscopic world, or use the axioms of quantum mechanics to demonstrate the mechanisms how the macroscopic world comes about from the quantum regime. (author)
Models for universal reduction of macroscopic quantum fluctuations
International Nuclear Information System (INIS)
Diosi, L.
1988-10-01
If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs
Symmetric-bounce quantum state of the universe
Energy Technology Data Exchange (ETDEWEB)
Page, Don N., E-mail: don@phys.ualberta.ca [Theoretical Physics Institute, Department of Physics, University of Alberta, Room 238 CEB, 11322 – 89 Avenue, Edmonton, Alberta T6G 2G7 (Canada)
2009-09-01
A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction.
Symmetric-bounce quantum state of the universe
International Nuclear Information System (INIS)
Page, Don N.
2009-01-01
A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-02
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
One-loop quantum gravity repulsion in the early Universe.
Broda, Bogusław
2011-03-11
Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.
Quantum creation of the universe in N = 8 supergravity
International Nuclear Information System (INIS)
Goncharov, Yu.P.; Bytsenko, A.A.
1988-01-01
We discuss the possibility of quantum creation of an inflationary universe filled with the fields of maximal extended N = 8 supergravity. If the created universe has spatial topology (S 1 ) 3 and after the creation Starobinskii's inflationary scenario through the topological Casimir effect in N = 8 supergravity is realized, the probability of creation of such a universe can be estimated in the semiclassical approximation. The estimate shows that the creation of a universe with a more isotropic topology is more probable
Cosmic Christ in a Quantum Universe.
Kohli, Mary Ann
of noninstitutional spirituality has brought a new importance to the individual, who is represented by the cosmic Christ in a quantum universe.
Maximally incompatible quantum observables
Energy Technology Data Exchange (ETDEWEB)
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)
2014-05-01
The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.
Maximally incompatible quantum observables
International Nuclear Information System (INIS)
Heinosaari, Teiko; Schultz, Jussi; Toigo, Alessandro; Ziman, Mario
2014-01-01
The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.
Universal Quantum Transducers Based on Surface Acoustic Waves
Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.
2015-01-01
We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,
Chaotic flows in a universe with a negative quantum pressure
International Nuclear Information System (INIS)
Kandrup, H.E.
1983-01-01
Lockhart, Misra, and Prigogine have pointed out that geodesic flow in an open k = -1 Friedmann universe is unstable. The implications of this instability are considered for a universe whose energetics was dominated, at some early time, by the Lorentz-invariant expectation value of a quantum stress-energy tensor
Evidence for the quantum birth of our Universe
Indian Academy of Sciences (India)
Abstract. We present evidence for a nonsingular origin of the Universe with intial conditions de- termined by quantum physics and relativistic gravity. In particular, we establish that the present temperature of the microwave background and the present density of the Universe agree well with our predictions from these intial ...
International Nuclear Information System (INIS)
Li, Lvjun; Qiu, Daowen
2007-01-01
In probabilistic cloning with two auxiliary systems, we consider and compare three different protocols for the success probabilities of cloning. We show that, in certain circumstances, it may increase the success probability to add an auxiliary system to the probabilistic cloning machine having one auxiliary system, but we always can find another cloning machine with one auxiliary system having the same success probability as that with two auxiliary systems
National Research Council Canada - National Science Library
Johnson, Judith A; Williams, Erin D
2006-01-01
.... Scientists in other labs, including Harvard University and the University of California at San Francisco, intend to produce cloned human embryos in order to derive stem cells for medical research...
Squeezing of thermal and quantum fluctuations: Universal features
DEFF Research Database (Denmark)
Svensmark, Henrik; Flensberg, Karsten
1993-01-01
We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
Lau, Hoi-Kwan; Plenio, Martin B.
2016-01-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and ...
Redefining Planck Mass: Unlocking the Fundamental Quantum of the Universe
Laubenstein, John
2008-04-01
The large value of the Planck Mass relative to the quantum scale raises unanswered questions as to the source of mass itself. While we wait for experimental verification of the elusive Higgs boson, it may be worth recognizing that Planck Mass is not the result of rigorous mathematics -- but rather derived from an intuitive manipulation of physical constants. Recent findings reported by IWPD suggest a quantum scale Planck Mass as small as 10 (-73) kg. At this scale, the Planck Mass joins Planck Length and Time as a truly fundamental quantum entity. This presentation will provide evidence supporting the fundamental quantum nature of a dramatically smaller Planck Mass while discussing the impact of this finding on both the quantum and cosmic scale. A quantum scale Planck Mass will require an accelerating expansion of the universe at an age of 14.2 billion years. No initial conditions are imposed at the earliest Planck Time of 10 (-44) s allowing the universe to evolve as a background free field propagating at the speed of light with a local degree of freedom. This model provides the basis for a quantum theory of gravity and provides a conceptual pathway for the unification of GR and QM.
Scaling and Universality at Dynamical Quantum Phase Transitions.
Heyl, Markus
2015-10-02
Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.
International Nuclear Information System (INIS)
Carlini, A.; Sasaki, M.
2003-01-01
We address the problem of finding optimal CPTP (completely positive trace-preserving) maps between a set of binary pure states and another set of binary generic mixed state in a two-dimensional space. The necessary and sufficient conditions for the existence of such CPTP maps can be discussed within a simple geometrical picture. We exploit this analysis to show the existence of an optimal quantum repeater which is superior to the known repeating strategies for a set of coherent states sent through a lossy quantum channel. We also show that the geometrical formulation of the CPTP mapping conditions can be a simpler method to derive a state-dependent quantum (anti) cloning machine than the study so far based on the explicit solution of several constraints imposed by unitarity in an extended Hilbert space
Quantum universe on extremely small space-time scales
International Nuclear Information System (INIS)
Kuzmichev, V.E.; Kuzmichev, V.V.
2010-01-01
The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.
The Origin of our Universe: From Quantum to Cosmos
Hertog, Thomas
2016-03-01
The discovery in the late 1920s that our universe expands fundamentally changed the discussion about its origin. I first review the scientific, historical and philosophical background behind this discovery. A key player in this was Georges Lemaitre who was also a Catholic priest. Respecting meticulously the differences in methodology and language between science and religion he was first to conceive of a physical origin of our universe, based on quantum theory. Today Lemaitre's vision is realised concretely in inflationary cosmology where a phase of rapid expansion generates the seeds for a complex universe starting from a simple natural beginning. A fuzzy quantum origin however gives rise to a multiverse of possible universes. I discuss some of the challenges associated with the development of a truly predictive multiverse cosmology that is falsifiable to observers within one of its histories.
Loucif, Lotfi; Kassah-Laouar, Ahmed; Saidi, Mahdia; Messala, Amina; Chelaghma, Widad; Rolain, Jean-Marc
2016-12-01
Seven nonredundant ertapenem-resistant Klebsiella pneumoniae isolates were collected between May 2014 and 19 January 2015 in the nephrology and hematology units of Batna University Hospital in Algeria. All strains coproduced the bla OXA-48 , bla CTX-M-15 , bla SHV-1 , and bla TEM-1D genes. Six of these isolates belonged to the pandemic clone sequence type 101 (ST101). The bla OXA-48 gene was located on a conjugative IncL/M-type plasmid. This is the first known outbreak of OXA-48-producing K. pneumoniae isolates involving an ST101 clone in Batna University Hospital. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A universality test of the quantum string Bethe ansatz
DEFF Research Database (Denmark)
Freyhult, L.; Kristjansen, C.
2006-01-01
We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...
The Emergence of Consciousness in the Quantum Universe
Zhang, Xiaolei
2011-01-01
It is argued that human consciousness is likely to have emerged during the self-consistent evolution of the physical universe, through the gradual accumulation of biological entities' ability to tap into the intrinsic non-deterministic potentiality in the global nonequilibrium phase transitions occurring continually in the quantum universe. Due to the fact that the matter and energy content participating in these global phase transitions is a continuum, there are in effect infinite degrees-of...
The magic of universal quantum computing with permutations
Planat, Michel; Rukhsan-Ul-Haq
2017-01-01
The role of permutation gates for universal quantum computing is investigated. The \\lq magic' of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function and state-dependent contextuality (following many contributions on this subject). A first classification of main types of resulting magic states in low dimensions $d \\le 9$ is performed.
The Magic of Universal Quantum Computing with Permutations
Directory of Open Access Journals (Sweden)
Michel Planat
2017-01-01
Full Text Available The role of permutation gates for universal quantum computing is investigated. The “magic” of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function, and state-dependent contextuality (following many contributions on this subject. A first classification of a few types of resulting magic states in low dimensions d≤9 is performed.
Graphene and the universality of the quantum Hall effect
DEFF Research Database (Denmark)
Tzalenchuk, A.; Janssen, T. J.B.M.; Kazakova, O.
2013-01-01
The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... the unconventional quantum Hall effect and then present in detail the route, which led to the most precise quantum Hall resistance universality test ever performed.......The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show...
The quantum universe: philosophical foundations and oriental medicine.
Kafatos, Menas C; Yang, Keun-Hang
2016-12-01
The existence of universal principles in both science and medicine implies that one can explore their common applicability. Here we explore what we have learned from quantum mechanics, phenomena such as entanglement and nonlocality, the role of participation of the observer, and how these may apply to oriental medicine. The universal principles of integrated polarity, recursion, and creative interactivity apply to all levels of existence and all human activities, including healing and medicine. This review examines the possibility that what we have learned from quantum mechanics may provide clues to better understand the operational principles of oriental medicine in an integrated way. Common to both is the assertion that Consciousness is at the foundation of the universe and the inner core of all human beings. This view goes beyond both science and medicine and has strong philosophical foundations in Western philosophy as well as monistic systems of the East.
Universal Postquench Prethermalization at a Quantum Critical Point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2014-11-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.
Universal parametric correlations of conductance peaks in quantum dots
International Nuclear Information System (INIS)
Alhassid, Y.; Attias, H.
1996-01-01
We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot. copyright 1996 The American Physical Society
Optimally cloned binary coherent states
DEFF Research Database (Denmark)
Mueller, C. R.; Leuchs, G.; Marquardt, Ch
2017-01-01
their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...
Quantum leap from Dirac and Feynman, across the universe, to human body and mind
Ivancevic, Vladimir G
2008-01-01
This is a unique 21st-century monograph that reveals a basic, yet deep understanding of the universe, as well as the human mind and body - all from the perspective of quantum mechanics and quantum field theory.This book starts with both non-mathematical and mathematical preliminaries. It presents the basics of both non-relativistic and relativistic quantum mechanics, and introduces Feynman path integrals and their application to quantum fields and string theory, as well as some non-quantum applications. It then describes the quantum universe in the form of loop quantum gravity and quantum cosm
Universal spin dynamics in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Fajardo, E. A.; Zülicke, U.; Winkler, R.
2017-10-01
We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.
Dark energy: a quantum fossil from the inflationary universe?
International Nuclear Information System (INIS)
Sola, Joan
2008-01-01
The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term, Λ, whose variation follows a power law of the redshift
Modular invariance, universality and crossover in the quantum Hall effect
International Nuclear Information System (INIS)
Dolan, Brian P.
1999-01-01
An analytic form for the conductivity tensor in crossover between two quantum Hall plateaux is derived, which appears to be in good agreement with existing experimental data. The derivation relies on an assumed symmetry between quantum Hall states, a generalisation of the law of corresponding states from rational filling factors to complex conductivity, which has a mathematical expression in terms of an action of the modular group on the upper-half complex conductivity plane. This symmetry implies universality in quantum Hall crossovers. The assumption that the β-function for the complex conductivity is a complex analytic function, together with some experimental constraints, results in an analytic expression for the crossover, as a function of the external magnetic field
Roads towards fault-tolerant universal quantum computation
Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe
2017-09-01
A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.
Universal postquench coarsening and aging at a quantum critical point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2015-09-01
The nonequilibrium dynamics of a system that is located in the vicinity of a quantum critical point is affected by the critical slowing down of order-parameter correlations with the potential for novel out-of-equilibrium universality. After a quantum quench, i.e., a sudden change of a parameter in the Hamiltonian, such a system is expected to almost instantly fall out of equilibrium and undergo aging dynamics, i.e., dynamics that depends on the time passed since the quench. Investigating the quantum dynamics of an N -component φ4 model coupled to an external bath, we determine this universal aging and demonstrate that the system undergoes a coarsening, governed by a critical exponent that is unrelated to the equilibrium exponents of the system. We analyze this behavior in the large-N limit, which is complementary to our earlier renormalization-group analysis, allowing in particular the direct investigation of the order-parameter dynamics in the symmetry-broken phase and at the upper critical dimension. By connecting the long-time limit of fluctuations and response, we introduce a distribution function that shows that the system remains nonthermal and exhibits quantum coherence even on long time scales.
The University of Canberra quantum key distribution testbed
International Nuclear Information System (INIS)
Ganeshkumar, G.; Edwards, P.J.; Cheung, W.N.; Barbopoulos, L.O.; Pham, H.; Hazel, J.C.
1999-01-01
Full text: We describe the design, operation and preliminary results obtained from a quantum key distribution (QKD) testbed constructed at the University of Canberra. Quantum cryptographic systems use shared secret keys exchanged in the form of sequences of polarisation coded or phase encoded single photons transmitted over an optical communications channel. Secrecy of this quantum key rests upon fundamental laws of quantum physics: measurements of linear or circular photon polarisation states introduce noise into the conjugate variable and so reveal eavesdropping. In its initial realisation reported here, pulsed light from a 650nm laser diode is attenuated by a factor of 10 6 , plane-polarised and then transmitted through a birefringent liquid crystal modulator (LCM) to a polarisation sensitive single photon receiver. This transmitted key sequence consists of a 1 kHz train of weak coherent 100ns wide light pulses, polarisation coded according to the BB84 protocol. Each pulse is randomly assigned one of four polarisation states (two orthogonal linear and two orthogonal circular) by computer PCA operated by the sender ('Alice'). This quaternary polarisation shift keyed photon stream is detected by the receiver ('Bob') whose computer (PCB) randomly chooses either a linear or a circular polarisation basis. Computer PCB is also used for final key selection, authentication, privacy amplification and eavesdropping. We briefly discuss the realisation of a mesoscopic single photon QKD source and the use of the testbed to simulate a global quantum key distribution system using earth satellites. Copyright (1999) Australian Optical Society
Clifford algebras, noncommutative tori and universal quantum computers
Vlasov, Alexander Yu.
2001-01-01
Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presente...
Classical limit of quantum gravity in an accelerating universe
International Nuclear Information System (INIS)
Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2005-01-01
A one-parameter deformation of Einstein-Hilbert gravity with an inverse Riemann curvature term is derived as the classical limit of quantum gravity compatible with an accelerating universe. This result is based on the investigation of semi-classical theories with sectional curvature bounds which are shown not to admit static spherically symmetric black holes if otherwise of phenomenological interest. We discuss the impact on the canonical quantization of gravity, and observe that worldsheet string theory is not affected
The Quantum Effect on Friedmann Equation in FRW Universe
Directory of Open Access Journals (Sweden)
Wei Zhang
2018-01-01
Full Text Available We study the modified Friedmann equation in the Friedmann-Robertson-Walker universe with quantum effect. Our modified results mainly stem from the new entropy-area relation and the novel idea of Padmanabhan, who considers the cosmic space to be emerging as the cosmic time progresses, so that the expansion rate of the universe is determined by the difference of degrees of freedom between the holographic surface and the bulk inside. We also discuss the possibility of having bounce cosmological solution from the modified Friedmann equation in spatially flat geometry.
Completeness of classical spin models and universal quantum computation
International Nuclear Information System (INIS)
De las Cuevas, Gemma; Dür, Wolfgang; Briegel, Hans J; Van den Nest, Maarten
2009-01-01
We study mappings between different classical spin systems that leave the partition function invariant. As recently shown in Van den Nest et al (2008 Phys. Rev. Lett. 100 110501), the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be 'complete'. However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real—and, hence, 'physical'—couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow for universal quantum computation via local measurements only, and complete classical spin systems
Universal quantum entanglement between an oscillator and continuous fields
International Nuclear Information System (INIS)
Miao Haixing; Danilishin, Stefan; Chen Yanbei
2010-01-01
Quantum entanglement has been actively sought in optomechanical and electromechanical systems. The simplest system is a mechanical oscillator interacting with a coherent optical field, while the oscillator also suffers from thermal decoherence. With a rigorous functional analysis, we develop a mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that the quantum entanglement is always present between the oscillator and continuous optical field--even when the environmental temperature is high and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes that are ordered by the entanglement strength to better understand the entanglement structure, analogously to the energy spectrum of an atomic system. In particular, we derive the optical mode that is maximally entangled with the mechanical oscillator, which will be useful for future quantum computing and encoding information into mechanical degrees of freedom.
Quantum Rényi relative entropies affirm universality of thermodynamics.
Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K
2015-10-01
We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.
Nonuniform code concatenation for universal fault-tolerant quantum computing
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
Universality in driven-dissipative quantum many-body systems
International Nuclear Information System (INIS)
Sieberer, L.M.
2015-01-01
Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel
Universal post-quench prethermalization at a quantum critical point
Orth, Peter P.; Gagel, Pia; Schmalian, Joerg
2015-03-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive non-equilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are a powerlaw rise of order and correlations after an initial collapse of the equilibrium state and a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches. [1] P. Gagel, P. P. Orth, J. Schmalian, Phys.Rev. Lett. (in press) arXiv:1406.6387
Four-level systems and a universal quantum gate
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, S.P. (Brazil)
2008-07-15
We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
International Nuclear Information System (INIS)
Mugur-Schaechter, M.
1993-01-01
In previous works we have established that the spacetime probabilistic organization of the quantum theory is determined by the spacetime characteristics of the operations by which the observer produces the objects to be studied (states of microsystems) and obtains qualifications of these. Guided by this first conclusion, we have then built a general syntax of relativized conceptualization where any description is explicity and systematically referred to the two basic epistemic operations by which the conceptor introduces the object to be qualified and then obtains qualifications of it. Inside this syntax there emerges a general typology of the relativized descriptions. Here we show that with respect to this typology the type of the predictive quantum mechanical descriptions acquires a precise definition. It appears that the quantum mechanical formalism has captured and has expressed directly in a mathematical language the most complex form in which can occur a first descriptional phase that lies universally at the bottom of any chain of conceptualization. The main features of the Hilbert-Dirac algorithms are decoded in terms of the general syntax of relativized conceptualiztion. This renders explicit the semantical contents of the quantum mechanical representations relating each one of these to its mathematical quantum mechanical expression. Basic insufficiencies are thus identified and, correlatively, false problems as well as answers to these, or guides towards the answers. Globally the results obtained provide a basis for the future attempts at a general mathematical representation of the processes of conceptualization
Universal quantum computation with temporal-mode bilayer square lattices
Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.
2018-03-01
We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.
Towards Quantum Experiments with Human Eye Detectors Based on Cloning via Stimulated Emission ?
De Martini, Francesco
2010-05-01
In a recent theoretical paper published in Physical Review Letters, Sekatsky, Brunner, Branciard, Gisin, Simon report an extended investigation on some properties of the human eye that affect its behavior as a quantum detector. We believe that the content of this work, albeit appealing at fist sight, is highly questionable simply because the human eye cannot be adopted as a sensing device within any quantum measurement apparatus. Furthermore, the criticism raised by these Authors against a real experiment on Micro—Macro entanglement recently published in Physical Review Letters (100, 253601, 2008) is found misleading and misses its target.
Optimal control of universal quantum gates in a double quantum dot
Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.
2018-06-01
We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.
Space-Time Uncertainty and Cosmology: a Proposed Quantum Model of the Universe [ 245Kb
Directory of Open Access Journals (Sweden)
Tosto S.
2013-10-01
Full Text Available The paper introduces a cosmological model of the quantum universe. The aim of the model is (i to identify the possible mechanism that governs the matter/antimatter ratio existing in the universe and concurrently to propose (ii a reasonable growth mechanism of the universe and (iii a possible explanation of the dark energy. The concept of timespace uncertainty, on which is based the present quantum approach, has been proven able to bridge quantum mechanics and relativity.
Quantum field theory and phase transitions: universality and renormalization group
International Nuclear Information System (INIS)
Zinn-Justin, J.
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-04-01
We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.
Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.
Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H
2018-04-20
We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.
Universal shift register implementation using quantum dot cellular automata
Directory of Open Access Journals (Sweden)
Tamoghna Purkayastha
2018-06-01
Full Text Available Quantum-dot Cellular Automata (QCA demands to be a promising alternative of CMOS in ultra large scale circuit integration. Arithmetic and logic unit designs using QCA are of high research interest. A layout of four and eight bit universal shift register (USR has been proposed. Initially QCA layouts of D flip-flop with clear and 4 to 1 multiplexer are designed, which are extended to design 4 and 8-bit parallel in parallel out (PIPO shift register. Finally the PIPO is utilized to design 4-bit and 8-bit USR. By the comparative analysis it is observed that the proposed D Flip-flop achieved 40% clock delay improvement, whereas the modified layout of 4 to 1 multiplexer achieved 30% cell count reduction and 17% clock delay reduction from the previous works. This results in 31% reduction in cell count, 45% reduction in area and 55% reduction in clock cycle delay in 8 bit USR layout.
Interpretation of Quantum Mechanics. A view of our universe
Lindgren, Ingvar
2009-10-01
The interpretation of quantum mechanics has been disputed ever since the advent of the theory in the 1920's. Famous are the discussions over long time between Einstein and Bohr. Einstein refused to accept the so-called Copenhagen interpretation, where the wave function collapses at a measurement and where the outcome of the measurement is essentially accidental (``God does not play dice''). Alternative interpretations have appeared, but the Copenhagen school has dominated the thoughts throughout the decades. One interesting interpretation was formulated in 1957 by Hugh Everett at Princeton, a student of John Wheeler, which abandons the wave-function collapse. In this model the universe is governed entirely by the Schrödinger equation, which does not allow for any collapse. In Everett's model after a measurement the wave function is separated into different branches that do not interact. This model was left unnoticed for long time until Bryce DeWitt took it up in 1970 and termed it ``Many-Worlds Interpretation'', a term that in some sense is misleading. Everett's model is incomplete, and it was later supplemented by the theory of decoherence, which explains how the different branches decouple as a result of the interaction with the environment. This extended model has in recent years gained increased respect, and some believe that it is the only model made available so far that is fully consistent with quantum mechanics. This interpretation can also shed some light on the development of the universe and, in particular, on the so-called Anthropic principle, which puts human beings at the center of the development.
Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures
Directory of Open Access Journals (Sweden)
Yoshihiro Maruyama
2014-12-01
Full Text Available Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras, which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functor parts. We systematically investigate into the categorical logics of dual adjunctions by utilising Johnstone-Dimov-Tholen's duality-theoretic framework. Our set-theoretical duality-based hyperdoctrines for quantum logic have both universal and existential quantifiers (and higher-order structures, giving rise to a universe of Takeuti-Ozawa's quantum sets via the tripos-to-topos construction by Hyland-Johnstone-Pitts. The set-theoretical hyperdoctrinal models of quantum logic, as well as all quantum hyperdoctrines with cartesian base categories, turn out to give sound and complete semantics for Faggian-Sambin's first-order quantum sequent calculus over cartesian type theory; in addition, quantum hyperdoctrines with monoidal base categories are sound and complete for the calculus over linear type theory. We finally consider how to reconcile Birkhoff-von Neumann's quantum logic and Abramsky-Coecke's categorical quantum mechanics (which is modernised quantum logic as an antithesis to the traditional one via categorical universal logic.
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
Experimental realization of universal geometric quantum gates with solid-state spins.
Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M
2014-10-02
Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.
2006-07-20
Human Fertilization and Embryology Authority (HFEA). A team of scientists headed by Alison Murdoch at the University of Newcastle received permission...not yet reported success in isolating stem cells from a cloned human embryo. A research team headed by Ian Wilmut at the University of Edinburgh...research group, headed by Douglas Melton and Kevin Eggan, submitted their proposal to a Harvard committee composed of ethicists, scientists and public
Universal corrections to entanglement entropy of local quantum quenches
Energy Technology Data Exchange (ETDEWEB)
David, Justin R.; Khetrapal, Surbhi [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Kumar, S. Prem [Department of Physics, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-08-22
We study the time evolution of single interval Rényi and entanglement entropies following local quantum quenches in two dimensional conformal field theories at finite temperature for which the locally excited states have a finite temporal width ϵ. We show that, for local quenches produced by the action of a conformal primary field, the time dependence of Rényi and entanglement entropies at order ϵ{sup 2} is universal. It is determined by the expectation value of the stress tensor in the replica geometry and proportional to the conformal dimension of the primary field generating the local excitation. We also show that in CFTs with a gravity dual, the ϵ{sup 2} correction to the holographic entanglement entropy following a local quench precisely agrees with the CFT prediction. We then consider CFTs admitting a higher spin symmetry and turn on a higher spin chemical potential μ. We calculate the time dependence of the order ϵ{sup 2} correction to the entanglement entropy for small μ, and show that the contribution at order μ{sup 2} is universal. We verify our arguments against exact results for minimal models and the free fermion theory.
A Universal Quantum Circuit Scheme For Finding Complex Eigenvalues
Daskin, Anmer; Grama, Ananth; Kais, Sabre
2013-01-01
We present a general quantum circuit design for finding eigenvalues of non-unitary matrices on quantum computers using the iterative phase estimation algorithm. In particular, we show how the method can be used for the simulation of resonance states for quantum systems.
Gauge/gravity duality. Exploring universal features in quantum matter
Energy Technology Data Exchange (ETDEWEB)
Klug, Steffen
2013-07-09
density states. Thus, all aspects of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS{sub 5}/CFT{sub 4} correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered
Gauge/gravity duality. Exploring universal features in quantum matter
International Nuclear Information System (INIS)
Klug, Steffen
2013-01-01
of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS 5 /CFT 4 correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered, which can be interpreted as an ''R
A universal quantum frequency converter via four-wave-mixing processes
Cheng, Mingfei; Fang, Jinghuai
2016-06-01
We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.
Local cloning of two product states
International Nuclear Information System (INIS)
Ji Zhengfeng; Feng Yuan; Ying Mingsheng
2005-01-01
Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states
The supersymmetric Casimir effect and quantum creation of the universe with nontrivial topology
International Nuclear Information System (INIS)
Goncharov, Yu.P.; Bytsenko, A.A.
1985-01-01
We estimate the probability of quantum creation of the universe, having the spatial topology (S 1 ) 3 , and filled with the fields of minimal N=1 supergravity, in the semiclassical approximation. After creation, inflation of the universe occurs due to the topological Casimir effect. Creation of the universe with an isotropic topology is found to be the most preferable. (orig.)
Probing University Students' Pre-Knowledge in Quantum Physics with QPCS Survey
Asikainen, Mervi A.
2017-01-01
The study investigated the use of Quantum Physics Conceptual Survey (QPCS) in probing student understanding of quantum physics. Altogether 103 Finnish university students responded to QPCS. The mean scores of the student responses were calculated and the test was evaluated using common five indices: Item difficulty index, Item discrimination…
Radiation perturbation theory in gravity and quantum universe as a hydrogen atom
International Nuclear Information System (INIS)
Pervushin, V.N.
1992-01-01
In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs
Universal quantum uncertainty relations between nonergodicity and loss of information
Awasthi, Natasha; Bhattacharya, Samyadeb; SenDe, Aditi; Sen, Ujjwal
2018-03-01
We establish uncertainty relations between information loss in general open quantum systems and the amount of nonergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the nonergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that nonergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the "minimal" situations that saturate the uncertainty relations.
Quantum field theory of the universe in the Kantowski-Sachs space-time
International Nuclear Information System (INIS)
Shen, Y.; Tan, Z.
1996-01-01
In this paper, the quantum field theory of the universe in the Kantowski-Sachs space-time is studied. An analogue of proceedings in quantum field theory is applied in curved space-time to the Kantowski-Sachs space-time, obtaining the wave function of the universe satisfied the Wheeler-DeWitt equation. Regarding the wave function as a universe field in the minisuperspace, the authors can not only overcome the difficulty of the probabilistic interpretation in quantum cosmology, but also come to the conclusion that there is multiple production of universes. The average number of the produced universes from nothing is calculated. The distribution of created universe is given. It is the Planckian distribution
Nonexistence of a universal quantum machine to examine the precision of unknown quantum states
International Nuclear Information System (INIS)
Pang, Shengshi; Wu, Shengjun; Chen, Zeng-Bing
2011-01-01
In this work, we reveal a type of impossibility discovered in our recent research which forbids comparing the closeness of multiple unknown quantum states with any nontrivial threshold in a perfect or unambiguous way. This impossibility is distinct from the existing impossibilities in that it is a ''collective'' impossibility on multiple quantum states; most other ''no-go'' theorems are concerned with only one single state each time, i.e., it is an impossibility on a nonlocal quantum operation. This impossibility may provide new insight into the nature of quantum mechanics, and it implies more limitations on quantum information tasks than the existing no-go theorems.
International Nuclear Information System (INIS)
Robles Pérez, S J
2013-01-01
The third quantization formalism of quantum cosmology adds simplicity and conceptual insight into the quantum description of the multiverse. Within such a formalism, the existence of squeezed and entangled states raises the question of whether the complementary principle of quantum mechanics has to be extended to the quantum description of the whole space-time manifold. If so, the particle description entails the consideration of a multiverse scenario and the wave description induces us to consider as well correlations and interactions among the universes of the multiverse.
Universal programmable quantum circuit schemes to emulate an operator
Energy Technology Data Exchange (ETDEWEB)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos [Department of Computer Science, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre [Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Doha (Qatar)
2012-12-21
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.
Universal programmable quantum circuit schemes to emulate an operator
International Nuclear Information System (INIS)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; Kais, Sabre
2012-01-01
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix–which can be non-unitary–in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e −iHt for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.
Classical universe emerging from quantum cosmology without horizon and flatness problems
Energy Technology Data Exchange (ETDEWEB)
Fathi, M.; Jalalzadeh, S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moniz, P.V. [Centro de Matematica e Aplicacoes-UBI, Covilha (Portugal); Universidade da Beira Interior, Departmento de Fisica, Covilha (Portugal)
2016-10-15
We apply the complex de Broglie-Bohm formulation of quantum mechanics in Chou and Wyatt (Phys Rev A 76: 012115, 2007), Gozzi (Phys Lett B 165: 351, 1985), Bhalla et al. (Am J Phys 65: 1187, 1997) to a spatially closed homogeneous and isotropic early universe whose matter contents are radiation and dust perfect fluids. We then show that an expanding classical universe can emerge from an oscillating (with complex scale factor) quantum universe without singularity. Furthermore, the universe obtained in this process has no horizon or flatness problems. (orig.)
Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
International Nuclear Information System (INIS)
Alagic, Gorjan; Reichardt, Ben W.; Jordan, Stephen P.; Koenig, Robert
2010-01-01
The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-dimensional topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem for quantum computation. This establishes a relation between the task of distinguishing nonhomeomorphic 3-manifolds and the power of a general quantum computer.
Observing a scale anomaly and a universal quantum phase transition in graphene.
Ovdat, O; Mao, Jinhai; Jiang, Yuhang; Andrei, E Y; Akkermans, E
2017-09-11
One of the most interesting predictions resulting from quantum physics, is the violation of classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies occurs when the continuous scale symmetry of a scale-free quantum system is broken into a discrete scale symmetry for a critical value of a control parameter. This is an example of a (zero temperature) quantum phase transition. Such an anomaly takes place for the quantum inverse square potential known to describe 'Efimov physics'. Broken continuous scale symmetry into discrete scale symmetry also appears for a charged and massless Dirac fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate the universality of this quantum phase transition and to present convincing experimental evidence of its existence for a charged and massless fermion in an attractive Coulomb potential as realized in graphene.When the continuous scale symmetry of a quantum system is broken, anomalies occur which may lead to quantum phase transitions. Here, the authors provide evidence for such a quantum phase transition in the attractive Coulomb potential of vacancies in graphene, and further envision its universality for diverse physical systems.
Compact baby universe model in ten dimension and probability function of quantum gravity
International Nuclear Information System (INIS)
Yan Jun; Hu Shike
1991-01-01
The quantum probability functions are calculated for ten-dimensional compact baby universe model. The authors find that the probability for the Yang-Mills baby universe to undergo a spontaneous compactification down to a four-dimensional spacetime is greater than that to remain in the original homogeneous multidimensional state. Some questions about large-wormhole catastrophe are also discussed
Cloning and superluminal signaling£
Indian Academy of Sciences (India)
Cloning; cloning fidelity; superluminal signaling; state discrimination. PACS No. 03.65.Bz. 1. .... The possibility of superluminal signaling in quantum mechanics stems from the concept .... quantum mechanics and relativity [13]. .... [13] A Shimony, in Foundations of quantum mechanics in the light of new technology edited by.
Quantum cosmological origin of large scale structures of the universe
International Nuclear Information System (INIS)
Anini, Y.
1989-07-01
In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs
Energy Technology Data Exchange (ETDEWEB)
Smolyaninov, Igor I., E-mail: smoly@umd.edu
2014-11-15
Modern advances in transformation optics and electromagnetic metamaterials made possible experimental demonstrations of highly unusual curvilinear “optical spaces”, such as various geometries necessary for electromagnetic cloaking. Recently we demonstrated that mapping light intensity in a hyperbolic metamaterial may also model the flow of time in an effective (2+1) dimensional Minkowski spacetime. Curving such an effective spacetime creates experimental model of a toy “big bang”. Here we demonstrate that at low light levels this model may be used to emulate a fully covariant version of quantum mechanics in a (2+1) dimensional Minkowski spacetime. When quantum mechanical description is applied near the toy “big bang”, the Everett's “universal wave function” formalism arises naturally, in which the wave function of the model “universe” appears to be a quantum superposition of mutually orthogonal “parallel universe” states.
The universe as an ultimate macroscopic quantum phenomenon?
International Nuclear Information System (INIS)
Hu, Bei-Lok
2005-01-01
Full text: We explore two unconventional proposals on the meaning of quantum gravity and the quantum properties of spacetime. The first is an older proposal of mine that general relativity is the hydrodynamic limit of some fundamental theories of the microscopic structure of spacetime and matter, a more specific derivative of the idea of Sakharov. The latter is a more recent thought of mine on the possibility that spacetime is a condensate (Bose or Fermi). These proposals have implications radically different from the conventional views. For the former, spacetime described by a differentiable manifold is regarded as an emergent entity and the metric or connection forms are collective variables valid only at the low energy, long wavelength limit of the micro-theories of spacetime and matter. This view would render irrelevant the traditional efforts to find ways to quantize general relativity, because it would only give us the equivalent of phonon physics, not a theory of electrons or photons, QED. In the second proposal, even without the knowledge of what the 'atom of spacetime' is, the mere thought that spacetime at all energies below the Planck scale, including today's, is quantum rather than classical, has many challenging consequences. We discuss the implications of this view pertaining to issues in gravitation and cosmology, as well as to macroscopic quantum coherence phenomena. (author)
Born in an infinite universe: A cosmological interpretation of quantum mechanics
International Nuclear Information System (INIS)
Aguirre, Anthony; Tegmark, Max
2011-01-01
We study the quantum measurement problem in the context of an infinite, statistically uniform space, as could be generated by eternal inflation. It has recently been argued that when identical copies of a quantum measurement system exist, the standard projection operators and Born rule method for calculating probabilities must be supplemented by estimates of relative frequencies of observers. We argue that an infinite space actually renders the Born rule redundant, by physically realizing all outcomes of a quantum measurement in different regions, with relative frequencies given by the square of the wave-function amplitudes. Our formal argument hinges on properties of what we term the quantum confusion operator, which projects onto the Hilbert subspace where the Born rule fails, and we comment on its relation to the oft-discussed quantum frequency operator. This analysis unifies the classical and quantum levels of parallel universes that have been discussed in the literature, and has implications for several issues in quantum measurement theory. Replacing the standard hypothetical ensemble of measurements repeated ad infinitum by a concrete decohered spatial collection of experiments carried out in different distant regions of space provides a natural context for a statistical interpretation of quantum mechanics. It also shows how, even for a single measurement, probabilities may be interpreted as relative frequencies in unitary (Everettian) quantum mechanics. We also argue that after discarding a zero-norm part of the wave function, the remainder consists of a superposition of indistinguishable terms, so that arguably 'collapse' of the wave function is irrelevant, and the ''many worlds'' of Everett's interpretation are unified into one. Finally, the analysis suggests a 'cosmological interpretation' of quantum theory in which the wave function describes the actual spatial collection of identical quantum systems, and quantum uncertainty is attributable to the
de Broglie-Bohm FRW universes in quantum string cosmology
International Nuclear Information System (INIS)
Marto, J.; Moniz, P. Vargas
2002-01-01
The purpose of this paper is to establish possible implications of the de Broglie-Bohm interpretation of quantum mechanics towards superstring cosmological dynamics. In this context, we investigate spatially flat FRW models retrieved from scalar-tensor theories of gravity with a cosmological constant present in the gravitational sector. These models are further characterized by the presence of different types of de Broglie-Bohm quantum potential terms. These are constructed from various classes of wave packets formed by superpositions of Bessel functions of different imaginary orders. As far as pre-big-bang scenarios are concerned, we find that quantum potentials yield varied types of an amplified influence of the singular classical boundary into the FRW early dynamics. Some consequences of the de Broglie-Bohm program towards pre-big-bang inflation and the graceful exit problem are then discussed. Other cosmological scenarios are also studied by means of modulation effects extracted from additional wave packets. We subsequently obtain a broader set of new solutions. Among the new solutions we find that they could still be related by duality properties, although a separation into pre- and post-big-bang classes is less clear. Some solutions show a cyclical behavior. Inflationary solutions can be identified and some of their dynamical features are subsequently analyzed. In particular, we discuss some of the differences between string inspired inflationary cosmologies with quantum potentials. The results suggest that de Broglie-Bohm quantum gravitational terms slow down inflation, constituting an effect similar to others previously described in the literature
Universal resources for approximate and stochastic measurement-based quantum computation
International Nuclear Information System (INIS)
Mora, Caterina E.; Piani, Marco; Miyake, Akimasa; Van den Nest, Maarten; Duer, Wolfgang; Briegel, Hans J.
2010-01-01
We investigate which quantum states can serve as universal resources for approximate and stochastic measurement-based quantum computation in the sense that any quantum state can be generated from a given resource by means of single-qubit (local) operations assisted by classical communication. More precisely, we consider the approximate and stochastic generation of states, resulting, for example, from a restriction to finite measurement settings or from possible imperfections in the resources or local operations. We show that entanglement-based criteria for universality obtained in M. Van den Nest et al. [New J. Phys. 9, 204 (2007)] for the exact, deterministic case can be lifted to the much more general approximate, stochastic case. This allows us to move from the idealized situation (exact, deterministic universality) considered in previous works to the practically relevant context of nonperfect state preparation. We find that any entanglement measure fulfilling some basic requirements needs to reach its maximum value on some element of an approximate, stochastic universal family of resource states, as the resource size grows. This allows us to rule out various families of states as being approximate, stochastic universal. We prove that approximate, stochastic universality is in general a weaker requirement than deterministic, exact universality and provide resources that are efficient approximate universal, but not exact deterministic universal. We also study the robustness of universal resources for measurement-based quantum computation under realistic assumptions about the (imperfect) generation and manipulation of entangled states, giving an explicit expression for the impact that errors made in the preparation of the resource have on the possibility to use it for universal approximate and stochastic state preparation. Finally, we discuss the relation between our entanglement-based criteria and recent results regarding the uselessness of states with a high
International Nuclear Information System (INIS)
Bartkiewicz, Karol; Miranowicz, Adam
2012-01-01
We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.
Optimally cloned binary coherent states
Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.
2017-10-01
Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.
Universal conductance and conductivity at critical points in integer quantum Hall systems.
Schweitzer, L; Markos, P
2005-12-16
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.
Mindful universe. Quantum mechanics and the participating observer. 2. ed.
International Nuclear Information System (INIS)
Stapp, Henry P.
2011-01-01
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described. This second edition contains two new chapters investigating the role of quantum phenomena in the problem of free will and in the placebo effect. (orig.)
Mindful Universe. Quantum mechanics and the participating observer
International Nuclear Information System (INIS)
Stapp, H.P.
2007-01-01
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described. ''Stapp's book is a bold and original attack on the problem of consciousness and free will based on the openings provided by the laws of quantum mechanics. This is a serious and interesting attack on a truly fundamental problem.'' (orig.)
Mindful Universe Quantum Mechanics and the Participating Observer
Stapp, Henry P
2011-01-01
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described. This second edition contains two new chapters investigating the role of quantum phenomena in the problem of free will and in the placebo effect.
Universal Scaling and Critical Exponents of the Anisotropic Quantum Rabi Model
Liu, Maoxin; Chesi, Stefano; Ying, Zu-Jian; Chen, Xiaosong; Luo, Hong-Gang; Lin, Hai-Qing
2017-12-01
We investigate the quantum phase transition of the anisotropic quantum Rabi model, in which the rotating and counterrotating terms are allowed to have different coupling strengths. The model interpolates between two known limits with distinct universal properties. Through a combination of analytic and numerical approaches, we extract the phase diagram, scaling functions, and critical exponents, which determine the universality class at finite anisotropy (identical to the isotropic limit). We also reveal other interesting features, including a superradiance-induced freezing of the effective mass and discontinuous scaling functions in the Jaynes-Cummings limit. Our findings are extended to the few-body quantum phase transitions with N >1 spins, where we expose the same effective parameters, scaling properties, and phase diagram. Thus, a stronger form of universality is established, valid from N =1 up to the thermodynamic limit.
The quantum theory of time, the block universe, and human experience.
Vaccaro, Joan A
2018-07-13
Advances in our understanding of the physical universe have dramatically affected how we view ourselves. Right at the core of all modern thinking about the universe is the assumption that dynamics is an elemental feature that exists without question. However, ongoing research into the quantum nature of time is challenging this view: my recently introduced quantum theory of time suggests that dynamics may be a phenomenological consequence of a fundamental violation of time reversal symmetry. I show here that there is consistency between the new theory and the block universe view. I also discuss the new theory in relation to the human experience of existing in the present moment, able to reflect on the past and contemplate a future that is yet to happen.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Authors.
A Quantum Universe Before the Big Bang(s)?
Veneziano, Gabriele
2017-08-01
The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.
Directory of Open Access Journals (Sweden)
Berta SCHNETTLER
2015-09-01
Full Text Available AbstractWith the aim of comparing the acceptance of milk obtained from cloned, genetically modified (GM and conventionally bred cows among working adults and university students, and identifying and characterizing typologies among both subsamples in terms of their preferences, a survey was applied to 400 people in southern Chile, distributed using a simple allocation among the subsamples. Using a conjoint analysis, it was found that consumers preferred milk from a conventional cow. Using a cluster analysis, in both subsamples two segments sensitive to production technology were identified. Rejection of cloning was greatest among university students, whereas a higher proportion of working adults rejected GM. The segments differed in terms of area of residence, knowledge about GM, and milk consumption habits. Contrary to what was expected, no differences were found according to education, gender or degree of satisfaction with food-related life.
International Nuclear Information System (INIS)
Bartlett, Stephen D.; Sanders, Barry C.
2002-01-01
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics
International Nuclear Information System (INIS)
De Martini, Francesco; Sciarrino, Fabio
2007-01-01
We investigate the multi-photon quantum superposition state generated by the quantum-injected high-gain optical parametric amplification of a single photon. The physical configurations based on the optimal universal and on the phase-covariant quantum cloning have been adopted. The theoretical results are supported by a set of experiments leading to the generation of an average number of clones in excess of 10 3
SCHNETTLER, Berta; VELÁSQUEZ, Carlos; MIRANDA, Horacio; LOBOS, Germán; ORELLANA, Ligia; SEPÚLVEDA, José; MIRANDA, Edgardo; ADASME-BERRÍOS, Cristian; GRUNERT, Klaus
2015-01-01
AbstractWith the aim of comparing the acceptance of milk obtained from cloned, genetically modified (GM) and conventionally bred cows among working adults and university students, and identifying and characterizing typologies among both subsamples in terms of their preferences, a survey was applied to 400 people in southern Chile, distributed using a simple allocation among the subsamples. Using a conjoint analysis, it was found that consumers preferred milk from a conventional cow. Using a c...
Negative circular polarization as a universal property of quantum dots
International Nuclear Information System (INIS)
Taylor, Matthew W.; Spencer, Peter; Murray, Ray
2015-01-01
This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character
Mindful universe quantum mechanics and the participating observer
Stapp, H P
2007-01-01
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described
Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...
Universal Property of Quantum Gravity implied by Bekenstein-Hawking Entropy and Boltzmann formula
International Nuclear Information System (INIS)
Saida, Hiromi
2013-01-01
We search for a universal property of quantum gravity. By u niversal , we mean the independence from any existing model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical triangulation, and so on). To do so, we try to put the basis of our discussion on theories established by some experiments. Thus, we focus our attention on thermodynamical and statistical-mechanical basis of the black hole thermodynamics: Let us assume that the Bekenstein-Hawking entropy is given by the Boltzmann formula applied to the underlying theory of quantum gravity. Under this assumption, the conditions justifying Boltzmann formula together with uniqueness of Bekenstein-Hawking entropy imply a reasonable universal property of quantum gravity. The universal property indicates a repulsive gravity at Planck length scale, otherwise stationary black holes can not be regarded as thermal equilibrium states of gravity. Further, in semi-classical level, we discuss a possible correction of Einstein equation which generates repulsive gravity at Planck length scale.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
Dynamically protected cat-qubits: a new paradigm for universal quantum computation
International Nuclear Information System (INIS)
Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V; Touzard, Steven; Schoelkopf, Robert J; Jiang, Liang; Devoret, Michel H
2014-01-01
We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner
Dynamically protected cat-qubits: a new paradigm for universal quantum computation
Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.
2014-04-01
We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.
Dissipation and fluctuation of quantum fields in expanding universes
International Nuclear Information System (INIS)
Morikawa, M.
1990-01-01
A stochastic dynamics of a long-wavelength part of a scalar field in an expanding universe is derived by using the influence functional method. Dissipation as well as fluctuation are derived for general parameters: a mass, a coupling to the scalar curvature, and a cutoff scale parameter. A dissipation-fluctuation relation is found with a temperature which is proportional to the Hawking temperature, but system dependent. The method is further applied to an expanding universe with a power law and yields the dispersion which agrees with that obtained by the regularization method. The back reaction to the background de Sitter space itself is also obtained
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.
International Nuclear Information System (INIS)
Freidel, L.; Maillet, J.M.
1992-09-01
Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra U h (sl 2 ) and its universal quantum R-matrix are explicitly constructed as functionals of the associated classical r-matrix. In this framework, the quantum algebra U h (sl 2 ) is naturally imbedded in the universal enveloping algebra of the sl 2 current algebra. (author) 13 refs
Classically and quantum stable emergent universe from conservation laws
Energy Technology Data Exchange (ETDEWEB)
Campo, Sergio del; Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Guendelman, Eduardo I. [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Labraña, Pedro, E-mail: guendel@bgu.ac.il, E-mail: ramon.herrera@ucv.cl, E-mail: plabrana@ubiobio.cl [Departamento de Física, Universidad del Bío Bío and Grupo de Cosmología y Gravitación-UBB, Avenida Collao 1202, Casilla 5-C, Concepción (Chile)
2016-08-01
It has been recently pointed out by Mithani-Vilenkin [1-4] that certain emergent universe scenarios which are classically stable are nevertheless unstable semiclassically to collapse. Here, we show that there is a class of emergent universes derived from scale invariant two measures theories with spontaneous symmetry breaking (s.s.b) of the scale invariance, which can have both classical stability and do not suffer the instability pointed out by Mithani-Vilenkin towards collapse. We find that this stability is due to the presence of a symmetry in the 'emergent phase', which together with the non linearities of the theory, does not allow that the FLRW scale factor to be smaller that a certain minimum value a {sub 0} in a certain protected region.
Quantum theory and the emergence of patterns in the universe
International Nuclear Information System (INIS)
Stapp, H.P.
1989-11-01
The topic of this symposium is the quest to discover, define, and interpret patterns in the universe. This quest has two parts. To discover and define these patterns is the task of science: this part of the quest is producing a copious flow of reliable information. To interpret or give meaning to these patterns is the task of natural philosophy: this part has not kept pace
Quantum creation of fermions in a hot universe
International Nuclear Information System (INIS)
Gyunter, U.; Zhuk, A.I.
1987-01-01
The creation of spinor particles in an arbitrary external field from states described by quadratic density matrices is considered. Expressions are obtained for the spectra of the created particles. It is shown that in the case of the creation of fermions (spin 1/2) in the Friedmann universe from states described by a thermal density matrix statistical effects significantly suppress the particle creation process
From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation.
Gimeno-Segovia, Mercedes; Shadbolt, Pete; Browne, Dan E; Rudolph, Terry
2015-07-10
Single photons, manipulated using integrated linear optics, constitute a promising platform for universal quantum computation. A series of increasingly efficient proposals have shown linear-optical quantum computing to be formally scalable. However, existing schemes typically require extensive adaptive switching, which is experimentally challenging and noisy, thousands of photon sources per renormalized qubit, and/or large quantum memories for repeat-until-success strategies. Our work overcomes all these problems. We present a scheme to construct a cluster state universal for quantum computation, which uses no adaptive switching, no large memories, and which is at least an order of magnitude more resource efficient than previous passive schemes. Unlike previous proposals, it is constructed entirely from loss-detecting gates and offers a robustness to photon loss. Even without the use of an active loss-tolerant encoding, our scheme naturally tolerates a total loss rate ∼1.6% in the photons detected in the gates. This scheme uses only 3 Greenberger-Horne-Zeilinger states as a resource, together with a passive linear-optical network. We fully describe and model the iterative process of cluster generation, including photon loss and gate failure. This demonstrates that building a linear-optical quantum computer needs to be less challenging than previously thought.
Coprocessors for quantum devices
Kay, Alastair
2018-03-01
Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will require high-quality, frequent repetition of a small set of core operations, such as the preparation of entangled states. These tasks are perfectly suited to realization by a coprocessor or supplementary instruction set, as is common practice in modern CPUs. In this paper, we present two quintessentially quantum coprocessor functions: production of a Greenberger-Horne-Zeilinger state and implementation of optimal universal (asymmetric) quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a technique for deriving the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.
Universality in quantum chaos and the one-parameter scaling theory.
García-García, Antonio M; Wang, Jiao
2008-02-22
The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.
Quantum mechanics of electromagnetically bounded spin-1/2 particles in an expanding universe
International Nuclear Information System (INIS)
Audretsch, J.; Schaefer, G.
1978-01-01
The quantum mechanically described electron in an external electromagnetic field, both embedded in an expanding universe with shear, is discussed. This is important for the fundamental question as to whether a quantum mechanically treated atomic clock in curved space-time (based on a hydrogen atom) shows proper or gravitational time. Contradictory results reported by other authors seem to imply that quantum mechanics cannot be reconciled with curved space-time. It is shown that this is not the case for expanding Robertson-Walker universes. A Hilbert space formulation of the problem with special regard to the Hamiltonian is given. The respective influence of the cosmic expansion and the intrinsic and extrinsic curvatures of the cosmic hypersurfaces on bound quantum mechanical systems is treated in general. For the special case of an expanding 3-flat (epsilon= 0) Robertson-Walker universe it is shown that the energy levels of a hydrogen atom agree completely with the one in 4-flat space-time, so that in this case the hydrogen atom can be taken as atomic clock showing proper time. (author)
Universal quantum computing using (Zd) 3 symmetry-protected topologically ordered states
Chen, Yanzhu; Prakash, Abhishodh; Wei, Tzu-Chieh
2018-02-01
Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary quantum gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled states are promising candidates for such a resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016), 10.1038/npjqi.2016.36] recently constructed a particular Z2×Z2×Z2 symmetry-protected topological state on the Union Jack lattice and established its quantum-computational universality. However, they suggested that the same construction on the triangular lattice might not lead to a universal resource. Instead of qubits, we generalize the construction to qudits and show that the resulting (d -1 ) qudit nontrivial Zd×Zd×Zd symmetry-protected topological states are universal on the triangular lattice, for d being a prime number greater than 2. The same construction also holds for other 3-colorable lattices, including the Union Jack lattice.
Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra
International Nuclear Information System (INIS)
Iwao, Syurei; Ono, Yasuji
1990-01-01
A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)
Ion trap simulations of quantum fields in an expanding universe.
Alsing, Paul M; Dowling, Jonathan P; Milburn, G J
2005-06-10
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.
International Nuclear Information System (INIS)
Marcer, Peter J.; Rowlands, Peter
2010-01-01
Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007), and in particular the authors' paper 'The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement'. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictions that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands
The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement
Marcer, Peter J.; Rowlands, Peter
2010-11-01
The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes `a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (The UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E2-p2m2) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of
The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement
International Nuclear Information System (INIS)
Marcer, Peter J.; Rowlands, Peter
2010-01-01
The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (The UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E 2 -p 2 m 2 ) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws
Universal conditions for finite renormalizable quantum field theories
International Nuclear Information System (INIS)
Kranner, G.
1990-10-01
Analyzing general renormalization constants in covariant gauge and minimal subtraction, we consider universal conditions for cancelling UV-divergences in renormalizable field theories with simple gauge groups, and give constructive methods for finding nonsupersymmetric finite models. The divergent parts of the renormalization constants for fields explicitly depend on the gauge parameter ξ. Finite theories simply need finite couplings. We show that respective FinitenessConditions imply a hierarchy, the center of which are the FCs for the gauge coupling g and the Yukawa couplings of the massless theory. To gain more information about F we analyze the Yukawa-FC in greater detail. Doing so algebraically, we find out and fix all inner symmetries. Additionally, Yuakawa-couplings must be invariant under gauge transformation. Then it becomes extremely difficult to obey a FC, yield rational numbers for F ∼ 1, and satisfy the factorization-condition, unless F = 1. The particular structure of the F = 1-system allows for a most general ansatz. We figure out the simplest case, getting precisely just couplings and particle content of a general N=1-supersymmetric theory. We list a class of roughly 4000 types of theories, containing all supersymmetric, completely finite, and many more finite theories as well. (Author, shortened by Quittner) 11 figs., 54 refs
Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.
2018-05-01
In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.
Universal quantum gates for photon-atom hybrid systems assisted by bad cavities
Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo
2016-01-01
We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992
Cloning transformations in spin networks without external control
International Nuclear Information System (INIS)
De Chiara, Gabriele; Fazio, Rosario; Montangero, Simone; Macchiavello, Chiara; Palma, G. Massimo
2005-01-01
In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1→2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N→M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore, we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner
Arkhipov, S M; Odesskii, A V; Feigin, B; Vassiliev, V
1998-01-01
This volume presents the first collection of articles consisting entirely of work by faculty and students of the Higher Mathematics College of the Independent University of Moscow (IUM). This unique institution was established to train elite students to become research scientists. Covered in the book are two main topics: quantum groups and low-dimensional topology. The articles were written by participants of the Feigin and Vassiliev seminars, two of the most active seminars at the IUM.
Hybrid magic state distillation for universal fault-tolerant quantum computation
Zheng, Wenqiang; Yu, Yafei; Pan, Jian; Zhang, Jingfu; Li, Jun; Li, Zhaokai; Suter, Dieter; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2014-01-01
A set of stabilizer operations augmented by some special initial states known as 'magic states', gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome s...
New View on Quantum Gravity:. Micro-Structure of Spacetime and Origin of the Universe
Hu, B. L.
2008-04-01
It is generally agreed that the primary goal of quantum gravity is to find the microscopic structure of spacetime. However, for the last half a century the cardinal principle upheld by most general relativists has been to find ways to quantize Einstein's general theory of relativity, a theory which has proven to be highly successful in describing the macroscopic structure of spacetime we live in today. A tacit assumption in this existing paradigm is that doing so will yield the micro-structures of spacetime. We challenge this supposition and present a different view. If general relativity is an effective theory valid only at the long wavelength and low energy limits, and the metric and connection forms are collective variables, then quantizing a classical theory such as general relativity valid in the macroscopic domain is unlikely to yield a theory of the microscopic structures of spacetime. To uncover the microscopic structures one needs to find ways to unravel the underlying microscopic structures from observed macroscopic phenomena rather than naively quantizing the macroscopic variables, two very different paradigms. This task is similar to deducing the molecular constituents or even their quantum features from hydrodynamics or universalities of microscopic theories from critical phenomena. The macro to micro road poses a new and perhaps more difficult challenge to the next generation of theorists, phenomenologists and experimentalists in quantum gravity. Here we need to address issues at the quantum-classical and micro-macro interfaces familiar in mesoscopic physics, focusing on quantum fluctuations and correlations, coarse-graining and backreaction, and adopt ideas of nonequilibrium statistical mechanics and techniques from quantum field theory to explore theories built upon general relativity in a `bottom-up' approach or a `grass-root' road to quantum gravity. This view also provides us with a natural resolution towards the `Origin of the Universe' issue
Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes
Throop, Andrea L.; LaBaer, Joshua
2015-01-01
The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088
Takeda, Shuntaro; Furusawa, Akira
2017-09-22
We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.
The Gtr-Model a Universal Framework for Quantum-Like Measurements
Aerts, Diederik; Bianchi, Massimiliano Sassoli De
We present a very general geometrico-dynamical description of physical or more abstract entities, called the general tension-reduction (GTR) model, where not only states, but also measurement-interactions can be represented, and the associated outcome probabilities calculated. Underlying the model is the hypothesis that indeterminism manifests as a consequence of unavoidable uctuations in the experimental context, in accordance with the hidden-measurements interpretation of quantum mechanics. When the structure of the state space is Hilbertian, and measurements are of the universal kind, i.e., are the result of an average over all possible ways of selecting an outcome, the GTR-model provides the same predictions of the Born rule, and therefore provides a natural completed version of quantum mechanics. However, when the structure of the state space is non-Hilbertian and/or not all possible ways of selecting an outcome are available to be actualized, the predictions of the model generally differ from the quantum ones, especially when sequential measurements are considered. Some paradigmatic examples will be discussed, taken from physics and human cognition. Particular attention will be given to some known psychological effects, like question order effects and response replicability, which we show are able to generate non-Hilbertian statistics. We also suggest a realistic interpretation of the GTR-model, when applied to human cognition and decision, which we think could become the generally adopted interpretative framework in quantum cognition research.
Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling
International Nuclear Information System (INIS)
Michielis, M De; Ferraro, E; Fanciulli, M; Prati, E
2015-01-01
We present a universal set of quantum gate operations based on exchange-only spin qubits in a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate operations are addressed by modulating electrostatically the tunneling barrier and the energy offset between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of single qubit operations for arbitrary rotations, and the two-qubit controlled NOT gate, to complete the universal set. The unswitchable interaction between the two electrons of the doubly occupied quantum dot is taken into account. Short gate times are obtained by employing spin density functional theory simulations. (paper)
Sikula, John P.; Sikula, Andrew F.
1980-01-01
The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…
Universality in the equilibration of quantum systems after a small quench
International Nuclear Information System (INIS)
Campos Venuti, Lorenzo; Zanardi, Paolo
2010-01-01
A sudden change in the Hamiltonian parameter drives a quantum system out of equilibrium. For a finite-size system, expectations of observables start fluctuating in time without converging to a precise limit. A new equilibrium state emerges only in the probabilistic sense, when the probability distribution for the observable expectations over long times concentrates around their mean value. In this paper we study the full statistic of generic observables after a small quench. When the quench is performed around a regular (i.e., noncritical) point of the phase diagram, generic observables are expected to be characterized by Gaussian distribution functions ('good equilibration'). Instead, when quenching around a critical point a new, universal, double-peaked distribution function emerges for relevant perturbations. Our analytic predictions are numerically checked for a nonintegrable extension of the quantum Ising model.
Exact gate sequences for universal quantum computation using the XY interaction alone
International Nuclear Information System (INIS)
Kempe, J.; Whaley, K.B.
2002-01-01
In a previous publication [J. Kempe et al., Quantum Computation and Information (Rinton Press, Princeton, NJ, 2001), Vol. 1, special issue, p. 33] we showed that it is possible to implement universal quantum computation with the anisotropic XY-Heisenberg exchange acting as a single interaction. To achieve this we used encodings of the states of the computation into a larger Hilbert space. This proof is nonconstructive, however, and did not explicitly give the trade-offs in time that are required to implement encoded single-qubit operations and encoded two-qubit gates. Here we explicitly give the gate sequences needed to simulate these operations on encoded qubits and qutrits (three-level systems) and analyze the trade-offs involved. We also propose a possible layout for the qubits in a triangular arrangement
Energy Technology Data Exchange (ETDEWEB)
Sagurthi, Someswar Rao; Panigrahi, Rashmi Rekha; Gowda, Giri [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012 (India)
2007-11-01
The cloning, purification and crystallization of YnaF from S. typhimurium are reported along with preliminary X-ray crystallographic studies. The universal stress protein UspF (YnaF) is a small cytoplasmic bacterial protein. The expression of stress proteins is enhanced when cells are exposed to heat shock, nutrition starvation and certain other stress-inducing agents. YnaF promotes cell survival during prolonged exposure to stress and may activate a general mechanism for stress endurance. This manuscript reports preliminary crystallographic studies on YnaF from Salmonella typhimurium. The gene coding for YnaF was cloned and overexpressed and the protein was purified by Ni–NTA affinity chromatography. Purified YnaF was crystallized using vapour-diffusion and microbatch methods. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 37.51, b = 77.18, c = 56.34 Å, β = 101.8°. A data set was collected to 2.5 Å resolution with 94.6% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. Attempts to determine the structure are in progress.
Cloning and joint measurements of incompatible components of spin
International Nuclear Information System (INIS)
Brougham, Thomas; Andersson, Erika; Barnett, Stephen M.
2006-01-01
A joint measurement of two observables is a simultaneous measurement of both quantities upon the same quantum system. When two quantum-mechanical observables do not commute, then a joint measurement of these observables cannot be accomplished directly by projective measurements alone. In this paper we shall discuss the use of quantum cloning to perform a joint measurement of two components of spin associated with a qubit system. We introduce cloning schemes which are optimal with respect to this task. The cloning schemes may be thought to work by cloning two components of spin onto their outputs. We compare the proposed cloning machines to existing cloners
Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.
Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo
2018-05-15
We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.
International Nuclear Information System (INIS)
Makarov, V.A.
2004-01-01
The aim of the report is to describe the history of the Moscow University Coherent and Nonlinear Optics School headed by R.V. Khokhlov and S.A. Akhmanov being a part of the history of the Russian efforts to investigate into quantum electronics. The reports describes briefly the most significant results of the mentioned School activity, in particular, thermonuclear reactions initiated by laser pulses in plasma; the procedure to accelerate electrons up to 1 GeV using the present-day lasers; the nonlinear-optical analogues of the Faraday and the Kerr effects [ru
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
classical information theory and, arguably, quantum from classical physics. Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the 'no cloning' property and teleportation. Quantum cryptography is briefly sketched. The universal quantum computer (QC) is described, based on the Church-Turing principle and a network model of computation. Algorithms for such a computer are discussed, especially those for finding the period of a function, and searching a random list. Such algorithms prove that a QC of sufficiently precise construction is not only fundamentally different from any computer which can only manipulate classical information, but can compute a small class of functions with greater efficiency. This implies that some important computational tasks are impossible for any device apart from a QC. To build a universal QC is well beyond the abilities of current technology. However, the principles of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These allow coherent control in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits) was actually ruled out by considerations of experimental imprecision and the unavoidable coupling between any system and its environment. However, a further fundamental part of quantum information physics provides a solution to this impasse. This is quantum error correction (QEC). An introduction to QEC is provided. The evolution of the QC is restricted to a carefully chosen subspace of its Hilbert space. Errors are almost certain to
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
classical information theory and, arguably, quantum from classical physics. Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the 'no cloning' property and teleportation. Quantum cryptography is briefly sketched. The universal quantum computer (QC) is described, based on the Church-Turing principle and a network model of computation. Algorithms for such a computer are discussed, especially those for finding the period of a function, and searching a random list. Such algorithms prove that a QC of sufficiently precise construction is not only fundamentally different from any computer which can only manipulate classical information, but can compute a small class of functions with greater efficiency. This implies that some important computational tasks are impossible for any device apart from a QC. To build a universal QC is well beyond the abilities of current technology. However, the principles of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These allow coherent control in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits) was actually ruled out by considerations of experimental imprecision and the unavoidable coupling between any system and its environment. However, a further fundamental part of quantum information physics provides a solution to this impasse. This is quantum error correction (QEC). An introduction to QEC is provided. The evolution of the QC is restricted to a carefully chosen subspace of its Hilbert space. Errors are almost certain to
The theory of everything quantum and relativity is everywhere : a Fermat Universe
Schwarzer, Norbert
2018-01-01
The book unifies quantum theory and the general theory of relativity. As an unsolved problem for about 100 years and influencing so many fields, this is probably of some importance to the scientific community. Examples like Higgs field, limit to classical Dirac and KleinGordon or Schrödinger cases, quantized Schwarzschild, Kerr, KerrNewman objects, and the photon are considered for illustration. An interesting explanation for the asymmetry of matter and antimatter in the early universe was found while quantizing the Schwarzschild metric. Along the way, the methods outlined in the book are also used to tackle the problem of the proof of Fermats last theorem, as there is a connection between quantum theory and basic mathematical laws of integers. The book shows that the proof of Fermats last theorem can be brought down to a few lines by applying new quantum theoretical methods. Because such proof was sought for over 370 years, this book is of definite interest to mathematicians.
Directory of Open Access Journals (Sweden)
Yuichi Otsuka
2016-03-01
Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
External meeting - Geneva University: A lab in a trap: quantum gases in optical lattices
2007-01-01
GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Monday 16 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium A lab in a trap: quantum gases in optical lattices by Prof. Tilman Esslinger / Department of Physics, ETH Zurich The field of ultra cold quantum gases has seen an astonishing development during the last ten years. With the demonstration of Bose-Einstein condensation in weakly interacting atomic gases a theoretical concept of unique beauty could be witnessed experimentally. Very recent developments have now made it possible to engineer atomic many-body systems which are dominated by strong interactions. A major driving force for these advances are experiments in which ultracold atoms are trapped in optical lattices. These systems provide anew avenue for designing and studying quantum many-body systems. Exposed to the crystal structure of interfering laser wave...
Lemaître, the Big Bang and the Quantum Universe
Heller, Michael
Lemaître's work on the geometric nature of singularities and his speculations concerning the applications of quantum physics to cosmology are confronted with later achievements in these fields. His works on the global structure of the de Sitter solution and the appearance of "non-regular" points in the Schwarzschild solution led to the conclusion that the "vanishing of the radius of the universe" is a generic property of cosmological models. This conclusion was strengthened when Lemaître proved that, against Einstein's intuition, space anisotropy (in Bianchi I models) does not remove the singularity. This is why Lemaître regarded the initial singularity as a "geometric support" of his Primeval Atom hypothesis. This hypothesis was not yet a quantum gravity idea (in the present sense of this expression), but it was certainly an application of quantum physics to the early stages of cosmic evolution. The beginning itself is aspatial and atemporal, and both space and time emerge only when the simplicity of the Primeval Atom gives place to physical multiplicity. How do the problems with which Lemaître struggled appear in the light of the present state of cosmological research?
... than expected. Could we really clone dinosaurs? In theory? Yes. You would need: A well-preserved source ... it raises a number of ethical, legal, and social challenges that need to be considered. The vast ...
Objective past of a quantum universe: Redundant records of consistent histories
Riedel, C. Jess; Zurek, Wojciech H.; Zwolak, Michael
2016-03-01
Motivated by the advances of quantum Darwinism and recognizing the role played by redundancy in identifying the small subset of quantum states with resilience characteristic of objective classical reality, we explore the implications of redundant records for consistent histories. The consistent histories formalism is a tool for describing sequences of events taking place in an evolving closed quantum system. A set of histories is consistent when one can reason about them using Boolean logic, i.e., when probabilities of sequences of events that define histories are additive. However, the vast majority of the sets of histories that are merely consistent are flagrantly nonclassical in other respects. This embarras de richesses (known as the set selection problem) suggests that one must go beyond consistency to identify how the classical past arises in our quantum universe. The key intuition we follow is that the records of events that define the familiar objective past are inscribed in many distinct systems, e.g., subsystems of the environment, and are accessible locally in space and time to observers. We identify histories that are not just consistent but redundantly consistent using the partial-trace condition introduced by Finkelstein as a bridge between histories and decoherence. The existence of redundant records is a sufficient condition for redundant consistency. It selects, from the multitude of the alternative sets of consistent histories, a small subset endowed with redundant records characteristic of the objective classical past. The information about an objective history of the past is then simultaneously within reach of many, who can independently reconstruct it and arrive at compatible conclusions in the present.
Kam, Chon-Fai; Liu, Ren-Bao
2017-08-29
Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.
Quantum space loop quantum gravity and the search for the structure of space, time, and the universe
Baggott, Jim
2018-01-01
Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on ...
International Nuclear Information System (INIS)
Santos, Marcelo Franca
2005-01-01
We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state
Energy Technology Data Exchange (ETDEWEB)
Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)
2017-02-15
The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Liu, Xia; Li, Tuoping; Hart, Darren J; Gao, Song; Wang, Hongling; Gao, Herui; Xu, Shumin; Zhang, Yifeng; Liu, Yifei; An, Yingfeng
2018-03-18
Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc. Copyright © 2018 Elsevier Inc. All rights reserved.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
International Nuclear Information System (INIS)
Laidet, J.
2013-01-01
As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron becomes small, one observes a growth of their density. When the parton density becomes close to a value of order 1/α s , it does not grow any longer, it saturates. These high density effects seem to be well described by the Color Glass Condensate effective field theory. On the experimental side, the LHC provides the best tool ever for reaching the saturated phase of hadronic matter. For this reason saturation physics is a very active branch of QCD during these past and coming years since saturation theories and experimental data can be compared. I first deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the LHC and whose data are about to be available. I compute the di-gluon production cross-section which provides the simplest observable for funding quantitative evidences of saturation in the kinematic range of the LHC. I also discuss the limit of the strongly correlated final state at large transverse momenta and by the way, generalize parton distribution to dense regime. The second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus collisions having in mind the proof of its universal character. This result is already known for gluons and here I detail the calculation carefully. For quarks universality has not been proved yet but I derive an intermediate leading order to next-to leading order recursion relation which is a crucial step for extracting the quantum evolution. Finally I briefly present an independent work in group theory. I detail a method I used for computing traces involving an arbitrary number of group generators, a situation often encountered in QCD calculations. (author) [fr
Ogura, Atsuo
2017-08-01
Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.
Universal quantum computation with the orbital angular momentum of a single photon
International Nuclear Information System (INIS)
García-Escartín, Juan Carlos; Chamorro-Posada, Pedro
2011-01-01
We prove that a single photon with quantum data encoded in its orbital angular momentum can be manipulated with simple optical elements to provide any desired quantum computation. We will show how to build any quantum unitary operator using beamsplitters, phase shifters, holograms and an extraction gate based on quantum interrogation. The advantages and challenges of these approach are then discussed, in particular the problem of the readout of the results
Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu
2018-06-01
A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.
Novel cloning machine with supplementary information
International Nuclear Information System (INIS)
Qiu Daowen
2006-01-01
Probabilistic cloning was first proposed by Duan and Guo. Then Pati established a novel cloning machine (NCM) for copying superposition of multiple clones simultaneously. In this paper, we deal with the novel cloning machine with supplementary information (NCMSI). For the case of cloning two states, we demonstrate that the optimal efficiency of the NCMSI in which the original party and the supplementary party can perform quantum communication equals that achieved by a two-step cloning protocol wherein classical communication is only allowed between the original and the supplementary parties. From this equivalence, it follows that NCMSI may increase the success probabilities for copying. Also, an upper bound on the unambiguous discrimination of two nonorthogonal pure product states is derived. Our investigation generalizes and completes the results in the literature
International Nuclear Information System (INIS)
Meng Fanyu; Zhu Aidong
2008-01-01
A quantum logic network to implement quantum telecloning is presented in this paper. The network includes two parts: the first part is used to create the telecloning channel and the second part to teleport the state. It can be used not only to implement universal telecloning for a bipartite entangled state which is completely unknown, but also to implement the phase-covariant telecloning for one that is partially known. Furthermore, the network can also be used to construct a tele-triplicator. It can easily be implemented in experiment because only single- and two-qubit operations are used in the network.
Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.
In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.
International Nuclear Information System (INIS)
Kendon, Viv
2014-01-01
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe
Gonzalez-Mestres, Luis
2017-12-01
Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which
Universal scaling of the logarithmic negativity in massive quantum field theory
Blondeau-Fournier, Olivier; Castro-Alvaredo, Olalla A.; Doyon, Benjamin
2016-03-01
We consider the logarithmic negativity, a measure of bipartite entanglement, in a general unitary 1 + 1-dimensional massive quantum field theory, not necessarily integrable. We compute the negativity between a finite region of length r and an adjacent semi-infinite region, and that between two semi-infinite regions separated by a distance r. We show that the former saturates to a finite value, and that the latter tends to zero, as r\\to ∞ . We show that in both cases, the leading corrections are exponential decays in r (described by modified Bessel functions) that are solely controlled by the mass spectrum of the model, independently of its scattering matrix. This implies that, like the entanglement entropy (EE), the logarithmic negativity displays a very high level of universality, allowing one to extract information about the mass spectrum. Further, a study of sub-leading terms shows that, unlike the EE, a large-r analysis of the negativity allows for the detection of bound states.
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Alchemical and structural distribution based representation for universal quantum machine learning
Faber, Felix A.; Christensen, Anders S.; Huang, Bing; von Lilienfeld, O. Anatole
2018-06-01
We introduce a representation of any atom in any chemical environment for the automatized generation of universal kernel ridge regression-based quantum machine learning (QML) models of electronic properties, trained throughout chemical compound space. The representation is based on Gaussian distribution functions, scaled by power laws and explicitly accounting for structural as well as elemental degrees of freedom. The elemental components help us to lower the QML model's learning curve, and, through interpolation across the periodic table, even enable "alchemical extrapolation" to covalent bonding between elements not part of training. This point is demonstrated for the prediction of covalent binding in single, double, and triple bonds among main-group elements as well as for atomization energies in organic molecules. We present numerical evidence that resulting QML energy models, after training on a few thousand random training instances, reach chemical accuracy for out-of-sample compounds. Compound datasets studied include thousands of structurally and compositionally diverse organic molecules, non-covalently bonded protein side-chains, (H2O)40-clusters, and crystalline solids. Learning curves for QML models also indicate competitive predictive power for various other electronic ground state properties of organic molecules, calculated with hybrid density functional theory, including polarizability, heat-capacity, HOMO-LUMO eigenvalues and gap, zero point vibrational energy, dipole moment, and highest vibrational fundamental frequency.
Quantum: information theory: technological challenge
International Nuclear Information System (INIS)
Calixto, M.
2001-01-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs
Light, the universe and everything–12 Herculean tasks for quantum cowboys and black diamond skiers
Agarwal, Girish; Allen, Roland E.; Bezděková, Iva; Boyd, Robert W.; Chen, Goong; Hanson, R.; Hawthorne, Dean L.; Hemmer, Philip; Kim, Moochan B.; Kocharovskaya, Olga; Lee, D.; Lidström, Sebastian K.; Lidström, Suzy; Losert, Harald; Maier, Helmut; Neuberger, John W.; Padgett, Miles J.; Raizen, Mark; Rajendran, Surjeet; Rasel, Ernst; Schleich, Wolfgang P.; Scully, Marlan O.; Shchedrin, Gavriil; Shvets, Gennady; Sokolov, Alexei P.; Svidzinsky, Anatoly; Walsworth, Ronald L.; Weiss, Rainer; Wilczek, Frank; Willner, Alan E.; Yablonovich, Eli; Zheludev, Nikolay
2018-01-01
The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In
Local cloning of entangled states
International Nuclear Information System (INIS)
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-01-01
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere
International Nuclear Information System (INIS)
Bartkiewicz, Karol; Miranowicz, Adam
2010-01-01
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.
International Nuclear Information System (INIS)
Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M.; Rozmej, P.
1997-01-01
The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors)
Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.
Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl
2010-09-13
Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).
Light, the universe and everything - 12 Herculean tasks for quantum cowboys and black diamond skiers
Agarwal, Girish; Allen, Roland E.; Bezděková, Iva; Boyd, Robert W.; Chen, Goong; Hanson, Ronald; Hawthorne, Dean L.; Hemmer, Philip; Kim, Moochan B.; Kocharovskaya, Olga; Lee, David M.; Lidström, Sebastian K.; Lidström, Suzy; Losert, Harald; Maier, Helmut; Neuberger, John W.; Padgett, Miles J.; Raizen, Mark; Rajendran, Surjeet; Rasel, Ernst; Schleich, Wolfgang P.; Scully, Marlan O.; Shchedrin, Gavriil; Shvets, Gennady; Sokolov, Alexei V.; Svidzinsky, Anatoly; Walsworth, Ronald L.; Weiss, Rainer; Wilczek, Frank; Willner, Alan E.; Yablonovitch, Eli; Zheludev, Nikolay
2018-06-01
The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world's leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited - such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity's biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?
Stoddard, Beryl
2005-01-01
Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…
International Nuclear Information System (INIS)
Ferraro, Alessandro; Galbiati, Matteo; Paris, Matteo G A
2006-01-01
We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analysed. (letter to the editor)
Ferraro, Alessandro; Galbiati, Matteo; Paris, Matteo G. A.
2005-01-01
We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analyzed.
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Myrzakulov, R. [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Odintsov, S.D. [Consejo Superior de Investigaciones Científicas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Tomsk State Pedagogical University, 634050 Tomsk (Russian Federation); Tomsk State University of Control Systems and Radioelectronics (TUSUR) 634050 Tomsk (Russian Federation); Sebastiani, L., E-mail: lorenzo.sebastiani@unitn.it [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-06-15
We study inflation for a quantum scalar electrodynamics model in curved space–time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.
Directory of Open Access Journals (Sweden)
Mark Hillery
2000-07-01
Full Text Available Quantum information is stored in two-level quantum systems known as qubits. The no-cloning theorem states that the state of an unknown qubit cannot be copied. This is in contrast to classical information which can be copied. If one drops the requirement that the copies be perfect it is possible to design quantum copiers. This paper presents a short review of the theory of quantum copying.
Symbols, pictures, and quantum reality on the theoretical foundations of the physical universe
Schommers, Wolfram
1995-01-01
Information about the reality outside flow via our sense organs into the body, and the brain forms a picture of reality. It is argued that the symbols in the picture have in general no similarity with the objects in the outside world, and many facts support such a view. This conception is discussed in connection with quantum reality. In particular, the role of space and time within quantum theory is also investigated from the historical point of view, highlighting the original ideas. New aspects are covered in connection with the particle concept, particle-wave dualism, locality, the time oper
Optimal cloning of mixed Gaussian states
International Nuclear Information System (INIS)
Guta, Madalin; Matsumoto, Keiji
2006-01-01
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
International Nuclear Information System (INIS)
Yoshida, Y.; Tagawa, S.; Okuda, S.; Honda, Y.; Kimura, N.; Yamamoto, T.; Isoyama, G.
1995-01-01
Three projects for quantum beam science, an ultra fast electron pulse, a free electron laser, and a slow positron beam, has been started by using 38 MeV L-band and 150 MeV S-band linacs at ISIR in Osaka University. Both study on the production of three beams and study on quantum material science by using three beams will play an important role in the beam science. (author)
Quantum fate of singularities in a dark-energy dominated universe
International Nuclear Information System (INIS)
Bouhmadi-Lopez, Mariam; Kiefer, Claus; Sandhoefer, Barbara; Moniz, Paulo Vargas
2009-01-01
Classical models for dark energy can exhibit a variety of singularities, many of which occur for scale factors much bigger than the Planck length. We address here the issue of whether some of these singularities, the big freeze and the big demarrage, can be avoided in quantum cosmology. We use the framework of quantum geometrodynamics. We restrict our attention to a class of models whose matter content can be described by a generalized Chaplygin gas and be represented by a scalar field with an appropriate potential. Employing the DeWitt criterion that the wave function be zero at the classical singularity, we show that a class of solutions to the Wheeler-DeWitt equation fulfilling this condition can be found. These solutions thus avoid the classical singularity. We discuss the reasons for the remaining ambiguity in fixing the solution.
Analysing Hessence Intermediate and Logamediate Universe in Loop Quantum Cosmological Background
Mandal, Jyotirmay Das; Debnath, Ujjal
2017-06-01
We have discussed here Hessence inflation in Loop Quantum Cosmological background. In this work, we have emphasized on late times, taking into account various slow-roll conditions. This model has been constructed taking intermediate and logamediate scale factors. In both cases the forms of hessence field, potential, number of e-folds, slow-roll parameters are manipulated by taking the dissipative co-efficient Γ =Γ0, where Γ0 > 0 is a constant, in accordance with second law of thermodynamics.
Universal scaling for the quantum Ising chain with a classical impurity
Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco
2017-10-01
We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .
International Nuclear Information System (INIS)
Ollivier, Harold; Poulin, David; Zurek, Wojciech H.
2005-01-01
We study the role of the information deposited in the environment of an open quantum system in the course of the decoherence process. Redundant spreading of information--the fact that some observables of the system can be independently read off from many distinct fragments of the environment--is investigated as the key to effective objectivity, the essential ingredient of classical reality. This focus on the environment as a communication channel through which observers learn about physical systems underscores the importance of quantum Darwinism--selective proliferation of information about 'the fittest states' chosen by the dynamics of decoherence at the expense of their superpositions--as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective classical reality from within the quantum substrate
Universal quantum computation by scattering in the Fermi–Hubbard model
International Nuclear Information System (INIS)
Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel
2015-01-01
The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)
Quantum teleportation for continuous variables and related quantum information processing
International Nuclear Information System (INIS)
Furusawa, Akira; Takei, Nobuyuki
2007-01-01
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view
International Nuclear Information System (INIS)
Mandal, Jyotirmay Das; Debnath, Ujjal
2016-01-01
We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ 0 (where Γ 0 is a constant) in “intermediate” inflation and Γ = V(ϕ), (where V(ϕ) is the potential of tachyonic field) in “logamediate” inflation. We have assumed slow-roll condition to construct scalar field ϕ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained. We have analyzed the stability of this model through graphical representations. (paper)
Recombination-assisted megaprimer (RAM) cloning
Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.
2014-01-01
No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930
Bose-Einstein Condensation: Quantum weirdness at the lowest temperature in the universe
Wieman, Carl
2004-10-01
In 1924 Einstein predicted that a gas would undergo a dramatic transformation at a sufficiently low temperature (now known as Bose-Einstein condensation or BEC). In 1995, my group was able to observe this transformation by cooling a gas sample to the unprecedented temperature of less than 100 billionths of a degree above absolute zero. The BEC state is a novel form of matter in which a large number of atoms lose their individual identities and behave as a single quantum entity, the ``superatom.'' This entity is the atom analogue to laser light, and, although large enough to be easily seen and manipulated, exhibits the nonintuitive quantum behavior normally important only at much tinier size scales. The study and use of the curious properties of BEC has now become an important subfield of physics. I will discuss how we create BEC and some of the subsequent research we have done on it. Interactive applets as a tool for teaching science will be demonstrated in the presentation.
He, Ling Yan; Wang, Tie-Jun; Wang, Chuan
2016-07-11
High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.
Gaussian cloning of coherent states with known phases
International Nuclear Information System (INIS)
Alexanian, Moorad
2006-01-01
The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier
Spectral dimension of the universe in quantum gravity at a lifshitz point.
Horava, Petr
2009-04-24
We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Strategies for state-dependent quantum deleting
International Nuclear Information System (INIS)
Song Wei; Yang Ming; Cao Zhuoliang
2004-01-01
A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting
Quantum Secure Direct Communication Using W State
International Nuclear Information System (INIS)
Dong Li; Xiu Xiaoming; Gao Yajun; Chi Feng
2008-01-01
A theoretical scheme of quantum secure direct communication using teleportation is proposed. In the scheme, the sender needs to prepare a class of three-particle W states to use as quantum channel. The two communicators may communicate after they test the security of the quantum channel. The security of the protocol is ensured by quantum entanglement and quantum no-cloning theorem. The receiver can obtain the secret message determinately if the quantum channel is secure
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Sabuncu, Metin
2009-01-01
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
International Nuclear Information System (INIS)
Fukuyama, Takeshi; Morikawa, Masahiro
2006-01-01
We do not know 96% of the total matter in the universe. A model is proposed in which Dark Energy is identified as Bose-Einstein Condensation. Global cosmic acceleration and rapid local collapse into black holes (Dark Matter) are examined. We also propose a novel mechanism of inflation due to the steady flow of condensation, which is free from slow-roll conditions for the potential
Quantum mechanics of electromagnetically bounded spin-1/2 particles in expanding universes
International Nuclear Information System (INIS)
Audretsch, J.; Schaefer, G.
1978-01-01
In a preceding paper (Audretsch and Schaefer. Gen. Rel. Grav.; 9:243 (1977)) the central questions which justified the interest in an exact treatment of an electromagnetically bounded electron in expanding universes were outlined. Here the energy spectrum of the hydrogen atom in expanding Robertson-Walker universes is studied in detail using rigorous methods of functional analysis. Thereby, for closed universes (spherical case, epsilon = 1), the corresponding electromagnetic field needs special considerations. For the hyperbolic case (epsilon = -1) it is shown (a) that the Hamilton operator is uniquely self-adjoint, (b) that the continuous energy spectrum agrees with the one in 4-flat space-time and that the energy eigenvalues are bounded by +-msub(o), (c) that they approach Minkowski space spectrum for increasing curvature radius, and (d) that the hydrogen atom cannot be used as an atomic clock showing proper time. For the spherical case (epsilon 1) it is shown (a) that the Hamilton operator is uniquely self-adjoint and (b) that the energy spectrum is solely discrete. (author)
... as our understanding of this technology advances. Support Stem Cell Research (including Research Cloning) AAAS supports stem cell research, including the use of nuclear transplantation techniques (also ...
Characterization of quantum logics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
The quantum logic approach to axiomatic quantum mechanics is used to analyze the conceptual foundations of the traditional quantum theory. The universal quantum of action h>0 is incorporated into the theory by introducing the uncertainty principle, the complementarity principle, and the superposition principle into the framework. A characterization of those quantum logics (L,S) which may provide quantum descriptions is then given. (author)
Low-energy effective models for two-flavor quantum chromodynamics and the universality hypothesis
International Nuclear Information System (INIS)
Grahl, Mara
2014-01-01
Our thesis is centered around the question of which order the chiral phase transition of two-flavor QCD is. First of all we outline several general aspects of phase transitions which are of central importance for the understanding of the RG approach towards them. Our focus lies on reviewing the universality hypothesis, a crucial ingredient when it comes to the construction of effective theories for order parameters, the credibility of which often heavily depends on universality arguments. We finish the chapter with an attempt to formulate the latter more precisely than usually done. The next chapter discusses the chiral phase transition from a general point of view. We supplement well-known facts with a detailed discussion of the so-called O(4) conjecture. Thereafter we introduce the nonperturbative method we use, the FRG method. Furthermore, we discuss the relation between effective models for QCD and the underlying fundamental theory making use of the FRG perspective. The next chapter is concerned with a mathematical subject indispensable for our approach towards the study of phase transitions, namely the systematic construction of polynomial invariants characterizing a given symmetry. With this thesis we point out its relevance in the context of high-energy physics. We present a simple, but novel, brute-force algorithm to effectively construct invariants of a given polynomial order. The next chapter is devoted to RG studies of several dimensionally reduced theories which are capable to either predict or to rule out the possible existence of a second-order phase transition. Of main interest for us is the linear sigma model, particularly in presence of the axial anomaly. It turns out that the fixed-point structure of the latter is rather complicated, requiring a deeper understanding of the underlying method and its preconditions. This leads us to a careful analysis of the fixed-point structure of several models, which is of great benefit for our review of the
Quantum capacity of quantum black holes
Adami, Chris; Bradler, Kamil
2014-03-01
The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.
A General No-Cloning Theorem for an infinite Multiverse
Gauthier, Yvon
2013-10-01
In this paper, I formulate a general no-cloning theorem which covers the quantum-mechanical and the theoretical quantum information cases as well as the cosmological multiverse theory. However, the main argument is topological and does not involve the peculiar copier devices of the quantum-mechanical and information-theoretic approaches to the no-cloning thesis. It is shown that a combinatorial set-theoretic treatment of the mathematical and physical spacetime continuum in cosmological or quantum-mechanical terms forbids an infinite (countable or uncountable) number of exact copies of finite elements (states) in the uncountable multiverse cosmology. The historical background draws on ideas from Weyl to Conway and Kochen on the free will theorem in quantum mechanics.
Searching for perfect fluids: quantum viscosity in a universal Fermi gas
International Nuclear Information System (INIS)
Cao, C; Elliott, E; Wu, H; Thomas, J E
2011-01-01
We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.
Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.
2015-01-01
We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each
Universal properties of strongly frustrated quantum magnets in high magnetic fields
International Nuclear Information System (INIS)
Richter, J.
2007-01-01
For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)
Cosmological constant, inflation and no-cloning theorem
Energy Technology Data Exchange (ETDEWEB)
Huang Qingguo, E-mail: huangqg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Lin Fengli, E-mail: linfengli@phy.ntnu.edu.tw [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan (China)
2012-05-30
From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.
Probabilistic Cloning of Three Real States with Optimal Success Probabilities
Rui, Pin-shu
2017-06-01
We investigate the probabilistic quantum cloning (PQC) of three real states with average probability distribution. To get the analytic forms of the optimal success probabilities we assume that the three states have only two pairwise inner products. Based on the optimal success probabilities, we derive the explicit form of 1 →2 PQC for cloning three real states. The unitary operation needed in the PQC process is worked out too. The optimal success probabilities are also generalized to the M→ N PQC case.
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Cloning, killing, and identity.
McMahan, J
1999-01-01
One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909
Introduction to quantum groups
International Nuclear Information System (INIS)
Sudbery, A.
1996-01-01
These pedagogical lectures contain some motivation for the study of quantum groups; a definition of ''quasi triangular Hopf algebra'' with explanations of all the concepts required to build it up; descriptions of quantised universal enveloping algebras and the quantum double; and an account of quantised function algebras and the action of quantum groups on quantum spaces. (author)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Reexamination of optimal quantum state estimation of pure states
International Nuclear Information System (INIS)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-01-01
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input
Dual entanglement measures based on no local cloning and no local deleting
International Nuclear Information System (INIS)
Horodecki, Michal; Sen, Aditi; Sen, Ujjwal
2004-01-01
The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and no local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
Automated cloning methods.; TOPICAL
International Nuclear Information System (INIS)
Collart, F.
2001-01-01
Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)
Enzyme free cloning for high throughput gene cloning and expression
de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.
2006-01-01
Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning
de Martini, Francesco
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved spacetime. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, conformally-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An “effective cosmological potential”: Veff is expressed in terms of the dark energy potential: |VΛ| via the “mass reduction parameter”: |ζ|≡|Veff||VΛ|, a general property of the Universe. The mass of the Higgs boson, which is considered a “free parameter” by the standard electroweak theory, by our theory is found to be proportional to the mass MU≡|Veff| which contributes to the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The nonintegrable application of the Weyl’s geometry leads to a Proca equation accounting for the dynamics of a ϕρ-particle, a vector-meson proposed as an optimum candidate for Dark Matter. The peculiar mathematical structure of Veff offers a clue towards a very general resolution in 4-D of a most intriguing puzzle of modern quantum field theory, the “cosmological constant paradox”(here referred to as: “Λ-paradox”). Indeed, our “universal” theory offers a resolution of the “Λ-paradox” for all exponential inflationary potentials: VΛ(ϕ)∝e‑nϕ, and for all linear superpositions of these potentials, where n belongs to the mathematical set of the “real numbers”. An explicit
Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico
Energy Technology Data Exchange (ETDEWEB)
Calixto, M.
2001-07-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.
Lifescience Database Archive (English)
Full Text Available Clone Detail Mapping Pseudomolecule data detail Detail information Mapping to the T...IGR japonica Pseudomolecules kome_mapping_pseudomolecule_data_detail.zip kome_mapping_pseudomolecule_data_detail ...
Directory of Open Access Journals (Sweden)
Željko Kaluđerović
2011-12-01
Full Text Available In this paper the authors analyze the process of negotiating and beginning of the United Nations Declaration on Human Cloning as well as the paragraphs of the very Declaration. The negotiation was originally conceived as a clear bioethical debate that should have led to a general agreement to ban human cloning. However, more often it had been discussed about human rights, cultural, civil and religious differences between people and about priorities in case of eventual conflicts between different value systems. In the end, a non-binding Declaration on Human Cloning had been adopted, full of numerous compromises and ambiguous formulations, that relativized the original intention of proposer states. According to authors, it would have been better if bioethical discussion and eventual regulations on cloning mentioned in the following text had been left over to certain professional bodies, and only after the public had been fully informed about it should relevant supranational organizations have taken that into consideration.
Baron, Alma S.
1981-01-01
A recent questionnaire survey provides statistics on male managers' views of female managers. The author recommends that male managers break out of their cloning behavior and that the goal ought to be a plurality in management. (Author/WD)
Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...
Quantum Hall effect in quantum electrodynamics
International Nuclear Information System (INIS)
Penin, Alexander A.
2009-01-01
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available The accepted structure of space and vacuum derives from the results of relativistic cosmology and quantum field theory. It is demonstrated that a chiral interface between enantiomeric regions of a closed universe, or a (right R-Universe and (left L-Universe, related by an element of PCT symmetry along the interface, represents a construct with all the attributes required of the theoretical vacuum, in-so-far as quantum behaviour is then seen to be induced by the vacuum interface. Quantum mechanics emerges as a special case of classical mechanics, rather than the latter being a subset of the former. This removes the quantum-mechanical observational problem, explains the cosmological large-number coincidences, and accounts for the anti-matter in the cosmos.La estructura aceptada del espacio y el vacío se derivan de los resultados de la cosmología relativística y de la teoría cuántica de campo. Se demuestra que una interfaz quiral entre regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT a lo largo de la interfaz, representa un modelo con todos los atributos requeridos por el vacío teórico. Se desprende que el comportamiento cuántico es entonces visto que es inducido por la interfaz de vacío. La mecánica quántica emerge como un caso especial de la mecánica clásica, más bien que siendo la última un subconjunto de la primera. Esto resuelve el problema observacional mecánico cuántico, explica las coincidencias de los grandes números cosmológicos y toma en cuenta la antimateria en el cosmos.
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
2009-01-01
The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes. Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp. Each volume contains a glossary with full definitions for vocabulary help and an index.
The classicality and quantumness of a quantum ensemble
International Nuclear Information System (INIS)
Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui
2011-01-01
In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.
Directory of Open Access Journals (Sweden)
Markus Spiliotis
Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.
Energy Technology Data Exchange (ETDEWEB)
Branton, R.; Blake, J.
1983-05-01
It has taken over 10 years research and development to clone oil palms and coconut palms successfully. Unilever has recently built a tissue culture factory in England with a potential capacity for producing half a million clonal oil palms a year for export. Research on the cloning of coconut palms is reported here. Cloned palms may increase yields from oil palms by 20 to 30 percent and yields from coconut could be as high as five-fold over unselected stock. Improved yields would not only increase the yield of oil and copra but also the harvests of husk and shell which are immense potential sources of energy; the 1978 Philippine harvest of over 12 million nuts is equivalent in terms of energy to 3.8 billion litres of petrol (31 x 10/sup 12/ kcal).
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
A Seminar on Human Cloning: Cloning in Reproductive Medicine
Illmensee, Karl
2001-01-01
This review article summarizes the historical development of mammalian cloning, presents current advances and presumed risk factors in the field of reproductive cloning, discusses possible clinical applications of therapeutic and diagnostic cloning and outlines prospective commercial trends in pharmacytical cloning. Predictable progress in biotechnology and stem cell engineering should prove to be advantageous for patients' health and for novel benefits in reproductive and regenerative medicine.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
International Nuclear Information System (INIS)
Bovino, Stefano; Tacconi, Mario; Gianturco, Franco A.; Galli, Daniele; Palla, Francesco
2011-01-01
The relative efficiencies of the chemical pathways that can lead to the destruction of LiH and LiH + molecules, conjectured to be present in the primordial gas and to control molecular cooling processes in the gravitational collapse of the post-recombination era, are revisited by using accurate quantum calculations for the several reactions involved. The new rates are employed to survey the behavior of the relative abundance of these molecules at redshifts of interest for early universe conditions. We find significant differences with respect to previous calculations, the present ones yielding LiH abundances higher than LiH + at all redshifts.
... aging normally. In fact, the first cattle clones ever produced are alive, healthy, and are 10 years old as of January 2008. Back to the ... until we finish assessing their safety. To the best of our knowledge, they have done so. After years of detailed study and analysis, FDA has concluded ...
DEFF Research Database (Denmark)
Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper
2010-01-01
using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...
[Nuclear transfer and therapeutic cloning].
Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying
2005-03-01
Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.
The First Human Cloned Embryo.
Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol
2002-01-01
Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)
Human cloning. Fact or fiction
International Nuclear Information System (INIS)
Abushama, Mandy D.; Ahmed, Badreldeen I.
2003-01-01
Cloning is the production of one or more individual plants or animals that are genetically identical to other plant, animal or human. Scientists even demonstrated that they were able to clone frog tadpoles from frog embryonic cells using nuclear transfer.Many animals have been cloned from adult cells using nuclear transfer. Somatic cell nuclear transfer which refers to the transfer of the nucleous from a somatic cell to an egg cell. Article further deals with benefits and misuses of human cloning
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
International Nuclear Information System (INIS)
Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.
2011-01-01
The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)
Three concepts of cloning in human beings.
Cui, Ke-Hui
2005-07-01
Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.
Entangled cloning of stabilizer codes and free fermions
Hsieh, Timothy H.
2016-10-01
Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982), 10.1038/299802a0] prohibits exact replication of arbitrary quantum states, there are many instances in quantum information processing and entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for generating an "entangled clone" for a particular but rather expansive and rich class of states. Given a stabilizer code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily small but finite, or large, and the relation between the original and the copy can also be modified to some extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes and particle-hole transformed ground states of free fermion systems, although untransformed clones can also be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic systems.
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W. [Groupe d`Etudes des Semiconducteurs, Universite de Montpellier II, Montpellier (France)
1995-12-31
Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B{sub tr} where B is the magnetic field, B{sub tr}=h/4e{tau}D, D is the diffusion constant and {tau} is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B{sup -1/2}) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author). 5 refs, 2 figs.
International Nuclear Information System (INIS)
Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W.
1995-01-01
Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B tr where B is the magnetic field, B tr =h/4eτD, D is the diffusion constant and τ is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B -1/2 ) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author)
Energy Technology Data Exchange (ETDEWEB)
Zinn-Justin, J
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
[Media, cloning, and bioethics].
Costa, S I; Diniz, D
2000-01-01
This article was based on an analysis of three hundred articles from mainstream Brazilian periodicals over a period of eighteen months, beginning with the announcement of the Dolly case in February 1997. There were two main objectives: to outline the moral constants in the press associated with the possibility of cloning human beings and to identify some of the moral assumptions concerning scientific research with non-human animals that were published carelessly by the media. The authors conclude that there was a haphazard spread of fear concerning the cloning of human beings rather than an ethical debate on the issue, and that there is a serious gap between bioethical reflections and the Brazilian media.
Probabilistic cloning of equidistant states
International Nuclear Information System (INIS)
Jimenez, O.; Roa, Luis; Delgado, A.
2010-01-01
We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.
International Nuclear Information System (INIS)
Jaramillo T, Jose Hernan
1998-01-01
The announcement has been made on the cloning of mice in these days and he doesn't stop to miss, because the world lives a stage where conscience of the protection is creating that should be given to the biodiversity. It is known that alone we won't subsist and the protection of the means and all that contains that environment is of vital importance for the man. But it is also known that the vegetables and animal transgenic that they come to multiply the species have appeared that we prepare. The transgenic has been altered genetically, for substitution of one or more genes of other species, inclusive human genes. This represents an improvement compared with the investigations that gave origin to the cloning animal. But it is necessary to notice that to it you arrived through the cloning. This year 28 million hectares have been sowed in cultivations of transgenic seeds and there is around 700 bovine transgenic whose milk contains a necessary protein in the treatment of the man's illnesses
Science Academies' Refresher Course in Quantum Mechanics
Indian Academy of Sciences (India)
IAS Admin
2013-02-28
Feb 28, 2013 ... A Refresher Course in Quantum Mechanics for college/university teachers ... The Course will cover the basic and advanced topics of Quantum ... Module 1:- Principles of Quantum Mechanics (with associated mathematics), ...
Ethical issues in animal cloning.
Fiester, Autumn
2005-01-01
The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
A group theoretic approach to quantum information
Hayashi, Masahito
2017-01-01
This textbook is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solu...
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Coherent states in the quantum multiverse
International Nuclear Information System (INIS)
Robles-Perez, S.; Hassouni, Y.; Gonzalez-Diaz, P.F.
2010-01-01
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Coherent states in the quantum multiverse
Energy Technology Data Exchange (ETDEWEB)
Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)
2010-01-11
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
International Nuclear Information System (INIS)
Padmanabhan, T.
1989-01-01
Quantum cosmology is to quantum gravity what the Bohr model is to the full quantum mechanical description of the hydrogen atom. In quantum cosmology one attempts to give a quantum-mechanical meaning to classical solutions of general relativity. This is discussed in this chapter. The approach is illustrated by quantizing only the conformal degree of freedom of the gravitational field, in particular the Friedmann-Robertson-Walker models. And, as in the hydrogen atom, the classical singularity of general relativity is avoided and one has analogous stationary states in the quantum Universe. The chapter ends with a model of the fundamental role that the Planck length may play as the universal cutoff in all field theories, thus ridding the theory of ultra-violet divergences. Two appendices introduce field theory in the Schroedinger representation and the Schroedinger equation for quantum gravity, namely the Wheeler-De Wit equation. (author). 38 refs.; 2 figs.; 1 tab
Energy Technology Data Exchange (ETDEWEB)
Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques, Orsay (France)
2005-04-18
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's {zeta}-function, which has become a testing ground for RMT, QC, POT, and their relationship.
International Nuclear Information System (INIS)
Bohigas, Oriol
2005-01-01
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's ζ-function, which has become a testing ground for RMT, QC, POT, and their relationship
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
International Nuclear Information System (INIS)
Mendonca, Fabio Alencar; Ramos, Rubens Viana
2008-01-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
Mendonça, Fábio Alencar; Ramos, Rubens Viana
2008-02-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.
Quantum cosmology - science of Genesis
International Nuclear Information System (INIS)
Padmanabhan, Thanu
1987-01-01
Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)
International Nuclear Information System (INIS)
Rahaman, Ramij
2011-01-01
In this Letter we analyze the (im)possibility of the exact cloning of orthogonal three-qubit CAT states under local operation and classical communication (LOCC) with the help of a restricted entangled state. We also classify the three-qubit CAT states that can (not) be cloned under LOCC restrictions and extend the results to the n-qubit case. -- Highlights: → We analyze the (im)possibility of exact cloning of orthogonal CAT states under LOCC. → We also classify the set of CAT states that can(not) be cloned by LOCC. → No set of orthogonal CAT states can be cloned by LOCC with help of similar CAT state. → Any two orthogonal n-qubit GHZ-states can be cloned by LOCC with help of a GHZ state.
Lessons learned from cloning dogs.
Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C
2012-08-01
The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals. © 2012 Blackwell Verlag GmbH.
Directory of Open Access Journals (Sweden)
Shahar Hod
2015-07-01
Full Text Available The quasinormal resonance spectrum {ωn(μ,q,M,Q}n=0n=∞ of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime is studied analytically in the large-coupling regime qQ≫Mμ (here {μ,q} are respectively the mass and charge coupling constant of the field, and {M,Q} are respectively the mass and electric charge of the black hole. This physical system provides a striking illustration for the validity of the universal relaxation bound τ×T≥ħ/π in black-hole physics (here τ≡1/ℑω0 is the characteristic relaxation time of the composed black-hole-scalar-field system, and T is the Bekenstein–Hawking temperature of the black hole. In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime may saturate this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bound by light scalar fields are excluded by the Schwinger-type pair-production mechanism (a vacuum polarization effect, a quantum phenomenon which restricts the physical parameters of the composed black-hole-charged-field system to the regime qQ≪M2μ2/ħ.
International Nuclear Information System (INIS)
Scheid, Matthias; Adagideli, İnanç; Richter, Klaus; Nitta, Junsaku
2009-01-01
We investigate the transport properties of narrow quantum wires realized in disordered two-dimensional electron gases in the presence of k-linear Rashba and Dresselhaus spin–orbit interaction, and an applied in-plane magnetic field. Building on previous work (Scheid et al 2008 Phys. Rev. Lett. 101 266401), we find that in addition to the conductance, the universal conductance fluctuations also feature anisotropy with respect to the magnetic field direction. This anisotropy can be explained solely from the symmetries exhibited by the Hamiltonian as well as the relative strengths of the Rashba and Dresselhaus spin–orbit interaction and thus can be utilized to detect this ratio from purely electrical measurements
Therapeutic cloning: The ethical limits
International Nuclear Information System (INIS)
Whittaker, Peter A.
2005-01-01
A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated
Human cloning and child welfare.
Burley, J; Harris, J
1999-01-01
In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914
Quantum neuromorphic hardware for quantum artificial intelligence
Prati, Enrico
2017-08-01
The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.
Quantum Darwinism in Quantum Brownian Motion
Blume-Kohout, Robin; Zurek, Wojciech H.
2008-12-01
Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Quantum Networks: General theory and applications
International Nuclear Information System (INIS)
Bisio, A.; D'Ariano, G. M.; Perinotti, P.; Chiribella, G.
2011-01-01
In this work we present a general mathematical framework to deal with Quantum Networks, i.e. networks resulting from the interconnection of elementary quantum circuits. The cornerstone of our approach is a generalization of the Choi isomorphism that allows one to efficiently represent any given Quantum Network in terms of a single positive operator. Our formalism allows one to face and solve many quantum information processing problems that would be hardly manageable otherwise, the most relevant of which are reviewed in this work: quantum process tomography, quantum cloning and learning of transformations, inversion of a unitary gate, information-disturbance tradeoff in estimating a unitary transformation, cloning and learning of a measurement device (Authors)
Quantum set theory and applications
International Nuclear Information System (INIS)
Rodriguez, E.
1984-01-01
The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Energy Technology Data Exchange (ETDEWEB)
Dasari, Venkat [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Sadlier, Ronald J [ORNL; Geerhart, Mr. Billy [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Snow, Nikolai [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Williams, Brian P [ORNL; Humble, Travis S [ORNL
2017-01-01
Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
High-speed quantum networking by ship
Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney
2016-11-01
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.
[The discrete horror of cloning].
Guibourg, Ricardo A
2009-01-01
The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.
[Scientific ethics of human cloning].
Valenzuela, Carlos Y
2005-01-01
True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.
Quantum simulations with noisy quantum computers
Gambetta, Jay
Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.
Haroche, Serge
2013-01-01
From the infinitely small to the infinitely big, covering over 60 spatial orders of magnitude, quantum theory is used as much to describe the still largely mysterious vibrations of the microscopic strings that could be the basic constituents of the Universe, as to explain the fluctuations of the microwave radiation reaching us from the depths of outer space. Serge Haroche tells us about the scientific theory that revolutionised our understanding of nature and made an extraordinary contributio...
Animal cloning: problems and prospects.
Wells, D N
2005-04-01
An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer
Human cloning: can it be made safe?
Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian
2003-11-01
There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?
HAWKING'S Theory of Quantum Cosmology
Zhi, Fang Li; Chao, Wu Zhong
The most important problem in cosmology is the birth of the universe. Recently Hartle and Hawking put forward a ground state proposal for the quantum state of the universe which incorporates the idea that the universe must come from nothing. Many models have been discussed in quantum cosmology with this boundary condition. It has been shown that every model is a step towards to a realistic universe, i.e. a 4-dimensional isotropic universe with a long inflationary stage.
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Revealing novel quantum phases in quantum antiferromagnets on random lattices
Directory of Open Access Journals (Sweden)
R. Yu
2009-01-01
Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.
International Nuclear Information System (INIS)
Zanardi, Paolo
2001-01-01
The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies
Directory of Open Access Journals (Sweden)
C. H. Rodriguez
2009-09-01
Full Text Available Entre junio y diciembre de 2004 se estudiaron 33 aislamientos de Acinetobacter baumannii resistentes a los carbapenemes, aislados de materiales clínicos de 29 pacientes internados en la unidad de cuidados intensivos del Hospital de Clínicas de la Universidad de Buenos Aires. La distribución clonal de esos aislamientos fue la siguiente: clon I (n = 14, clon IV (n = 7, clon III (n = 6, clon VI (n = 3, clon II (n = 2 y clon X (n = 1.Veintiún aislamientos se recuperaron de materiales del tracto respiratorio inferior, 11 de ellos pertenecieron al clon I. Casi todos los aislamientos pertenecientes al clon III (5/6 se recuperaron de materiales no respiratorios, y todos los del clon IV se recuperaron de pacientes que no recibieron imipenem. En los aislamientos pertenecientes a los clones I y III se observó una mayor adherencia a catéteres, principalmente en los asociados con bacteriemias. La mayoría de los aislamientos de los clones I y IV sobrevivieron en materiales inertes durante un período superior a los 5 días. La totalidad de los aislamientos del clon III fueron sensibles a colistina, gentamicina y levofloxacina, mientras que los del clon I y la mayoría de los del clon IV sólo fueron sensibles a colistina y tetraciclinas.From June to December 2004, thirty-three carbapenem-resistant Acinetobacter baumannii isolates recovered from twenty nine patients at the intensive care unit in Hospital de Clínicas, Universidad de Buenos Aires, were studied. The isolates were categorized by molecular methods as: clone I (n = 14, clon IV (n = 7, clone III (n = 6, clone VI (n = 3, clone II (n = 2 and clone X (n = 1. Twenty one isolates were recovered from lower respiratory tract samples, 11 of which belonged to clon I. Clone III isolates were mainly recovered from non-respiratory samples (5/6. Clone IV isolates were recovered from patients not receiving previous imipenem therapy. The majority of the isolates belonging to clones I and IV were able to
Directory of Open Access Journals (Sweden)
Dave Bacon
2013-06-01
Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.
College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning
Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn
2010-01-01
In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…
Wildlife conservation and reproductive cloning.
Holt, William V; Pickard, Amanda R; Prather, Randall S
2004-03-01
Reproductive cloning, or the production of offspring by nuclear transfer, is often regarded as having potential for conserving endangered species of wildlife. Currently, however, low success rates for reproductive cloning limit the practical application of this technique to experimental use and proof of principle investigations. In this review, we consider how cloning may contribute to wildlife conservation strategies. The cloning of endangered mammals presents practical problems, many of which stem from the paucity of knowledge about their basic reproductive biology. However, situations may arise where resources could be targeted at recovering lost or under-represented genetic lines; these could then contribute to the future fitness of the population. Approaches of this type would be preferable to the indiscriminate generation of large numbers of identical individuals. Applying cloning technology to non-mammalian vertebrates may be more practical than attempting to use conventional reproductive technologies. As the scientific background to cloning technology was pioneered using amphibians, it may be possible to breed imminently threatened amphibians, or even restore extinct amphibian species, by the use of cloning. In this respect species with external embryonic development may have an advantage over mammals as developmental abnormalities associated with inappropriate embryonic reprogramming would not be relevant.
Splitting spacetime and cloning qubits: linking no-go theorems across the ER=EPR duality
Energy Technology Data Exchange (ETDEWEB)
Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Pollack, Jason; Remmen, Grant N. [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)
2015-11-15
We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mazzitelli, Francisco D.; Trombetta, Leonardo G.
2018-03-01
In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017), 10.1103/PhysRevD.95.103504] it was argued that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate, solving the cosmological constant and dark energy problems. We point out here that the results depend on the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a covariant cutoff such that the zero-point energy density is positive definite.
Heunen, Chris
2008-01-01
We consider categorical logic on the category of Hilbert spaces. More generally, in fact, any pre-Hilbert category suffices. We characterise closed subobjects, and prove that they form orthomodular lattices. This shows that quantum logic is just an incarnation of categorical logic, enabling us to establish an existential quantifier for quantum logic, and conclude that there cannot be a universal quantifier.
Hybrid quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)
2014-12-04
I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.
International Nuclear Information System (INIS)
Peter, I. J.
1995-06-01
The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)
Therapeutic cloning in the mouse
Mombaerts, Peter
2003-01-01
Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262
Quantum copying and simplification of the quantum Fourier transform
Niu, Chi-Sheng
Theoretical studies of quantum computation and quantum information theory are presented in this thesis. Three topics are considered: simplification of the quantum Fourier transform in Shor's algorithm, optimal eavesdropping in the BB84 quantum cryptographic protocol, and quantum copying of one qubit. The quantum Fourier transform preceding the final measurement in Shor's algorithm is simplified by replacing a network of quantum gates with one that has fewer and simpler gates controlled by classical signals. This simplification results from an analysis of the network using the consistent history approach to quantum mechanics. The optimal amount of information which an eavesdropper can gain, for a given level of noise in the communication channel, is worked out for the BB84 quantum cryptographic protocol. The optimal eavesdropping strategy is expressed in terms of various quantum networks. A consistent history analysis of these networks using two conjugate quantum bases shows how the information gain in one basis influences the noise level in the conjugate basis. The no-cloning property of quantum systems, which is the physics behind quantum cryptography, is studied by considering copying machines that generate two imperfect copies of one qubit. The best qualities these copies can have are worked out with the help of the Bloch sphere representation for one qubit, and a quantum network is worked out for an optimal copying machine. If the copying machine does not have additional ancillary qubits, the copying process can be viewed using a 2-dimensional subspace in a product space of two qubits. A special representation of such a two-dimensional subspace makes possible a complete characterization of this type of copying. This characterization in turn leads to simplified eavesdropping strategies in the BB84 and the B92 quantum cryptographic protocols.
Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.
French, Andrew J; Wood, Samuel H; Trounson, Alan O
2006-01-01
Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.
Quantum market games: implementing tactics via measurements
International Nuclear Information System (INIS)
Pakula, I; Piotrowski, E W; Sladkowski, J
2006-01-01
A major development in applying quantum mechanical formalism to various fields has been made during the last few years. Quantum counterparts of Game Theory, Economy, as well as diverse approaches to Quantum Information Theory have been found and currently are being explored. Using connections between Quantum Game Theory and Quantum Computations, an application of the universality of a measurement based computation in Quantum Market Theory is presented
Cloning, chromosome localization and features of a novel human ...
Indian Academy of Sciences (India)
We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain ... State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China ...
Tampering detection system using quantum-mechanical systems
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Tampering detection system using quantum-mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Human Cloning: Let's Discuss It.
Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.
1999-01-01
Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)
Human cloning and 'posthuman' society.
Blackford, Russell
2005-01-01
Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.
Bilodeau, Kirsten
1997-01-01
Describes an activity used at the Washington Park Arboretum that helps students understand cloning through plant propagation. Students also learn how to make a pot from recycled newspapers and how to make soil that is appropriate for the plants. (DDR)
Animal Cloning and Food Safety
... Products For Consumers Home For Consumers Consumer Updates Animal Cloning and Food Safety Share Tweet Linkedin Pin ... safe to eat as food from conventionally bred animals. This conclusion stems from an extensive study of ...
Aggregating quantum repeaters for the quantum internet
Azuma, Koji; Kato, Go
2017-09-01
The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.
Islamic perspectives on human cloning.
Sadeghi, Mahmoud
2007-01-01
The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.
Artificial cloning of domestic animals.
Keefer, Carol L
2015-07-21
Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.
Structured Review of Code Clone Literature
Hordijk, W.T.B.; Ponisio, Laura; Wieringa, Roelf J.
2008-01-01
This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings
Hanson, R.S.; Allen, L.N.
1989-04-25
A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
International Nuclear Information System (INIS)
Robinett, R.W.
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems
Thermo-mechanical challenges for quantum devices
Gielen, A.W.J.; McKenzie, F.V.
2014-01-01
In the last few years Technical University of Delft, under leadership of Prof.dr.ir. Leo Kouwenhoven, has developed several successful concepts for quantum devices that are suitable for quantum computing and quantum communication. From a quantum research point of view we are still in a very
Quantum evolution across singularities
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg
2008-01-01
Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Directory of Open Access Journals (Sweden)
E.E. Udo
2014-07-01
Full Text Available The objective of this study was to determine the prevalence and distribution of methicillin-resistant Staphylococcus aureus (MRSA genotypes circulating at a tertiary hospital in the Sultanate of Oman. A total of 79 MRSA isolates were obtained from different clinical samples and investigated using antibiogram, pulsed-field gel electrophoresis (PFGE, staphylococcal chromosome cassette mec (SCCmec, Spa typing and multilocus sequence typing (MLST. The isolates were susceptible to linezolid, vancomycin, teicoplanin, tigecycline and mupirocin but were resistant to tetracycline (30.4%, erythromycin (26.6%, clindamycin (24.1%, trimethoprim (19.0%, ciprofloxacin (17.7%, fusidic acid (15.2% and gentamicin (12.7%. Molecular typing revealed 19 PFGE patterns, 26 Spa types and 21 sequence types. SCCmec-IV (86.0% was the dominant SCCmec type, followed by SCCmec-V (10.1%. SCCmec-III (2.5% and SCCmec-II (1.3% were less common. ST6-IV/t304 (n = 30 and ST1295-IV/t690 (n = 12 were the dominant genotypes followed by ST772-V/t657 (n = 5, ST30-IV/t019/t021 (n = 5, ST22-IV/t852 (n = 4, ST80-IV/t044 (n = 3 and 18 single genotypes that were isolated sporadically. On the basis of SCCmec typing and MLST, 91.2% of the isolates were classified as community-associated MRSA and 8.8% of the isolates (consisting of four ST22-IV/t852, one ST239-III/t632, one ST5-III/t311 and one ST5-II/t003 were classified as healthcare-associated MRSA. The study has revealed the dominance of a Panton–Valentine leucocidin-negative ST6-IV/t304 clone and provided insights into the distribution of antibiotic resistance in MRSA at the tertiary hospital in Oman. It also highlights the importance of surveillance in detecting the emergence of new MRSA clones in a healthcare facility.
BRICS and Quantum Information Processing
DEFF Research Database (Denmark)
Schmidt, Erik Meineche
1998-01-01
BRICS is a research centre and international PhD school in theoretical computer science, based at the University of Aarhus, Denmark. The centre has recently become engaged in quantum information processing in cooperation with the Department of Physics, also University of Aarhus. This extended...... abstract surveys activities at BRICS with special emphasis on the activities in quantum information processing....
Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities
International Nuclear Information System (INIS)
Zhang, Wen; Rui, Pinshu; Zhang, Ziyun; Yang, Qun
2014-01-01
By using quantum nondemolition detectors (QNDs) based on weak cross-Kerr nonlinearities, we propose an experimental scheme for achieving 1→2 probabilistic quantum cloning (PQC) of a single-photon state, secretly choosing from a two-state set. In our scheme, after a QND is performed on the to-be-cloned photon and the assistant photon, a single-photon projection measurement is performed by a polarization beam splitter (PBS) and two single-photon trigger detectors (SPTDs). The measurement is to judge whether the PQC should be continued. If the cloning fails, a cutoff is carried out and some operations are omitted. This makes our scheme economical. If the PQC is continued according to the measurement result, two more QNDs and some unitary operations are performed on the to-be-cloned photon and the cloning photon to achieve the PQC in a nearly deterministic way. Our experimental scheme for PQC is feasible for future technology. Furthermore, the quantum logic network of our PQC scheme is presented. In comparison with similar networks, our PQC network is simpler and more economical. (paper)
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.
Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P
2015-01-01
Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Flowering and the Pollen Fertility in Iranian Garlic Clones
Directory of Open Access Journals (Sweden)
A. R. Abbasifar
2015-06-01
Full Text Available Garlic (Allium sativum L. cannot produce seed because it is a sterile plant. For studying bolting and determination of pollen fertility, 68 Iranian garlic clones were gathered from different parts of Iran and evaluated in Research Field of Horticultural Department, Faculty of Agriculture, Bu-Ali Sina University in 2010-2011 and 2011-2012. For determining the pollen fertility, some tests including specific RAPD marker, pollen germination, pollen viability detection using acetocarmine and in vitro culture of ovules and fruits were used. Results showed that 37 of Iranian garlic clones could produce scape and inflorescence. The percentage range of pollen stained with acetocarmine was from 0.5 up to 20 percent showing infertility of pollens. Lack of two markers (OPJ121300 and OPJ121700 and pollen tube growth proved the infertility of garlic clones pollen. Fruits and embryo sac were alive for more than two months, showing their potential for producing seeds following pollination with fertile pollens.
From quantum cosmology to quantum gravity
International Nuclear Information System (INIS)
Englert, F.
1983-01-01
A theory is proposed which solves the problem of the acausal character of the hot big bang cosmology in general relativity. The initial thermal state is stabilized by constructing a semi-classical solution to the coupled graviation and matter system with zero cosmological constant. This solution is an expanding deSitter in which black holes are created by a quantum process out of the expansion energy. It is argued that the initial nucleation process originates from a quantum metric fluctuation. Universe-like configurations must be added over the path integral metrics. This stabilizes the path integral and saturates it with a ''foam of universes'' where the nonrenormalizability of gravity can be seen as the manifestation of long range interactions within a universe. This description introduces indeterminacy into quantum field theory and suggests that 4-D space-time should be explained by new concepts
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Collapse of simple harmonic universe
International Nuclear Information System (INIS)
Mithani, Audrey T.; Vilenkin, Alexander
2012-01-01
In a recent paper Graham et al constructed oscillating and static universe models which are stable with respect to all classical perturbations. Here we show that such universes are quantum-mechanically unstable and can collapse by quantum tunneling to zero radius. We also present instantons describing nucleation of oscillating and static universes from nothing
Julesz, Máté
2015-03-01
Reproductive human cloning is prohibited in Hungary, as in many other countries. Therapeutic human cloning is not prohibited, just like in many other countries. Stem cell therapy is also allowed. Article III, paragraph (3) of the Hungarian basic law (constitution) strictly forbids total human cloning. Article 1 of the Additional Protocol to the Oviedo Convention, on the Prohibition of Cloning Human Beings (1998) stipulates that any intervention seeking to create a human being genetically identical to another human being, whether living or dead, is prohibited. In Hungary, according to Article 174 of the Criminal Code, total human cloning constitutes a crime. Article 180, paragraph (3) of the Hungarian Act on Health declares that embryos shall not be brought about for research purposes; research shall be conducted only on embryos brought about for reproductive purposes when this is authorized by the persons entitled to decide upon its disposal, or when the embryo is damaged. Article 180, paragraph (5) of the Hungarian Act on Health stipulates that multiple individuals who genetically conform to one another shall not be brought about. According to Article 181, paragraph (1) of the Hungarian Act on Health, an embryo used for research shall be kept alive for not longer than 14 days, not counting the time it was frozen for storage and the time period of research.
[Mystery and problems of cloning].
Nikitin, V A
2010-01-01
The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Brassington, Iain; Oultram, Stuart
2011-03-01
In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.
Experimental investigation of practical unforgeable quantum money
Bozzio, Mathieu; Orieux, Adeline; Trigo Vidarte, Luis; Zaquine, Isabelle; Kerenidis, Iordanis; Diamanti, Eleni
2018-01-01
Wiesner's unforgeable quantum money scheme is widely celebrated as the first quantum information application. Based on the no-cloning property of quantum mechanics, this scheme allows for the creation of credit cards used in authenticated transactions offering security guarantees impossible to achieve by classical means. However, despite its central role in quantum cryptography, its experimental implementation has remained elusive because of the lack of quantum memories and of practical verification techniques. Here, we experimentally implement a quantum money protocol relying on classical verification that rigorously satisfies the security condition for unforgeability. Our system exploits polarization encoding of weak coherent states of light and operates under conditions that ensure compatibility with state-of-the-art quantum memories. We derive working regimes for our system using a security analysis taking into account all practical imperfections. Our results constitute a major step towards a real-world realization of this milestone protocol.
Trade-off coding for universal qudit cloners motivated by the Unruh effect
International Nuclear Information System (INIS)
Jochym-O'Connor, Tomas; Bradler, Kamil; Wilde, Mark M
2011-01-01
A 'triple trade-off' capacity region of a noisy quantum channel provides a more complete description of its capabilities than does a single capacity formula. However, few full descriptions of a channel's ability have been given due to the difficult nature of the calculation of such regions-it may demand an optimization of information-theoretic quantities over an infinite number of channel uses. This work analyses the d-dimensional Unruh channel, a noisy quantum channel which emerges in relativistic quantum information theory. We show that this channel belongs to the class of quantum channels whose capacity region requires an optimization over a single channel use, and as such is tractable. We determine two triple-trade off regions, the quantum dynamic capacity region and the private dynamic capacity region, of the d-dimensional Unruh channel. Our results show that the set of achievable rate triples using this coding strategy is larger than the set achieved using a time-sharing strategy. Furthermore, we prove that the Unruh channel has a distinct structure made up of universal qudit cloning channels, thus providing a clear relationship between this relativistic channel and the process of stimulated emission present in quantum optical amplifiers. (paper)
Trade-off coding for universal qudit cloners motivated by the Unruh effect
Energy Technology Data Exchange (ETDEWEB)
Jochym-O' Connor, Tomas [Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2 L 3G1 (Canada); Bradler, Kamil; Wilde, Mark M, E-mail: trjochym@uwaterloo.ca [School of Computer Science, McGill University, Montreal, Quebec H3A 2A7 (Canada)
2011-10-14
A 'triple trade-off' capacity region of a noisy quantum channel provides a more complete description of its capabilities than does a single capacity formula. However, few full descriptions of a channel's ability have been given due to the difficult nature of the calculation of such regions-it may demand an optimization of information-theoretic quantities over an infinite number of channel uses. This work analyses the d-dimensional Unruh channel, a noisy quantum channel which emerges in relativistic quantum information theory. We show that this channel belongs to the class of quantum channels whose capacity region requires an optimization over a single channel use, and as such is tractable. We determine two triple-trade off regions, the quantum dynamic capacity region and the private dynamic capacity region, of the d-dimensional Unruh channel. Our results show that the set of achievable rate triples using this coding strategy is larger than the set achieved using a time-sharing strategy. Furthermore, we prove that the Unruh channel has a distinct structure made up of universal qudit cloning channels, thus providing a clear relationship between this relativistic channel and the process of stimulated emission present in quantum optical amplifiers. (paper)
Comportamiento productivo de clones de café robusta (Coffea Canephora p en Manglaralto, Ecuador.
Directory of Open Access Journals (Sweden)
Mercedes Arzube Mayorga
2017-05-01
Abstract The research was carried out in the experimental farm Manglaralto, owned by the Peninsula State University of Santa Elena, located at the coordinates UTM 528944m E and 9796468m S zone 17M datum WGS-84 at 12 msnm, with topography of less than 1%, research (Coffea canephora P., high productivity in the agroecological conditions of Manglaralto Ecuador. For the establishment of the trial, 23 clones of robust coffee, selected by COFENAC in the Amazon region of northern Ecuador, were used. The clones were arranged randomly, each clone is an experimental unit represented by 20 plants, planted at a distance of 3 x 3 meters. Preliminary results were submitted to the descriptive statistics analysis, determining measures of central tendency and mean arithmetic dispersion, standard deviation, coefficient of variation, between clones and within the clones. However, in the fourth year, clones 1, 4, 5, 6, 14, 15, 16 and 18 stand out as promising in production. The productive behavior is very encouraging considering that clone 1 obtained production of 61 quintals and the clone 15 reached 39.3 quintals of gold coffee per hectare, the other clones enunciated obtain average production of 42 quintals.
Public perceptions of animal cloning
DEFF Research Database (Denmark)
Jelsøe, Erling; Vincentsen, Ulla; Andersen, Ida-Elisabeth
What was from the outset meant to be a survey testing predefined categories of ethical positions related to new biotechnologies with animal cloning as an example was subsequently developed into a process of broader involvement of groups of citizens in the issue. The survey was conducted at meetings...... in four different cities in Denmark. The participants were introduced to animal cloning and after that they filled out the questionnaire. Finally, the issue was discussed in focus groups. The process as a whole was run in a dialogue oriented way. Through the information they received in combination...... with reflecting on the survey questions the participants were well prepared for discussions in the focus groups. This approach made it possible, on the one hand to get a measure of the citizen's perceptions of the ethical aspects of animal cloning, but also to go deeper into their own thoughts of the issue...
Quantum jumps are more quantum than quantum diffusion
International Nuclear Information System (INIS)
Daryanoosh, Shakib; M Wiseman, Howard
2014-01-01
It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)
Towards topological quantum computer
Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.
2018-01-01
Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.
Towards topological quantum computer
Directory of Open Access Journals (Sweden)
D. Melnikov
2018-01-01
Full Text Available Quantum R-matrices, the entangling deformations of non-entangling (classical permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern–Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
DEFF Research Database (Denmark)
Fabre, Mathew Malcolm Jessop; Jakociunas, Tadas; Stovicek, Vratislav
2016-01-01
Clone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained...
Clone Poems and the Microcomputer.
Irizarry, Estelle
1989-01-01
Describes how students can use the computer to study and create clone poems (altering original Spanish-language poems by substituting words and expressions), and how students can gain a deeper appreciation of the original poem's poetic structure and semantics. (CB)
Trade-off capacities of the quantum Hadamard channels
International Nuclear Information System (INIS)
Bradler, Kamil; Hayden, Patrick; Touchette, Dave; Wilde, Mark M.
2010-01-01
Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.
Human reproductive cloning: a conflict of liberties.
Havstad, Joyce C
2010-02-01
Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.
RESEARCH ARTICLE Molecular cloning and functional ...
Indian Academy of Sciences (India)
Navya
2016-11-25
Nov 25, 2016 ... Molecular cloning and functional characterization of two novel ... Currently, many variants of HMW-GSs have been cloned from bread wheat .... SDS sedimentation tests were conducted using the methods described by Gao et ...
Quantum Kolmogorov complexity and the quantum Turing machine
Energy Technology Data Exchange (ETDEWEB)
Mueller, M.
2007-08-31
The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to A. Berthiaume et al. (2001), defining the complexity of a quantum bit (qubit) string as the length of the shortest quantum input for a universal quantum computer that outputs the desired string. Except for slight modifications, it is this definition of quantum Kolmogorov complexity that we study in this thesis. We start by analyzing certain aspects of the underlying quantum Turing machine (QTM) model in a more detailed formal rigour than was done previously. Afterwards, we apply these results to quantum Kolmogorov complexity. Our first result is a proof of the existence of a universal QTM which simulates every other QTM for an arbitrary number of time steps and than halts with probability one. In addition, we show that every input that makes a QTM almost halt can be modified to make the universal QTM halt entirely, by adding at most a constant number of qubits. It follows that quantum Kolmogorov complexity has the invariance property, i.e. it depends on the choice of the universal QTM only up to an additive constant. Moreover, the quantum complexity of classical strings agrees with classical complexity, again up to an additive constant. The proofs are based on several analytic estimates. Furthermore, we prove several incompressibility theorems for quantum Kolmogorov complexity. Finally, we show that for ergodic quantum information sources, complexity rate and entropy rate coincide with probability one. The thesis is finished with an outlook on a possible application of quantum Kolmogorov complexity in statistical mechanics. (orig.)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
External conference: Geneva University
2006-01-01
ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél : 022 379 62 73 - Fax: 022 379 69 92 Monday 12 June 2006 PARTICLE PHYSICS COLLOQUIUM at 17:00 - Stückelberg Auditorium Quantum computers - dream and realization Prof. R. Blatt / University of Innsbruck, Austria Computational operations always rely on real physical processes, which are data input, data representation in a memory, data manipulation using algorithms and finally, the data output. With conventional computers all the processes are classical processes and can be described accordingly. Theoretically, it is known for several years now that certain computations could be processed much more efficiently using quantum mechanical operations. This requires the implementation of quantum bits (qubits), quantum registers and quantum gates and the development of quantum algorithms. Several approaches for the implementation of quantum computers will be presented, with special emphasis o...
Quantum networks based on cavity QED
Energy Technology Data Exchange (ETDEWEB)
Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)
2014-07-01
Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
A single-copy galK promoter cloning vector suitable for cloning strong promoters
DEFF Research Database (Denmark)
Dandanell, Gert; Court, Donald L.; Hammer, Karin
1986-01-01
We report the construction of lambda galK promoter cloning vectors for cloning and characterization of strong promoters. This phage, which contains a unique HindIII cloning site, was applied to the cloning and analysis of transcription initiations of the regulatory region of the deo-operon of...
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Intrinsic Time Quantum Geometrodynamics
Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-01-01
Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...
Unconventional Quantum Critical Points
Xu, Cenke
2012-01-01
In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...
Nomura, Yasunori
2012-01-01
We consider the multiverse in the intrinsically quantum mechanical framework recently proposed in Refs. [1,2]. By requiring that the principles of quantum mechanics are universally valid and that physical predictions do not depend on the reference frame one chooses to describe the multiverse, we find that the multiverse state must be static---in particular, the multiverse does not have a beginning or end. We argue that, despite its naive appearance, this does not contradict observation, inclu...
International Nuclear Information System (INIS)
Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng
2016-01-01
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples
Energy Technology Data Exchange (ETDEWEB)
Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)
2016-01-28
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Arfken, George
1984-01-01
University Physics provides an authoritative treatment of physics. This book discusses the linear motion with constant acceleration; addition and subtraction of vectors; uniform circular motion and simple harmonic motion; and electrostatic energy of a charged capacitor. The behavior of materials in a non-uniform magnetic field; application of Kirchhoff's junction rule; Lorentz transformations; and Bernoulli's equation are also deliberated. This text likewise covers the speed of electromagnetic waves; origins of quantum physics; neutron activation analysis; and interference of light. This publi
International Nuclear Information System (INIS)
Lloyd, Seth; Viola, Lorenza
2002-01-01
The ability to perform measurements on a quantum system, combined with the ability to feed back the measurement results via coherent control, allows one to control the system to follow any desired coherent or incoherent quantum dynamics. Such universal dynamical control can be achieved, in principle, through the repeated application of only two coherent control operations and a simple 'Yes-No' measurement. As a consequence, a quantum computer can simulate an arbitrary open-system dynamics using just one qubit more than required to simulate closed-system dynamics
Aerts, Sven; Ronde, Christian de; Probing the Meaning of Quantum Mechanics : Physical, Philosophical, and Logical Perspectives
2014-01-01
This book provides a new original perspective on one of the most fascinating and important open questions in science: What is quantum mechanics talking about? Quantum theory is perhaps our best confirmed physical theory. However, in spite of its great empirical effectiveness and the subsequent technological developments that it gave rise to in the 20th century, from the interpretation of the periodic table of elements to CD players, holograms and quantum state teleportation, it stands even today without a universally accepted interpretation. The novelty of the book comes from the multiple view
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
An accurate clone-based haplotyping method by overlapping pool sequencing.
Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao
2016-07-08
Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
International Nuclear Information System (INIS)
Strominger, A.
1988-01-01
This paper discusses how the subject of baby universes and their effects on spacetime coupling constants is in its infancy and rapidly developing. The subject is based on the non-existent (even by physicists' standards) Euclidean formulation of quantum gravity, and it is therefore necessary to make a number of assumptions in order to proceed. Nevertheless, the picture which has emerged is quite appealing: all spacetime coupling constants become dynamical variables when the effects of baby universes are taken into account. This fact might even solve the puzzle of the cosmological constant. The subject therefore seems worth further investigation
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
DNA cloning: a practical approach. Volume 1
Energy Technology Data Exchange (ETDEWEB)
Glover, D M [ed.
1985-01-01
This book is written for the advanced molecular biologist who needs a detailed discussion of cloning technology. Topics of discussion include: genomic library cloning (size of a genomic library, screening methods, chromosome walking, host cell genetics, and general features of bacteriophage Iambda); use of gt10 and gt11 cDNA lambda vectors and general cDNA cloning; RNase H-Pol I cDNA synthesis; method of detecting fusion proteins produced in bacteria; pEMBL family of double-stranded plasmid vectors that can be used to generate single strands; Escherichia coli transformation; production of mutations in cloned sequences; and cloning in gram negative bacteria.
Therapeutic and reproductive cloning: a critique.
Bowring, Finn
2004-01-01
This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.
International Nuclear Information System (INIS)
Gross, D.; Eisert, J.
2010-01-01
We discuss the notion of quantum computational webs: These are quantum states universal for measurement-based computation, which can be built up from a collection of simple primitives. The primitive elements--reminiscent of building blocks in a construction kit--are (i) one-dimensional states (computational quantum wires) with the power to process one logical qubit and (ii) suitable couplings, which connect the wires to a computationally universal web. All elements are preparable by nearest-neighbor interactions in a single pass, of the kind accessible in a number of physical architectures. We provide a complete classification of qubit wires, a physically well-motivated class of universal resources that can be fully understood. Finally, we sketch possible realizations in superlattices and explore the power of coupling mechanisms based on Ising or exchange interactions.
Clone DB: an integrated NCBI resource for clone-associated data
Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.
2013-01-01
The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260
Cloning Expeditions: Risky but Rewarding
2013-01-01
In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Quantum transitions through cosmological singularities
International Nuclear Information System (INIS)
Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas; Vreys, Yannick
2017-01-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
A textbook of quantum mechanics
International Nuclear Information System (INIS)
Mathews, P.M.; Venkatesan, K.
1977-01-01
After briefly surveying the inadequacy of the classical ideas and elementary older quantum theory, the ideas of wave mechanics, the postulates of quantum mechanics, exactly soluble problems, approximation techniques, scattering theory, angular momentum, time dependent problems and the basic ideas of relativistic quantum mechanics are discussed. The book is meant for the Master of Science degree course students of Indian Universities. (M.G.B.)
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Basic logic and quantum entanglement
International Nuclear Information System (INIS)
Zizzi, P A
2007-01-01
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing
Basic logic and quantum entanglement
Energy Technology Data Exchange (ETDEWEB)
Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)
2007-05-15
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.