WorldWideScience

Sample records for universal flow-driven conical

  1. Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2004-01-01

    Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.

  2. Influence of Test Section Geometry on the Blast Environment in an Explosively Driven Conical Shock Tube

    Science.gov (United States)

    2018-03-30

    ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...TITLE AND SUBTITLE    5a. CONTRACT NUMBER  5b. GRANT NUMBER  5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S)    5d.  PROJECT  NUMBER  5e. TASK NUMBER  5f

  3. Watching Electrons at Conical Intersections and Funnels

    Science.gov (United States)

    Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.

    2009-06-01

    The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.

  4. Conical flow near singular rays. [shock generation in ideal gas

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  5. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  6. Numerical analysis for the flow field past a two-staged conical orifice

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Kim, You Gon

    2001-01-01

    The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron and Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2x10 4 . The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (θ) against the wall, the interval(L) between orifices, the relative angle of rotation(α) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hold affected the pressure drop and the flow field a lot. But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed

  7. Flow structures in large-angle conical diffusers measured by PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Nielsen, L.; Nielsen, N.F.

    2004-01-01

    Flow in two different conical diffusers with large opening angles (30° and 18°) have been measured with stereoscopic Particle Image Velocimetry (PIV). The measurements were done in a cross section just after the exit of the diffuser. The Reynolds number was 100000 based on upstream diameter...

  8. Vortex breakdown in a truncated conical bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Adnan; Brøns, Morten [DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Herrada, Miguel A [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n, E-41092 (Spain); Shtern, Vladimir N, E-mail: mobr@dtu.dk [Shtern Research and Consulting, Houston, TX 77096 (United States)

    2015-12-15

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H{sub w}, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H{sub w} varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H{sub w}, the AMF effect dominates. As H{sub w} increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  9. Vortex breakdown in a truncated conical bioreactor

    International Nuclear Information System (INIS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A; Shtern, Vladimir N

    2015-01-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H w , and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H w varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H w , the AMF effect dominates. As H w increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  10. Analysis of the Numerical Modelling of Turbulence in the Conical Reverse-Flow Cyclone

    Directory of Open Access Journals (Sweden)

    Inga Jakštonienė

    2011-02-01

    Full Text Available The paper describes the numerical modelling of the swirling fluid flow in the Stairmand cyclone (conical reverse-flow – CRF with tangential inlet (equipment for separating solid particles from the gaseous fluid flow. A review of experimental and theoretical papers is conducted introducing three-dimen­sional differential equations for transfer processes. The numerical modelling of the Stairmand cyclone the height of which is 0.75 m, diameter – 0.17 m, the height of a cylindrical part – 0.290 m, a conical part – 0,39 m and an inlet area is 0,085×0,032 m is presented. When governing three-dimensional fluid flow, transfer equations Navje-Stokes and Reynolds are solved using the finite volume method in a body-fitted co-ordinate system using standard k– e and RNG k– e model of turbulence. Modelling is realised for inlet velocity 4.64, 9.0 and 14.8 m/s (flow rate was 0.0112, 0.0245 and 0.0388 m3/s. The results obtained from the numerical tests have demonstrated that the RNG k– e model of turbulence yields a reasonably good prediction for highly swirling flows in cyclones: the presented numerical results (tangential and radial velocity profiles are compared with numerical and experimental data obtained by other authors. The mean relative error of ± 7,5% is found. Keywords: cyclone, solid particles, numerical modelling, turbulence, one-phase flow.DOI: 10.3846/mla.2010.085

  11. Noise characteristics and flow field of an impinging jet on a conical obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Xie, Junlong; Shu, Shuiming; Zhang, Yi, E-mail: hustxjl@163.com [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-12-15

    The noise characteristics and flow field of a low-speed impinging jet on a conical obstacle have been numerically simulated using the kinetic energy transport subgrid-scale model of the large-eddy simulation method. Noise measurement is carried out to validate the proposed simulation method. The effects of the impinging distance on the development, separation and diffusion of vortices on the back of the conical obstacle are investigated. The jet structure is better preserved and the vorticity value becomes larger as the impinging distance increases. Simulation results of the noise spectrums and overall sound pressure level (OASPL) agree well with the experimental data. The noise spectrums are analyzed and combined with simulation results for the flow field. When the impinging distance is small, the main acoustic sources with the broadband characteristic consist of the dipole source produced by pressure fluctuation on the surface of the obstacle, and the quadrupole source produced by vortices. As the impinging distance increases, the quadrupole source becomes the major acoustic source with low-frequency characteristics. In addition, the OASPL of the impinging jet is obtained at different impinging distances. (paper)

  12. Analysis of turbulent conical diffuser flow using second moment closures

    International Nuclear Information System (INIS)

    Adane, K.K.; Tachie, M.F.; Ormiston, S.J.

    2004-01-01

    A commercial CFD code, CFX-TASCflow, is used to predict a turbulent conical diffuser flow. The computation was performed using a low-Reynolds number k-ω model, a low-Reynolds number k-ω based non-linear algebraic Reynolds stress model, and a second moment closure with a wall-function. The experimental data of Kassab are used to validate the numerical results. The results show that all the turbulence models reproduce the static pressure coefficient distribution reasonably well. The low Reynolds number k-ω models give better prediction of the friction velocity than the second moment closure. The models also predict the Reynolds shear stress reasonably well but fail to reproduce the correct level of the turbulent kinetic energy. (author)

  13. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  14. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators

    Science.gov (United States)

    Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun

    2018-02-01

    Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.

  15. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.

    2016-01-01

    of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some

  16. Ultrafast X-Ray Spectroscopy of Conical Intersections

    Science.gov (United States)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  17. Numerical optimization of conical flow waveriders including detailed viscous effects

    Science.gov (United States)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  18. Pressure Driven Poiseuille Flow

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, D. Rhodri

    2018-01-01

    The Pacific plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians–Japan, Marianas–Izu–Bonin and Tonga–Kermadec trenches. This implies that viscous flow within the sub–Pacific asthenosphere is mainly generated by overlying plate motion (i.e. Couette flow...

  19. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  20. Conical wavefronts in optics and tomography

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1990-01-01

    A wide range of techniques in which the information is transferred by conical (nonspherical and nonplanar) wave fronts is considered. This is the first summary of papers published in the field of mesooptics and optical tomography. After the introduction into the new branch of modern optics - mesooptics -the properties of conical wavefronts are treated in detail. Some possible applications of mesooptics in science and technology are considered. The long history of mesooptics treated in the last chapter of this review lecture goes from the early stage of our Universe, gravitational lens, first publications in the last century and up-to-date innovations in optics, mesooptics and optical tomography. 3 refs

  1. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    Science.gov (United States)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

  2. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    Science.gov (United States)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  3. Spectral and spatial characteristics of third-harmonic generation in conical light beams

    International Nuclear Information System (INIS)

    Peet, V.E.; Shchemeljov, S.V.

    2003-01-01

    Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed

  4. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  5. Heat transfer behaviors in round tube with conical ring inserts

    International Nuclear Information System (INIS)

    Promvonge, P.

    2008-01-01

    To increase convection heat transfer in a uniform heat flux tube by a passive method, several conical rings used as turbulators are mounted over the test tube. The effects of the conical ring turbulator inserts on the heat transfer rate and friction factor are experimentally investigated in the present work. Conical rings with three different diameter ratios of the ring to tube diameter (d/D = 0.5, 0.6, 0.7) are introduced in the tests, and for each ratio, the rings are placed with three different arrangements (converging conical ring, referred to as CR array, diverging conical ring, DR array and converging-diverging conical ring, CDR array). In the experiment, cold air at ambient condition for Reynolds numbers in a range of 6000-26,000 is passed through the uniform heat flux circular tube. It is found that the ring to tube diameter ratio and the ring arrays provide a significant effect on the thermal performance of the test tube. The experimental results demonstrate that the use of conical ring inserts leads to a higher heat transfer rate than that of the plain surface tube, and the DR array yields a better heat transfer than the others. The results are also correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and diameter ratio. An augmentation of up to 197%, 333%, and 237% in Nusselt number is obtained in the turbulent flow for the CR, DR and CDR arrays, respectively, although the effect of using the conical ring causes a substantial increase in friction factor

  6. Interaction of a conical shock wave with a turbulent boundary layer

    Science.gov (United States)

    Teh, S. L.; Gai, S. L.

    The paper reports an investigation on the interaction of an incident conical shock wave with a turbulent boundary layer. Although a conical shock theoretically creates a hyperbolic shock trace on the flat plate, the line joining all the experimental interaction origins takes a different form due to varying upstream influence. The existence of strong pressure gradients in the spanwise direction after the shock leads to the boundary-layer twist. A model based on the upstream influence of the shock when combined with McCabe's secondary-flow theory showed separation to occur at an external flow deflection of 11.8 deg. The oil flow measurements however show this to occur at 9.2 deg. This discrepancy is of the same order as that found by McCabe. Detailed data involving Schlieren and shadowgraph photography, surface-flow visualization, and surface-pressure measurements are presented.

  7. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    2016-01-01

    The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...

  8. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  9. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  10. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  11. Soft Computing Technique and Conventional Controller for Conical Tank Level Control

    Directory of Open Access Journals (Sweden)

    Sudharsana Vijayan

    2016-03-01

    Full Text Available In many process industries the control of liquid level is mandatory. But the control of nonlinear process is difficult. Many process industries use conical tanks because of its non linear shape contributes better drainage for solid mixtures, slurries and viscous liquids. So, control of conical tank level is a challenging task due to its non-linearity and continually varying cross-section. This is due to relationship between controlled variable level and manipulated variable flow rate, which has a square root relationship. The main objective is to execute the suitable controller for conical tank system to maintain the desired level. System identification of the non-linear process is done using black box modelling and found to be first order plus dead time (FOPDT model. In this paper it is proposed to obtain the mathematical modelling of a conical tank system and to study the system using block diagram after that soft computing technique like fuzzy and conventional controller is also used for the comparison.

  12. I’m Discovering Conics and Designing Buildings with Conics

    Directory of Open Access Journals (Sweden)

    Serkan KULOGLU

    2015-01-01

    Full Text Available There are three stages in this activity. At the first stage, it is provided that gifted students learn the subject of conic through discovery learning method. By this way, the formation of misconceptions that students frequently encounter in mathematics has been prevented. At the second stage, gifted students have been asked to draw the conical objects which they encounter in their daily life. Thus, it has contributed to the development of gifted students’ creativity. At the third stage, gifted students have been asked to design a buildings consisting of conics. Moreover, gifted students have been informed that the buildings which they have been asked to design, would be evaluated according to the criteria which set before. And then, the building design model has been done by gifted students.

  13. The Arizona Universities Library Consortium patron-driven e-book model

    Directory of Open Access Journals (Sweden)

    Jeanne Richardson

    2013-03-01

    Full Text Available Building on Arizona State University's patron-driven acquisitions (PDA initiative in 2009, the Arizona Universities Library Consortium, in partnership with the Ingram Content Group, created a cooperative patron-driven model to acquire electronic books (e-books. The model provides the opportunity for faculty and students at the universities governed by the Arizona Board of Regents (ABOR to access a core of e-books made accessible through resource discovery services and online catalogs. These books are available for significantly less than a single ABOR university would expend for the same materials. The patron-driven model described is one of many evolving models in digital scholarship, and, although the Arizona Universities Library Consortium reports a successful experience, patron-driven models pose questions to stakeholders in the academic publishing industry.

  14. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  15. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  16. Large-eddy simulation of shallow turbulent wakes behind a conical island

    Science.gov (United States)

    Ouro, Pablo; Wilson, Catherine A. M. E.; Evans, Paul; Angeloudis, Athanasios

    2017-12-01

    Large-Eddy Simulations (LESs) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow, and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6500 to 8125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding, and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding, and the upward flow region on the leeward face (once the cone's apex is submerged), similar flow structures to cylinder flow were observed. These include an arch vortex tilted in the downstream direction and von Karman vortices in the far-wake. Spectra of velocity time series and the drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer, and thus the shedding frequency decreased as the cone's apex became submerged. Finally, the generalised flow structures in the wake of a submerged conical body are outlined.

  17. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    Science.gov (United States)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  18. Universality Results for Multi-phase Hele-Shaw Flows

    Science.gov (United States)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  19. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  20. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  1. Understanding the Conics through Augmented Reality

    Science.gov (United States)

    Salinas, Patricia; Pulido, Ricardo

    2017-01-01

    This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…

  2. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  3. Direct Numerical Simulation of Driven Cavity Flows

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.

    Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been

  4. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    Science.gov (United States)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  5. Optimization of the Conical Angle Design in Conical Implant-Abutment Connections: A Pilot Study Based on the Finite Element Method.

    Science.gov (United States)

    Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun

    2018-02-01

    Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.

  6. The universe of conics from the ancient Greeks to 21st century developments

    CERN Document Server

    Glaeser, Georg; Odehnal, Boris

    2016-01-01

    This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises. Authors Hellmuth Stachel, born 1942, got his PhD and habilitation in geometry ...

  7. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  8. Parameter dependence of conic angle of nanofibres during electrospinning

    International Nuclear Information System (INIS)

    Zhou Zhengping; Wu Xiangfa; Jiang Long; Gao Xueqin; Zhao Yong; Fong Hao

    2011-01-01

    This paper reports the dependence of conic angle of nanofibres on the processing and material parameters during electrospinning. Solutions of polyacrylonitrile (PAN) in dimethylformamide (DMF) with varied PAN concentrations were studied as the model systems, and they were electrospun into nanofibres at different high direct current (dc) voltages, flow rates and needle diameters. The dynamic and transient shear viscosities of the PAN/DMF solutions were characterized by a parallel-plate rheometer at varied shear rates. Rheological measurements showed that the PAN/DMF solutions behaved as Newtonian fluids at relatively low to medium shear rates, while the solutions with high PAN concentrations of 18 and 20 wt% exhibited a significant shear-thinning behaviour at high shear rates, especially in the case of transient shear mode. Experimental results indicated that at the electrostatic field of ∼80 kV m -1 and needle inner diameter of 0.48 mm (22 gauge), the conic angle of the nanofibre envelope decreased from ∼160° to ∼75° with an increase in PAN concentration from 12 to 20 wt%; at the PAN concentration of 16 wt%, the conic angle increased nonlinearly from ∼40° to ∼160° with an increase in electric field from 50 to 140 kV m -1 . In addition, experimental results showed that the needle inner diameter also noticeably influenced the conic angle. This study provided the experimental evidence useful for understanding the scaling properties of electrohydrodynamic jet motion for controllable electrospinning and process modelling.

  9. Conical : An extended module for computing a numerically satisfactory pair of solutions of the differential equation for conical functions

    NARCIS (Netherlands)

    T.M. Dunster (Mark); A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2017-01-01

    textabstractConical functions appear in a large number of applications in physics and engineering. In this paper we describe an extension of our module Conical (Gil et al., 2012) for the computation of conical functions. Specifically, the module includes now a routine for computing the function

  10. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-08-01

    Full Text Available There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly and presence (gyrencephaly of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

  11. Conical Perspective Image of an Architectural Object Close to Human Perception

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the study is to develop a method of computer aided constructing conical perspective of an architectural object, which is close to human perception. The conical perspective considered in the paper is a central projection onto a projection surface being a conical rotary surface or a fragment of it. Whereas, the centre of projection is a stationary point or a point moving on a circular path. The graphical mapping results of the perspective representation is realized directly on an unrolled flat projection surface. The projective relation between a range of points on a line and the perspective image of the same range of points received on a cylindrical projection surface permitted to derive formulas for drawing perspective. Next, the analytical algorithms for drawing perspective image of a straight line passing through any two points were formulated. It enabled drawing a perspective wireframe image of a given 3D object. The use of the moving view point as well as the application of the changeable base elements of perspective as the variables in the algorithms enable drawing conical perspective from different viewing positions. Due to this fact, the perspective drawing method is universal. The algorithms are formulated and tested in Mathcad Professional software, but can be implemented in AutoCAD and majority of computer graphical packages, which makes drawing a perspective image more efficient and easier. The presented conical perspective representation, and the convenient method of its mapping directly on the flat unrolled surface can find application for numerous advertisement and art presentations.

  12. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  13. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  14. Universality in driven-dissipative quantum many-body systems

    International Nuclear Information System (INIS)

    Sieberer, L.M.

    2015-01-01

    Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel

  15. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    M. Wüest

    1996-06-01

    Full Text Available We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS on the Combined release and radiation effects satellite (CRRES together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+ simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT, and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.

  16. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  17. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  18. CONICAL EQUIPOTENTIAL SUBSTRATE FOR LIQUID METAL SOURCES

    OpenAIRE

    Kubby , J.; Siegel , B.

    1986-01-01

    Morphological changes that occur at an ion bombarded surface as a result of erosion by sputtering can be utilized for the machining of cylindrically symmetric submicron structures. Such structuring has produced tungsten field emitters of conical configuration with variable cone half angle. A conical equipotential surface with an included half angle of 49.3° would be a useful emitter substrate for experiments designed to produce an equilibrium conical interface to a conducting fluid in an appl...

  19. Intermittency and transition to chaos in the cubical lid-driven cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Loiseau, J-Ch [Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Robinet, J-Ch [Laboratoire DynFluid, Arts et Métiers ParisTech, F-75013 Paris (France); Leriche, E, E-mail: loiseau@mech.kth.se [Laboratoire de Mécanique de Lille, Université Lille 1, F-59655 Villeneuve d’Ascq (France)

    2016-12-15

    Transition from steady state to intermittent chaos in the cubical lid-driven cavity flow is investigated numerically. Fully three-dimensional stability analyses have revealed that the flow experiences an Andronov–Poincaré–Hopf bifurcation at a critical Reynolds number Re {sub c} = 1914. As for the 2D-periodic lid-driven cavity flows, the unstable mode originates from a centrifugal instability of the primary vortex core. A Reynolds–Orr analysis reveals that the unstable perturbation relies on a combination of the lift-up and anti lift-up mechanisms to extract its energy from the base flow. Once linearly unstable, direct numerical simulations show that the flow is driven toward a primary limit cycle before eventually exhibiting intermittent chaotic dynamics. Though only one eigenpair of the linearized Navier–Stokes operator is unstable, the dynamics during the intermittencies are surprisingly well characterized by one of the stable eigenpairs. (paper)

  20. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form

    International Nuclear Information System (INIS)

    Hashemian, Mehran; Jafarmadar, Samad; Nasiri, Javid; Sadighi Dizaji, Hamed

    2017-01-01

    Highlights: • An improved geometry is presented by changing tubes form into conical. • Enhancement of heat transfer rate is investigated. • Frictional characteristics for novel geometry are studied. • For a proper understanding of the subject, the exact physical interpretation is added. • The effect of flow, geometry and thermodynamic parameters is considered. - Abstract: In this paper, cylindrical tubes of a double pipe heat exchanger were changed into the conical tubes as an innovative design which causes improvement of thermal performance of heat exchanger without increment of its weight. Utilization of conical tube instead of cylindrical tube can impress both thermal and frictional characteristics of heat exchanger. Hence, the effect of conical tubes on Nusselt number, friction factor and thermal performance factor are evaluated in present research which was not covered already. Moreover, the effects of hydrodynamic, thermodynamic and geometrical characteristics are analyzed. All said parameters are numerically investigated for nine different combinations of flow direction and conical tubes geometry. The results of simulations of the said configurations are presented to compare the cases from different points of view and determine the most thermally efficient case. The results reveal modified geometry makes 63% increment in Nu number and 54% increment in heat transfer rate at optimum condition.

  1. Characterizing conical refraction optical tweezers

    Science.gov (United States)

    McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  2. Numerical Calculation for Whirling Motion of a Centrifugal Blood Pump with Conical Spiral Groove Bearings

    Science.gov (United States)

    Shigemaru, Daichi; Tsukamoto, Hiroshi

    2010-06-01

    Whirling motion of a pump impeller was calculated for the centrifugal blood pump with Conical Spiral Groove Bearings to get a criterion for the instability of impeller whirling motion. The motion of the centrifugal blood pump impeller was calculated based on a spring damping model, and unsteady flow in the pump was computed using the commercial CFD package ANSYS CFX. Also the whirling motion of rotating impeller was measured using two displacement sensors fixed to the blood pump casing. The numerical calculations were done for the blood pump impeller with conical spiral groove bearings, and impeller whirling motion was evaluated.

  3. The Role of Mobility and Employee-Driven Relations for University-Industry Collaboration on Innovation

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Drejer, Ina

    This paper analyzes the role of mobility and employee-driven relations for firms' collaboration on innovation with specific universities. It is argued that personal employee-driven relations and geographical proximity are important determinants for which universities firms decide to collaborate...... with. Therefore, hiring and mobility of employees can help explain why firms collaborate with specific universities or discontinue collaboration. It is argued that the university of graduation and the field of study of a firm's employees help explain why it collaborate with a specific university....... Furthermore, the paper also addresses the importance of developing relations and collaborative experience over time for university-industry collaboration by studying employee-driven relations and collaboration patterns for a large sample of firms over two consecutive Community Innovation Surveys covering...

  4. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    Science.gov (United States)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields

  5. Conical twist fields and null polygonal Wilson loops

    Science.gov (United States)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

    2018-06-01

    Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

  6. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  7. A Study of Current Driven Electrostatic Instability on the Auroral Zone

    Directory of Open Access Journals (Sweden)

    S. Y. Kim

    1986-12-01

    Full Text Available According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimenstional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.

  8. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  9. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  10. Path integration in conical space

    International Nuclear Information System (INIS)

    Inomata, Akira; Junker, Georg

    2012-01-01

    Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.

  11. Decomposition in conic optimization with partially separable structure

    DEFF Research Database (Denmark)

    Sun, Yifan; Andersen, Martin Skovgaard; Vandenberghe, Lieven

    2014-01-01

    Decomposition techniques for linear programming are difficult to extend to conic optimization problems with general nonpolyhedral convex cones because the conic inequalities introduce an additional nonlinear coupling between the variables. However in many applications the convex cones have...

  12. Micro Coriolis mass flow sensor driven by external piezo ceramic

    NARCIS (Netherlands)

    Zeng, Yaxiang; Groenesteijn, Jarno; Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    We have realized a micro Coriolis mass flow meter driven with an external piezo ceramic. The piezoelec tric ceramic is glued on top of sensor chip with a inertial weight on top of the piezo ceramic. Its ability to measure mass flow is characterized by a laser Doppler vibrometer. Our measurement with

  13. DE 1 and Viking observations associated with electron conical distributions

    Science.gov (United States)

    Menietti, J. D.; Weimer, D. R.; Andre, M.; Eliasson, L.

    1994-01-01

    Data from the electron detectors on board the Swedish Viking satellite launched during a period of low solar activity and from the Dynamic Explorer (DE) 1 satellite launched during active solar coditions have been examined for the occurrence and location of electron conical distributions and several conclusions can be drawn. First, we note that most of the best examples of electron conics observed by the V-3 experiment onboard Viking occurred in the afternoon sector in the range of magneitc local time 14 hours less than Magnetic Local Time (MLT) less than 18 hours, at midaltitudes in the range 10,000 km less than h less than 13,500 km, with few occurring in the nightside auroral region, a region poorly sampled at altitudes greater than 5000 km. For the Viking data there is an association of electron conics with upper hybrid waves. DE 1 observations made by the high-altitude plasma instrument (HAPI) indicate that electron conics were observed in the midmorning sector and the late evening sector, and as has been reported earlier, the correlation with upper hybird waves was good. The HAPI did not sample the afternoon sector. The electon conics observed on both satellites occurred in the presence of at least a modest (several kilovolts) potential difference beneath the satellite with a maximum energy that was usually, but not always, equal to or greater than the maximum energy of the electron conics. Two independent sets of observations by DE 1 suggest two distinct production mechanisms for electron conics. Examiniation of DE 1 electric field measurements from the plasma wave instrument during the observation of electron conics show simultaneous parallel oscillations in the frequency range of 0.2 Hz less than f less than 0.5 Hz during one and perhaps two of four events examined, and upper hybrid waves were observed on all four events. In addition, recent observations of '90-deg' electron conics associated with auroral kilometric radiation source regions suggest a

  14. Numerical Study of Motion of Falling Conical Graupel

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2018-01-01

    In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

  15. Conic coconuts : the pricing of contingent capital notes using conic finance

    NARCIS (Netherlands)

    Madan, D.B.; Schoutens, W.

    2010-01-01

    In this paper we introduce a fundamental model under which we will price contingent capital notes using conic finance techniques. The model is based on more realistic balance-sheet models recognizing the fact that asset and liabilities are both risky and have been treated differently taking into

  16. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  17. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  18. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  19. Conical refraction of elastic waves in absorbing crystals

    International Nuclear Information System (INIS)

    Alshits, V. I.; Lyubimov, V. N.

    2011-01-01

    The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after “switching on” absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincaré index n = ±1/2, transforms to a planar distribution of ellipses with two singularities n = ±1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied. The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by π/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.

  20. Pressure-driven occlusive flow of a confined red blood cell.

    Science.gov (United States)

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  1. Self-driven particles in linear flows and trapped in a harmonic potential

    Science.gov (United States)

    Sandoval, Mario; Hidalgo-Gonzalez, Julio C.; Jimenez-Aquino, Jose I.

    2018-03-01

    We present analytical expressions for the mean-square displacement of self-driven particles in general linear flows and trapped in a harmonic potential. The general expressions are applied to three types of linear flows, namely, shear flow, solid-body rotation flow, and extensional flow. By using Brownian dynamics simulations, the effect of trapping and external linear flows on the particles' distribution is also elucidated. These simulations also enabled us to validate our theoretical results.

  2. Biophysical basis for the geometry of conical stromatolites.

    Science.gov (United States)

    Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja

    2010-06-01

    Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.

  3. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  4. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  5. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  6. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    Science.gov (United States)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  7. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  8. Welcome to 2012: Australian Academic Developers and Student-Driven University Funding

    Science.gov (United States)

    Ling, Peter; Fraser, Kym; Gosling, David

    2013-01-01

    Are there consequences for academic development arising from the move to student-driven funding in the Australian higher education sector from 2012? In a move that has similarities to the UK, Australian government-supported student university funding will, from 2012, attach to students who can select a programme at the university of their choice…

  9. Covered by lines and Conic connected varieties

    Directory of Open Access Journals (Sweden)

    Alex Massarenti

    2011-12-01

    Full Text Available We study some properties of an embedded variety covered by lines and give a numerical criterion ensuring the existence of a singular conic through two of its general points. We show that our criterion is sharp. Conic-connected, covered by lines, QEL, LQEL, prime Fano, defective, and dual defective varieties are closely related. We study some relations between the above mentioned classes of objects using basic results by Ein and Zak.

  10. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  11. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  12. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

    International Nuclear Information System (INIS)

    Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

    2015-01-01

    Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

  13. Performance of conical abutment (Morse Taper) connection implants: a systematic review.

    Science.gov (United States)

    Schmitt, Christian M; Nogueira-Filho, Getulio; Tenenbaum, Howard C; Lai, Jim Yuan; Brito, Carlos; Döring, Hendrik; Nonhoff, Jörg

    2014-02-01

    In this systematic review, we aimed to compare conical versus nonconical implant-abutment connection systems in terms of their in vitro and in vivo performances. An electronic search was performed using PubMed, Embase, and Medline databases with the logical operators: "dental implant" AND "dental abutment" AND ("conical" OR "taper" OR "cone"). Names of the most common conical implant-abutment connection systems were used as additional key words to detect further data. The search was limited to articles published up to November 2012. Recent publications were also searched manually in order to find any relevant studies that might have been missed using the search criteria noted above. Fifty-two studies met the inclusion criteria and were included in this systematic review. As the data and methods, as well as types of implants used was so heterogeneous, this mitigated against the performance of meta-analysis. In vitro studies indicated that conical and nonconical abutments showed sufficient resistance to maximal bending forces and fatigue loading. However, conical abutments showed superiority in terms of seal performance, microgap formation, torque maintenance, and abutment stability. In vivo studies (human and animal) indicated that conical and nonconical systems are comparable in terms of implant success and survival rates with less marginal bone loss around conical connection implants in most cases. This review indicates that implant systems using a conical implant-abutment connection, provides better results in terms of abutment fit, stability, and seal performance. These design features could lead to improvements over time versus nonconical connection systems. © 2013 Wiley Periodicals, Inc.

  14. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  15. Time resolution measurements with an improved discriminator and conical scintillators

    International Nuclear Information System (INIS)

    McGervey, J.D.; Vogel, J.; Sen, P.; Knox, C.

    1977-01-01

    A new constant fraction discriminator with improved stability and walk characteristics is described. The discriminator was used with RCA C31024 photomultiplier tubes to test scintillators of conical and cylindrical shapes. Conical scintillators of 2.54 cm base diameter, 1.0 cm top diameter, and 2.54 cm height gave a fwhm of 155 ps for 60 Co gamma rays; larger conical scintillators gave an improvement of 10-15% in fwhm over cylindrical scintillators of equal volume. (Auth.)

  16. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  17. The Role of Employee-Driven Relations and Persistence in University-Industry Collaboration on Regional Innovation

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Drejer, Ina

    important driving factor for current collaboration than the existence of employee-driven relations. This suggest that firms’ hiring a university graduate is important for establishing a university connection, but once they have initiated a collaboration, then collaboration patterns tend to persists. However...... in the innovation literature about drivers of and persistence in university-industry collaborations. More specifically, it explores the role of employee-driven relations and persistence for firms’ collaboration on innovation with specific universities. The existing studies of university-industry interaction based......Promoting university-industry collaboration on innovation has an important role in regional innovation policy. Despite apparent advantages of such collaborations, several studies have shown that most innovative firms do not collaborate with universities. The paper addresses the dearth of knowledge...

  18. Bootstrap, universality and horizons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chi-Ming [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94704 (United States); Lin, Ying-Hsuan [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-13

    We present a closed form expression for the semiclassical OPE coefficients that are universal for all 2D CFTs with a “weak” light spectrum, by taking the semiclassical limit of the fusion kernel. We match this with a properly regularized and normalized bulk action evaluated on a geometry with three conical defects, analytically continued in the deficit angles beyond the range for which a metric with positive signature exists. The analytically continued geometry has a codimension-one coordinate singularity surrounding the heaviest conical defect. This singularity becomes a horizon after Wick rotating to Lorentzian signature, suggesting a connection between universality and the existence of a horizon.

  19. Universality Results for Multi-Layer Hele-Shaw and Porous Media Flows

    Science.gov (United States)

    Daripa, Prabir

    2012-11-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface. Motivated by a need to understand the effect of various injection policies currently in practice for chemical enhanced oil recovery, we study linear stability of displacement processes in a Hele-Shaw cell involving injection of an arbitrary number of immiscible fluid phases in succession. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-layer (multi-region) flow in the sense that the results hold with arbitrary number of interfaces. These stability results have been applied to design injection policies that are considerably less unstable than the pure Saffman-Taylor case. In particular, we determine specific values of the viscosity of the fluid layers corresponding to smallest unstable band. Moreover, we discuss universal selection principle of optimal viscous profiles. The talk is based on following papers. Qatar National Fund (a member of the Qatar Foundation).

  20. RECIPES FOR BUILDING THE DUAL OF CONIC OPTIMIZATION PROBLEM

    Directory of Open Access Journals (Sweden)

    Diah Chaerani

    2010-08-01

    Full Text Available Building the dual of the primal problem of Conic Optimization (CO isa very important step to make the ¯nding optimal solution. In many cases a givenproblem does not have the simple structure of CO problem (i.e., minimizing a linearfunction over an intersection between a±ne space and convex cones but there areseveral conic constraints and sometimes also equality constraints. In this paper wedeal with the question how to form the dual problem in such cases. We discuss theanswer by considering several conic constraints with or without equality constraints.The recipes for building the dual of such cases is formed in standard matrix forms,such that it can be used easily on the numerical experiment. Special attention isgiven to dual development of special classes of CO problems, i.e., conic quadraticand semide¯nite problems. In this paper, we also brie°y present some preliminariestheory on CO as an introduction to the main topic

  1. Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.

    2014-02-01

    The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.

  2. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  3. Geometry Effect Investigation on a Conical Chamber with Porous Media Boundary Condition Using Computational Fluid Dynamic (CFD Technique

    Directory of Open Access Journals (Sweden)

    Yazid Bindar

    2009-11-01

    Full Text Available The present study is an attempt to introduce the method for optimizing the geometry of the unit process. The comprehensive unit process performances are generated by a CFD engine. The CFD engine can simulate the unit process performances at what ever conditions. Both design geometry and operating variables weree used on the CFD simulation. The burden on a simplified process was taken out from CFD simulation. A complex geometry of a unit process is represented by a secondary reformer. A secondary reformer has a conical volume as a space to undergo the combustion reaction before entering the catalyst bed. This complexity is added by the boundary of the porous solid surface as the top surface of catalyst bed. The spread angle affect the flow pattern in side the conical volume having a porous solid surface as a base. The spread angle above 65o results the disappearing of the recirculation flow. The inlet distance from the porous solid surface also can exhibit different characteristics of recirculation flow. The closer the distance to the porous solid surface, the stronger the recirculation is. The inlet velocity values have no significant effect on the flow pattern. The introduction of a solid volume inside the geometry creates the distortion of the flow pattern. In the application, the inserted solid volume is equivalent to a burner. It means that the use of the burner inherently produces some problems of the flow distribution

  4. Lattice Boltzmann simulations of three-dimensional incompressible flows in a four-sided lid driven cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng Gong [National Engineering Laboratory for MTO, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Maa, Jerome P-Y, E-mail: chenggongli@dicp.ac.cn [Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States)

    2017-04-15

    Numerical study on three-dimensional (3D), incompressible, four-sided lid (FSL) driven cavity flows has been conducted to show the effects of the transverse aspect ratio, K , on the flow field by using a multiple relaxation time lattice Boltzmann equation. The top wall is driven from left to right, the left wall is moved downward, whereas the right wall is driven upward, and the bottom wall is moved from right to left, all the four moving walls have the same speed and the others boundaries are fixed. Numerical computations are performed for several Reynolds numbers for laminar flows, up to 1000, with various transverse aspect ratios. The flow can reach a steady state and the flow pattern is symmetric with respect to the two cavity diagonals (i.e., the center of the cavity). At Reynolds number = 300, the flow structures of the 3D FSL cavity flow at steady state with various transverse aspect ratio, i.e., 3, 2, 1, 0.75, 0.5 and 0.25 only show the unstable symmetrical flow pattern. The stable asymmetrical flow pattern could be reproduced only by increasing the Reynolds number that is above a critical value which is dependent on the aspect ratio. It is found that an aspect ratio of more than 5 is needed to reproduce flow patterns, both symmetric and asymmetric flows, simulated by using 2D numerical models. (paper)

  5. Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Boughanmi, Hassen; Lazaar, Mariem; Farhat, Abdelhamid; Guizani, Amenallah

    2017-01-01

    Highlights: • Conic geothermal basket heat exchanger (CBGHE) is experimentally investigated. • Charging and discharging processes of CBGHE are evaluated. • Energy and exergy efficiencies of CBGHE are performed. • High and stable performance of surface geothermal energy in Tunisia is established. - Abstract: Geothermal heat exchangers system composed of two conic baskets serially connected is designed and realized. Both heat exchangers are made in polyethylene high-density material and have a length of 3 m each one. They will be used for greenhouse cooling and heating through a geothermal heat pump. Its conical geometry is selected to reduce the operation cost and the exploited area, compared to vertical and horizontal geothermal heat exchangers often used. It also assures the maximum of heat exchange with the soil. The aim of this study is to determine the thermal performance of one Conic Basket Geothermal Heat Exchanger (CBGHE), buried at 3 m deep, in the exploitation of the soil thermal potential, in summer. A rate of heat exchange with the soil is determined and the global heat exchange of the CBGHE is assessed. Its energy and exergy efficiencies are also evaluated using both first and second law of thermodynamic. Results show that the specific heat exchange ranges between 20 W m"−"1 and 50 W m"−"1. Maximal energetic and exergetic efficiencies of the CBGHE, equal to 62% and 37% respectively, are reached for a mass flow rate of 0.1 kg s"−"1. For this value of mass flow rate, the overall heat exchange coefficient is of 52 W m"−"2 K"−"1.

  6. Unsteady wall pressure field of a model A-pillar conical vortex

    International Nuclear Information System (INIS)

    Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.

    2008-01-01

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct

  7. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  8. Convection flows driven by laser heating of a liquid layer

    OpenAIRE

    Rivière , David; Selva , Bertrand; Chraibi , Hamza; Delabre , Ulysse; Delville , Jean-Pierre

    2016-01-01

    International audience; When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at diffe...

  9. Magnetization Transfer Effects on the Efficiency of Flow-driven Adiabatic Fast Passage Inversion of Arterial Blood

    OpenAIRE

    Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.

    2007-01-01

    Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...

  10. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  11. Black hole thermodynamics with conical defects

    Energy Technology Data Exchange (ETDEWEB)

    Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)

    2017-05-22

    Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.

  12. "Conical Hut": A Basic Form of House Types in Timor Island

    Science.gov (United States)

    Chen, Y. R.; Lim, Y. L.; Wang, M. H.; Chen, C. Y.

    2015-08-01

    Timor Island situates in the southeast end of Southeast Asia. The island accommodates many ethnic groups, which produce many diverse house types. As visiting East Timor in 2012 and Timor Island in 2014, we found the "Pair- House Type" widely spread over Timor Island. Uma Lulik (holy house), accommodating the ancestry soul, fireplace and elder's bed, and Uma Tidor (house for sleep), containing living, sleeping and working space, compose the pair-house. The research team visited 14 ethnic groups and their houses, some of which were measured and drawn into 3D models as back to Taiwan. Uma Tidors of each ethnic group are quite similar with rectangular volume and hip roof, however, one of the fourteen ethnic groups can build cylinder houses for Uma Tidor. Uma Luliks of different ethnic groups are diversified and special. One group of the Uma Luliks shows a rectangular or square volume sheltered by a hip roof. The other group of Uma Luliks presents a non-specific volume under a conical roof, that we called the "conical hut". Seven ethnic groups, Atoni, Weimua, Makassae, Mambai, Bunaq, Kemak and Bekais, have built "conical huts" for the use of Uma Lulik. People of the seven ethnic groups can construct a reasonable structural system to support the conical roof, and take good advantage of the space under the conical roof to meet their sacred needs and everyday life. "Conical Hut" may be regarded as the basic form of the house types adopted by the seven ethnic groups. It contains the basic spatial limits and the formal properties that the construction systems have to follow. Based on the concise rules of the basic form, people of each ethnic group use their talents, skills and building materials to generate variations of "conical hut", which are different in house scale, spatial layout, construction system and form. The "conical huts" contain the consistency that all the huts come from the basic form, meanwhile, they also present the diversification that each conical hut has

  13. "Conical Hut": A Basic Form of House Types in Timor Island

    Directory of Open Access Journals (Sweden)

    Y. R. Chen

    2015-08-01

    Full Text Available Timor Island situates in the southeast end of Southeast Asia. The island accommodates many ethnic groups, which produce many diverse house types. As visiting East Timor in 2012 and Timor Island in 2014, we found the “Pair- House Type” widely spread over Timor Island. Uma Lulik (holy house, accommodating the ancestry soul, fireplace and elder’s bed, and Uma Tidor (house for sleep, containing living, sleeping and working space, compose the pair-house. The research team visited 14 ethnic groups and their houses, some of which were measured and drawn into 3D models as back to Taiwan. Uma Tidors of each ethnic group are quite similar with rectangular volume and hip roof, however, one of the fourteen ethnic groups can build cylinder houses for Uma Tidor. Uma Luliks of different ethnic groups are diversified and special. One group of the Uma Luliks shows a rectangular or square volume sheltered by a hip roof. The other group of Uma Luliks presents a non-specific volume under a conical roof, that we called the “conical hut”. Seven ethnic groups, Atoni, Weimua, Makassae, Mambai, Bunaq, Kemak and Bekais, have built “conical huts” for the use of Uma Lulik. People of the seven ethnic groups can construct a reasonable structural system to support the conical roof, and take good advantage of the space under the conical roof to meet their sacred needs and everyday life. “Conical Hut” may be regarded as the basic form of the house types adopted by the seven ethnic groups. It contains the basic spatial limits and the formal properties that the construction systems have to follow. Based on the concise rules of the basic form, people of each ethnic group use their talents, skills and building materials to generate variations of “conical hut”, which are different in house scale, spatial layout, construction system and form. The “conical huts” contain the consistency that all the huts come from the basic form, meanwhile, they also present

  14. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  15. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  16. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  17. Study the Possibility for Manufacturing a Conical Pipe Thread by Expansion

    Directory of Open Access Journals (Sweden)

    S. A. Evsyukov

    2014-01-01

    Full Text Available The experience of operating oil wells showed that the weak point of tubing is a connecting thread.Currently, the pipe thread of the specified class is made using the technology of cutting. The process of cutting a thread leads to waste metal chips and cutting fibers. Therefore the idea arose to make a thread by the method of pressure shaping.The aim was to study the possibility for full filling of the threaded matrix profile.The study was conducted by means of mathematical modeling in the software complex DEFORM. The impact of technological and geometrical factors on the process of form change was in detail analyzed. Thus, a work-piece material was specified to be continuous, isotropic, homogeneous, viscous-plastic and a tool material was set as a hard one. The friction was speci-fied according to Prandtl-Siebel law with the friction factor of 0.3. The thread profile has been replaced by the annular grooves of the similar profile. The task was considered to be axisymmetric.Scientific novelty of received results consists in revealed regularities of the plastic de-formation process of the work-piece when forming a profile of the conical thread on the pipe in the process of its expansion with a conical punch.The simulation allowed us to obtain information about the stress-strain state of the work-piece and tool, about the nature of the metal flow during deformation, and about the strength parameters of the process.In particular, it was found that the work-piece metal is displaced along the pipe axis both in punch movement direction and in the opposite one. Thus, a mechanical end burr is formed. The article shows that to remove a mechanical end burr requires insertion of extra limit stop housing. The article also analyses distribution of stresses arising in the matrix at the final moment of deformation. It was proved that the highest stresses occur in the hollows of the threaded part of matrix. Thus, their absolute value does not exceed 470 MPa that

  18. The plastic instability of clamped-clamped conical thin-walled pipe reducers

    International Nuclear Information System (INIS)

    Awad, Ibrahim; Saleh, Ch.A.R.; Ragab, A.R.

    2016-01-01

    The analytical study for plastic deformation of clamped–clamped conical reducer pipe under internal pressure does not deduce a closed form expression for the pressure at plastic instability. The presented study employs finite element analysis (FEA) to estimate the internal pressure at instability for conical reducers made of different materials and having different dimensional configurations. Forty dimensional configurations, classified as medium type, and five types of materials have been included in the analysis using ABAQUS package. A correlation expression is derived by nonlinear regression to predict the instability pressure. The proposed expression is verified for other dimensional configurations out of the above used forty models and for other materials. Experiments have been conducted by pressurizing conical clamped-clamped reducers until bursting in order to verify the finite element models. Comparison of instability pressures, strains and deflections at specific points along the conical surface shows satisfactory agreement between analysis and experiments. - Highlights: • This study offers a parametric study of the plastic instability pressure of clamped-clamped conical reducers. • A closed form analytical expression for the instability pressure is derived by using nonlinear regression. • The finite element analysis is validated by conducting bursting tests.

  19. Performance of cylindrical-conical cyclones with different geometrical configurations

    Directory of Open Access Journals (Sweden)

    J.D.A.M. Santana

    2001-09-01

    Full Text Available The present work is a continuation of a study of the influence of geometric characteristics on the performance of reverse-flow cylindrical-conical cyclones. After studying the behavior of the pressure drop in previous work (Arnosti et al., 1998, here performance in terms of collection efficiency in the removal of particulate material is addressed. The independent variables considered in this study were inlet gas velocity (three velocities and the following dimensions of the cyclone: the cylindrical section (three heights and internal height of the gas exit duct (three heights. The tests were performed using an 3³ experimental design. Analysis of the results for overall efficiency was carried out using response surfaces and the statistical parameters were estimated from linear regression.

  20. Unsteady wall pressure field of a model A-pillar conical vortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2008-06-15

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.

  1. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    International Nuclear Information System (INIS)

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  2. Performance Optimization of a Conical Dielectric Elastomer Actuator

    Directory of Open Access Journals (Sweden)

    Chongjing Cao

    2018-06-01

    Full Text Available Dielectric elastomer actuators (DEAs are known as ‘artificial muscles’ due to their large actuation strain, high energy density and self-sensing capability. The conical configuration has been widely adopted in DEA applications such as bio-inspired locomotion and micropumps for its good compactness, ease for fabrication and large actuation stroke. However, the conical protrusion of the DEA membrane is characterized by inhomogeneous stresses, which complicate their design. In this work, we present an analytical model-based optimization for conical DEAs with the three biasing elements: (I linear compression spring; (II biasing mass; and (III antagonistic double-cone DEA. The optimization is to find the maximum stroke and work output of a conical DEA by tuning its geometry (inner disk to outer frame radius ratio a/b and pre-stretch ratio. The results show that (a for all three cases, stroke and work output are maximum for a pre-stretch ratio of 1 × 1 for the Parker silicone elastomer, which suggests the stretch caused by out-of-plane deformation is sufficient for this specific elastomer. (b Stroke maximization is obtained for a lower a/b ratio while a larger a/b ratio is required to maximize work output, but the optimal a/b ratio is less than 0.3 in all three cases. (c The double-cone configuration has the largest stroke while single cone with a biasing mass has the highest work output.

  3. Comparative Performance of a Non-recessed Hole-entry Hybrid/Hydrostatic Conical Journal Bearing Compensated with Capillary and Orifice Restrictors

    Directory of Open Access Journals (Sweden)

    P.G. Khakse

    2016-06-01

    Full Text Available This research paper deals with the theoretical study of comparison of capillary and orifice compensated non-recess hole-entry hydrostatic/ hybrid conical journal bearing. Modified Reynolds equation governing the flow of lubricant in the clearance space of conical journal and bearing has been solved using FEM, Newton-Raphson method and Gauss elimination method. Spherical coordinate system has been employed to obtain the results. The results have been computed for uniform distribution of holes in the circumferential direction with the range of restrictor design parameter C ̅_s2 = 0.02 - 0.1. The numerically simulated result shows, the use of orifice restrictor is to increase bearing stiffness, threshold speed and maximum pressure compared to capillary restrictor for applied radial load.

  4. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.

    Science.gov (United States)

    Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit

    2015-11-28

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  5. The influence of initial pressure on the characteristics of conical bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    He, Shoujie, E-mail: heshouj@hbu.edu.cn [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Ha, Jing [Institute of Science, Hebei Agriculture University, Baoding 071001 (China); Duan, Pingguang [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2015-12-18

    Based on a conical bubble U-tube, conical bubble sonoluminescence was investigated by using pure water as the working medium. Intense cavitation luminescence can be obtained. With the decrease in initial pressure inside the bubble, the intensity and duration of light emission increased. The spectrum is mainly composed of the spectral bands of H{sub 2}O at the initial pressure of 1000 Pa. With the decrease in initial pressure, a broad continuum background spectrum that is well fitted by blackbody radiation can be detected, on which several spectral bands emitted by water molecules are superimposed. A higher temperature inside the bubble can be obtained with the decrease in initial pressure. Moreover, the intensity of the continuum background spectrum becomes more dominant compared with that of H{sub 2}O emission bands. Finally, we conclude that blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation. Moreover, the initial pressure inside the conical bubble significantly affects the emission mechanism of conical bubble sonoluminescence. - Highlights: • The spectra and light pulses of CBL are investigated in pure water. • The continuum background spectrum becomes more dominant with decrease of initial pressure. • The mechanism of CBL depends on the initial pressure of bubble. • Blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation.

  6. Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions

    Science.gov (United States)

    Bianchi; Ferrigno; Girault

    2000-05-01

    A finite element formulation is developed for the simulation of an electroosmotic flow in rectangular microscale channel networks. The distribution of the flow at a decoupling T-junction is investigated from a hydrodynamic standpoint in the case of a pressure-driven and an electroosmotically driven flow. The calculations are carried out in two steps: first solving the potential distribution arising from the external electric field and from the inherent zeta potential. These distributions are then injected in the Navier Stokes equation for the calculation of the velocity profile. The influence of the various parameters such as the zeta potential distribution, the Reynolds number, and the relative channel widths on the flow distribution is investigated.

  7. Analysis of spatial dispersion characteristics of improved conical sprays; Kairyo kasajo funmu no kukan bunsansei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Long, W; Murakami, A; Hama, J [Mechanical Engineering Lab., Tokyo (Japan); Obokata, T [Gunma University, Gunma (Japan)

    1997-10-01

    The macro-characteristics of conical and improved conical sprays were analyzed using laser sheet and high speed camera. The injection pressure was 14.7, 24.5 or 34.3 MPa and the chamber pressure was 0.098, 0.98 or 1.96 MPa, where the amount of injected fuel was 28.5 mg per cycle, and the injection frequency was 8.3 Hz. As a result, at atmospheric pressure, both of the conical spray and improved conical spray have a conical pattern, but at high chamber pressure, the sprays become three dimensional. The penetration of the improved conical spray was about 25% stronger than that of the conical spray. 10 refs., 11 figs.

  8. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  9. Free-breathing pediatric chest MRI: Performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition.

    Science.gov (United States)

    Zucker, Evan J; Cheng, Joseph Y; Haldipur, Anshul; Carl, Michael; Vasanawala, Shreyas S

    2018-01-01

    To assess the feasibility and performance of conical k-space trajectory free-breathing ultrashort echo time (UTE) chest magnetic resonance imaging (MRI) versus four-dimensional (4D) flow and effects of 50% data subsampling and soft-gated motion correction. Thirty-two consecutive children who underwent both 4D flow and UTE ferumoxytol-enhanced chest MR (mean age: 5.4 years, range: 6 days to 15.7 years) in one 3T exam were recruited. From UTE k-space data, three image sets were reconstructed: 1) one with all data, 2) one using the first 50% of data, and 3) a final set with soft-gating motion correction, leveraging the signal magnitude immediately after each excitation. Two radiologists in blinded fashion independently scored image quality of anatomical landmarks on a 5-point scale. Ratings were compared using Wilcoxon rank-sum, Wilcoxon signed-ranks, and Kruskal-Wallis tests. Interobserver agreement was assessed with the intraclass correlation coefficient (ICC). For fully sampled UTE, mean scores for all structures were ≥4 (good-excellent). Full UTE surpassed 4D flow for lungs and airways (P 93% scans for all techniques (P = 0.27). Interobserver agreement was excellent for combined scores (ICC = 0.83). High-quality free-breathing conical UTE chest MR is feasible, surpassing 4D flow for lungs and airways, with equivalent PA visualization. Data subsampling only mildly degraded images, favoring lesser scan times. Soft-gating motion correction overall did not improve image quality. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:200-209. © 2017 International Society for Magnetic Resonance in Medicine.

  10. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  11. Manufacture of conical springs with elastic medium technology improvement

    Science.gov (United States)

    Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.

    2018-01-01

    This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.

  12. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  13. Hole Feature on Conical Face Recognition for Turning Part Model

    Science.gov (United States)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  14. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  15. Generation of fast multiply charged ions in conical targets

    International Nuclear Information System (INIS)

    Demchenko, V.V.; Chukbar, K.V.

    1990-01-01

    So-called conical targets, when the thermonuclear fuel is compressed and heated in a conical cavity in a heavy material (lead, gold, etc.) with the help of a spherical segment that is accelerated by a laser pulse or a beam of charged particles, are often employed in experimental studies of inertial-confinement fusion. In spite of the obvious advantages of such a scheme, one of which is a significant reduction of the required energy input compared with the complete spherical target, it also introduces additional effects into the process of cumulation of energy. In this paper the authors call attention to an effect observed in numerical calculations: the hydrodynamic heating of a small group of multiply charged heavy ions of the walls of the conical cavity up to high energies (T i approx-gt 100 keV). This effect ultimately occurs as a result of the high radiation losses of a multiply charged plasma

  16. Momentum-energy transport from turbulence driven by parallel flow shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Horton, W.; Bengtson, R.D.; Li, G.X.

    1994-04-01

    The low frequency E x B turbulence driven by the shear in the mass flow velocity parallel to the magnetic field is studied using the fluid theory in a slab configuration with magnetic shear. Ion temperature gradient effects are taken into account. The eigenfunctions of the linear instability are asymmetric about the mode rational surfaces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces momentum and energy transport across the magnetic field. Analytic formulas for the parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients are given. Experimental observations of the parallel and poloidal plasma flows on TEXT-U are presented and compared with the theoretical models

  17. On fluid flow driven by topography in a librating body

    Science.gov (United States)

    Wu, C.; Roberts, P. H.

    2009-12-01

    Currently considerable effort and resources are being devoted to studies of Mercury, the Moon and Europa. Measuring the libration of these bodies can provide significant knowledge about their internal structures and physical properties; see Williams et al., 2001, Peale et al., 2002, Wu et al., 2007. To interpret such observations, it is important to understand better how libration affects the motion of the fluid in their interiors. To this end, Noir et al. (2009) investigated, via laboratory experiments and numerical simulations, the flow in a fluid filling a rotating spherical cavity driven by an axial oscillation of the container about a diameter. More realistically, the cavity is better represented by a triaxial ellipsoid. We may then distinguish between topographic and axisymmetricli libration. The latter refers to libration about a symmetry axis of the container which is therefore only viscously coupled to the fluid. In topographic libration, pressure forces on the boundary also affect the fluid motions in the cavity. We describe results from preliminary studies of topographic libration obtained through numerical simulation of incompressible fluid motion in an oblate spheroidal cavity with a libration axis perpendicular to the symmetry axis of the container. The computer code is a modification of one recently developed to study precessionally-driven flows in a spheroidal body of fluid (Wu and Roberts, 2009). It advances the flow in time using finite differences on overlapping grids; in this way the numerical difficulty known as the pole problem, is completely avoided.

  18. Star Formation-Driven Winds in the Early Universe

    Science.gov (United States)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  19. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  20. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    OpenAIRE

    Bodhisatta Hajra

    2014-01-01

    This paper reviews some recent studies (after 2000) pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation). Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes), leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major...

  1. Transitional inertialess instabilities in driven multilayer channel flows

    Science.gov (United States)

    Papaefthymiou, Evangelos; Papageorgiou, Demetrios

    2016-11-01

    We study the nonlinear stability of viscous, immiscible multilayer flows in channels driven both by a pressure gradient and/or gravity in a slightly inclined channel. Three fluid phases are present with two internal interfaces. Novel weakly nonlinear models of coupled evolution equations are derived and we concentrate on inertialess flows with stably stratified fluids, with and without surface tension. These are 2 × 2 systems of second-order semilinear parabolic PDEs that can exhibit inertialess instabilities due to resonances between the interfaces - mathematically this is manifested by a transition from hyperbolic to elliptic behavior of the nonlinear flux functions. We consider flows that are linearly stable (i.e the nonlinear fluxes are hyperbolic initially) and use the theory of nonlinear systems of conservation laws to obtain a criterion (which can be verified easily) that can predict nonlinear stability or instability (i.e. nonlinear fluxes encounter ellipticity as they evolve spatiotemporally) at large times. In the former case the solution decays asymptotically to its base state, and in the latter nonlinear traveling waves emerge. EPSRC Grant Numbers EP/K041134 and EP/L020564.

  2. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  3. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    Science.gov (United States)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  4. Wave-vector and polarization dependence of conical refraction.

    Science.gov (United States)

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  5. Straight, conic and circular fringes in single interferogram

    International Nuclear Information System (INIS)

    Rajkumar

    2015-01-01

    Interferometry is an important part of optics courses taught at the undergraduate level in universities throughout the world. It is used to explain to students the wave nature of light and is also used to measure parameters like length, refractive index, thickness of test samples and wavelength of light source, etc. The shape of interference fringes (linear, conic or circular) gives vital information about the interfering wavefronts and is used for firsthand visual inspection in optical shop testing and other applications of scientific and engineering importance. The present work describes a simple laboratory technique to generate fringes with different shapes in a single interferogram. This is achieved by using our diffraction-Lloyd mirror interferometer where two portions of the diffracted field are superimposed to generate the interference fringes. The technique is quite helpful in explaining the role of source orientation on the shape of interference fringes to students. (paper)

  6. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  7. Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients.

    Science.gov (United States)

    Philippart, François; Gaudry, Stéphane; Quinquis, Laurent; Lau, Nicolas; Ouanes, Islem; Touati, Samia; Nguyen, Jean Claude; Branger, Catherine; Faibis, Frédéric; Mastouri, Maha; Forceville, Xavier; Abroug, Fekri; Ricard, Jean Damien; Grabar, Sophie; Misset, Benoît

    2015-03-15

    The occurrence of ventilator-associated pneumonia (VAP) is linked to the aspiration of contaminated pharyngeal secretions around the endotracheal tube. Tubes with cuffs made of polyurethane rather than polyvinyl chloride or with a conical rather than a cylindrical shape increase tracheal sealing. To test whether using polyurethane and/or conical cuffs reduces tracheal colonization and VAP in patients with acute respiratory failure. We conducted a multicenter, prospective, open-label, randomized study in four parallel groups in four intensive care units between 2010 and 2012. A cohort of 621 patients with expected ventilation longer than 2 days was included at intubation with a cuff composed of cylindrical polyvinyl chloride (n = 148), cylindrical polyurethane (n = 143), conical polyvinyl chloride (n = 150), or conical polyurethane (n = 162). We used Kaplan-Meier estimates and log-rank tests to compare times to events. After excluding 17 patients who secondarily refused participation or had met an exclusion criterion, 604 were included in the intention-to-treat analysis. Cumulative tracheal colonization greater than 10(3) cfu/ml at Day 2 was as follows (median [interquartile range]): cylindrical polyvinyl chloride, 0.66 (0.58-0.74); cylindrical polyurethane, 0.61 (0.53-0.70); conical polyvinyl chloride, 0.67 (0.60-0.76); and conical polyurethane, 0.62 (0.55-0.70) (P = 0.55). VAP developed in 77 patients (14.4%), and postextubational stridor developed in 28 patients (6.4%) (P = 0.20 and 0.28 between groups, respectively). Among patients requiring mechanical ventilation, polyurethane and/or conically shaped cuffs were not superior to conventional cuffs in preventing tracheal colonization and VAP. Clinical trial registered with clinicaltrials.gov (NCT01114022).

  8. Analysis of IBW-driven plasma flows in tokamaks

    International Nuclear Information System (INIS)

    Berry, L.A.; Jaeger, E.F.; D'Azevedo, E.F.; Batchelor, D.B.; Carlsson, J.A.; Carter, M.D.; Cesario, R.

    2001-01-01

    Both theory and experiment have suggested that damping of Ion Bernstein Waves (IBWs) at ion cyclotron frequency harmonics could drive poloidal flows and lead to enhanced confinement for tokamaks. However, the early analyses were based on Reynolds stress closures of moment equations. More rigorous, finite Larmor radius (FLR) expansions of the radio frequency (RF) kinetic pressure for low harmonic interactions indicated that the Reynolds stress approximation was not generally valid, and resulted in significant changes in the plasma flow response. These changes were largest for wave interactions driven by finite Larmour radius effects. To provide a better assessment of higher harmonic interactions and IBW flow drive prospects, the electromagnetic (E and M) and RF kinetic force models are extended with no assumptions regarding the smallness of the ion Larmor radius. For both models, a spectral-width approximation was used to make the numerical analysis tractable. In addition, it was necessary to include the effects of plasma equilibrium gradients on the plasma conductivity and the RF-induced momentum in order to conserve energy and momentum. The analysis of high-harmonic IBW interactions for TFTR and FTU parameters indicates significant poloidal flow shears (relative to turbulence correlation times) for power levels available in present experiments. Recent advances in all-orders calculations of E and M fields in 2-D are also discussed. (author)

  9. Laboratory observation of magnetic field growth driven by shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T. P., E-mail: intrator@lanl.gov; Feng, Y.; Sears, J.; Weber, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States); Dorf, L. [Applied Materials, Inc., Santa Clara, CA 95054 (United States); Sun, X. [University of Science and Technology, Hefei (China)

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  10. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  11. Effective spectral densities for system-environment dynamics at conical intersections: S{sub 2}-S{sub 1} conical intersection in pyrazine

    Energy Technology Data Exchange (ETDEWEB)

    Martinazzo, Rocco [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martelli, Fausto [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Burghardt, Irene, E-mail: irene.burghardt@ens.fr [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)

    2010-11-25

    Graphical abstract: The effect of high-dimensional environments on conical intersections can be described by hierarchies of approximate spectral densities, which translate to truncated effective-mode chains in the time domain. Abstract: A recently developed effective-mode representation is employed to characterize the influence of a multi-dimensional environment on the S{sub 2}-S{sub 1} conical intersection in pyrazine, taken as a paradigm case of high-dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of simplified spectral densities which can be cast into a continued-fraction form, as previously demonstrated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed to generate this chain representation. The implications for the ultrafast dynamics and its representation in terms of reduced-dimensional models are discussed.

  12. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  13. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  14. Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy

    Science.gov (United States)

    Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.

    2014-08-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.

  15. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    Science.gov (United States)

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  16. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  17. Handbook on semidefinite, conic and polynomial optimization

    CERN Document Server

    Anjos, Miguel F

    2012-01-01

    This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.

  18. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  19. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  20. NUMERICAL SIMULATIONS OF FLOW BEHAVIOR IN DRIVEN CAVITY AT HIGH REYNOLDS NUMBERS

    Directory of Open Access Journals (Sweden)

    Fudhail Bin Abdul Munir

    2012-02-01

    Full Text Available In recent years, due to rapidly increasing computational power, computational methods have become the essential tools to conduct researches in various engineering fields.  In parallel to the development of ultra high speed digital computers, computational fluid dynamics (CFD has become the new third approach apart from theory and experiment in the philosophical study and development of fluid dynamics.  Lattice Boltzmann method (LBM is an alternative method to conventional CFD.  LBM is relatively new approach that uses simple microscopic models to simulate complicated microscopic behavior of transport phenomena.  In this paper, fluid flow behaviors of steady incompressible flow inside lid driven square cavity are studied.  Numerical calculations are conducted for different Reynolds numbers by using Lattice Boltzmann scheme.  The objective of the paper is to demonstrate the capability of this lattice Boltzmann scheme for engineering applications particularly in fluid transport phenomena. Keywords-component; lattice Boltzmann method, lid driven cavity, computational fluid dynamics.

  1. A finite volume method for density driven flows in porous media

    Directory of Open Access Journals (Sweden)

    Hilhorst Danielle

    2013-01-01

    Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.

  2. Experimental study of CF4 conical theta pinch plasma expanding into vacuum

    International Nuclear Information System (INIS)

    Pedrow, P.D.; Nasiruddin, A.M.

    1989-01-01

    Langmuir probe, photodiode, and optical multichannel analyzer (OMA) measurements have been made on a pulsed CF 4 conical theta pinch plasma. A cloud of CF 4 gas was puffed into a conical theta pinch coil, converted to plasma, and propelled into the vacuum region ahead of the expanding gas cloud. At a position 67 cm away from the conical theta pinch coil, the plasma arrived in separate packets that were about 20 μs in duration. The average drift velocity of these packets corresponded to an energy of about 3 eV. The OMA measurements showed that the second packet contained neutral atomic fluorine as well as charged particles

  3. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  4. Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    International Nuclear Information System (INIS)

    Kanki, T.; Nagata, M.; Uyama, T.

    2004-01-01

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)

  5. Supersymmetric Conical Defects: Towards a string theoretic description of black hole formation

    NARCIS (Netherlands)

    Balasubramanian, V.; de Boer, J.; Keski-Vakkuri, E.; Ross, S.F.

    2001-01-01

    Conical defects, or point particles, in $AdS_3$ are one of the simplest non-trivial gravitating systems, and are particularly interesting because black holes can form from their collision. We embed the BPS conical defects of three dimensions into the N=4b supergravity in six dimensions, which arises

  6. Conical refraction in a degenerated two-crystal cascade

    International Nuclear Information System (INIS)

    Peet, V

    2016-01-01

    When a collimated light beam is passed consequently along the optic axes of two identical biaxial crystals, the conical refraction produces in the focal image plane a specific light pattern consisting of a ring and a central spot. The ring is formed due to the additive action of two crystals, while the spot results from the reversed conical refraction in such a degenerated cascade arrangement. The relative intensity of these two components depends on the azimuth angle between the orientations of the crystals about the beam axis. It is shown that this dependence arises due to the interference of pairs of waves produced by conical refraction in two crystals. If a part of these waves is blocked by polarization selection of beam components, the dependence of the light pattern on the azimuth angle vanishes. In this case, the outgoing light profile consists of a ring and a central spot with fixed intensities so that the total beam power is divided equally between these two components. Depending on the applied polarization, the central spot appears either as a restored input beam or a charge-two optical vortex. The results of numerical simulations of the effect are in a very good agreement with the experimental observations. (paper)

  7. Self-Propulsion Of Catalytic Conical Micro-Swimmer

    Science.gov (United States)

    Gallino, Giacomo; Gallaire, Francois; Lauga, Eric; Michelin, Sebastien

    2017-11-01

    Self-propelled artificial micro-motors have attracted much attention both as fundamental examples of active matter and for their potential biomedical applications (e.g. drug delivery, cell sorting). A popular design exploits the catalytic decomposition of a fuel (e.g. hydrogen peroxide) on the active surface of the motor to produce oxygen bubbles that propel the swimmer, effectively converting chemical energy into swimming motion. We focus here on a conical shape swimmer with chemically-active inner surfaces. Using numerical simulations of the chemical problem and viscous hydrodynamics, we analyze the formation, growth and motion of the bubbles inside the micro-motor and the resulting swimming motion. Our results shed light on the fundamental hydrodynamics of the propulsion of conical swimmers and may help to improve the efficiency of these machines. G.G. aknowledges support from the Swiss National Science Fundation.

  8. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  9. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    Science.gov (United States)

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  10. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  11. Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2018-01-01

    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.

  12. Short-term stream flow forecasting at Australian river sites using data-driven regression techniques

    CSIR Research Space (South Africa)

    Steyn, Melise

    2017-09-01

    Full Text Available This study proposes a computationally efficient solution to stream flow forecasting for river basins where historical time series data are available. Two data-driven modeling techniques are investigated, namely support vector regression...

  13. The Poisson equation in axisymmetric domains with conical points

    International Nuclear Information System (INIS)

    Nkemzi, B.

    2003-01-01

    This paper analyzes the application of the Fourier-finite-element method (FFEM) for the resolution of the Derichlet problem for the Poisson equation -Δu-circumflex = f-circumflex in axisymmetric domains Ω-circumflex subset of R 3 with conical points on the rotation axis. The FFEM combines the approximate Fourier method with respect to one space direction with the finite element method for the approximate calculation of the Fourier coefficients of the solution. Here, the influence of the conical points on the regularity of the Fourier coefficients of the solution is analyzed and the asymptotic behaviour of the coefficients near the conical points is described by some singularity functions and treated numerically by mesh grading in the two-dimensional meridian of Ω-circumflex. It is proved that for f-circumflex in L 2 (Ω-circumflex), the rate of convergence of the combined approximations in the Sobolev space W 2 1 (Ω-circumflex) is of the order O(h + N -1 ), where h and N represent, respectively, the parameters of the finite-element- and the Fourier-approximation, with h → 0 and n → ∞. (author)

  14. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    charge is increased, the area where destructive interference at the centre increases thereby enlarging the light ring. The propagation along the optical axis follows a conical ray of light where the concentration of high intensities is maintained at the outskirts of the conical beam where constructive...... with an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis. Unlike LG...... beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  15. Derivation of Conditions for the Normal Gain Behavior of Conical Horns

    Directory of Open Access Journals (Sweden)

    Chin Yeng Tan

    2007-01-01

    Full Text Available Monotonically increasing gain-versus-frequency pattern is in general expected to be a characteristic of aperture antennas that include the smooth-wall conical horn. While optimum gain conical horns do naturally exhibit this behavior, nonoptimum horns need to meet certain criterion: a minimum axial length for given aperture diameter, or, alternatively, a maximum aperture diameter for the given axial length. In this paper, approximate expressions are derived to determine these parameters.

  16. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  17. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  18. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  19. An experimental study of fluidization behavior using flow visualization and image processing

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Sefidvash, Farhang; Cornelius, Vanderli

    2000-01-01

    A program of experimental study of fluidization of heavy spherical pellets with water using image processing technique has been started in the Nuclear Engineering Department of the Federal University of Rio Grande do Sul. Fluidization for application in nuclear reactors requires very detailed knowledge of its behavior as the reactivity is closely dependent on the porosity of the fluidized bed. A small modular nuclear reactor concept with suspended core is under study. A modified version of the reactor involves the choice of is to make conical the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. A 5 mm diameter steel ball are fluidized with water in a conical Plexiglass tube. A pump circulate the water in a loop feeding the room temperature water from the tank into the fluidization system and returning it back to the tank. A controllable valve controls the flow velocity. A high velocity digital CCD camera captures the images of the pellets moving in the fluidized tube. At different flow velocities, the individual pellets can be tracked by processing the sequential frames. A DVT digital tape record stores the images and by acquisition through interface board into a microcomputer. A special program process the data later on. Different algorithm of image treatment determines the velocity fields of the pellets. The behavior of the pellets under different flow velocity and porosity are carefully studied. (author)

  20. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Science.gov (United States)

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Idealized debris flow in flume with bed driven by a conveyor belt

    Science.gov (United States)

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  2. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  3. Experiments on active precision isolation with a smart conical adapter

    Science.gov (United States)

    Li, H.; Li, H. Y.; Chen, Z. B.; Tzou, H. S.

    2016-07-01

    Based on a conical shell adaptor, an active vibration isolator for vibration control of precision payload is designed and tested in this study. Flexible piezoelectric sensors and actuators are bonded on the adaptor surface for active vibration monitoring and control. The mathematical model of a piezoelectric laminated conical shell is derived and then optimal design of the actuators is performed for the first axial vibration mode of the isolation system. A scaled conical adaptor is manufactured with four MFC actuators laminating on its outer surface. Active vibration isolation efficiency is then evaluated on a vibration shaker. The control model is built in Matlab/Simulink and programmed into the dSPACE control board. Experimental results show that, the proposed active isolator is effective in vibration suppression of payloads with the negative velocity feedback control. In contrast, the amplitude responses increase with positive feedback control. Furthermore, the amplitude responses increases when time delay is added into the control signals, and gets the maximum when the delay is close to one quarter of one cycle time.

  4. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO2 laser welding

    International Nuclear Information System (INIS)

    Ancona, Antonio; Sibillano, Teresa; Lugara, Pietro Mario; Gonnella, Giuseppe; Pascazio, Giuseppe; Maffione, Donato

    2006-01-01

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters

  5. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    Science.gov (United States)

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven

  6. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels

    NARCIS (Netherlands)

    Qian, S.Z.; Duval, J.F.L.

    2006-01-01

    A quantitative theory is proposed for the analysis of steady electroosmotically driven flows within conducting cylindrical microchannels. Beyond a threshold value of the electric field applied in the electrolyte Solution and parallel to the conducting surface, electrochemical oxidation and reduction

  7. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  8. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  9. Study of electroosmosis-driven two-liquid displacement flow in a microcapillary

    International Nuclear Information System (INIS)

    Gan, H Y; Yang, C; Wan, S Y M; Lim, G C; Lam, Y C

    2006-01-01

    Multi-liquid flow, such as one liquid displacing another liquid, is frequently encountered in practice. This can be achieved by electroosmotic (EO) pumping, which has its own unique characteristics and advantages. This investigation is on EO-driven, two-liquid displacement flow in a microcapillary. A theoretical model was developed to take into consideration the axial step change of velocity flow fields at the time-dependent liquid/liquid interface, continuity requirement, and induced local pressure gradients. The electrical current monitoring method was employed to measure the flowrate and subsequently determine the capillary zeta potentials which are required for the model prediction. The nonlinear change of the electrical current with time under a constant applied voltage was observed during the displacement process. The theoretical and experimental results validated the hypothesis that the non-uniform zeta potential and electric field induce local pressure gradients in the two different liquids. Our experimental results indicated that the time of displacement, and thus the flow velocity, is found to be dependent on the displacing flow direction, which has hitherto not been reported in the literature. The underlying mechanisms were postulated, but demand further investigation

  10. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  11. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  12. Libration-driven flows in ellipsoidal shells

    Science.gov (United States)

    Lemasquerier, D.; Grannan, A. M.; Vidal, J.; Cébron, D.; Favier, B.; Le Bars, M.; Aurnou, J. M.

    2017-09-01

    Planets and satellites can undergo physical librations, which consist of forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. This mechanical forcing may drive turbulence in interior fluid layers such as subsurface oceans and metallic liquid cores through a libration-driven elliptical instability (LDEI) that refers to the resonance of two inertial modes with the libration-induced base flow. LDEI has been studied in the case of a full ellipsoid. Here we address for the first time the question of the persistence of LDEI in the more geophysically relevant ellipsoidal shell geometries. In the experimental setup, an ellipsoidal container with spherical inner cores of different sizes is filled with water. Direct side view flow visualizations are made in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity fluctuations extracted from recorded movies shows that the presence of an inner core leads to spatial heterogeneities but does not prevent LDEI. Particle image velocimetry and direct numerical simulations are performed on selected cases to confirm our results. Additionally, our survey at a fixed forcing frequency and variable rotation period (i.e., variable Ekman number, E) shows that the libration amplitude at the instability threshold varies as ˜E0.65. This scaling is explained by a competition between surface and bulk dissipation. When extrapolating to planetary interior conditions, this leads to the E1/2 scaling commonly considered. We argue that Enceladus' subsurface ocean and the core of the exoplanet 55 CnC e should both be unstable to LDEI.

  13. Probabilistic structural assessment of conical grouted joint using numerical modelling

    DEFF Research Database (Denmark)

    Njomo-Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay

    2018-01-01

    Conical grouted joints have been proposed as a solution for the relative settlement observed between the sleeve and the pile on monopiles for wind turbines. In this paper, the influence of the design parameters such as steel wall thicknesses and conical angle on the failure modes associated...... to continual loadings are assessed based on finite element analysis. It is found that both the sleeve's and pile's wall thicknesses have a significant impact on the grouted joint health. Namely, the larger are the wall thicknesses, the more vulnerable the grout is with respect to fatigue and material...

  14. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  15. Health Care Crossroads: What's the Right Solution? Putting Consumer-Driven Ideas to Work at Louisiana State University

    Science.gov (United States)

    Benedict, Forest; Guinn, Shayla

    2006-01-01

    Idling at the crossroads and faced with ever-increasing health care costs, the Louisiana State University System chose the road less traveled and instituted a consumer-driven benefits plan. In this article, the authors provide an overview of the consumer-driven programs LSU has adopted and how these programs have helped curb costs and improve the…

  16. Comparison of strongly heat-driven flow codes for unsaturated media

    International Nuclear Information System (INIS)

    Updegraff, C.D.

    1989-08-01

    Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs

  17. Leidenfrost phenomenon on conical surfaces

    Science.gov (United States)

    Hidalgo-Caballero, S.; Escobar-Ortega, Y.; Pacheco-Vázquez, F.

    2016-09-01

    The Leidenfrost state is typically studied by placing droplets on flat or slightly curved surfaces. Here this phenomenon is investigated by depositing water in hot conical bowls. We found that this phase exists even for large amounts of liquid in very narrow cones without considerable effect of the confinement on the Leidenfrost transition temperature TL. At a fixed temperature, T >TL , the total evaporation time τ has a nonmonotonic dependence on the angle of confinement θ : for large volumes (˜20 ml) on flat surfaces (θ ˜0∘ ), vapor chimneys appear and accelerate the evaporation rate, their frequency diminishes as θ augments and becomes zero at a certain angle θc, at which τ reaches its maximum value; then, τ decreases again at larger angles because the vapor layer holding up the water becomes thinner due to the increase of hydrostatic pressure and because the geometry facilitates the vapor expulsion along the conical wall. For small volumes (˜1 ml), surface tension mainly determines the drop curvature and the lifetime is practically independent of θ . Different chimney regimes and oscillation patterns were observed and summarized in a phase diagram. Finally, we developed a simple model to decipher the shape adopted by the liquid volume and its evolution as a function of time, and the predictions are in good agreement with the experimental results.

  18. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    Science.gov (United States)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  19. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    Science.gov (United States)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  20. Smooth structures on pseudomanifolds with isolated conical singularities

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Somberg, P.; Vanžura, Jiří

    2013-01-01

    Roč. 38, č. 1 (2013), s. 33-54 ISSN 0251-4184 Institutional support: RVO:67985840 Keywords : conical pseudomanifold * symplectic form * Poisson structure Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs40306-013-0009-0#

  1. Analysis of the conical piezoelectric acoustic emission transducer

    Czech Academy of Sciences Publication Activity Database

    Červená, Olga; Hora, Petr

    2008-01-01

    Roč. 2, č. 1 (2008), s. 13-24 ISSN 1802-680X R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * conical transducer * FEM Subject RIV: BI - Acoustics

  2. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    Science.gov (United States)

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  3. Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.

  4. Practical conic sections the geometric properties of ellipses, parabolas and hyperbolas

    CERN Document Server

    Downs, J W

    2010-01-01

    Illustrated with interesting examples from everyday life, this text shows how to create ellipses, parabolas, and hyperbolas and presents fascinating historical background on their ancient origins. The text starts with a discussion of techniques for generating the conic curves, showing how to create accurate depictions of large or small conic curves and describing their reflective properties, from light in telescopes to sound in microphones and amplifiers. It further defines the role of curves in the construction of auditoriums, antennas, lamps, and numerous other design applications. Only a ba

  5. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  6. Universality Results for Multi-layer Radial Hele-Shaw Flows

    Science.gov (United States)

    Daripa, Prabir; Gin, Craig; Daripa Research Team

    2014-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

  7. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Science.gov (United States)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  8. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  9. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  10. The enigmatic ultra-long run-out of seafloor density driven flows

    Science.gov (United States)

    Dorrell, R. M.

    2017-12-01

    Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.

  11. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    Science.gov (United States)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  12. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based

  13. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO{sub 2} laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, Antonio [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Sibillano, Teresa [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Lugara, Pietro Mario [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Gonnella, Giuseppe [Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Pascazio, Giuseppe [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Maffione, Donato [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy)

    2006-02-07

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters.

  14. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  15. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    Science.gov (United States)

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  16. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    International Nuclear Information System (INIS)

    Yu, C.X.; Xu, Y.H.; Luo, J.R.; Mao, J.S.; Liu, B.H.; Li, J.G.; Wan, B.N.; Wan, Y.X.

    2000-01-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υ θ plays a key role in developing the electric field E r and triggering the transition. The acceleration of υ θ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient. (author)

  17. Structure analysis of bubble driven flow by time-resolved PIV and POD techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun

    2010-01-01

    In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy

  18. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  19. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    Science.gov (United States)

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  1. An assessment of a conical horn waveguide to represent the human eardrum

    Science.gov (United States)

    Fields, Taylor N.; Schnetzer, Lucia; Brister, Eileen; Yates, Charles W.; Withnell, Robert H.

    2018-05-01

    This study examined a model of the acoustic input impedance of the ear that includes a waveguide model of the eardrum. The eardrum was modeled as a lossless conical-horn with rigid walls. The ear canal was modeled as a one-dimensional lossy transmission line. The output impedance of the eardrum, the middle ear, and the cochlea, was modeled as a circuit analog. The model was fit to acoustic input impedance data from human ears using a nonlinear least-squares fit. The impact of a conical-horn shape for the eardrum was quantified by comparison with the eardrum modeled as a near-flat surface. The model provided a good match to the data over the frequency range examined. A conical-horn model of the human eardrum provided gain at high frequencies, most notably above 1–2 kHz, with a broader middle-ear frequency response. This finding may suggest that eardrum shape plays an important role in sound transmission to the cochlea.

  2. Gravity-driven granular flow in a silo: Characterizing local forces and rearrangements

    Directory of Open Access Journals (Sweden)

    Thackray Emma

    2017-01-01

    Full Text Available While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not wellunderstood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. In this paper, we present our results thus far.

  3. On the efficiency of conical targets for laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Borovskij, A.V.; Korobkin, V.V.

    1981-01-01

    Advantages and drawbacks of conical targets (CT) for laser fusion (LF) are discussed. Possibility of the laser power reduction, laser pulse lengthening and neutron yield increase are analyzed for an ideal conical target with absolutely rigid and heat-proof walls as compared to a spherical target of the same mass. A simple theory is suggested which makes it possible to take into account an effect of walls on the fusion process in the conical target with gaseous fuel and heavy shell. Energy losses due to wall deformations and heat conduction are estimated. An influence of these effects on the neutron yield is estimated. CT used in the LF experiments are found to have serious drawbacks in comparison with spherical ones. These drawbacks are connected with the effect of walls on the processes taking place in CT. Analysis of CT, for which the effect of walls is not significant, points up some definite advantages of CT as compared with spherical one. These advantages are the possibility of laser pulse lengthening and laser power reduction in comparison with the irradiation of a sphere of an equal mass. These two positive qualities are connected with the fact that CT has large linear dimensions [ru

  4. Internal and external axial corner flows

    Science.gov (United States)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  5. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  6. Smart campus: Data on energy consumption in an ICT-driven university

    Directory of Open Access Journals (Sweden)

    Segun I. Popoola

    2018-02-01

    Full Text Available In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs. The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January–December, 2016. Energy readings were observed from the digital energy meter (EDMI Mk10E located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management

  7. Smart campus: Data on energy consumption in an ICT-driven university.

    Science.gov (United States)

    Popoola, Segun I; Atayero, Aderemi A; Okanlawon, Theresa T; Omopariola, Benson I; Takpor, Olusegun A

    2018-02-01

    In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs). The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January-December, 2016). Energy readings were observed from the digital energy meter (EDMI Mk10E) located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses.

  8. Time-dependent particle migration and margination in the pressure-driven channel flow of blood

    Science.gov (United States)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2018-03-01

    We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.

  9. A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls

    International Nuclear Information System (INIS)

    Aydin, O.; Uenal, A.; Ayhan, T.

    1999-01-01

    Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum

  10. Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells

    Directory of Open Access Journals (Sweden)

    Y.Q. Feng

    2010-09-01

    Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.

  11. Universal model of finite Reynolds number turbulent flow in channels and pipes

    NARCIS (Netherlands)

    L'vov, V.S.; Procaccia, I.; Rudenko, O.

    2008-01-01

    In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order

  12. Biased and flow driven Brownian motion in periodic channels

    Science.gov (United States)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  13. Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    OpenAIRE

    Bo P.; Bartoň M.; Pottmann H.

    2017-01-01

    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in...

  14. Chaotic flows in a universe with a negative quantum pressure

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1983-01-01

    Lockhart, Misra, and Prigogine have pointed out that geodesic flow in an open k = -1 Friedmann universe is unstable. The implications of this instability are considered for a universe whose energetics was dominated, at some early time, by the Lorentz-invariant expectation value of a quantum stress-energy tensor

  15. Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure

    International Nuclear Information System (INIS)

    Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F

    2011-01-01

    The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.

  16. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang; Thoroddsen, Sigurdur T

    2013-01-01

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  17. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang

    2013-05-21

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  18. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  19. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  20. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  1. Generalized probabilistic theories and conic extensions of polytopes

    Science.gov (United States)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.

  2. Generalized probabilistic theories and conic extensions of polytopes

    International Nuclear Information System (INIS)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R n , the classical capacity of the channel realized by sending GPT states and measuring them is bounded by logn. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization. (paper)

  3. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  4. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  5. Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications.

    Science.gov (United States)

    Lee, Seung Ho; Ryu, Yong-Tak; Son, Dong Hoon; Jeong, Seongmook; Kim, Youngwoong; Ju, Seongmin; Kim, Bok Hyeon; Han, Won-Taek

    2015-08-10

    We report a novel radial-firing optical fiber tip containing a conical-shaped air-pocket fabricated by deforming a hollow optical fiber using electric arc-discharge process. The hollow optical fiber was fusion spliced with a conventional optical fiber, simultaneously deforming into the intagliated conical-shaped region along the longitudinal fiber-axis of the fiber due to the gradual collapse of the cavity of the hollow optical fiber. Then the distal-end of the hollow optical fiber was sealed by the additional arc-discharge in order to obstruct the inflow of an external bio-substance or liquid to the inner air surface during the surgical operations, resulting in the formation of encased air-pocket in the silica glass fiber. Due to the total internal reflection of the laser beam at the conical-shaped air surface, the laser beam (λ = 632.8 nm) was deflected to the circumferential direction up to 87 degree with respect to the fiber-axis.

  6. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis

    OpenAIRE

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, F?bio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, Andr? Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    Aim: The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Den...

  7. Flow near the meniscus of a pressure-driven water slug in microchannels

    International Nuclear Information System (INIS)

    Kim, Sung Wook; Jin, Song Wan; Yoo, Jung Yul

    2006-01-01

    Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion

  8. Time-Driven Activity-Based Costing for Inter-Library Services: A Case Study in a University

    Science.gov (United States)

    Pernot, Eli; Roodhooft, Filip; Van den Abbeele, Alexandra

    2007-01-01

    Although the true costs of inter-library loans (ILL) are unknown, universities increasingly rely on them to provide better library services at lower costs. Through a case study, we show how to perform a time-driven activity-based costing analysis of ILL and provide evidence of the benefits of such an analysis.

  9. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  10. Thermal stability in a newly designed columnar-conical fluidized bed for combustion of rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Rozainee, M.; Salema, A.A.; Ngo, S.P.; Chye, G.B. [Malaysian Technological Univ., Johor Bahru (Malaysia). Dept. of Chemical Engineering

    2006-07-01

    The effects of fluidizing and liquid propane gas (LPG) flow rates on thermal stability of a fluidized bed were examined. The aim of the study was to hybridize a columnar and conical fluidized bed (CCFB) in order to encourage the combustion of low-calorific fuels such as rice husks. Experiments were conducted to examine the thermal stability of the CCFB. Premixed primary air and liquid propane gas (LPG) was fed into the bed in order to verify its thermal stability. Temperature profiles of the combustor and bed were measured. The impact of the fluidizing velocity and LPG flow rate on the temperature profile was examined in order to analyze the influence of the fluidizing velocity and LPG rate on combustion rates. Results of the study showed that the combustion of the CCFB was sustained at a fluidizing velocity of 1.5 U{sub mf} and at an LPG flow rate of 8 liters per minute. Results of the study showed that fluidizing velocity played an important role on the thermal stability of the bed. It was concluded that the thermal stability of the combustor is sufficient for the CCFB. 13 refs., 2 tabs., 5 figs.

  11. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  12. A numerical study of secondary flow and large eddies in a driven cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yau, Y. H.; Badarudin, A. [University of Malaya, Lumpur (Malaysia); Rubini, P. A. [University of Hull, East Yorkshire (United Kingdom)

    2012-01-15

    This paper reports on the application of a newly developed LES flow solver to compute a true three-dimensional flow. The research also investigates the behavior of turbulence statistics by comparing transient simulation results to available data based on experiments and simulations. An extensive discussion on the results such as energy spectrum, velocity profiles and time trace of velocities is carried out in the research as well. Based on the results obtained, the application of the flow solver for a turbulent three-dimensional driven cavity flow by using three grids with varying densities is proven. In addition, the research successfully verifies that in many instances computational results agreed reasonably well with the reference data, and the changes in the statistical properties of turbulence with respect to time are closely related to the changes in the flow structure and strength of vortices. The focus of this study is on the prediction of a subgrid scale Reynolds shear stress profiles, and the results show that the standard model is able to reproduce general trends measured from experiments. Furthermore, in certain areas inside the cavity the computed shear stress values are in close agreement with experimental data.

  13. A numerical study of secondary flow and large eddies in a driven cavity

    International Nuclear Information System (INIS)

    Yau, Y. H.; Badarudin, A.; Rubini, P. A.

    2012-01-01

    This paper reports on the application of a newly developed LES flow solver to compute a true three-dimensional flow. The research also investigates the behavior of turbulence statistics by comparing transient simulation results to available data based on experiments and simulations. An extensive discussion on the results such as energy spectrum, velocity profiles and time trace of velocities is carried out in the research as well. Based on the results obtained, the application of the flow solver for a turbulent three-dimensional driven cavity flow by using three grids with varying densities is proven. In addition, the research successfully verifies that in many instances computational results agreed reasonably well with the reference data, and the changes in the statistical properties of turbulence with respect to time are closely related to the changes in the flow structure and strength of vortices. The focus of this study is on the prediction of a subgrid scale Reynolds shear stress profiles, and the results show that the standard model is able to reproduce general trends measured from experiments. Furthermore, in certain areas inside the cavity the computed shear stress values are in close agreement with experimental data

  14. Bifurcations of a creeping air–water flow in a conical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    . They are investigated for (Formula presented.), and (Formula presented.). For small (Formula presented.), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as (Formula presented.) exceeds a threshold depending on (Formula presented.). For all (Formula...... presented.), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer...... with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors....

  15. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  16. Dipolar flow theory of the universe in relation to astronomical observations and universe axis

    International Nuclear Information System (INIS)

    Mullick, U.P.

    1975-01-01

    An attempt has been made to establish Dipolar continuous flow theory of the universe through corroborations from astronomical observations of the positions of nebulae made earlier by astronomers. It is shown that the line through groups of nebulae in Nubecula Major in Southern Sky Region 5, passing through Earth points towards the near side pole A of the universe. Also the angles the plane parallel to universe polar plane x-x and passing through Earth, makes with the Milky Way disc is about 70 0 towards universe pole B, and about 110 0 towards nearside universe pole A. It is also shown that the two nebulae M 31 and M 33 and the groups of nebulae in Megallenic clouds, in Nebecula Major are between planes passing through universe equatorial axis y-y and plant Ysub(E)-Ysub(E) passing through Earth and parallel to universe equatorial plane Y-Y. Besides, the huge red star Betelgeux and the great Nebula in Orion in sky Region 9 are also between these two planes. These observations the author claims accord with his Dipolar Theory. (author)

  17. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    Science.gov (United States)

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  18. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...

  19. Power of the Poincare Group: Elucidating the Hidden Symmetries in Focal Conic Domains

    International Nuclear Information System (INIS)

    Alexander, Gareth P.; Chen, Bryan Gin-ge; Matsumoto, Elisabetta A.; Kamien, Randall D.

    2010-01-01

    Focal conic domains are typically the 'smoking gun' by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  20. Mean Characteristics of Conical Vortices Above Roof Eaves of Low–Rise Cubic Buildings Using Particle Image Velocimetry

    Directory of Open Access Journals (Sweden)

    M. Gamboa–Marrufo

    2009-04-01

    Full Text Available Fluctuating low pressures near the edges of flat roofs are often caused when the wind impinges on one corner of the building so that conical vortices form above the diagonal roof edges. In turbulent flow, these vortices vary in position and strength and the underlying surface pressures fluctuate accordingly. A preliminary approach to the study of the mechanism linking instantaneous roof edge pressures with the wind vortical structures involves the evaluation of mean characteristics and positions of the latter. However the flow examination has so far been severely limited by the restriction of available anemometers to single–point sampling. In this experimental study, a 200mm cube has been used to model a building with a flat square roof set at an angle of 45° to the oncoming flow direction, and a Particle Image Velocimetry system was used to capture instantaneous two–dimensional velocity vector images of entire flow cross–sections, both normal to the vortex axis and in planes parallel to that axis. The se vector maps were used to estimate the mean characteristics of the vortices and appropriate observation–plane directions to measure wind velocities in the study of the instantaneous problem.

  1. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  2. Generation of ultra-fast cumulative water jets by sub-microsecond underwater electrical explosion of conical wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.; Gurovich, V. Tz.; Gleizer, S.; Gruzinsky, K.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2015-12-15

    The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array, the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.

  3. A frictionally and hydraulically constrained model of the convectively driven mean flow in partially enclosed seas

    Science.gov (United States)

    Maxworthy, T.

    1997-08-01

    A simple three-layer model of the dynamics of partially enclosed seas, driven by a surface buoyancy flux, is presented. It contains two major elements, a hydraulic constraint at the exit contraction and friction in the interior of the main body of the sea; both together determine the vertical structure and magnitudes of the interior flow variables, i.e. velocity and density. Application of the model to the large-scale dynamics of the Red Sea gives results that are not in disagreement with observation once the model is applied, also, to predict the dense outflow from the Gulf of Suez. The latter appears to be the agent responsible for the formation of dense bottom water in this system. Also, the model is reasonably successful in predicting the density of the outflow from the Persian Gulf, and can be applied to any number of other examples of convectively driven flow in long, narrow channels, with or without sills and constrictions at their exits.

  4. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  5. Conical pitch angle distributions of very-low energy ion fluxes observed by ISEE 1

    International Nuclear Information System (INIS)

    Horowitz, J.L.; Baugher, C.R.; Chappell, C.R.; Shelley, E.G.; Young, D.T.

    1982-01-01

    Observations of low-energy ionospheric ions by the plasma composition experiment abroad ISEE 1 often show conical pitch angle distributions, that is, peak fluxes between 0 0 and 90 0 to the directions parallel or antiparallel to the magnetic field. Frequently, all three primary ionospheric ion species (H + , He + , and O + ) simultaneously exhibit conical distributions with peak fluxes at essentially the same pitch angle. A distinction is made here between unidirectional, or streaming, distributions, in which ions are traveling essentially from only one hemisphere, and symmetrical distributions, in which significant fluxes are observed traveling from both hemispheres. The orbital coverage for this survey was largely restricted to the night sector, approximately 2100--0600 LT, and moderate geomagnetic latitudes of 20 0 --40 0 . Also, lack of complete pitch angle coverage at all times may have reduced detection for conics with small cone angles. However, we may conclude that the unidirectional conical distributions observed in the northern hemisphere are always observed to be traveling from the northern hemisphere and that they exhibit the following characteristics relative to the symmetric distributions, in that they (1) are typically observed on higher L shells (that is, higher geomagnetic latitudes or larger geocentric distances or both), (2) tend to have significantly larger cone angles, and (3), are associated with higher magnetic activity levels

  6. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera

    International Nuclear Information System (INIS)

    Moon, Sunghwan

    2017-01-01

    A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform. (paper)

  7. Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H

    2014-03-28

    Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

  8. The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg

    Science.gov (United States)

    Lee, Seong-Jae; Hyung, Siek

    2018-06-01

    Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.

  9. Conical evaporator and liquid-return wick model for vapor anode, multi-tube AMTEC cells

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A detailed, 2-D thermal-hydraulic model for conical and flat evaporators and the liquid sodium return artery in PX-type AMTEC cells was developed, which predicts incipient dryout at the evaporator wick surface. Results obtained at fixed hot and cold side temperatures showed that the flat evaporator provided a slightly lower vapor pressure, but reached the capillary limit at higher temperature. The loss of performance due to partial recondensation over up to 20% of the wick surface of the deep conical evaporators was offset by the larger surface area available for evaporation, providing a slightly higher vapor pressure. Model results matched the PX-3A cell's experimental data of electrical power output, but the predicted temperature of the cell's conical evaporator was consistently ~50 K above measurements. A preliminary analysis indicated that sodium vapor leakage in the cell (through microcracks in the BASE tubes' walls or brazes) may explain the difference between predicted and measured evaporator temperatures in PX-3A. .

  10. Wear Assessment of Conical Pick used in Coal Cutting Operation

    Czech Academy of Sciences Publication Activity Database

    Dewangan, S.; Chattopadhyaya, S.; Hloch, Sergej

    -, 11/2014 (2014), s. 1-6 ISSN 0723-2632 Institutional support: RVO:68145535 Keywords : conical pick * wear * SEM * EDX Subject RIV: JQ - Machines ; Tools Impact factor: 2.420, year: 2014 http://link.springer.com/article/10.1007/s00603-014-0680-z

  11. Mitigation of pressure fluctuations in the discharge cone of hydraulic turbines using flow-feedback

    International Nuclear Information System (INIS)

    Tanasa, C; Susan-Resiga, R; Bosioc, A; Muntean, S

    2010-01-01

    Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce in this paper a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. We present the technical implementation of this flow-feedback approach, and we investigated experimentally its capability in mitigating the pressure fluctuations generated by the precessing vortex rope. The main advantage of this flow-feedback approach is that is does not require additional energy to supply the jet and it does not decrease the turbine efficiency.

  12. Flow produced in a conical container by a rotating endwall

    International Nuclear Information System (INIS)

    Escudier, M.P.; O'Leary, J.; Poole, R.J.

    2007-01-01

    Numerical calculations have been carried out for flow in a truncated cone generated by rotation of one endwall. For both convergent (radius increasing with approach to the rotating endwall) and divergent geometries, vortex breakdown is suppressed beyond a certain angle of inclination of the sidewall. At the same time Moffat eddies of increasing strength and extent appear in the corner between the sidewall and the non-rotating endwall. For the divergent geometry, a zone of recirculation appears on the sidewall and eventually merges with the Moffat eddies. The flow phenomena identified from streamline patterns are consistent with the calculated variation of pressure around the periphery of the computational domain

  13. A new approach to evaluate the response functions for conical and cylindrical collimators

    International Nuclear Information System (INIS)

    Gigante, G.E.

    1989-01-01

    A new approach to the evaluation of the conical collimator response function is shown. The basic collimator formulae are reviewed. The collimator response function has been found in a very easy way. An approximate solution has been introduced. Studying the response of a measuring system, the use of this approximation strongly reduces the complexity of the relations to be used; therefore it would provide a useful starting point for a Monte Carlo calculation. The errors introduced are less than 10%. Approximate relations that allow the evaluation of the response of conical and cylindrical collimators to plane and line sources are also given. (orig.)

  14. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  15. Fluid queues driven by a birth and death process with alternating flow rates

    OpenAIRE

    P. R. Parthasarathy; K. V. Vijayashree; R. B. Lenin

    2004-01-01

    Fluid queue driven by a birth and death process (BDP) with only one negative effective input rate has been considered in the literature. As an alternative, here we consider a fluid queue in which the input is characterized by a BDP with alternating positive and negative flow rates on a finite state space. Also, the BDP has two alternating arrival rates and two alternating service rates. Explicit expression for the distribution function of the buffer occupancy is obtained. The case where the s...

  16. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    DR OKE

    International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.

  17. Patron-driven acquisition of journal articles using ReadCube at the University of Utah

    Directory of Open Access Journals (Sweden)

    Mark England

    2013-11-01

    Full Text Available The University of Utah Library has teamed with a new company, Labtiva, to experiment with a product called ReadCube Access. This product allows the library to provide access to journal articles using a patron-driven acquisition (PDA mechanism, using a tiered pricing structure based on level and permanence of access. Outcomes of the pilot program and a value analysis are discussed. Overall, the program is deemed a success by the Library.

  18. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States)

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  19. BALL KINEMATICS IN FINE POLISHING BETWEEN MISALIGNED DISKS IN CONIC OPENINGS

    Directory of Open Access Journals (Sweden)

    K. G. Shchetnikovich

    2009-01-01

    Full Text Available The paper considers ball kinematics in polishing between misaligned disks rotating with equal angular velocity; one of these disks has conic openings. Analytical dependences have been obtained for calculation of an angular velocity and ball sliding speed in the conic opening. It has been revealed that at a constant contact of a ball with elastic coating of a flat disk and absence of vibrations in the technological system an instantaneous axis of ball rotation does not change its position in the moving ball. It has been ascertained that when a ball is in contact with a flat disk having elastic coating with grooves changes in the position of ball rotation instantaneous axis have a regular character and do not depend on vibrations in the technological system.

  20. Switching Exciton Pulses Through Conical Intersections

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2014-11-01

    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

  1. Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder.

    Science.gov (United States)

    Grants, Ilmars; Gerbeth, Gunter

    2010-07-01

    The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.

  2. Integrable Flows for Starlike Curves in Centroaffine Space

    Directory of Open Access Journals (Sweden)

    Annalisa Calini

    2013-03-01

    Full Text Available We construct integrable hierarchies of flows for curves in centroaffine R^3 through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP^2 induces the Kaup-Kuperschmidt hierarchy at the curvature level.

  3. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    Science.gov (United States)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the

  4. Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions

    Directory of Open Access Journals (Sweden)

    W. Miyake

    2002-04-01

    Full Text Available The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polar-orbiting Exos-D (Akebono satellite. We found that both the solar wind velocity and density, as well as IMF By and Bz , affect the occurrence frequency of ion conics. The energy of ion conics also depends on the solar wind velocity, IMF By and Bz . The ion beams around the local noon are not significantly controlled by the interplanetary conditions. The results reveal that ion convection, as well as the energy source, is important to understand the production of dayside ion conics while that of ion beams basically reflects the intensity of local field-aligned currents.Key words. Ionosphere (particle acceleration – magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere ionosphere interaction

  5. Geometrical pinning of magnetic vortices induced by a deficit angle on a surface: Anisotropic spins on a conic space background

    International Nuclear Information System (INIS)

    Moura-Melo, W.A.; Pereira, A.R.; Mol, L.A.S.; Pires, A.S.T.

    2007-01-01

    We study magnetic vortex-like excitations lying on a conic space background. Two types of them are obtained. Their energies appear to be linearly dependent on the conical aperture parameter, besides of being logarithmically divergent with the sample size. In addition, we realize a geometrical-like pinning of the vortex, say, it is energetically favorable for it to nucleate around the conical apex. We also study the problem of two vortices on the cone and obtain an interesting effect on such a geometry: excitations of the same charge, then repealing each other, may nucleate around the apex for suitable cone apertures. We also pay attention to the problem of the vortex pair and how its dissociation temperature depends upon conical geometry

  6. Conical angles of ligands - compounds of elements of the 6(16) and 7(17) groups. Levelling effect

    International Nuclear Information System (INIS)

    Imyanitov, N.S.

    1991-01-01

    In the framework of development of a unified system of electron and steric effects of ligand conical angles of 176 compounds R 2 X and RHal, where X=O, S, Se, Te; Hal=F, Cl, Br, I; R=H, Hal (only in the case of R 2 X), Alk or Ar, were calculated. A levelling effect of large X and Hal was pointed out: in the beginning of steric series the conical angles are determined by dimensions of X and Hal and not by R ones. Similar levelled values of conical angles for previously considered ligands on the basis of N, P, As, Sb, Bi, C, Si, Ge, Sn were also calculated

  7. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  8. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    International Nuclear Information System (INIS)

    Petrovic, Vladimir S.; Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-01-01

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals

  9. Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    We consider the second-order conic equivalent of the classic knapsack polytope where the variables are subject to generalized upper bound constraints. We describe and compare a number of separation and extension algorithms which make use of the extra structure implied by the generalized upper bound...... constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. We show that determining whether a cover can be extended with a variable is NP-hard. Computational experiments are performed comparing the proposed separation and extension algorithms. These experiments show...

  10. Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals

    NARCIS (Netherlands)

    J. Dong; M Chang; X. Huang; Z. Hang; Z. Zhong; W. Chen; Z. Huang; C. Chan; X. Huang; Z. Huang

    2015-01-01

    htmlabstractIt is recognized that for a certain class of periodic photonic crystals, conical dispersion can be related to a zero-refractive index. It is not obvious whether such a notion can be extended to a noncrystalline system. We show that certain photonic quasicrystalline approximants have

  11. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  12. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  13. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  14. Anisotropic Exchange Interaction in the Conical Magnetic Phase of Erbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1974-01-01

    From a general two ion spin Hamiltonian, an expression is deduced for the energies of spin waves propagating in a hexagonal solid in which the magnetic moments are ordered in a conical or helical structure. The spin wave dispersion relation in the c direction of Er in its conical magnetic phase...... at 4.5K, which has been studied by Nicklow et al (1971) is reanalysed. In this analysis an alternative kind of anisotropic coupling between the total angular moments (Ji and Jj) on the sites i and j is introduced which is proportional to the following combination of Racah operators: O2, -2(Ji), O2, -2......(Jj), expressed with respect to a coordinate system with the z axis along the c direction. The resulting anisotropy (both the constant and the q dependent part) is reduced by an order of magnitude in comparison with that deduced by Nicklow et al (1971). The constant anisotropy is found to be equal...

  15. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Pescatore, C.

    1994-02-01

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  16. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    Science.gov (United States)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings

  17. Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Jia-Jang Wu

    2013-01-01

    Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.

  18. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  19. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  20. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  1. The spectra of conical bubble sonoluminescence in 1,2-propanediol and glycol

    International Nuclear Information System (INIS)

    He Shoujie; Jing Ha; Li Xuechen; Li Qing; Dong Lifang; Wang, Long

    2007-01-01

    A conical bubble straight tube apparatus was set up to study sonoluminescence. The spectra of conical bubble sonoluminescence for 1,2-propanediol and glycol were detected. The results show that the luminescence is intense, and the spectra consist of a broad background on which five clear sequences of Swan bands and three sequences of the B 2 Σ + → X 2 Σ + transition of CN are superimposed. A band assigned to the A 2 Δ → X 2 Π transition of CH was also measured and the vibrational and rotational structures of Swan bands could be resolved. The origin of the C* 2 and C 2 H* is discussed. Finally, the achieved molecular vibrational temperature is estimated to be about 5400 ± 350 K

  2. Matrix analysis of the asymmetrical bending of conical shell-beams and their singular assemblies

    International Nuclear Information System (INIS)

    Kiedrzynski, A.; Coppens, L.

    1979-01-01

    As an alternative to refined finite element methodology a new method has been derived to investigate in much detail the linear static behaviour of singular assemblies of moderately thick conical shells of revolution submitted to non-axisymmetrical loads at their ends (an assembly of conical sections is said to be singular when the geometrical discontinuities are deformable, i.e. not stiffened by diaphragms). A detailed preliminary study has shown that the currently adopted simplifying assumptions in shell theories for moderate thickness lead to unconsistencies at any departure from axisymmetric loading. Therefore, FLUEGGE's general shell theory has been applied to a conical section, yielding a set of mixed first order differential equations in terms of displacements and conjuguated stress resultants well suited for a matrix formalism. The numerical integration is based on a fourth-order Runge-Kutta method and provides an 8 x 8 mixed matrix. This matrix contains complete information on the distribution of the displacements (exhibiting the warping and ovalization of the cross-section) and of the stress resultants along the meridian; also the stiffness coefficients proceed from it. (orig.)

  3. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    Science.gov (United States)

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  4. A mathematical model for the motion analysis of embedded straight microcantilevers under a pressure-driven flow

    International Nuclear Information System (INIS)

    Ezkerra, A; Mayora, K; Ruano-López, J M; Wilson, P A

    2008-01-01

    A mathematical model that estimates the deflection of straight microcantilevers embedded in a microchannel under a pressure-driven flow at low Reynolds numbers is presented. The model makes use of the Schwarz–Christoffel mapping in order to couple the geometry of the structure and the flow passing around it. Therefore, it allows the determination of the most influential parameters and suitable modifications in order to achieve the desired performance. The model does not require specific knowledge of the flow conditions in the vicinity of the structure, which improves its practical use during the early stages of design. Estimations have been made for two straight cantilevers under a range of pressures. The results obtained show good agreement with measurements from experiments

  5. Conical differentiability for evolution variational inequalities

    Science.gov (United States)

    Jarušek, Jiří; Krbec, Miroslav; Rao, Murali; Sokołowski, Jan

    The conical differentiability of solutions to the parabolic variational inequality with respect to the right-hand side is proved in the paper. From one side the result is based on the Lipschitz continuity in H {1}/{2},1 (Q) of solutions to the variational inequality with respect to the right-hand side. On the other side, in view of the polyhedricity of the convex cone K={v∈ H;v |Σ c⩾0,v |Σ d=0}, we prove new results on sensitivity analysis of parabolic variational inequalities. Therefore, we have a positive answer to the question raised by Fulbert Mignot (J. Funct. Anal. 22 (1976) 25-32).

  6. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Pullepu, Babuji [S R M University, Chennai (India)

    2015-05-15

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  7. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    International Nuclear Information System (INIS)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y.; Pullepu, Babuji

    2015-01-01

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  8. Mixing driven by transient buoyancy flows. I. Kinematics

    Science.gov (United States)

    Duval, W. M. B.; Zhong, H.; Batur, C.

    2018-05-01

    Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.

  9. Conical scan impact study. Volume 2: Small local user data processing facility. [multispectral band scanner design alternatives for earth resources data

    Science.gov (United States)

    Ebert, D. H.; Chase, P. E.; Dye, J.; Fahline, W. C.; Johnson, R. H.

    1973-01-01

    The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data.

  10. Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Directory of Open Access Journals (Sweden)

    K. Yapici

    2013-12-01

    Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.

  11. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu-Guang [Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433 (China); Yin, Yi [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  12. Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.

    Science.gov (United States)

    Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D

    2010-06-25

    Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  13. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  14. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  15. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  16. Local-scale modelling of density-driven flow for the phases of repository operation and post-closure at Beberg

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2004-09-01

    A hydrogeological model was developed for Beberg with the aim of evaluating the impact of a repository (for the operational and post-closure phases) while accounting for the effects of density-driven flow. Two embedded scales were taken into account for this modelling study: a local scale at which the granitic medium was considered as a continuum and a repository scale, where the medium is fractured and therefore was regarded to be discrete. The following step-wise approach was established to model density-driven flow at both repository and local scale: (a) modelling fracture networks at the repository scale, (b) upscaling the hydraulic properties to a continuum at local scale and (c) modelling density-driven flow to evaluate repository impact at local scale. The results demonstrate the strong impact of the repository on the flow field during the phase of operation. The distribution of the salt concentration is affected by a large upcoming effect with increased relative concentration and by the presence of fracture zones carrying freshwater from the surface. The concentrations obtained for the reference case, expressed in terms of percentage with respect to the maximum (prescribed) value in the model, are as follows: ca 30% for the phase of desaturation, and ca 20% for the resaturation phase. For the reference case, the impact of repository operations appears no longer visible after a resaturation period of about 20 years after repository closure; under resaturation conditions, evidence of the operational phase has already disappeared in terms of the observed hydraulic and concentration fields. Sensitivity calculations have proven the importance of explicitly discretising repository tunnels when assessing resaturation time and maximum concentration values. Furthermore, the definition of a fixed potential as boundary condition along the model's top surface is likely to provide underestimated values for the maximum concentration and overestimated flow rates in the

  17. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    Science.gov (United States)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.

  18. Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.

    Science.gov (United States)

    Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J

    2018-02-01

    The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.

  19. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  20. ANALYSIS OF RIBBONING ON CONICAL YARN PACKAGE WOUND BY OPENEND SPINNING MACHINES

    Directory of Open Access Journals (Sweden)

    Resul FETTAHOV

    2001-03-01

    Full Text Available In this paper, Ribboning , one of the common faults in yarn packages, is mathematically analysed. If yarn is repeatly laid on top of or along the same path as the previously wound yarn, this duplication of yarn path on the package creates a defect known as ribboning. The number of turns of package (n per double traverse of yarn guide is calculated in two different way One is calculated the length of a coil on the package and total length of yarn in a double traverse; the other is considered transmission rate between drum and conical yarn package The result of two different approach is similar and the probable diameter of conical yarn package which ribboning is occurred is calculated and used on Schalafhorst-Autocore OE spinning machines.

  1. Theoretical interpretation of upstreaming electrons and elevated conics on auroral field lines

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Schriver, D.

    1989-01-01

    Recent VIKING satellite observations in the auroral zone have shown the association of elevated ion conics (conics with a low energy cutoff above zero) with upward streaming electrons in the presence of low frequency electric field fluctuations. A self-consistent particle simulation was developed which assumed the presence of a steady state electric field on auroral zone field lines capable of accelerating ions up the magnetic field lines. Results from this study show that a low frequency ion-ion two stream instability can be excited. This low frequency instability creates a fluctuating electric field which heats the ions oblique to the magnetic field forming distributions similar to the elevated ion comics. The ion-ion waves also interact resonantly with electrons and accelerates them in the direction of the ion beam

  2. Universal versus platelet reactivity assay-driven use of P2Y12 inhibitors in acute coronary syndrome patients: cost-effectiveness analyses for six European perspectives.

    Science.gov (United States)

    Coleman, Craig I; Limone, Brendan L

    2014-01-01

    Platelet reactivity assays (PRAs) can predict patients' likely response to clopidogrel. As ticagrelor and prasugrel are typically considered first-line agents for acute coronary syndrome in Europe, we assessed the cost-effectiveness of universal compared to PRA-driven selection of these agents. A Markov model was used to calculate five-year costs (2013£/€), quality-adjusted life-years and incremental cost-effectiveness ratios (ICERs) for one-year of universal ticagrelor or prasugrel (given to all) compared to each agents' corresponding PRA-driven strategy (ticagrelor/prasugrel in those with high platelet reactivity [HPR, >208 on the VerifyNow P2Y12 assay], others given generic clopidogrel). We assumed patients had their index event at 65-70 years of age and had a 42.7% incidence of HPR 24-48 hours post-revascularisation. The analysis was conducted from the perspective of six countries (France, Germany, Italy, Spain, the Netherlands and United Kingdom) and used a one-year cycle length. Event data for P2Y12 inhibitors were taken from multinational randomised trials and adjusted using country-specific epidemiologic data. Neither universal ticagrelor nor prasugrel were found to be cost-effective (all ICERs >40,250€ or £36,600/QALY) compared to their corresponding PRA-driven strategies in any of the countries evaluated. Results were sensitive to differences in P2Y12 Inhibitors costs and drug-specific relative risks of major adverse cardiac events. Monte Carlo simulation suggested universal ticagrelor or prasugrel were cost-effective in only 25-44% and 11-17% of 10,000 iterations compared to their respective PRA-driven strategies, when applying a willingness-to-pay threshold = €30,000 or £20,000/QALY. In conclusion, the universal use of newer P2Y12 inhibitors is not likely cost-effective compared to PRA-driven strategies.

  3. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  4. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  5. High efficiency conical scanner for earth resources applications

    Science.gov (United States)

    Bates, J. C.; Dumas, H. J., Jr.

    1975-01-01

    A description is given of a six-arm conical scanner which was selected to provide a continuous line-of-sight scan. Two versions of the instrument are considered. The two versions differ in their weight. The weight of the heavy version is 600 lbs. A light weight design which employs beryllium and aluminum optical components weighs only 350 lbs. A multiplexer and analog-to-digital converter are to be incorporated into the design. Questions of instrument performance are also discussed.

  6. Spatiotemporal dynamics of underwater conical shock wave focusing

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Lukeš, Petr; Akiyama, H.; Hosseini, H.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 685-690 ISSN 0938-1287 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Underwater shock wave focusing * multichannel * electrohydraulic discharge * conical shock wave reflection * medical application Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.107, year: 2016 https://link.springer.com/article/10.1007/s00193-016-0703-7

  7. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  8. Quasi-conical centrifugal ion trap

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Solov'ev, K.V.; Grigor'ev, D.V.; Flegontova, E.Yu.

    1999-01-01

    This paper describes a new excellent ion trap that principally differs from the classic hyperbolic one by its action. The action is based on the axisymmetric electrostatic quasi-conical field with the following potential type: F=F 0 [ln r - r 2 /2+z 2 ], where r, z are cylindrical dimensionless coordinates. The radial potential run (f=ln r-r 2 /2), in this case, is exactly presented by the approximation function f a =ar 2 +b/r 2 +c. In addition, there are some ranges of r (for example, 0.6< r<0.35), in which the concurrence accuracy value is above 0.5%. The paper presents the theory of particles dynamics in the centrifugal trap. Basic correlation for resolution ratios and sensitivity values are developed. Recommendations on the centrifugal trap design implementation, including the recording system, are given

  9. Separation and Characterization of DNA Molecules and Intermolecular Interactions in Pressure-Driven Micro Flow

    Science.gov (United States)

    Friedrich, Sarah; Wang, Tza-Huei

    Pressure-driven flow in micron-sized diameter capillaries can be used to separate DNA molecules by size in a technique called Free Solution Hydrodynamic Separation. By coupling this technique with Cylindrical Illumination Confocal Spectroscopy, we have developed a highly sensitive and quantitative platform capable of separating DNA molecules by length over a large dynamic range (25 bp to 48 kbp) in a single run using only picoliters or femtograms of a DNA sample. The optical detection volume completely spans the capillary cross section, enabling highly efficient single molecule detection for enhanced sensitivity and quantification accuracy via single molecule counting. Because each DNA molecule generates its own fluorescent burst, these burst profiles can be further analyzed to individually characterize each DNA molecule's shape as it passes through the detection region. We exploit these burst profiles to visualize fluctuations in conformation under shear flow in microcapillaries, and utilizing combined mobility shift analysis, explore the complex relationship between molecular properties including length and conformation, hydrodynamic mobility, solution conditions including ion species and concentrations, and separation conditions including flow rate and capillary diameter.

  10. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    Science.gov (United States)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  11. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  12. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  13. Data-Driven and Expectation-Driven Discovery of Empirical Laws.

    Science.gov (United States)

    1982-10-10

    occurred in small integer proportions to each other. In 1809, Joseph Gay- Lussac found evidence for his law of combining volumes, which stated that a...of Empirical Laws Patrick W. Langley Gary L. Bradshaw Herbert A. Simon T1he Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Data-Driven and Expectation-Driven Discovery Interim Report 2/82-10/82 of Empirical Laws S. PERFORMING ORG

  14. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent

  15. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    Science.gov (United States)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  16. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  17. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

    OpenAIRE

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo

    2014-01-01

    PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess ...

  18. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  19. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Battistoni, Michele; Grimaldi, Carlo Nazareno

    2012-01-01

    Highlights: ► Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ► Coupling of Eulerian and Lagrangian spray CFD simulations. ► Effects of hole shaping: conical versus cylindrical and edge rounding effects. ► Prediction of spray characteristics improved using inner nozzle flow data. ► Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  20. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  1. Nineteen-Foot Diameter Explosively Driven Blast Simulator; TOPICAL

    International Nuclear Information System (INIS)

    VIGIL, MANUEL G.

    2001-01-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels

  2. Tuning across Universalities with a Driven Open Condensate

    Directory of Open Access Journals (Sweden)

    A. Zamora

    2017-10-01

    Full Text Available Driven-dissipative systems in two dimensions can differ substantially from their equilibrium counterparts. In particular, a dramatic loss of off-diagonal algebraic order and superfluidity has been predicted to occur because of the interplay between coherent dynamics and external drive and dissipation in the thermodynamic limit. We show here that the order adopted by the system can be substantially altered by a simple, experimentally viable tuning of the driving process. More precisely, by considering the long-wavelength phase dynamics of a polariton quantum fluid in the optical parametric oscillator regime, we demonstrate that simply changing the strength of the pumping mechanism in an appropriate parameter range can substantially alter the level of effective spatial anisotropy induced by the driving laser and move the system into distinct scaling regimes. These include (i the classic algebraically ordered superfluid below the Berezinskii-Kosterlitz-Thouless (BKT transition, as in equilibrium; (ii the nonequilibrium, long-wavelength-fluctuation-dominated Kardar-Parisi-Zhang (KPZ phase; and the two associated topological-defect-dominated disordered phases caused by proliferation of (iii entropic BKT vortex-antivortex pairs or (iv repelling vortices in the KPZ phase. Furthermore, by analyzing the renormalization group flow in a finite system, we examine the length scales associated with these phases and assess their observability in current experimental conditions.

  3. CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Endashaw Tesfaye Woldemariam

    2018-01-01

    Full Text Available Turbines are critical parts in hydropower facilities, and the cross-flow turbine is one of the widely applied turbine designs in small- and micro-hydro facilities. Cross-flow turbines are relatively simple, flexible and less expensive, compared to other conventional hydro-turbines. However, the power generation efficiency of cross-flow turbines is not yet well optimized compared to conventional hydro-turbines. In this article, a Computational Fluid Dynamics (CFD-driven design optimization approach is applied to one of the critical parts of the turbine, the valve. The valve controls the fluid flow, as well as determines the velocity and pressure magnitudes of the fluid jet leaving the nozzle region in the turbine. The Non-Uniform Rational B-Spline (NURBS function is employed to generate construction points for the valve profile curve. Control points from the function that are highly sensitive to the output power are selected as optimization parameters, leading to the generation of construction points. Metamodel-assisted and metaheuristic optimization tools are used in the optimization. Optimized turbine designs from both optimization methods outperformed the original design with regard to performance of the turbine. Moreover, the metamodel-assisted optimization approach reduced the computational cost, compared to its counterpart.

  4. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim

    2012-01-01

    We present lattice Boltzmann simulations of rarefied flows driven by pressure drops along two-dimensional microchannels. Rarefied effects lead to non-zero cross-channel velocities, nonlinear variations in the pressure along the channel. Both effects are absent in flows driven by uniform body forces. We obtain second-order accuracy for the two components of velocity the pressure relative to asymptotic solutions of the compressible Navier-Stokes equations with slip boundary conditions. Since the common lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier-Maxwell slip boundary conditions that relate the tangential velocity to the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. Our moment formalism is also valuable for analysing the existing boundary conditions. It reveals the origin of numerical slip in the bounce-back other common boundary conditions that impose conditions on the higher moments, not on the local tangential velocity itself. © 2012 American Institute of Physics.

  5. Diffusion and mixing in gravity-driven dense granular flows.

    Science.gov (United States)

    Choi, Jaehyuk; Kudrolli, Arshad; Rosales, Rodolfo R; Bazant, Martin Z

    2004-04-30

    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from superdiffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the superdiffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Péclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with long-lasting contacts but not thermal collisions, as in normal fluids.

  6. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  7. Three-dimensional direct numerical simulation of electromagnetically driven multiscale shallow layer flows: Numerical modeling and physical properties

    Science.gov (United States)

    Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel

    2008-12-01

    Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and

  8. Fatigue induced changes in conical implant-abutment connections.

    Science.gov (United States)

    Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja

    2015-11-01

    Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Science.gov (United States)

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  10. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  11. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  12. "Big Bang" as a result result of the curvature-driven first-order phase transition in the early cold Universe

    Science.gov (United States)

    Pashitskii, E. A.; Pentegov, V. I.

    We suggest that the "Big Bang" may be a result of the first-order phase transition driven by changing scalar curvature of the 4D space-time in the expanding cold Universe, filled with nonlinear scalar field φ and neutral matter with equation of state p = vɛ (where p and ɛ are pressure and energy density of matter). We consider a Lagrangian for scalar field in curved space-time with nonlinearity φ, which along with the quadratic term -ΣR|φ|2 (where Σ is interaction constant and R is scalar curvature) contains a term ΣR(φ +φ+) linear in φ. Due to this term the condition for the extrema of the potential energy of the scalar field is given by a cubic equation. Provided v > 1/3 the scalar curvature R = [κ(3v-1)ɛ - 4Γ (where κ and Γ are Einstein's gravitational and cosmological constants) decreases along with decreasing " in the process of the Universe's expansion, and at some critical value Rc < 0 a first-order phase transition occurs, driven by an "external field" parameter proportional to R. Given certain conditions the critical radius of the early Universe at the point of the first-order phase transition may reach arbitrary large values, so this scenario of unrestricted "inflation" of the Universe may be called "hyperinflation". Beyond the point of phase transition the system is rolling down into the potential minimum releasing the potential energy of scalar field with subsequent powerful heating of the Universe playing the role of "Big Bang".

  13. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    Science.gov (United States)

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  14. Numerical study of the effect of Navier slip on the driven cavity flow

    KAUST Repository

    He, Qiaolin

    2009-10-01

    We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O. [Université de Toulouse INPT-UPS: Laboratoire de Génie Chimique and CNRS, Fédération de Recherche FERMaT, Toulouse (France); Climent, E. [Université de Toulouse INPT-UPS: Institut de Mécanique des Fluides de Toulouse and CNRS, Fédération de Recherche FERMaT, Toulouse (France)

    2015-12-15

    Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.

  16. Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow

    International Nuclear Information System (INIS)

    Loisel, V.; Abbas, M.; Masbernat, O.; Climent, E.

    2015-01-01

    Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section

  17. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    International Nuclear Information System (INIS)

    Owen, James E.; Alvarez, Marcelo A.

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes

  18. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  19. Reynolds number and end-wall effects on a lid-driven cavity flow

    International Nuclear Information System (INIS)

    Prasad, A.K.; Koseff, J.R.

    1989-01-01

    A series of experiments has been conducted in a lid-driven cavity of square cross section (depth = width = 150 mm) for Reynolds numbers (Re, based on lid speed and cavity width) between 3200 and 10 000, and spanwise aspect ratios (SAR) between 0.25:1 and 1:1. Flow visualization using polystyrene beads and two-dimensional laser-Doppler anemometer (LDA) measurements have shed new light on the momentum transfer processes within the cavity. This paper focuses on the variation, with Re and SAR, of the mean and the rms velocities profiles, as well as the /similar to/(U'V') profile, along the horizontal and vertical centerlines in the symmetry plane. In addition, the contribution of the large-scale ''organized structures,'' and the high-frequency ''turbulent'' velocity fluctuations to the total rms is examined. At low Re, the organized structures account for most of the energy contained in the flow irrespective of SAR. As the Re increases, however, so does the energy content of the higher frequency fluctuations. This trend is not independent of SAR; a reduction in the SAR causes the ''organized structures'' to again become more evident

  20. SIMULATION OF FREE CURRENT FLOWS IN BUOYANCY-DRIVEN VENTILATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Abramkina

    2017-01-01

    Full Text Available Objectives. The aim of the study is to analyse the effect of the design and methods for heating the ventilation duct of a buoyancy- driven system on the formation of free convective air currents in it.Methods. The study of free convection under the conditions of interior problem was carried out using the CFD software, based on  the finite volume method with unstructured grid. Ansys Fluent software was used as a calculation tool in the study, due to its having a high convergence of numerical solutions offering full-scale  measurements of convective currents.To evaluate the reliability of  the results obtained, a validation procedure was carried out, allowing us to determine how accurately the selected conceptual model describes the investigated flow through a comparison of experimental and numerical data.Results. The results of numerical modelling of free convective currents occurring in the heated channel of the ventilation system of  the top floor of a multi-storey residential building are presented in  the article. In the course of the study, the air velocity at the entrance to the ventilation duct was found to depend on the calculated  temperature difference θ ˚C for various heating methods. A gradual  increase in the discrepancy between the numerical simulation and  experimental results is observed if the calculated temperature  difference > 20 ° C. This phenomenon is due to the fact that with  increased duct temperature, it is quite difficult to achieve even  heating under actual conditions; this is especially noticeable when  considering the variant when the vertical part of the vent duct and the take-off are both heated. The maximum deviation of the  results is 4.4%. The obtained velocity profiles in the calculated  sections indicate the impact of the ventilation take-off on the nature  of the air flow motion.Conclusion. One of the drawbacks of the existing systems of natural ventilation of residential

  1. Conical Stream of the Two-Sided Jets in NGC 4261 over the Range of 103–109 Schwarzschild Radii

    Directory of Open Access Journals (Sweden)

    Satomi Nakahara

    2016-12-01

    Full Text Available We report the jet width profile of of the nearby ( ∼ 30 Mpc AGN NGC 4261 for both the approaching jet and the counter jet at radial distances ranging from ∼ 10 3 – 10 9 Schwarzschild radius ( R S from the central engine. Our Very Large Array (VLA and Very Long Baseline Array (VLBA observations reveal that the jets maintain a conical structure on both sides over the range 10 3 – 10 9 R S without any structural transition (i.e., parabolic to conical like in the approaching jet in M87. Thus, NGC 4261 will provide a unique opportunity to examine the conical jet hypothesis in blazars, while it may require some additional consideration on the acceleration and collimation process in AGN jets.

  2. A truncated conical beam model for analysis of the vibration of rat whiskers.

    Science.gov (United States)

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh

    2013-08-09

    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Design and implementation of a novel conical electrode for fast anodic bonding

    International Nuclear Information System (INIS)

    Yang, Chii-Rong; Chang, Long-Yin; Wu, Jim-Wei

    2014-01-01

    Anodic bonding is a frequently used nonintermediate wafer-bonding technique for use in MEMS. However, it has a minimum bonding time for a 4 in silicon/glass wafer that is generally limited to the order of several minutes because of the gas-trapping problem that occurs in the bonded interface when a conventional bonding electrode is used. Therefore, the purpose of this study was to develop a novel conical bonding electrode, which shortens the bonding time and solves the gas-trapping problem of the bonded interface. The 4 in silicon/glass wafers fitted with the proposed electrode exhibited a bonding ratio of 99.89% and an average bonding strength of around 15 MPa, which was attained within 15 s, at a bonding voltage of 900 V and a bonding temperature of 400 °C. A comprehensive series of experiments was performed to validate the excellent bonding performance of the proposed conical electrode. (paper)

  4. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.

    Science.gov (United States)

    Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei

    2016-12-27

    An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.

  5. Quantum friction of pseudorotation in Jahn-Teller system: Passage through conical intersection

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Kaja, E-mail: kaja.pae@gmail.com; Hizhnyakov, Vladimir [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)

    2016-08-14

    A theoretical study of the relaxation of an excited impurity center with strong E × e-type Jahn-Teller effect, caused by the emission of phonons to the bulk, is presented. The dependence of the passing the system through the conical intersection of the potential surface on the momentum of the pseudorotation is figured out. An analytical description of the quantum states of the conical intersection (Slonczewski resonances) is given. It is found that for realistic vibronic interactions with phonons, the characteristic time of the energy loss is several tenths of mean periods of phonons, i.e., it is in the picosecond range. It is also found that there is a finite probability of the speeding-up of the pseudorotation of the system at the intermediate stage of relaxation. In particular, this probability increases close to the Slonczewski resonances. During the relaxation, the system may change the direction of the pseudomoment; the probability of such a change also increases near the resonances.

  6. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  7. The index of Fourier integral operators on manifolds with conical singularities

    International Nuclear Information System (INIS)

    Nazaikinskii, Vladimir E; Sternin, B Yu; Schulze, B-W

    2001-01-01

    We describe homogeneous canonical transformations of the cotangent bundle of a manifold with conical singular points and compute the index of an elliptic Fourier integral operator obtained by the quantization of such a transformation. The answer involves the index of an elliptic Fourier integral operator on a smooth manifold and the residues of the conormal symbol

  8. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  9. Cilia driven flow networks in the brain

    Science.gov (United States)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  10. Analytical and experimental position stability of the abutment in different dental implant systems with a conical implant?abutment connection

    OpenAIRE

    Semper-Hogg, Wiebke; Kraft, Silvan; Stiller, Sebastian; Mehrhof, Juergen; Nelson, Katja

    2012-01-01

    Objectives Position stability of the abutment should be investigated in four implant systems with a conical implant?abutment connection. Materials and methods Previously developed formulas and an established experimental setup were used to determine the position stability of the abutment in the four implant systems with a conical implant?abutment connection and different positional index designs: The theoretical rotational freedom was calculated by using the dimensions of one randomly selecte...

  11. Radially Polarized Conical Beam from an Embedded Etched Fiber

    OpenAIRE

    Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.

    2009-01-01

    International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...

  12. Measurement of beam driven hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.

    2003-01-01

    Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers

  13. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    Science.gov (United States)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  14. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2010-08-30

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  15. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2010-01-01

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  16. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  17. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels

  18. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations

  19. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  20. Inverse truss design as a conic mathematical program with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Outrata, Jiří

    2017-01-01

    Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf

  1. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  2. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W Y [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Meigooni, A S [Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Han, D [Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical

  3. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Science.gov (United States)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  4. Radially polarized conical beam from an embedded etched fiber.

    Science.gov (United States)

    Kalaidji, Djamel; Spajer, Michel; Marthouret, Nadège; Grosjean, Thierry

    2009-06-15

    We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

  5. Flux-driven simulations of turbulence collapse

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CASS and Department of Physics, University of California, San Diego, La Jolla, California 92093-0429 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  6. Variation in polydispersity in pump- and pressure-driven micro-droplet generators

    Science.gov (United States)

    Zeng, Wen; Jacobi, Ian; Li, Songjing; Stone, Howard A.

    2015-11-01

    The polydispersity of droplets produced in a typical T-junction microfluidic channel under both syringe-pump-driven and pressure-driven flow configurations is measured quantitatively. Both flow systems exhibit high-frequency flow fluctuations that result in an intrinsic polydispersity due to the mechanism of droplet generation. In addition to this intrinsic polydispersity, the syringe-pump-driven device also exhibits low-frequency fluctuations due to mechanical oscillations of the pump, which overwhelm the high-frequency flow fluctuations and produce a signficantly heightened level of polydispersity. The quantitative difference in polydispersity between the two configurations and time-resolved measurements of individual droplet sizes are presented in order to enable the design of better flow control systems for droplet production.

  7. Hypervelocity jets from conical hollow-charges

    International Nuclear Information System (INIS)

    Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G.

    1997-01-01

    In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone

  8. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  9. WebQuest on Conic Sections as a Learning Tool for Prospective Teachers

    Science.gov (United States)

    Kurtulus, Aytac; Ada, Tuba

    2012-01-01

    WebQuests incorporate technology with educational concepts through integrating online resources with student-centred and activity-based learning. In this study, we describe and evaluate a WebQuest based on conic sections, which we have used with a group of prospective mathematics teachers. The WebQuest entitled: "Creating a Carpet Design Using…

  10. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah

    2014-04-21

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the

  11. Flow-driven voltage generation in carbon nanotubes

    Indian Academy of Sciences (India)

    The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated ...

  12. Conical surface textures formed by ion bombarding 2% Be-Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1991-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form depend strongly on argon energy (from 250 to 1500 eV); argon fluence (10 19 to 10 20 ions cm -2 ); and argon flux (0.1 to 1 mA cm -2 ). The texture morphology depends less strongly on the background ambient (Mo versus graphite), earlier alloy heat treatments and the temperature during bombardment (100 o C and 450 o C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical side-wall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including pulsed power Li + beam anodes; cold cathode field emission devices; optical absorbers and catalysis supports. (author)

  13. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  14. Conical surface textures formed by ion bombarding 2% Be Cu alloy

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1990-01-01

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form strongly depend on: (1) argon energy (from 250 to 1500 eV), (2) fluence (10 19 to 10 20 ions/cm 2 ), and (3) flux (0.1 to 1 mA/cm 2 ). The texture morphology depends less strongly on the background ambient (Mo vs graphite), earlier alloy heat treatments and the temperature during bombardment (100 degree C and 450 degree C). As the texture matures with increasing fluence, the number of large features increases at the expense of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical sidewall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including: (1) pulsed power Li+ beam anodes, (2) cold cathode field emission devices, (3) optical absorbers and (4) catalysis supports. 18 refs., 5 figs

  15. Simulation of density-driven flow in heterogeneous and fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, A. [Politecnico di Torino (Italy). DISMA; Logashenko, D. [Steinbeis Research Center, Oelbronn (Germany); Stichel, S.; Wittum, G. [Frankfurt Univ., Frankfurt am Main (Germany). G-CSC

    2015-07-01

    The study of fractured porous media is an important and challenging problem in hydrogeology. One of the difficulties is that mathematical models have to account for heterogeneity introduced by fractures in hydrogeological media. Heterogeneity may strongly influence the physical processes taking place in these media. Moreover, the thickness of the fractures, which is usually negligible in comparison with the size of the whole domain, and the complicated geometry of fracture networks reduce essentially the efficiency of numerical methods. In order to overcome these difficulties, fractures are sometimes considered as objects of reduced dimensionality (surfaces in three dimensions), and the field equations are averaged along the fracture width. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d-1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using a finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other. We derive a criterion for the validity of the simplified representation. The criterion characterizes the transition of a mainly parallel flow to a rotational flow, which cannot be reasonably approximated using a d-1 dimensional representation. We further present a numerical algorithm using adaptive dimensional representation.

  16. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  17. Effects of the image universe on cosmic strings

    International Nuclear Information System (INIS)

    Vachaspati, T.; Rees, M.

    1990-01-01

    We investigate some of the cosmological effects of the gravitational attraction of straight cosmic strings that arises due to the conical geometry of the string. Although this effect is second order in Newton's gravitational constant, its effects in the early universe can be significant. We find that the image masses responsible for this second order attraction effectively 'fill up' the volume deficit due to the conical geometry of a static straight string. A moving string also experiences a frictional force due to the images and this provides a mechanism for energy dissipation. The energy loss due to the image effect is comparable to the energy loss in gravitational radiation for strings on the size of the horizon scale but is probably not important when compared to the energy loss due to loop production. The image effect can also become important when a string comes close to a black hole. Our analysis of these effects is newtonian. (orig.)

  18. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  19. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: p_malekz@yahoo.com [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Fiouz, A.R.; Sobhrouyan, M. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of)

    2012-01-15

    A three-dimensional (3D) free vibration analysis of the functionally graded (FG) truncated conical shells subjected to thermal environment is presented. The material properties are assumed to be temperature-dependent and graded in the radius direction, which can vary according to a simple power law distribution. The initial thermal stresses are obtained accurately by solving the thermoelastic equilibrium equations and by considering the two-dimensional axisymmetric temperature distribution in the shell. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermal and thermo-mechanical governing equations. For this purpose, a mapping technique is employed to transform the cross section of the shell into the computational domain of DQM. The convergence behavior of the method is numerically demonstrated and comparison studies with the available solutions in the literature are performed. The effects of temperature dependence of material properties, geometrical parameters, material graded index, thermal and mechanical boundary conditions on the frequency parameters of the FG truncated conical shells are carried out. - Highlights: Black-Right-Pointing-Pointer 3D free vibration analysis of the functionally graded truncated conical shells is presented. Black-Right-Pointing-Pointer Two-dimensional axisymmetric temperature distribution in the shell is assumed. Black-Right-Pointing-Pointer The material properties are assumed to be temperature-dependent. Black-Right-Pointing-Pointer Initial thermal stresses due to thermal environment are evaluated accurately and included. Black-Right-Pointing-Pointer Representing the effects of different parameters on the non-dimensional frequencies.

  20. A theoretical model for predicting the Peak Cutting Force of conical picks

    Directory of Open Access Journals (Sweden)

    Gao Kuidong

    2014-01-01

    Full Text Available In order to predict the PCF (Peak Cutting Force of conical pick in rock cutting process, a theoretical model is established based on elastic fracture mechanics theory. The vertical fracture model of rock cutting fragment is also established based on the maximum tensile criterion. The relation between vertical fracture angle and associated parameters (cutting parameter  and ratio B of rock compressive strength to tensile strength is obtained by numerical analysis method and polynomial regression method, and the correctness of rock vertical fracture model is verified through experiments. Linear regression coefficient between the PCF of prediction and experiments is 0.81, and significance level less than 0.05 shows that the model for predicting the PCF is correct and reliable. A comparative analysis between the PCF obtained from this model and Evans model reveals that the result of this prediction model is more reliable and accurate. The results of this work could provide some guidance for studying the rock cutting theory of conical pick and designing the cutting mechanism.

  1. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    Science.gov (United States)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  2. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    International Nuclear Information System (INIS)

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed

  3. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  4. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  5. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  6. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  7. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  8. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  9. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2014-06-27

    Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.

  10. Numerical study on the three-dimensional scroll volute flow of centrifugal compressor

    International Nuclear Information System (INIS)

    Bae, Hwang; Chang, Keun Shik; Yoon, Ju Sig; Park, Ki Cheol

    2005-01-01

    Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and k -ε equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid, which is good to avoid the central grid singularity as well as to make grid stretching toward the volute wall. Numerical result has been obtained for the three-dimensional flow of scroll volute. The straight conical volute flow is also solved and compared with the scroll volute data. This comparison contributed to comprehend the effect of scroll in the three-dimensional volute flow of a centrifugal compressor

  11. Conic Sections and the Discovery of a Novel Curve Using Differential Equations

    Science.gov (United States)

    de Alwis, Amal

    2013-01-01

    We began by observing a variety of properties related to the tangent and normal lines of three conic sections: a parabola, an ellipse, and a hyperbola. Some of these properties include specific relationships between the x- and y-intercepts of the tangent and normal lines. Using these properties, we were able to form several differential equations.…

  12. Optical vault: a reconfigurable bottle beam based on conical refraction of light.

    Science.gov (United States)

    Turpin, A; Shvedov, V; Hnatovsky, C; Loiko, Yu V; Mompart, J; Krolikowski, W

    2013-11-04

    We employ conical refraction of light in a biaxial crystal to create an optical bottle for photophoretic trapping and manipulation of particles in gaseous media. We show that by only varying the polarization state of the input light beam the optical bottle can be opened and closed in order to load and unload particles in a highly controllable manner.

  13. Inverted-conical light guide for crosstalk reduction in tightly-packed scintillator matrix and MAPMT assembly

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-Y., E-mail: gixd@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Chen, C.R. [National Space Organization (NSPO), 8F., No. 9, Prosperity 1 s Rd., Hsinchu Science Park, Hsinchu 30078, Taiwan, ROC (China); Chen, P.; Huang, J.-J. [Department of Physics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Huang, M.A. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Department of Energy Engineering, National United University, 1, Lienda, Miaoli 36003, Taiwan, ROC (China); Liu, T.-C. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Nam, J.W. [Department of Physics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Wang, M.-Z., E-mail: mzwang@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 1 Roosevelt Rd., Taipei 10617, Taiwan, ROC (China); Bogomolov, V. [Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Leninskie Gory 119234 (Russian Federation); Physics Department of Lomonosov Moscow State University, Leninskie Gory 119234 (Russian Federation); Brandt, S.; Budtz-Jørgensen, C. [National Space Institute, Astrophysics, Technical University of Denmark, DK-2800 Kongens, Lyngby (Denmark); and others

    2015-01-21

    In this paper we present the Inverted-Conical light guide designed for optical crosstalk reduction in the scintillator-MAPMT assemblies. The research was motivated by the 30% crosstalk observed in UFFO X-ray telescope, UBAT, during the preliminary calibration with MAPMTs of 64 2.88×2.88 mm{sup 2} pixels and identically gridded YSO crystal matrices. We began the study with the energy and crosstalk calibrations of the detector, then we constructed a GEANT4 simulation with the customized metallic film model as the MAPMT photocathode. The simulation reproduced more than 70% of the crosstalk and explained it as a consequence of the total reflection produced by the photocathode. The result indicated that the crosstalk mechanism could be a common case in most of the contact-assembled scintillation detectors. The concept of the Inverted-Conical light guide was to suppress the total reflection by contracting the incident angle of the scintillation. We optimized the design in the simulation and fabricated a test sample. The test sample reduced 52% crosstalk with a loss of 6% signal yield. The idea of the Inverted-Conical light guide can be adapted by scintillation detectors multi-pixel, imaging-purpose scintillation detectors such as the ultra-fast GRB observatory UFFO-UBAT, whose performances are sensitive to responding time, image resolution, and geometrical modifications.

  14. Inverted-conical light guide for crosstalk reduction in tightly-packed scintillator matrix and MAPMT assembly

    International Nuclear Information System (INIS)

    Chang, Y.-Y.; Chen, C.R.; Chen, P.; Huang, J.-J.; Huang, M.A.; Liu, T.-C.; Nam, J.W.; Wang, M.-Z.; Bogomolov, V.; Brandt, S.; Budtz-Jørgensen, C.

    2015-01-01

    In this paper we present the Inverted-Conical light guide designed for optical crosstalk reduction in the scintillator-MAPMT assemblies. The research was motivated by the 30% crosstalk observed in UFFO X-ray telescope, UBAT, during the preliminary calibration with MAPMTs of 64 2.88×2.88 mm 2 pixels and identically gridded YSO crystal matrices. We began the study with the energy and crosstalk calibrations of the detector, then we constructed a GEANT4 simulation with the customized metallic film model as the MAPMT photocathode. The simulation reproduced more than 70% of the crosstalk and explained it as a consequence of the total reflection produced by the photocathode. The result indicated that the crosstalk mechanism could be a common case in most of the contact-assembled scintillation detectors. The concept of the Inverted-Conical light guide was to suppress the total reflection by contracting the incident angle of the scintillation. We optimized the design in the simulation and fabricated a test sample. The test sample reduced 52% crosstalk with a loss of 6% signal yield. The idea of the Inverted-Conical light guide can be adapted by scintillation detectors multi-pixel, imaging-purpose scintillation detectors such as the ultra-fast GRB observatory UFFO-UBAT, whose performances are sensitive to responding time, image resolution, and geometrical modifications

  15. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    Science.gov (United States)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  16. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-11-15

    Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  17. Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O B; Yudin, P V; Zaitsev, A V [Khristianovich' s Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Siberian Branch, Novosibirsk (Russian Federation)], E-mail: kovalev@itam.nsc.ru

    2008-08-07

    Specific features of subsonic jet gas flows in narrow channels geometrically similar to the laser cut are studied experimentally and theoretically. Such flows are visualized by a technique based on prior application of a viscous liquid film onto the side walls of the channel made of transparent glass. The gas flow inside the channel induces a liquid flow on the glass wall in the form of extremely small filaments, which coincide with the streamlines of the gas flow. Filming of these filaments by a CCD camera allows one to capture the specific features of these gas-dynamic flows. Mathematical modelling of the dynamics of a viscous compressible heat-conducting gas was performed by solving full three-dimensional Navier-Stokes equations. Numerical calculations and experiments reveal vortex structures in the flow at the entrance and exit of the channel, which may directly affect the surface quality in real gas-laser cutting of metals. The largest vortex, which arises at the channel exit, collects and accumulates the liquid flowing down the channel walls. Jet flows are generated by sonic nozzles with conical or cylindrical exit sections or by a double coaxial nozzle. The double nozzle includes the central conical nozzle and the side concentric nozzle, which allows additional side injection of the gas to be organized. The study with the double nozzle shows that the vortices disappear as the pressure in the external nozzle is increased, and a stable vortex-free attached gas flow is formed.

  18. Numerical modelling of flow pattern for high swirling flows

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available This work focuses on the interaction of two coaxial swirling jets. High swirl burners are suitable for lean flames and produce low emissions. Computational Fluid Dynamics has been used to study the isothermal behaviour of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model is a Total Variation Diminishing and PISO is used to pressure velocity coupling. Transient analysis let identify the non-axisymmetric region of reverse flow. The center of instantaneous azimuthal velocities is not located in the axis of the chamber. The temporal sampling evidences this center spins around the axis of the device forming the precessing vortex core (PVC whose Strouhal numbers are more than two for Swirl numbers of one. Influence of swirl number evidences strong swirl numbers are precursor of large vortex breakdown. Influence of conical diffusers evidence the reduction of secondary flows associated to boundary layer separation.

  19. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes.

    Science.gov (United States)

    McFall, Brian C; Fritz, Hermann M

    2016-04-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.

  20. Graphical Derivatives and Stability Analysis for Parameterized Equilibria with Conic Constraints

    Czech Academy of Sciences Publication Activity Database

    Mordukhovich, B. S.; Outrata, Jiří; Ramírez, H. C.

    2015-01-01

    Roč. 23, č. 4 (2015), s. 687-704 ISSN 1877-0533 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Variational analysis and optimization * Parameterized equilibria * Conic constraints * Sensitivity and stability analysis * Solution maps * Graphical derivatives * Normal and tangent cones Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/outrata-0449259.pdf

  1. Direct determination of the resonance properties of metallic conical nanoantennas

    KAUST Repository

    Tuccio, Salvatore; Razzari, Luca; Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; De Angelis, Francesco De; Candeloro, Patrizio; Das, Gobind; Giugni, Andrea; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2014-01-01

    We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The alculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison. The fine agreement between the two approaches demonstrates the validity of our method. © 2014 Optical Society of America.

  2. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  3. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  4. Investigation of the propagation characteristics in turbulent dispersed two-phase flow

    International Nuclear Information System (INIS)

    Sami, S.M.

    1980-01-01

    The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio

  5. Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection

    Directory of Open Access Journals (Sweden)

    Geoffrey Fouad

    2018-06-01

    New hydrological insights for the region: A set of three variables selected based on an expert assessment of factors that influence percentile flows performed similarly to larger sets of variables selected using a data-driven method. Expert assessment variables included mean annual precipitation, potential evapotranspiration, and baseflow index. Larger sets of up to 37 variables contributed little, if any, additional predictive information. Variables used to describe the distribution of basin data (e.g. standard deviation were not useful, and average values were sufficient to characterize physical and climatic basin conditions. Effectiveness of the expert assessment variables may be due to the high degree of multicollinearity (i.e. cross-correlation among additional variables. A tool is provided in the Supplementary material to predict percentile flows based on the three expert assessment variables. Future work should develop new variables with a strong understanding of the processes related to percentile flows.

  6. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure.

    Science.gov (United States)

    Norton, M R

    1998-04-01

    The concept of a conical implant design to accommodate single tooth replacement, has previously been shown to result in excessive bone loss, around the machined titanium conical collar, usually down to the 1st thread. This unusually aggressive loss of bone was shown to occur within a short period of time, post loading, with greater than 3 mm of bone loss occurring within the 1st 6 months to 1 year. The influence of implant design, surface texture and microleakage have all been highlighted as a potential cause. A modification of the surface structure, both at the macroscopic and microscopic level, as well as an altered fixture-abutment interface design has resulted in the maintenance of marginal bone around a single tooth titanium implant with a similar conical design. The radiographic follow-up of 33 implants loaded for up to 4 years, has revealed, by comparison, a most favourable maintenance of marginal bone around the conical collar, with a mean marginal bone loss of 0.32 mm mesially and 0.34 mm distally for the whole group. The cumulative mean marginal bone loss mesially and distally is 0.42 mm and 0.40 mm from 1 to 2 years, 0.54 mm and 0.43 mm from 2 to 3 years, 0.51 mm and 0.24 mm from 3 to 4 years, and 0.62 mm and 0.60 mm for implants past their 4 year recall.

  7. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  8. Numerical method of applying shadow theory to all regions of multilayered dielectric gratings in conical mounting.

    Science.gov (United States)

    Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro

    2016-11-01

    Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.

  9. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    Science.gov (United States)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  10. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  11. The use of a conical lens to find the refractive index of liquids

    International Nuclear Information System (INIS)

    Anguiano-Morales, Marcelino; Salas Peimbert, Didia P; Trujillo-Schiaffino, Gerardo

    2011-01-01

    In this work, the basic idea is to determine the refractive index of liquids unknown using a conical lens. The measurement of the refractive index of liquids is an important work in engineering and science since is one of the most important optical parameter. The adulteration problem is increasing day by day; therefore it is necessary to implement new and simple devices for measure the refractive index of several materials. There is a great variety of interferometric methods that may be used for determining the refractive index. However, these methods either need sophisticated equipment or have low accuracy. Our system consists of a conical lens coupled to a cylindrical container with a liquid whose composition can be changed easily or adulterated. The diameter of the emergent beam of the container is associated to the specific index of refraction of each substance. Any adulteration of the liquid will be reflected in the diameter of the beam, which will be detected by a charge-coupled device (CCD). Our hypothesis is supported by developed mathematical calculations and numerical simulations.

  12. Correction for the twist and the conical defects of a sagittaly bent crystal

    CERN Document Server

    Ferrer, J L

    1999-01-01

    The symmetrical bending of the focusing crystal of a double X-ray monochromator is a difficult problem. Indeed, the slope due to the curvature is usually three orders of magnitude higher than the accepted slope error (typically, the Darwin width of the crystal). In these conditions, even a low parasitic slope error induced by the bending process may lead to quite a strong intensity decrease. When the bending moment is applied, the main parasitic distortions which may appear are typically the anticlastic curvature, the inhomogeneous sagittal curvature, the conical shape and the twist. On the D2AM beamline at the ESRF, a program called CHKC2 has been developed to correct on-line the latter two distortions: the conical shape and the twist. On this beamline the X-ray beam, which has been collimated by a grazing angle mirror, is monochromatized first by a flat silicon crystal, and then diffracted by the sagittaly curved crystal. A fluorescent screen gives an image of this diffracted beam. The CHKC2 program records...

  13. Room-temperature growth of a carbon nanofiber on the tip of conical carbon protrusions

    International Nuclear Information System (INIS)

    Tanemura, Masaki; Okita, T.; Yamauchi, H.; Tanemura, S.; Morishima, R.

    2004-01-01

    Glassy carbon was Ar + -ion bombarded with a simultaneous Mo supply under ultrahigh vacuum conditions using a microprotrusion fabrication system that consists of a differentially pumped ion gun and a seed-material supply source. Conical protrusions were formed by sputtering with a seed supply, and carbon nanofibers (CNFs) grew on the tips even at room temperature. The length of CNFs reached up to ∼10 μm, and their diameter was almost uniform (50 nm) in the growth direction. The short CNFs aligned in the ion beam direction, whereas the long ones were non-aligned. The CNF growth on a glassy carbon surface was ascribed to the enhanced surface texturing and to the massive redeposition of C atoms onto cones, both of which are specific to the oblique ion bombardment: The former would lead to an increase in the number of possible nucleation sites for the CNF growth, and the C atoms arising from the latter process would migrate toward the conical tips, thus forming CNFs

  14. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  15. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  16. Is it possible to design universal multi-phase flow analyzer?

    International Nuclear Information System (INIS)

    Ivanov Kolev, N.

    2005-01-01

    Transient 3D-multiphase flows consisting of many chemical constituents in nature and technology (Figs. 1 and 2) are the common case of flows. In many technical applications we have to do with particular realization of the multi-phase flows like steady state flows, or single component flows or single phase flows etc. Engineers and scientists created hundreds of computer codes for description of more or less specific realizations of multi-phase flows. If one compares the structure of these codes one is astonished by the waste of the human resources for programming repeating model elements like equations of state, friction lows in variety of geometry, heat transfer coefficients, mathematical equation solvers, data handling procedures, graphical environment etc. It is hardly to expect, that the best solution for the specific sub-phenomenon is available in all codes. Looking in other branches of the technology like computer chips production we realize that the revolutionary idea of having common ''chips'' within complex applications is very far from its practical realization in the computational multi-phase flow dynamics. Following this line of arguments I expressed several times in my publications explicitly or implicitly the idea, that it is possible to create a universal multi-phase flow analyzer in the sense of computer architecture, that is capable to absorb the adequate multi-phase knowledge data base specified in Appendix 1. The subject of this paper is to summarize some of the main ideas, some of them already realized by this author, on the way of creating such computer code architecture, to illustrate haw they work, and to make an outlook regarding what are the challenges in the future developments. We confine deliberately our attention to the solution of the so called local volume and time averaged system of PDE's for a simple reason: Direct numerical resolution of interacting fluids is possible as demonstrated for small scales by many researchers, but for

  17. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  18. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  19. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  20. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  1. Averaging processes in granular flows driven by gravity

    Science.gov (United States)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    results, we aim to define the scales governing the diffusive phenomenon, introducing the diffusive terms following the Boussinesq model. The diffusive coefficient will be experimentally defined; it will be probably proportional to the square root of the granular temperature θ and the diameter of the particles d or, alternatively, the flow height h. REFERENCES 1 Chapman S., Cowling T.G., 1971. Cambridge University Press, Cambridge, England. 2 Jenkins J.T., Savage S.B., 1983 J. Fluid.Mech., 130: 187-202 3 Savage S.B.,1984. J. Fluid.Mech., 24: 289-366 4 D.A.Drew, 1983. Annu. Rev. Fluid Mech. 15:261-291 5 I. Goldhirsch, 2003. Annu. Rev. Fluid Mech., 35:267-293. 6 I. Goldhirsch, 2008. Powder Technology, 182: 130-136. 7 T.J. Hsu, J.T. Jenkins, P.L. Liu 2004. Proc. Royal Soc.

  2. The customer is always right? Assessing the value of patron-driven acquisition at the University of Huddersfield

    Directory of Open Access Journals (Sweden)

    Graham Stone

    2015-03-01

    Full Text Available A small-scale patron-driven acquisition (PDA study at the University of Huddersfield is discussed in this article. The authors briefly describe the background to PDA at Huddersfield before discussing data from the 2014 PDA pilot with the e-book supplier Ebook Library (EBL. The pilot produced two sets of data, usage reports using COUNTER statistics and a short questionnaire designed by the Library. These results led to a major alteration to the collection management and development policy, where PDA is now embedded into the Library book fund.

  3. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis.

    Science.gov (United States)

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, Fábio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, André Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Dentsply-Maillefer). Afterwards, the teeth were sectioned transversely and submitted to histotechnical processing to obtain histological sections for microscopic evaluation. The images were analyzed by the Corel Photo-Paint X5 program (Corel Corporation) using an integration grid superimposed on the image. Statistical analysis (U-Mann-Whitney - P < 0.05) demonstrated that G1 presented higher cleaning capacity when compared to G2. The rotary technique presented better cleaning results in the apical third of the root canal system when compared to the manual technique.

  4. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  5. Inverted-conical light guide for crosstalk reduction in tightly-packed scintillator matrix and MAPMT assembly

    DEFF Research Database (Denmark)

    Chang, Y.-Y.; Chen, P.; Huang, J.-J.

    2015-01-01

    In this paper we present the Inverted-Conical light guide designed for optical crosstalk reduction in the scintillator-MAPMT assemblies. The research was motivated by the 30% crosstalk observed in UFFO X-ray telescope, UBAT, during the preliminary calibration with MAPMTs of 64 2.88 × 2.88 mm2...... pixels and identically gridded YSO crystal matrices. We began the study with the energy and crosstalk calibrations of the detector, then we constructed a GEANT4 simulation with the customized metallic film model as the MAPMT photocathode. The simulation reproduced more than 70% of the crosstalk...... and explained it as a consequence of the total reflection produced by the photocathode. The result indicated that the crosstalk mechanism could be a common case in most of the contact-assembled scintillation detectors. The concept of the Inverted-Conical light guide was to suppress the total reflection...

  6. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels

    International Nuclear Information System (INIS)

    Permchart, W.; Kouprianov, V.I.

    2004-01-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O 2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. (Author)

  7. Pitting and Repair of the Space Shuttle's Inconel(Registered TradeMark) Honeycomb Conical Seal Panel

    Science.gov (United States)

    Zimmerman, Frank R.; Gentz, Steven J.; Miller, James B.; MacKay, Rebecca A.; Bright, Mark L.

    2006-01-01

    During return to flight servicing of the rudder speed brake (RSB) for each Space Shuttle Orbiter, inspectors discovered numerous small pits on the surface of the #4 right hand side honeycomb panel that covers the rudder speed brake actuators. Shortly after detection of the problem, concurrent investigations were initiated to determine the extent of damage, the root cause, and to develop a repair plan, since fabrication of a replacement panel is impractical for cost, schedule, and sourcing considerations. This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection.

  8. Conical square function estimates in UMD Banach spaces and applications to H?-functional calculi

    NARCIS (Netherlands)

    Hytönen, T.; Van Neerven, J.; Portal, P.

    2008-01-01

    We study conical square function estimates for Banach-valued functions and introduce a vector-valued analogue of the Coifman-Meyer-Stein tent spaces. Following recent work of Auscher-M(c)Intosh-Russ, the tent spaces in turn are used to construct a scale of vector-valued Hardy spaces associated with

  9. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  10. The effectiveness of the jammer signal characteristics on conical-scan systems

    Science.gov (United States)

    Şahingil, Mehmet C.; Aslan, Murat Ş.

    2015-05-01

    Being passive systems and due to their proliferation to many regions in the world, the infrared (IR) guided missiles constitute probably the most dangerous threats for the aircraft platforms. Early generation surface-to-air and air-to-air IRguided missiles use reticle-based seekers. One of the IR countermeasure (IRCM) techniques for protecting aircraft platforms against these type of threats is to use a modulated jamming signal. Optimizing the parameters of the modulation is the most important issue for an effective protection. If the required characteristic is not satisfied, jamming may not be successful for protecting the aircraft. There are several parameters to define the jammer signal (modulation) characteristic. Optimizing them requires a good understanding of threat seekers' operating principles. In the present paper, we consider protection of a helicopter platform against conical-scan reticle based seeker systems and investigate the effect of the jammer signal modulation parameters on jamming performance via extensive batch simulations. The simulations are performed in a MATLAB-coded simulator which models reticle-based conical-scan seeker, aircraft radiation, aircraft motion and jammer system on the aircraft. The results show that if the properties of the jammer signal are similar to those of the reticle-modulated signal in the missile, the jamming can be successful. Otherwise, applied jamming may not deceive the threat seeker.

  11. Universal Distribution of Centers and Saddles in Two-Dimensional Turbulence

    International Nuclear Information System (INIS)

    Rivera, Michael; Wu, Xiao-Lun; Yeung, Chuck

    2001-01-01

    The statistical properties of the local topology of two-dimensional turbulence are investigated using an electromagnetically forced soap film. The local topology of the incompressible 2D flow is characterized by the Jacobian determinant Λ(x,y)=1/4 (ω 2 -σ 2 ) , where ω(x,y) is the local vorticity and σ(x,y) is the local strain rate. For turbulent flows driven by different external force configurations, P(Λ) is found to be a universal function when rescaled using the turbulent intensity. A simple model that agrees with the measured functional form of P(Λ) is constructed using the assumption that the stream function, ψ(x,y) , is a Gaussian random field

  12. Loads experiments study on two-story RC box and truncated conical walls

    International Nuclear Information System (INIS)

    Asega, H.; Iizuka, S.; Kurihara, I.; Kubo, T.

    1987-01-01

    The failure modes of the two specimens were the sliding shear failure. The two specimens showed almost equal deformation at the maximum shear strength. The ratio of the flexural deformation in the deformation of the truncated conical was larger than that of the box wall. The ratio of the shear deformation in the deformation of the two-story RC box wall was larger than that of the flexural deformation. (orig./HP)

  13. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    International Nuclear Information System (INIS)

    Wills, J.; Schneider, R.J.; Reden, K.F. von; Hayes, J.M.; Roberts, M.L.; Benthien, A.

    2005-01-01

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 μA from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source for use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design

  14. Universal Verification Methodology Based Register Test Automation Flow.

    Science.gov (United States)

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.

  15. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    Science.gov (United States)

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  16. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi

    2011-01-01

    Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  17. Nonadiabatic Eigenfunctions Can Have Amplitude, Signed Conical Nodes, or Signed Higher Order Nodes at a Conical Intersection with Circular Symmetry (Open Access Publisher’s Version)

    Science.gov (United States)

    2017-09-26

    marked by black rings on the potential energy surfaces. In some sense, only about half of the zero point energy is available to each of the two...wheel at the bottom. The conical intersection at q1 = q2 = 0 and E = 0 is submerged below the zero-point energy of Ezp = 181 cm −1 ( black curve). The...J. Chem. Phys. 123, 044102 (2005)]. J. Chem. Phys. 2008, 128, 109902. (49) Clinton, W. L.; Rice , B. Reformulation of the Jahn-Teller Theorem. J

  18. To Examine effect of Flow Zone Generation Techniques for Numerical Flow Analysis in Hydraulic Turbine

    International Nuclear Information System (INIS)

    Hussain, M.; Khan, J.A.

    2004-01-01

    A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)

  19. Development of Compact, Modular Lunar Heat Flow Probes

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2014-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.

  20. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  1. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    Science.gov (United States)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  2. Endodontic Shaping Performance Using Nickel–Titanium Hand and Motor ProTaper Systems by Novice Dental Students

    OpenAIRE

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-01-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel–titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Methods: Twenty-three fourth-year dental students attending China Medical University Dental Schoo...

  3. First use of a laser-driven polarized H/D target at the IUCF cooler

    International Nuclear Information System (INIS)

    Bailey, K.; Brack, J.; Cadman, R. V.; Cummings, W. J.; Fedchak, J.; Fox, B.; Gao, H.; Grosshauser, C.; Holt, R. J.; Jones, C.; Kinney, E.; Kowalczyk, R.; Lu, Z.-T.; Miller, M. A.; Nagengast, W.; Owen, B.; Rith, K.; Schmidt, F.; Schulte, E.; Sowinski, J.; Sperisen, F.; Stenger, J.; Thorsland, E.; Williamson, S.

    1997-01-01

    The HERMES Laser-Driven Target Task Force (Argonne, Erlangen and Illinois) is charged with developing a polarized H/D target for use in the HERA ring at DESY. Rapid progress was made in the beginning of 1996, leading us to the decision to test the target in a realistic experimental environment. In particular, polarizations of 0.6 and flows above 10 18 atoms·s -1 have been achieved on the bench. The laser-driven target and a simple detector system are currently installed in Cooler storage ring at the Indiana University Cyclotron Facility in order to test its applicability to nuclear physics experiments. Target polarizations are being measured using the rvec H(p, p) and rvec D(p, p) reactions. Initial tests were reasonably successful and the target is well along toward becoming viable for nuclear physics

  4. Life, death and revival of debris-flow fans on Earth and Mars : fan dynamics and climatic inferences

    NARCIS (Netherlands)

    de Haas, T.|info:eu-repo/dai/nl/374023190

    2016-01-01

    Alluvial fans are ubiquitous landforms in high-relief regions on Earth and Mars. They have a semi-conical shape and are located at the transition between highlands and adjacent basins. Alluvial fans can form by a range of processes including debris flows, which are water-laden masses of soil and

  5. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  6. Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Weijie Hua

    2016-03-01

    Full Text Available Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns. We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.

  7. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  8. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  9. Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Meli, A; Mastichiadis, A [Department of Physics, National University of Athens, Panepistimiopolis, Zografos 15783 (Greece); Drury, L O C [Dublin Institute for Advanced Studies, Dublin 2 (Ireland)], E-mail: markd@tp4.rub.de

    2008-06-15

    Supernova remnant blast shells can reach the flow speed v{sub s} = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v{sub b} {approx} v{sub s}. For v{sub b} << v{sub s} the Buneman or upper-hybrid instabilities dominate, while for v{sub b} >> v{sub s} the filamentation and mixed modes grow faster. Here the relevant waves for v{sub b} {approx} v{sub s} are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v{sub s} is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to {approx}10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.

  10. Effect of Location of Delamination on Free Vibration of Cross-Ply Conical Shells

    Directory of Open Access Journals (Sweden)

    Sudip Dey

    2012-01-01

    Full Text Available Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.

  11. Axial force imparted by a conical radiofrequency magneto-plasma thruster

    International Nuclear Information System (INIS)

    Charles, C.; Takahashi, K.; Boswell, R. W.

    2012-01-01

    Direct thrust measurements of a low pressure (∼0.133 Pa) conical radiofrequency (rf at 13.56 MHz) argon plasma source show a total axial force of about 5 mN for an effective rf power of 650 W and a maximum magnetic field of 0.018 T, of which a measured value of 2.5 mN is imparted by the magnetic nozzle. A simplified model of thrust including contributions from the electron pressure and from the magnetic field pressure is developed. The magnetic nozzle is modelled as a ''physical'' nozzle of increasing cross-sectional area.

  12. Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia.

    Science.gov (United States)

    Akbar, N S; Tripathi, D; Khan, Z H; Bég, O Anwar

    2018-04-06

    In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The conservation equations for mass, longitudinal and transverse (linear) momentum and angular momentum are reduced in accordance with the long wavelength and creeping Stokesian flow approximations and then normalized with appropriate transformations. The resulting non-linear moving boundary value problem is solved analytically for constant micro-inertia density, subject to physically realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular velocities are observed to be substantially modified with both micropolar rheological parameters and furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in Newtonian fluids. The

  13. Electro-optical study of nanoscale Al-Si-truncated conical photodetector with subwavelength aperture

    Science.gov (United States)

    Karelits, Matityahu; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-10-01

    A type of silicon photodiode has been designed and simulated to probe the optical near field and detect evanescent waves. These waves convey subwavelength resolution. This photodiode consists of a truncated conical shaped, silicon Schottky diode having a subwavelength aperture of 150 nm. Electrical and electro-optical simulations have been conducted. These results are promising toward the fabrication of a new generation of photodetector devices.

  14. Calculation of plastic deformation of a conical shell with the transformation of inner surface into outer one

    Directory of Open Access Journals (Sweden)

    A. I. Uvarov

    2014-01-01

    Full Text Available An analytical model of plastic deformation of a conical shell with the transformation of internal surface into outer one was developed with a use of the kinematic method. The shell material was assumed to be perfectly plastic. The theory of thin shells and the kinematic theorem of limit equilibrium were utilized in this work. Both geometric and physical nonlinearities were taken into account. Dependences for calculating radius of curvature of the intensive deformation zones, value of chain ring deformation and values of the deforming force as a function of axial displacement were determined. Analysis showed the possibility of using a conical shell to absorb energy with high efficiency. Obtained results could be used for calculation and selection of optimal parameters of the energy-absorbing elements in shock absorbers.

  15. FEM simulation of a friction testing method based on combined forward conical can-backward straight can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels

    1998-01-01

    A new friction testing method based on combined forward conical can-backward straight can extrusion is proposed in order to evaluate friction characteristics in severe metal forming operations. By this method the friction coefficient along the conical punch surface is determined knowing...... the friction coefficient along the die wall. The latter is determined by a combined forward and backward can extrusion of straight cans. Calibration curves determining the relationship between punch travel, can heights, and friction coefficient for the two rests are calculated based on a rigid-plastic FEM...... analysis. Experimental friction tests are carried out in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm that the theoretical analysis results irt reasonable values for the friction coefficient....

  16. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  17. Rayleigh-Love model of longitudinal vibrations of conical and exponential rods: Exact solutions and numerical simulation by the method of lines

    CSIR Research Space (South Africa)

    Shatalov, M

    2011-07-01

    Full Text Available of conical surface of the rod is described by equation ( ) ( )pr x k x x kx= ? = , where px is coordinate of the pole of the cone, px x x= ? , then ( ) 2 2S x k xpi= , ( ) 4 4 2pI x k xpi= and equation (2) is rewritten as follows: ( ) ( ) ( ) ( ) ( ) 2... rod in accordance with the classi- cal theory, and 2 k c ? ?? = is the wavenumber of the conical rod which has dimension 1m? . Introducing new dimensionless variable z x?= , considering new function ( ) zV z U ? ? ? = ? ?? ? ( )W z z...

  18. Indications of Conical Emission of Charged Hadrons at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 102, č. 5 (2009), 052302/1-052302/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : PARTICLE CORRELATIONS * QCD MATTER * CONICAL EMISSION Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  19. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  20. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    Science.gov (United States)

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  1. Air-driven viscous film flow coating the interior of a vertical tube

    Science.gov (United States)

    Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey

    2017-11-01

    We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.

  2. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  3. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    Science.gov (United States)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  4. Numerical investigations of free-surface flows in spallation targets for acceleration-driven systems using TransAT - 15019

    International Nuclear Information System (INIS)

    Thomas, S.; Lakehal, D.

    2015-01-01

    Accelerator driven systems (ADS) are increasingly employed for the transmutation of high-level nuclear waste. The first advanced design is the multi-purpose hybrid research reactor for high-tech applications (MYRRHA) developed at SCK-CEN Mol in Belgium. The present study investigates the free-surface flow design of MYRRHA's target. The spallation target material for MYRRHA is a liquid metal, lead bismuth eutectic (LBE) to obtain a high neutron gain and allow forced convective heat removal. The understanding of the free surface behavior is essential in determining a safe design. This study is a qualitative comparison of 2 design geometries for a range of flow rates. Transient from Large-Eddy simulation (LES) is preferred here to steady-state RANS, employing two approaches to predict free surface evolution: Interface Tracking Methods (ITMs) and Phase-Averaged Methods. The CFD results produce a qualitative agreement with the experiments conducted by Batta et al. (authors)

  5. On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization

    DEFF Research Database (Denmark)

    Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian

    Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...

  6. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

    Science.gov (United States)

    Gozem, Samer; Melaccio, Federico; Valentini, Alessio; Filatov, Michael; Huix-Rotllant, Miquel; Ferré, Nicolas; Frutos, Luis Manuel; Angeli, Celestino; Krylov, Anna I; Granovsky, Alexander A; Lindh, Roland; Olivucci, Massimo

    2014-08-12

    We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

  7. High resolution solutions of the Euler equations for vortex flows

    International Nuclear Information System (INIS)

    Murman, E.M.; Powell, K.G.; Rizzi, A.; Tel Aviv Univ., Israel)

    1985-01-01

    Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research. 16 references

  8. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    Science.gov (United States)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  9. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.

    Science.gov (United States)

    Adair, Alexander; Mastikhin, Igor V; Newling, Benedict

    2018-06-01

    The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Theory of radiatively driven stellar winds. I. A physical interpretation

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1980-01-01

    This series of papers extends the line-driven wind theory of Castor, Abbott, and Klein (CAK). The present paper develops a physical interpretation of line-driven flows using analytic methods. Numerical results will follow in two subsequent papers

  11. Strategy-driven talent management a leadership imperative

    CERN Document Server

    Silzer, Rob

    2009-01-01

    A Publication of the Society for Industrial and Organizational Psychology Praise for Strategy-Driven Talent Management ""Silzer and Dowell''s Strategy-Driven Talent Management provides a comprehensive overview of the different elements of the best talent management processes used in organizations today. This is a valuable resource for leaders and managers, HR practitioners and anyone involved in developing leadership talent.""-Ed Lawler, Professor, School of Business, University of Southern California ""Talent is the key to successful execution of a winning business strategy. Strategy-Driven T

  12. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  13. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  14. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    Science.gov (United States)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  15. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  16. Activity-Based Costing (ABC and Time-Driven Activity-Based Costing (TDABC: Applicable Methods for University Libraries?

    Directory of Open Access Journals (Sweden)

    Kate-Riin Kont

    2011-01-01

    Full Text Available Objective – This article provides an overview of how university libraries research and adapt new cost accounting models, such as “activity-based costing” (ABC and “time-driven activity-based costing” (TDABC, focusing on the strengths and weaknesses of both methods to determine which of these two is suitable for application in university libraries.Methods – This paper reviews and summarizes the literature on cost accounting and costing practices of university libraries. A brief overview of the history of cost accounting, costing, and time and motion studies in libraries is also provided. The ABC and the TDABC method, designed as a revised and easier version of the ABC by Kaplan and Anderson (Kaplan & Anderson 2004 at the beginning of the 21st century, as well as the adoption and adaptation of these methods by university libraries are described, and their strengths and weaknesses, as well as their suitability for university libraries, are analyzed. Results – Cost accounting and costing studies in libraries have a long history, the first of these dating back to 1877. The development of cost accounting and time and motion studies can be seen as a natural evolution of techniques which were created to solve management problems. The ABC method is the best-known management accounting innovation of the last 20 years, and is already widely used in university libraries around the world. However, setting up an ABC system can be very costly, and the system needs to be regularly updated, which further increases its costs. The TDABC system can not only be implemented more quickly (and thus more cheaply, but also can be updated more easily than the traditional ABC, which makes the TDABC the more suitable method for university libraries.Conclusion – Both methods are suitable for university libraries. However, the ABC method can only be implemented in collaboration with an accounting department. The TDABC method can be tested and implemented by

  17. Visualization of flow patterns in shaking vessels with various geometry; Shushu no kika keijo wo motsu yodo kakuhan sonai no ryudo jotai no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y; Hiraoka, S; Tada, Y; Ue, T [Nagoya Institute of Technology, Nagoya (Japan); Koh, S [Toyo Engineering Corp., Tokyo (Japan); Lee, Y [Keimyung University, (Korea, Republic of)

    1996-03-10

    The flow patterns in shaking vessels with various geometries were visualized with a tracer method using aluminum powder. The spherical and conical vessels were effective for the shake mixing in the same manner as the cylindrical vessel, because these vessels have circular cross sections that develop the rotational flow. Neither a rectangular vessel nor a cylindrical vessel with baffles should be used for shake mixing, because rotational flows are not developed in these vessels. 2 refs., 6 figs.

  18. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    Science.gov (United States)

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  19. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2008-06-15

    This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

  20. Dynamically adaptive data-driven simulation of extreme hydrological flows

    KAUST Repository

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2017-01-01

    evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses