WorldWideScience

Sample records for universal calibration curve

  1. SRHA calibration curve

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  2. Experimental study of the conditions for universal calibration curve for the gamma-gamma probes in 2Π-geometry

    Gyurcsak, J.; Chau, N.D.

    1989-01-01

    We present the results of the measurements performed in order of establishing the possibility of constructing the universal calibration curves for gamma-gamma density probes. It has been proved that the unit λ p , in which the source-detector distance should be expressed, has the character of a mean free path of the photons forming the high-energetic part of the spectrum. 8 refs., 12 figs., 7 tabs. (author)

  3. Calibration curves for biological dosimetry

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  4. Construction of calibration curve for accountancy tank

    Kato, Takayuki; Goto, Yoshiki; Nidaira, Kazuo

    2009-01-01

    Tanks are equipped in a reprocessing plant for accounting solution of nuclear material. The careful measurement of volume in tanks is very important to implement rigorous accounting of nuclear material. The calibration curve relating the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes. Several calibration curves are usually employed, but it's not explicitly decided how many segment are used, where to select segment, or what should be the degree of polynomial curve. These parameters, i.e., segment and degree of polynomial curve are mutually interrelated to give the better performance of calibration curve. Here we present the construction technique of giving optimum calibration curves and their characteristics. (author)

  5. Studying the method of linearization of exponential calibration curves

    Bunzh, Z.A.

    1989-01-01

    The results of study of the method for linearization of exponential calibration curves are given. The calibration technique and comparison of the proposed method with piecewise-linear approximation and power series expansion, are given

  6. Reduced Calibration Curve for Proton Computed Tomography

    Yevseyeva, Olga; Assis, Joaquim de; Evseev, Ivan; Schelin, Hugo; Paschuk, Sergei; Milhoretto, Edney; Setti, Joao; Diaz, Katherin; Hormaza, Joel; Lopes, Ricardo

    2010-01-01

    The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies.

  7. Quality of the neutron probe calibration curve

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira

    1997-01-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube

  8. Irregularities in the dendrochronological calibration curve

    Ottaway, J.H.; Ottaway, B.

    1975-01-01

    A discussion is presented on the reality or otherwise of short-term deviations from a linear or smooth curve relating conventional C-14 dates to dendrochronological measurements. The possibility of the effect of short-term changes in the earth's atmosphere and in the oceans, and particularly in their temperature, is considered. (U.K.)

  9. CURVE LSFIT, Gamma Spectrometer Calibration by Interactive Fitting Method

    Olson, D.G.

    1992-01-01

    1 - Description of program or function: CURVE and LSFIT are interactive programs designed to obtain the best data fit to an arbitrary curve. CURVE finds the type of fitting routine which produces the best curve. The types of fitting routines available are linear regression, exponential, logarithmic, power, least squares polynomial, and spline. LSFIT produces a reliable calibration curve for gamma ray spectrometry by using the uncertainty value associated with each data point. LSFIT is intended for use where an entire efficiency curve is to be made starting at 30 KeV and continuing to 1836 KeV. It creates calibration curves using up to three least squares polynomial fits to produce the best curve for photon energies above 120 KeV and a spline function to combine these fitted points with a best fit for points below 120 KeV. 2 - Method of solution: The quality of fit is tested by comparing the measured y-value to the y-value calculated from the fitted curve. The fractional difference between these two values is printed for the evaluation of the quality of the fit. 3 - Restrictions on the complexity of the problem - Maxima of: 2000 data points calibration curve output (LSFIT) 30 input data points 3 least squares polynomial fits (LSFIT) The least squares polynomial fit requires that the number of data points used exceed the degree of fit by at least two

  10. Calibration Curves for Biological Dosimetry by Fluorescence In situ Hybridisation

    Stonati, L.; Durante, M.; Gensabella, G.; Gialanella, G.; Grossi, G.F.; Pugliese, M.; Scampoli, P.; Sgura, A.; Testa, A.; Tanzarella, C.

    2001-01-01

    Dose-response curves were measured for the induction of chromosomal aberrations in peripheral blood lymphocytes after acute exposure in vitro to 60 Co γ rays. Blood was obtained from four different healthy donors, and chromosomes were either observed at metaphase, following colcemid accumulation, or prematurely condensed by calyculin A. Cells were analysed in three different Italian laboratories. Chromosomes 1, 2, and 4 were painted, and simple-type interchanges between painted and non-painted chromosomes were scored in cells exposed in the dose range 0.1-3.0 Gy. The chemical-induced premature chromosome condensation method was also used combined with chromosome painting (chromosome 4 only) to determine calibration curves for high dose exposures (up to 20 Gy X rays). Calibration curves described in this paper will be used in our laboratories for biological dosimetry by fluorescence in situ hybridisation. (author)

  11. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    Grau, A.; Navarro, N.; Rodriguez, L.; Alvarez, A.; Salvador, S.; Diaz, C.

    1996-01-01

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  12. Calibration curves for quantifying praseodymium by UV-VIS

    Gonzalez M, R.; Lopez G, H.; Rojas H, A.

    2007-01-01

    The UV-Vis spectroscopic technique was used to determine the absorption bands depending on the concentration from the praseodymium solutions at pH3. Those more appropriate were in the wavelength of 215 nm, for concentrations of 0.0001-0.026 M, of 481nm, 468 nm and 443 nm, for concentrations of 0.026-0.325 M, and of 589 nm, for concentrations of 0.026-0.65 M of the praseodymium. To these wavelengths the calibration curves were determined, which presented correlation coefficients between 0.9976 and 0.9999 except of the absorption of 589 nm that gave R 2 = 0.9014. (Author)

  13. Calibration of hydrological models using flow-duration curves

    I. K. Westerberg

    2011-07-01

    Full Text Available The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1 uncertain discharge data, (2 variable sensitivity of different performance measures to different flow magnitudes, (3 influence of unknown input/output errors and (4 inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested – based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of

  14. Radioligand assays - methods and applications. IV. Uniform regression of hyperbolic and linear radioimmunoassay calibration curves

    Keilacker, H; Becker, G; Ziegler, M; Gottschling, H D [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1980-10-01

    In order to handle all types of radioimmunoassay (RIA) calibration curves obtained in the authors' laboratory in the same way, they tried to find a non-linear expression for their regression which allows calibration curves with different degrees of curvature to be fitted. Considering the two boundary cases of the incubation protocol they derived a hyperbolic inverse regression function: x = a/sub 1/y + a/sub 0/ + asub(-1)y/sup -1/, where x is the total concentration of antigen, asub(i) are constants, and y is the specifically bound radioactivity. An RIA evaluation procedure based on this function is described providing a fitted inverse RIA calibration curve and some statistical quality parameters. The latter are of an order which is normal for RIA systems. There is an excellent agreement between fitted and experimentally obtained calibration curves having a different degree of curvature.

  15. INTCAL09 AND MARINE09 RADIOCARBON AGE CALIBRATION CURVES, 0-50,000 YEARS CAL BP

    Reimer, P. J.; Baillie, M. G. L.; Bard, E.; Bayliss, A.; Beck, J. W.; Blackwell, P. G.; Ramsey, C. Bronk; Buck, C. E.; Burr, G. S.; Edwards, R. L.; Friedrich, M.; Grootes, P. M.; Guilderson, T. P.; Hajdas, I.; Heaton, T. J.; Hogg, A. G.; Hughen, K. A.; Kaiser, K. F.; Kromer, B.; McCormac, F. G.; Manning, S. W.; Reimer, R. W.; Richards, D. A.; Southon, J. R.; Talamo, S.; Turney, C. S. M.; van der Plicht, J.; Weyhenmeye, C. E.; Weyhenmeyer, C.E.

    2009-01-01

    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and

  16. Comparison of calibration curve of radiochromic films EBT2 and EBT

    Parra Osorio, V.; Martin-Viera Cueto, J. A.; Galan Montenegro, P.; Benitez Villegas, E. M.; Casado Villalon, F. F.; Bodineau Gil, C.

    2013-01-01

    The aim is to compare the quality of the fit to calibrate two radiochromic films batches, one model and another of EBT3 EBT2, using both experimental settings as phenomenological expression as of the calibration curve depends on the precision and accuracy of the estimate of absorbed dose. (Author)

  17. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  18. A new form of the calibration curve in radiochromic dosimetry. Properties and results

    Tamponi, Matteo, E-mail: mtamponi@aslsassari.it; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio [Medical Physics Unit, ASL Sassari, Via Enrico de Nicola, Sassari 07100 (Italy)

    2016-07-15

    Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the

  19. A new form of the calibration curve in radiochromic dosimetry. Properties and results

    Tamponi, Matteo; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio

    2016-01-01

    Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the

  20. Common Envelope Light Curves. I. Grid-code Module Calibration

    Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.; Iaconi, Roberto [Department of Physics and Astronomy, Macquarie University, Sydney, NSW (Australia); Passy, Jean-Claude, E-mail: Pablo.Galaviz@me.com [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2017-04-01

    The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been put forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8  M {sub ⊙} red giant branch star interacts with a 0.6  M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.

  1. Effects of gypsum and bulk density on neutron probe calibration curves

    Arslan, Awadis; Razzouk, A.K.

    1993-10-01

    The effects of gypsum and bulk density on the neutron probe calibration curve were studied in the laboratory and in the field. The effect of bulk density was negligible for the soil studied in the laboratory, while it was significant for the field calibration. An increase in the slope of moisture content on a volume basis vs. count ratio with increasing gypsum content at the soil was observed in the laboratory calibration. A simple method for correction of the calibration curve for gypsum content was adopted to obtain a specific curve for each layer. The adapted method requires the gypsum fraction to be estimated for each layer and then incorporated in the calibration curve to improve the coefficient of determination. A field calibration showed an improvement of the determination coefficient by introducing bulk density and gypsum fraction, in addition to count ratio using moisture content on a volume basis as a dependent variable in multi linear regression analysis. The same procedure was successful with variable gravel fractions. (author). 18 refs., 3 figs., 2 tabs

  2. Development of theoretical oxygen saturation calibration curve based on optical density ratio and optical simulation approach

    Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia

    2017-09-01

    The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.

  3. Multiphoton absorption coefficients in solids: an universal curve

    Brandi, H.S.; Araujo, C.B. de

    1983-04-01

    An universal curve for the frequency dependence of the multiphoton absorption coefficient is proposed based on a 'non-perturbative' approach. Specific applications have been made to obtain two, three, four and five photons absorption coefficient in different materials. Properly scaling of the two photon absorption coefficient and the use of the universal curve yields results for the higher order absorption coefficients in good agreement with the experimental data. (Author) [pt

  4. Calibration

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  5. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  6. universal specific energy curve for para- bolic open channels

    DEPT OF AGRICULTURAL ENGINEERING

    UNIVERSAL SPECIFIC ENERGY CURVE FOR PARA-. BOLIC OPEN CHANNELS. K.O. Aiyesimoju. Department of Civil Engineering. University of Lagos. Lagos, Nigeria. ABSTRACT. From the general relationship between specific energy and flow depth for all open channels, the specific relationship for parabolic open ...

  7. The ''Amsterdam Castle'': A case study of wiggle matching and the proper calibration curve

    van der Plicht, J; Jansma, E|info:eu-repo/dai/nl/074965255; Kars, H

    1995-01-01

    We have performed a high-precision 14C wiggle-matching study on two oak beams from the "Castle of Amsterdam". These beams are also dated by dendrochronology. Our two dating methods can only be made consistent using the recommended calibration curve (1986) instead of the revised one (1993).

  8. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  9. Calibration curves for biological dosimetry; Curvas de calibracion para dosimetria biologica

    Guerrero C, C.; Brena V, M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail cgc@nuclear.inin.mx

    2004-07-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of {sup 60} Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  10. A study of batch calibrations on 4 inch open faced charcoal adsorbers from four different manufacturers and how they compare to EERF's published calibration curves

    Jones, D.L.; Howell, T.E.

    1990-01-01

    The EERF Standard Operating Procedures for Rn-222 Measurements Using Charcoal Canisters is quite explicit in stating that the calibration tables and curves published in this manual are only typical calibration data that were developed for a particular batch of canisters from a supplier, and that new calibration data are developed and used with each different lot of canisters. In this paper, batch calibrations were performed in the authors' radon chambers on so called EPA style canisters from four different companies. The authors then prepared calibration tables and curves for each batch and compared them to the EERF published tables. it was our premise that EPA never intended for their curves to be considered standard and that with more and more companies manufacturing canisters, the calibration factors could certainly vary and might significantly differ from those derived by EERF several years ago

  11. Analysis of variation in calibration curves for Kodak XV radiographic film using model-based parameters.

    Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L

    2010-08-05

    Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.

  12. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP

    Reimer, Paula J.; Bard, Edouard; Bayliss, Alex; Beck, J. Warren; Blackwell, Paul G.; Bronk Ramsey, Christopher; Buck, Caitlin E.; Cheng, Hai; Edwards, R. Lawrence; Friedrich, Michael; Grootes, Pieter M.; Guilderson, Thomas P.; Haflidason, Haflidi; Hajdas, Irka; Hatté, Christine; Heaton, Timothy J.; Hoffmann, Dirk L.; Hogg, Alan G.; Hughen, Konrad A.; Kaiser, K. Felix; Kromer, Bernd; Manning, Sturt W.; Niu, Mu; Reimer, Ron W.; Richards, David A.; Scott, E. Marian; Southon, John R.; Staff, Richard A.; Turney, Christian S.M.; Plicht, Johannes van der; Reimer, Paula J.

    2013-01-01

    The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from C-14 measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model

  13. Establishment of calibration curve for water measurement in a bulky paper recycling by neutron device

    Norpaiza Mohamad Hasan; Glam Hadzir Patai Mohamad; Rasif Mohd Zain; Ismail Mustapha

    2010-01-01

    A bulk used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and has a huge potential of suppliers to add with water in order to increase the price. Currently used methods for moisture content in a paper are restricted to sheet of paper only. This paper presents a non-intrusive method for quick and in-situ measurement of water content in a bulky used paper. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector are used for water measurement. The experiment is carried out by measuring a series of wet paper that added with known amount of water. As consequent, a neutron calibration curve for water measurement in a bulky used paper is obtained. Six categories of calibration curve have been proposed for correction of weight measurement during purchasing of used paper. (author)

  14. A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

    Winkler, A W; Zagar, B G

    2013-01-01

    An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives. (paper)

  15. A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

    Winkler, A. W.; Zagar, B. G.

    2013-08-01

    An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.

  16. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  17. About local calibration curve of the Black Sea during the period 18000 - 3000 calendar years BP

    Slavova, K.

    2002-01-01

    Understanding the youngest geological Black Sea history requires that the age of the tested samples be accurately determined. The comparison between 234 U/ 230 Th and 14 C ages obtained on the Holocene samples demonstrate that 234 U/ 230 Th ages are accurate because they are in agreement with the dendrochonological calibration. Beyond 9100 calendar year BP it is proved that 14 C ages are systematically younger than 234 U/ 230 Th ages with a maximum difference of about 3000 years reached at about 20000 calendar years. This calls for converting the conventional 14 C ages in calendar ages. The procedure is called calibration. A local calibration Black Sea curve in which features of the Black Sea as a basin to be included is required, videlicet: correction of conventional ages for 'reservoir effect' - 60 years for TOC (Total Organic Carbon), 460 years for TCC (Total Carbonate Carbon) and for 'detrital carbon input - 580 years for TOC, 260 years for TCC. Such local calibration curve is constructed and proved in the article by using and comparing data from different dating methods (carbon 14, 234 U/ 230 Th, dendrochronology)

  18. Use of universal functional optimisation for TL glow curve analysis

    Pernicka, F.; Linh, H.Q.

    1996-01-01

    The effective use of any TL instrument requires an efficient software package to be able to fulfil different tasks required by research and practical applications. One of the standard features of the package used at the NPI Prague is the application of the interactive modular system Universal Functional Optimisation (UFO) for glow curve deconvolution. The whole system has been tested on standard glow curves using different models of the TL process (a single peak described by the Podgorsak approximation, first order kinetics and/or general order kinetics). Calculated values of basic TL parameters (E and s) show a good agreement with the results obtained by other authors. The main advantage of the system is in its modularity that enables flexible changes in the TL model and mathematical procedures of the glow curve analysis. (author)

  19. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  20. Rhizocarpon calibration curve for the Aoraki/Mount Cook area of New Zealand

    Lowell, Thomas V.; Schoenenberger, Katherine; Deddens, James A.; Denton, George H.; Smith, Colby; Black, Jessica; Hendy, Chris H.

    2005-05-01

    Development of Rhizocarpon growth curve from the Aoraki/Mount Cook area of New Zealand provides a means to assess Little Ice Age glacier behaviour and suggests approaches that have wider application. Employing a sampling strategy based on large populations affords the opportunity to assess which of various metrics (e.g. single largest, average of five largest, mean of an entire population) best characterise Rhizocarpon growth patterns. The 98% quantile from each population fitted with a quadric curve forms a reliable representation of the growth pattern. Since this metric does not depend on the original sample size, comparisons are valid where sample strategy must be adapted to local situations or where the original sample size differs. For the Aoraki/Mount Cook area a surface 100 years old will have a 98% quantile lichen diameter of 34.3 mm, whereas a 200-year-old surface will have a lichen diameter of 73.7 mm. In the Southern Alps, constraints from the age range of calibration points, the flattening of the quadric calibration curve and ecological factors limit the useful age range to approximately 250 years. Copyright

  1. Closed timelike curves in asymmetrically warped brane universes

    Päs, Heinrich; Pakvasa, Sandip; Dent, James; Weiler, Thomas J.

    2009-08-01

    In asymmetrically-warped spacetimes different warp factors are assigned to space and to time. We discuss causality properties of these warped brane universes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In particular, necessary and sufficient conditions on the metric for the existence of closed timelike curves are presented. We find a six-dimensional warped metric which satisfies the CTC conditions, and where the null, weak and dominant energy conditions are satisfied on the brane (although only the former remains satisfied in the bulk). Such scenarios are interesting, since they open the possibility of experimentally testing the chronology protection conjecture by manipulating on our brane initial conditions of gravitons or hypothetical gauge-singlet fermions (“sterile neutrinos”) which then propagate in the extra dimensions.

  2. Calibration curves of a PGNAA system for cement raw material analysis using the MCNP code

    Oliveira, Carlos; Salgado, Jose

    1998-01-01

    In large samples, the γ-ray count rate of a prompt gamma neutron activation analysis system is a multi-variable function of the elemental dry composition, density, water content and thickness of the material. The experimental calibration curves require tremendous laboratory work, using a great number of standards with well-known compositions. Although a Monte Carlo simulation study does not avoid the experimental calibration work, it reduces the number of experimental calibration standards. This paper is part of a feasibility study for a PGNAA system for on-line continuous characterisation of cement raw material conveyed on a belt (Oliveira, C., Salgado, J. and Carvalho, F. G. (1997) Optimisation of PGNAA instrument design for cement raw materials using the MCNP code. J. Radioanal. Nucl. Chem. 216(2), 191-198; Oliveira, C., Salgado, J., Goncalves, I. F., Carvalho, F. G. and Leitao, F. (1997a) A Monte Carlo study of the influence of geometry arrangements and structural materials on a PGNAA system performance for cement raw materials analysis. Appl. Radiat. Isot. (accepted); Oliveira, C., Salgado, J. and Leitao, F. (1997b) Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP code. Appl. Radiat. Isot. (accepted).]. It reports on the influence of the density, mass water content and thickness on the calibration curves of the PGNAA system. The MCNP-4A code, running in a Pentium-PC and in a DEC workstation, was used to simulate the PGNAA configuration system

  3. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    Kjeldsen, Henrik, E-mail: kjeldsen@phys.au.d [AMS 14C Dating Centre, Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark); Heinemeier, Jan [AMS 14C Dating Centre, Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark); Heegaard, Steffen [Eye Pathology Section, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen (Denmark); Jacobsen, Christina; Lynnerup, Niels [Department of Forensic Medicine, University of Copenhagen, Copenhagen (Denmark)

    2010-04-15

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth, in accordance with expectations. Moreover, it has been possible to develop an age model for the formation of the eye-lens crystallines. From this model a radiocarbon calibration curve for lens crystallines has been calculated. As a consequence, the time of birth of humans can be determined with an accuracy of a few years by radiocarbon dating.

  4. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    Kjeldsen, Henrik; Heinemeier, Jan; Heegaard, Steffen; Jacobsen, Christina; Lynnerup, Niels

    2010-01-01

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth, in accordance with expectations. Moreover, it has been possible to develop an age model for the formation of the eye-lens crystallines. From this model a radiocarbon calibration curve for lens crystallines has been calculated. As a consequence, the time of birth of humans can be determined with an accuracy of a few years by radiocarbon dating.

  5. MCNP calculation for calibration curve of X-ray fluorescence analysis

    Tan Chunming; Wu Zhifang; Guo Xiaojing; Xing Guilai; Wang Zhentao

    2011-01-01

    Due to the compositional variation of the sample, linear relationship between the element concentration and fluorescent intensity will not be well maintained in most X-ray fluorescence analysis. To overcome this, we use MCNP program to simulate fluorescent intensity of Fe (0∼100% concentration range) within binary mixture of Cr and O which represent typical strong absorption and weak absorption conditions respectively. The theoretic calculation shows that the relationship can be described as a curve determined by parameter p and value of p can be obtained with given absorption coefficient of substrate elements and element under detection. MCNP simulation results are consistent with theoretic calculation. Our research reveals that MCNP program can calculate the Calibration Curve of X-ray fluorescence very well. (authors)

  6. CABAS: A freely available PC program for fitting calibration curves in chromosome aberration dosimetry

    Deperas, J.; Szluiska, M.; Deperas-Kaminska, M.; Edwards, A.; Lloyd, D.; Lindholm, C.; Romm, H.; Roy, L.; Moss, R.; Morand, J.; Wojcik, A.

    2007-01-01

    The aim of biological dosimetry is to estimate the dose and the associated uncertainty to which an accident victim was exposed. This process requires the use of the maximum-likelihood method for fitting a calibration curve, a procedure that is not implemented in most statistical computer programs. Several laboratories have produced their own programs, but these are frequently not user-friendly and not available to outside users. We developed a software for fitting a linear-quadratic dose-response relationship by the method of maximum-likelihood and for estimating a dose from the number of aberrations observed. The program called as CABAS consists of the main curve-fitting and dose estimating module and modules for calculating the dose in cases of partial body exposure, for estimating the minimum number of cells necessary to detect a given dose of radiation and for calculating the dose in the case of a protracted exposure. (authors)

  7. Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers

    Sohn, Hoon; Lee, Sang Jun

    2010-01-01

    Surface-bonded lead zirconate titanate (PZT) transducers have been widely used for guided wave generation and measurement. For selective actuation and sensing of Lamb wave modes, the sizes of the transducers and the driving frequency of the input waveform should be tuned. For this purpose, a theoretical Lamb wave tuning curve (LWTC) of a specific transducer size is generally obtained. Here, the LWTC plots each Lamb wave mode' amplitude as a function of the driving frequency. However, a discrepancy between experimental and existing theoretical LWTCs has been observed due to little consideration of the bonding layer and the energy distribution between Lamb wave modes. In this study, calibration techniques for theoretical LWTCs are proposed. First, a theoretical LWTC is developed when circular PZT transducers are used for both Lamb wave excitation and sensing. Then, the LWTC is calibrated by estimating the effective PZT size with PZT admittance measurement. Finally, the energy distributions among symmetric and antisymmetric modes are taken into account for better prediction of the relative amplitudes between Lamb wave modes. The effectiveness of the proposed calibration techniques is examined through numerical simulations and experimental estimation of the LWTC using the circular PZT transducers instrumented on an aluminum plate

  8. Radiocarbon calibration curves indicate location dependent differences in the C-14 content of wood

    McCormac, F.G.; Baillie, M.G.L.

    1997-01-01

    Full text: The C-14 chronologies currently used as calibration curves combine results from wood that grew in the western United States, the British Isles and Germany. Recent corrections to the published measurements indicate that data from these long chronologies are no longer entirely consistent, implying either the existence of interlaboratory biases, or C-14 variations in the wood from different species and/or regions. It has long been accepted that wood from the Southern Hemisphere gives radiocarbon dates that are approximately 40 years older than contemporaneous Northern Hemisphere wood. The reasons suggested for the difference are typically that the larger expanse of ocean and the slightly higher average wind speeds result in enhanced CO 2 exchange with the mixed layer of the ocean. measurements presented in a companion paper (Hogg et al) explore the difference between the hemispheres, by re-measurement of a section of the Northern Hemisphere calibration dataset and wood from New Zealand. Only by making careful replicated comparisons of the C-14 content of wood from different regions, over long time scales, can we verify the presence or absence of temporal variations. In this paper we will discuss the Northern Hemisphere calibration dataset and show the importance of experimental design in determining if small, temporally varying offsets exist between regional tree-ring chronologies

  9. Calibration of a Fusion Experiment to Investigate the Nuclear Caloric Curve

    Keeler, Ashleigh

    2017-09-01

    In order to investigate the nuclear equation of state (EoS), the relation between two thermodynamic quantities can be examined. The correlation between the temperature and excitation energy of a nucleus, also known as the caloric curve, has been previously observed in peripheral heavy-ion collisions to exhibit a dependence on the neutron-proton asymmetry. To further investigate this result, fusion reactions (78Kr + 12C and 86Kr + 12C) were measured; the beam energy was varied in the range 15-35 MeV/u in order to vary the excitation energy. The light charged particles (LCPs) evaporated from the compound nucleus were measured in the Si-CsI(TI)/PD detector array FAUST (Forward Array Using Silicon Technology). The LCPs carry information about the temperature. The calibration of FAUST will be described in this presentation. The silicon detectors have resistive surfaces in perpendicular directions to allow position measurement of the LCP's to better than 200 um. The resistive nature requires a position-dependent correction to the energy calibration to take full advantage of the energy resolution. The momentum is calculated from the energy of these particles, and their position on the detectors. A parameterized formula based on the Bethe-Bloch equation was used to straighten the particle identification (PID) lines measured with the dE-E technique. The energy calibration of the CsI detectors is based on the silicon detector energy calibration and the PID. A precision slotted mask enables the relative positions of the detectors to be determined. DOE Grant: DE-FG02-93ER40773 and REU Grant: PHY - 1659847.

  10. Spectral analysis of the IntCal98 calibration curve: a Bayesian view

    Palonen, V.; Tikkanen, P.

    2004-01-01

    Preliminary results from a Bayesian approach to find periodicities in the IntCal98 calibration curve are given. It has been shown in the literature that the discrete Fourier transform (Schuster periodogram) corresponds to the use of an approximate Bayesian model of one harmonic frequency and Gaussian noise. Advantages of the Bayesian approach include the possibility to use models for variable, attenuated and multiple frequencies, the capability to analyze unevenly spaced data and the possibility to assess the significance and uncertainties of spectral estimates. In this work, a new Bayesian model using random walk noise to take care of the trend in the data is developed. Both Bayesian models are described and the first results of the new model are reported and compared with results from straightforward discrete-Fourier-transform and maximum-entropy-method spectral analyses

  11. Sensitivity of film measured off-axis ratios to film calibration curve using radiochromic film

    Garcia-Hernandez, Diana; Larraga-Gutierrez, Jose M.

    2011-01-01

    Off-axis ratios of conical beams generated with a stereotactic radiosurgery-dedicated Linac were measured with EBT2 film and stereotactic diode. The sensitivity of both full width at half maximum (FWHM) and penumbras (80-20% and 90-10%, respectively), with respect to the characteristics of the film calibration curve fit, was investigated. In all cases, penumbras resulted to be more sensitive than FWHM. However, these differences were, in general, smaller than the ones found between EBT2 reference values and the stereotactic diode measurements. The larger variation in OAR parameters was found to depend on whether the fit intersected or not the origin. A 1D gamma-index analysis showed this difference can be important in all measured conical beams. (author)

  12. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F.; Melo, Ana Maria M.A.

    2017-01-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  13. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F., E-mail: falima@cnen.gov.br, E-mail: mendes_sb@hotmail.com [Centro Regional de Ciências Nucleares, (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana Maria M.A., E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, PE (Brazil). Centro Acadêmico de Vitória

    2017-07-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  14. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  15. Calibration curves for biological dosimetry by drug-induced prematurely condensed chromosomes in human lymphocytes

    Kang, C. M.; Chung, H. C.; Cho, C. K.

    2002-01-01

    To develop the cytogenetic tool to detect chromosome damages after high dose exposure with 60 Coγ- rays, dose-response curves were measured for induction of prematurely condensed chromosomes (PCC) in peripheral lymphocytes. Blood was obtained from 10 different healthy donors, and given okadaic acid (OA) 500nM in cultured lymphocytes 1h after radiation exposure. Cells were analyzed by the frequencies of OA-induced PCC rings because it is difficult to obtain mitotic chromosomes using a conventional chromosome aberration (CA). PCC-rings were scored in cells exposed in the dose range of 0.2-16Gy. The frequency of the cells with PCC and the dose-response relationship for the yield of PCC rings were examined in the irradiated lymphocytes. The yield of PCC-rings increased with dose dependent-manner up to 16Gy. The observed dose-effect relationship for the percentage of cells with PCC-rings was calculated by linear-quadratic model. This technique can be applied to biological dosimetry of radiation exposures involving whole body irradiation to allow damaged chromosomes to be detected with great sensitivity. Detection of okadaic acid-induced PCC rings is a useful method up to 16Gy or more doses in estimating the absorbed doses of victims after high dose exposure. Calibration curves described in this paper will be used in our laboratory for biological dosimetry by PCC-ring after a high dose exposure

  16. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

    Kolev, N.A.

    1981-07-01

    A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

  17. Fitness of the analysis method of magnesium in drinking water using atomic absorption with quadratic calibration curve

    Perez-Lopez, Esteban

    2014-01-01

    The quantitative chemical analysis has been importance in research. Also, aspects like: quality control, sales of services and other areas of interest. Some instrumental analysis methods for quantification with linear calibration curve have presented limitations, because the short liner dynamic ranges of the analyte, or sometimes, by limiting the technique itself. The need has been to investigate a little more about the convenience of using quadratic calibration curves for analytical quantification, with which it has seeked demonstrate that has been a valid calculation model for chemical analysis instruments. An analysis base method is used on the technique of atomic absorption spectroscopy and in particular a determination of magnesium in a drinking water sample of the Tacares sector North of Grecia. A nonlinear calibration curve was used and specifically a curve with quadratic behavior. The same was compared with the test results obtained for the equal analysis with a linear calibration curve. The results have showed that the methodology has been valid for the determination referred with all confidence, since the concentrations have been very similar and, according to the used hypothesis testing, can be considered equal. (author) [es

  18. SU-E-T-391: Evaluation of Image Parameters Impact On the CT Calibration Curve for Proton Therapy

    Xiao, Z; Reyhan, M; Huang, Q; Zhang, M; Yue, N; Chen, T [Rutgers University, New Brunswick, NJ (United States)

    2015-06-15

    Purpose: The calibration of the Hounsfield units (HU) to relative proton stopping powers (RSP) is a crucial component in assuring the accurate delivery of proton therapy dose distributions to patients. The purpose of this work is to assess the uncertainty of CT calibration considering the impact of CT slice thickness, position of the plug within the phantom and phantom sizes. Methods: Stoichiometric calibration method was employed to develop the CT calibration curve. Gammex 467 tissue characterization phantom was scanned in Tomotherapy Cheese phantom and Gammex 451 phantom by using a GE CT scanner. Each plug was individually inserted into the same position of inner and outer ring of phantoms at each time, respectively. 1.25 mm and 2.5 mm slice thickness were used. Other parameters were same. Results: HU of selected human tissues were calculated based on fitted coefficient (Kph, Kcoh and KKN), and RSP were calculated according to the Bethe-Bloch equation. The calibration curve was obtained by fitting cheese phantom data with 1.25 mm thickness. There is no significant difference if the slice thickness, phantom size, position of plug changed in soft tissue. For boney structure, RSP increases up to 1% if the phantom size and the position of plug changed but keep the slice thickness the same. However, if the slice thickness varied from the one in the calibration curve, 0.5%–3% deviation would be expected depending on the plug position. The Inner position shows the obvious deviation (averagely about 2.5%). Conclusion: RSP shows a clinical insignificant deviation in soft tissue region. Special attention may be required when using a different slice thickness from the calibration curve for boney structure. It is clinically practical to address 3% deviation due to different thickness in the definition of clinical margins.

  19. Computational tools for the construction of calibration curves for use in dose calculations in radiotherapy treatment planning

    Oliveira, Alex C.H.; Vieira, Jose W.; Escola Politecnica de Pernambuco , Recife, PE

    2011-01-01

    The realization of tissue inhomogeneity corrections in image-based treatment planning improves the accuracy of radiation dose calculations for patients undergoing external-beam radiotherapy. Before the tissue inhomogeneity correction can be applied, the relationship between the computed tomography (CT) numbers and density must be established. This relationship is typically established by a calibration curve empirically obtained from CT images of a phantom that has several inserts of tissue-equivalent materials, covering a wide range of densities. This calibration curve is scanner-dependent and allows the conversion of CT numbers in densities for use in dose calculations. This paper describes the implementation of computational tools necessary to construct calibration curves. These tools are used for reading and displaying of CT images in DICOM format, determination of the mean CT numbers (and their standard deviations) of each tissue-equivalent material and construction of calibration curves by fits with bilinear equations. All these tools have been implemented in the Microsoft Visual Studio 2010 in C≠ programming language. (author)

  20. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s. 5 figures

  1. The history of the Universe is an elliptic curve

    Coquereaux, Robert

    2015-06-01

    Friedmann-Lemaître equations with contributions coming from matter, curvature, cosmological constant, and radiation, when written in terms of conformal time u rather than in terms of cosmic time t, can be solved explicitly in terms of standard Weierstrass elliptic functions. The spatial scale factor, the temperature, the densities, the Hubble function, and almost all quantities of cosmological interest (with the exception of t itself) are elliptic functions of u, in particular they are bi-periodic with respect to a lattice of the complex plane, when one takes u complex. After recalling the basics of the theory, we use these explicit expressions, as well as the experimental constraints on the present values of density parameters (we choose for the curvature density a small value in agreement with experimental bounds) to display the evolution of the main cosmological quantities for one real period 2{{ω }r} of conformal time (the cosmic time t ‘never ends’ but it goes to infinity for a finite value {{u}f}\\lt 2{{ω }r} of u). A given history of the Universe, specified by the measured values of present-day densities, is associated with a lattice in the complex plane, or with an elliptic curve, and therefore with two Weierstrass invariants {{g}2},{{g}3}. Using the same experimental data we calculate the values of these invariants, as well as the associated modular parameter and the corresponding Klein j-invariant. If one takes the flat case k = 0, the lattice is only defined up to homotheties, and if one, moreover, neglects the radiation contribution, the j-invariant vanishes and the corresponding modular parameter τ can be chosen in one corner of the standard fundamental domain of the modular group (equihanharmonic case: τ =exp (2iπ /3)). Several exact—i.e., non-numerical—results of independent interest are obtained in that case.

  2. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  3. Application of Calibration Curve, Accuracy and Precision Chart as Internal Quality Control at COD Testing in Wastewater

    Uray Lusiana

    2012-06-01

    Full Text Available Quality assurance is one of the technical requirements that include in the quality management system based on SNI ISO/IEC 17025 : 2008. Quality assurance is all the process that planned and systematic activity that applied in analysis, so can give the confidence to the customer or data user. Quality assurance that is applied for COD testing in wastewater are calibration curve, accuracy and precision control chart. The purpose of calibration curve, accuracy and precision control chart applied was to control the data of COD testing so that guaranty the validity to report and to keep the consistence of testing result as statistic all the time. Calibration curve of COD testing have a coefficient correlation 0,99987. Accuracy control chart have limited line BTA = 104,95%, BPA = 102,97%, BIA = 100,98%, BTB = 93,03%, BPB = 95,02% and BIB = 97,0%. Accuracy data can be accepted if that data present between line of BPA and BPB (± 2 SD, data is warned if that data present between line BTA-BPA or BTB-BPB (± 2 SD and ± 3 SD, and data is outlier if that data present out of line BTA and BTB (± 3 SD. The precision data can accepted if that the RPD value is not more than 10 % of COD testing result.

  4. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  5. Calibration curve to establish the exposure dose at Co60 gamma radiation

    Guerrero C, C.; Brena V, M.

    2000-01-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  6. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  7. Receiver Operating Characteristic Curve-Based Prediction Model for Periodontal Disease Updated With the Calibrated Community Periodontal Index.

    Su, Chiu-Wen; Yen, Amy Ming-Fang; Lai, Hongmin; Chen, Hsiu-Hsi; Chen, Sam Li-Sheng

    2017-12-01

    The accuracy of a prediction model for periodontal disease using the community periodontal index (CPI) has been undertaken by using an area under a receiver operating characteristics (AUROC) curve. How the uncalibrated CPI, as measured by general dentists trained by periodontists in a large epidemiologic study, and affects the performance in a prediction model, has not been researched yet. A two-stage design was conducted by first proposing a validation study to calibrate CPI between a senior periodontal specialist and trained general dentists who measured CPIs in the main study of a nationwide survey. A Bayesian hierarchical logistic regression model was applied to estimate the non-updated and updated clinical weights used for building up risk scores. How the calibrated CPI affected performance of the updated prediction model was quantified by comparing AUROC curves between the original and updated models. Estimates regarding calibration of CPI obtained from the validation study were 66% and 85% for sensitivity and specificity, respectively. After updating, clinical weights of each predictor were inflated, and the risk score for the highest risk category was elevated from 434 to 630. Such an update improved the AUROC performance of the two corresponding prediction models from 62.6% (95% confidence interval [CI]: 61.7% to 63.6%) for the non-updated model to 68.9% (95% CI: 68.0% to 69.6%) for the updated one, reaching a statistically significant difference (P prediction model was demonstrated for periodontal disease as measured by the calibrated CPI derived from a large epidemiologic survey.

  8. Establishment of Accurate Calibration Curve for National Verification at a Large Scale Input Accountability Tank in RRP - For Strengthening State System for Meeting Safeguards Obligation

    Goto, Y.; Kato, T.; Nidaira, K.

    2010-01-01

    Tanks are installed in a reprocessing plant for spent fuel in order to account solution of nuclear material. The careful measurement of volume in tanks is crucial to implement accurate accounting of nuclear material. The calibration curve related with the volume and level of solution needs to be constructed, where the level is determined by differential pressure of dip tubes in tanks. More than one calibration curves depending on the height are commonly applied for each tank, but it's not explicitly decided how many segments are used, where to select segment, or what order of polynomial curve. Here we present the rational construction technique of giving optimum calibration curves and their characteristics. The tank calibration work has been conducted in the course of contract with Japan Safeguards Office (JSGO) about safeguards information treatment. (author)

  9. Evaluation of different calibration curves QA of IMRT plans with radiochromic films; Evaluacion de diversas curvas de calibracion QA de planes de IMRT con peliculas radiocromicas

    Hernandez Rodriguez, J.; Martin Rincon, C.; Garcia Repiso, S.; Ramos Paheo, J. A.; Verde Velasco, J. M.; Sena Espinel, E. de

    2013-07-01

    The non-linear relationship between dose and the optical density, characteristic plates radiochromic Gafchromic EBT and EBT2, has been studied by various authors, whose publications are proposed different functional forms that fit the specific values measured curves that allow the full range of useful dose calibration. The objective of the work focuses on evaluating the influence of the use of different calibration curves in the dose measurement for quality control of IMRT treatments. (Author)

  10. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  11. Comparison of calibration curve of radiochromic films EBT2 and EBT; Comparacion de la curva de calibracion de las peliculas radiocromica EBT2 y EBT

    Parra Osorio, V.; Martin-Viera Cueto, J. A.; Galan Montenegro, P.; Benitez Villegas, E. M.; Casado Villalon, F. F.; Bodineau Gil, C.

    2013-07-01

    The aim is to compare the quality of the fit to calibrate two radiochromic films batches, one model and another of EBT3 EBT2, using both experimental settings as phenomenological expression as of the calibration curve depends on the precision and accuracy of the estimate of absorbed dose. (Author)

  12. Gold Nanoparticle-Aptamer-Based LSPR Sensing of Ochratoxin A at a Widened Detection Range by Double Calibration Curve Method.

    Liu, Boshi; Huang, Renliang; Yu, Yanjun; Su, Rongxin; Qi, Wei; He, Zhimin

    2018-01-01

    Ochratoxin A (OTA) is a type of mycotoxin generated from the metabolism of Aspergillus and Penicillium , and is extremely toxic to humans, livestock, and poultry. However, traditional assays for the detection of OTA are expensive and complicated. Other than OTA aptamer, OTA itself at high concentration can also adsorb on the surface of gold nanoparticles (AuNPs), and further inhibit AuNPs salt aggregation. We herein report a new OTA assay by applying the localized surface plasmon resonance effect of AuNPs and their aggregates. The result obtained from only one single linear calibration curve is not reliable, and so we developed a "double calibration curve" method to address this issue and widen the OTA detection range. A number of other analytes were also examined, and the structural properties of analytes that bind with the AuNPs were further discussed. We found that various considerations must be taken into account in the detection of these analytes when applying AuNP aggregation-based methods due to their different binding strengths.

  13. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  14. SDSS J14584479+3720215: A BENCHMARK JHK{sub S} BLAZAR LIGHT CURVE FROM THE 2MASS CALIBRATION SCANS

    Davenport, James R. A.; Ruan, John J.; Becker, Andrew C. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Macleod, Chelsea L. [Physics Department, The United States Naval Academy, 572c Holloway Road, Annapolis, MD 21402 (United States); Cutri, Roc M., E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR (NIR) variability of the most luminous AGNs, we conduct a search for variability using well sampled JHK{sub s}-band light curves from the Two Micron All Sky Survey (2MASS) calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSS J14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for active galactic nucleus (AGN) candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only seven candidates. All seven were young stellar objects within the ρ Ophiuchus star forming region, five with previous X-ray detections. A significant γ-ray detection (5σ) for the known blazar using 4.5 yr of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSS J14584479+3720215, can be used as an efficient method of identifying previously unidentified γ-ray blazars, with low contamination from other AGNs.

  15. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  16. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order

  17. Calibration curves for on-line leakage detection using radiotracer injection method

    Ayoub Khatooni

    2017-11-01

    Full Text Available One of the most important requirements for industrial pipelines is the leakage detection. In this paper, detection of leak and determination of its amount using radioactive tracer injection method has been simulated by Monte Carlo MCNP code. The detector array included two NaI (Tl detectors which were located before and after the considered position, measure emitted gamma from radioactive tracer. After calibration of radiation detectors, the amount of leakage can be calculated based on the count difference of detectors. Also, the effect of material and thickness and diameter of pipe, crystal dimension, types of fluid, activity of tracer and its type (24Na, 82Br, 131I, 99mTc, 113mIn as well as have been investigated on the detectable amount of leakage. According to the results, for example, leakage more than 0.007% in volume of the inlet fluid for iron pipe with outer diameter 4 inch and thickness of 0.5 cm, Petrol as fluid inside pipe, 3 3 inch detector and 24Na with activity of 100 mCi can be detected by this presented method.

  18. Calibration curves for quantifying praseodymium by UV-VIS; Curvas de calibracion para cuantificar praseodimio por UV-VIS

    Gonzalez M, R.; Lopez G, H.; Rojas H, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: robertssd1199@yahoo.com.mx

    2007-07-01

    The UV-Vis spectroscopic technique was used to determine the absorption bands depending on the concentration from the praseodymium solutions at pH3. Those more appropriate were in the wavelength of 215 nm, for concentrations of 0.0001-0.026 M, of 481nm, 468 nm and 443 nm, for concentrations of 0.026-0.325 M, and of 589 nm, for concentrations of 0.026-0.65 M of the praseodymium. To these wavelengths the calibration curves were determined, which presented correlation coefficients between 0.9976 and 0.9999 except of the absorption of 589 nm that gave R{sup 2} = 0.9014. (Author)

  19. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    DeWard, L.A.; Micka, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  20. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    DeWard, L.A.; Micka, J.A.

    1993-01-01

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST)

  1. Universal single grain amphibole thermobarometer for mantle rocks - preliminary calibration.

    Ashchepkov, Igor

    2017-04-01

    Calibration of S-Al- K-Na-Ca distribution in the structure of the mantle amphiboles (Cr- hornblende, pargasite, kaersutite) using experimental data (Niida, Green, 1999; Wallace Green, 1991, Conceicao, Green, 2004; Medard et al, 2006; Safonov, Butvina, 2013; 2016; Pirard, Hermann, 2015 etc) allows to obtain an equation for pressure estimates in 0.5 - 4.5 GPa interval. Regression calculated pressures with experimental values (R 0.82) and precision 5 kbar allow to use barometer for a wide range of mantle rocks from peridotite to pyroxenites and megacrystals. For the higher pressures (Cr- pargasite richterite) calibration is carried by the cross- correlations with the estimates calculated for the natural associations obtained using clino- and orthopyroxene. IT was used KD =Si/(8-Al-2.2*Ti)*(Na+K))/Ca for the following equation: P(GPa)=0.0035*(4+K/(Na+K))*2*Mg)/Fe+3.75*(K+Na)/Ca))*KD*ToK**0.75/ (1+3.32*Fe)-ln(1273/ToK*5*(8*Mg-Al*2 +3*Ti+8*Cr+3*K)/10 Th advantage of this barometer comparing with the previous (Ridolfi, Renzulli, 2012) is that is working with all mantle amphibole types. For the calculations of the PT parameters of the natural xenocrysts it was used monomineral version of Gar-Amph termometer (Ravna et al., 2000) in combination with the received barometer. Contents of Ca- Mg and Fe in associated garnets were calculated usinf the regressions obtained from natural and experimental associations. Aplication of the mantle amphibole thermobarometry for the reconstruction of sections of the cratonic mantle lithosphere of Yakutia show that amphibloles are distributed in various parts of mantle sections in deifferent mantle terranes of Yakutia. The most abundant amphoboles from Alakite region are distributed within all mantle section. In the SCLM beneat Yubileyaya pipe thehalf of them belong to the spinel garnet facie refering to the upper pyroxenitic suit and Cr- hornblende - mica viens. The second group reffer to the eclogite pyroxenite layer in the middle part of

  2. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  3. Universal rescaling of flow curves for yield-stress fluids close to jamming

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  4. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance.

    Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E

    2014-09-16

    A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.

  5. An experimental assessment of proposed universal yield curves for secondary electron emission

    Salehi, M.; Flinn, E.A.

    1980-01-01

    A variety of 'Universal Yield Curves' for the secondary emission process have been proposed. A series of precise measurements of the secondary emission properties of a range of related amorphous semiconducting materials, made under UHV on freshly vacuum-cleaved surfaces, and covering a wide range of primary energies, have recently made possible an accurate assessment of the validity of the various UYC's suggested. It is found that no truly universal curve exists; the atomic number of the target material plays an important part in determining the secondary emission properties. Agarwal's (Proc. Phys. Soc.; 71: 851 (1958)) semi-empirical expression, which takes account of the atomic number and weight, is found to give good agreement for all the materials studied. Further theoretical investigation is required. (author)

  6. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry.

    Yang, Yang; Zhong, Qisheng; Mo, Canlong; Zhang, Hao; Zhou, Ting; Tan, Wen

    2017-11-01

    Accurate and reliable quantification of endogenous lipid mediators in complex biological samples is a daunting challenge. In this study, a robust and direct endogenous quantitative method using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry was first developed for the determination of endogenous lipid mediators in ischemic stroke rats. Absolute quantification without surrogate matrix could be achieved by using background subtracting calibration curves, which were corrected and verified from standard curves constructed on original matrix. The recoveries of this method were in the range of 50.3-98.3%, the precision with the relative standard deviation was less than 13.8%, and the accuracy with the relative error was within ± 15.0%. In addition, background subtracting calibration curves were further verified by validation factors ranging from 90.3 to 110.9%. This validated method has been successfully applied to the analysis of seven endogenous inflammation-related lipid mediators in the brain tissues of ischemic stroke rats. The results indicated that prostaglandins as inflammatory factors and some lipid mediators with neuroprotective effects increased apparently (p endogenous compounds in the complex biological samples. Graphical abstract The analysis procedure of determining endogenous inflammation-related lipid mediators using BSCC by LC-MS/MS.

  7. Calibration of a T-History calorimeter to measure enthalpy curves of phase change materials in the temperature range from 40 to 200 °C

    Rathgeber, Christoph; Schmit, Henri; Hennemann, Peter; Hiebler, Stefan

    2014-01-01

    Thermal energy storage using phase change materials (PCMs) provides high storage capacities in small temperature ranges. For the design of efficient latent heat storage, the enthalpy curve of a PCM has to be measured with high precision. Measurements are most commonly performed with differential scanning calorimetry (DSC). The T-History method, however, proved to be favourable for the characterization of typical PCMs due to large samples and a measuring procedure close to conditions found in applications. As T-History calorimeters are usually individual constructions, performing a careful calibration procedure is decisive to ensure optimal measuring accuracy. We report in this paper on the calibration of a T-History calorimeter with a working range from 40 to 200 °C that was designed and built at our institute. A three-part procedure, consisting of an indium calibration, a measurement of the specific heat of copper and measurements of three solid–liquid PCMs (stearic acid, dimethyl terephthalate and d-mannitol), was performed and an advanced procedure for the correction of enthalpy curves was developed. When comparing T-History enthalpy curves to literature data and DSC step measurements, good agreement within the uncertainty limits demanded by RAL testing specifications was obtained. Thus, our design of a T-History calorimeter together with the developed calibration procedure provides the measuring accuracy that is required to identify the most suitable PCM for a given application. In addition, the dependence of the enthalpy curve on the sample size can be analysed by comparing results obtained with T-History and DSC and the behaviour of the bulk material in real applications can be predicted. (paper)

  8. A simple preparation of calibration curve standards of 134Cs and 137Cs by serial dilution of a standard reference material

    Labrecque, J.J.; Rosales, P.A.

    1990-01-01

    Two sets of calibration standards for 134 Cs and 137 Cs were prepared by small serial dilution of a natural matrix standard reference material, IAEA-154 whey powder. The first set was intended to screen imported milk powders which were suspected to be contaminated with 134 Cs and 137 Cs. Their concentration ranged from 40 to 400 Bq/kg. The other set of calibration standards was prepared to measure the environmental levels of 137 Cs in commercial Venezuelan milk powders. Their concentration ranged from 3 to 10 Bq/kg of 137 Cs. The accuracy of these calibration curves was checked by IAEA-152 and A-14 milk powders. Their measured values were in good agreement with their certified values. Finally, it is shown that these preparation techniques using serial dilution of a standard reference material were simple, rapid, precise, accurate and cost-effective. (author) 5 refs.; 5 figs.; 3 tabs

  9. Universal Survival Curve and Single Fraction Equivalent Dose: Useful Tools in Understanding Potency of Ablative Radiotherapy

    Park, Clint; Papiez, Lech; Zhang Shichuan; Story, Michael; Timmerman, Robert D.

    2008-01-01

    Purpose: Overprediction of the potency and toxicity of high-dose ablative radiotherapy such as stereotactic body radiotherapy (SBRT) by the linear quadratic (LQ) model led to many clinicians' hesitating to adopt this efficacious and well-tolerated therapeutic option. The aim of this study was to offer an alternative method of analyzing the effect of SBRT by constructing a universal survival curve (USC) that provides superior approximation of the experimentally measured survival curves in the ablative, high-dose range without losing the strengths of the LQ model around the shoulder. Methods and Materials: The USC was constructed by hybridizing two classic radiobiologic models: the LQ model and the multitarget model. We have assumed that the LQ model gives a good description for conventionally fractionated radiotherapy (CFRT) for the dose to the shoulder. For ablative doses beyond the shoulder, the survival curve is better described as a straight line as predicted by the multitarget model. The USC smoothly interpolates from a parabola predicted by the LQ model to the terminal asymptote of the multitarget model in the high-dose region. From the USC, we derived two equivalence functions, the biologically effective dose and the single fraction equivalent dose for both CFRT and SBRT. Results: The validity of the USC was tested by using previously published parameters of the LQ and multitarget models for non-small-cell lung cancer cell lines. A comparison of the goodness-of-fit of the LQ and USC models was made to a high-dose survival curve of the H460 non-small-cell lung cancer cell line. Conclusion: The USC can be used to compare the dose fractionation schemes of both CFRT and SBRT. The USC provides an empirically and a clinically well-justified rationale for SBRT while preserving the strengths of the LQ model for CFRT

  10. Universal Curve of Optimum Thermoelectric Figures of Merit for Bulk and Low-Dimensional Semiconductors

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Analytical formulas for thermoelectric figures of merit and power factors are derived based on the one-band model. We find that there is a direct relationship between the optimum figures of merit and the optimum power factors of semiconductors despite of the fact that the two quantities are generally given by different values of chemical potentials. By introducing a dimensionless parameter consisting of the optimum power factor and lattice thermal conductivity (without electronic thermal conductivity), it is possible to unify optimum figures of merit of both bulk and low-dimensional semiconductors into a single universal curve that covers many materials with different dimensionalities.

  11. Field theoretical finite element method to provide theoretical calibration curves for the electrical direct-current potential crack-monitoring system as applied to a three-dimensional fracture mechanics specimen with surface crack

    Dietrich, R.

    1984-01-01

    The basic concepts of the finite element method are explained. The results are compared to existing calibration curves for such test piece geometries derived using experimental procedures. (orig./HP) [de

  12. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO3 standards

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s

  13. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-01-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects

  14. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?

    Pool, Sandra; Viviroli, Daniel; Seibert, Jan

    2017-11-01

    Applications of runoff models usually rely on long and continuous runoff time series for model calibration. However, many catchments around the world are ungauged and estimating runoff for these catchments is challenging. One approach is to perform a few runoff measurements in a previously fully ungauged catchment and to constrain a runoff model by these measurements. In this study we investigated the value of such individual runoff measurements when taken at strategic points in time for applying a bucket-type runoff model (HBV) in ungauged catchments. Based on the assumption that a limited number of runoff measurements can be taken, we sought the optimal sampling strategy (i.e. when to measure the streamflow) to obtain the most informative data for constraining the runoff model. We used twenty gauged catchments across the eastern US, made the assumption that these catchments were ungauged, and applied different runoff sampling strategies. All tested strategies consisted of twelve runoff measurements within one year and ranged from simply using monthly flow maxima to a more complex selection of observation times. In each case the twelve runoff measurements were used to select 100 best parameter sets using a Monte Carlo calibration approach. Runoff simulations using these 'informed' parameter sets were then evaluated for an independent validation period in terms of the Nash-Sutcliffe efficiency of the hydrograph and the mean absolute relative error of the flow-duration curve. Model performance measures were normalized by relating them to an upper and a lower benchmark representing a well-informed and an uninformed model calibration. The hydrographs were best simulated with strategies including high runoff magnitudes as opposed to the flow-duration curves that were generally better estimated with strategies that captured low and mean flows. The choice of a sampling strategy covering the full range of runoff magnitudes enabled hydrograph and flow-duration curve

  15. Calibration of the inertial consistency index to assess road safety on horizontal curves of two-lane rural roads.

    Llopis-Castelló, David; Camacho-Torregrosa, Francisco Javier; García, Alfredo

    2018-05-26

    One of every four road fatalities occurs on horizontal curves of two-lane rural roads. To this regard, many studies have been undertaken to analyze the crash risk on this road element. Most of them were based on the concept of geometric design consistency, which can be defined as how drivers' expectancies and road behavior relate. However, none of these studies included a variable which represents and estimates drivers' expectancies. This research presents a new local consistency model based on the Inertial Consistency Index (ICI). This consistency parameter is defined as the difference between the inertial operating speed, which represents drivers' expectations, and the operating speed, which represents road behavior. The inertial operating speed was defined as the weighted average operating speed of the preceding road section. In this way, different lengths, periods of time, and weighting distributions were studied to identify how the inertial operating speed should be calculated. As a result, drivers' expectancies should be estimated considering 15 s along the segment and a linear weighting distribution. This was consistent with drivers' expectancies acquirement process, which is closely related to Short-Term Memory. A Safety Performance Function was proposed to predict the number of crashes on a horizontal curve and consistency thresholds were defined based on the ICI. To this regard, the crash rate increased as the ICI increased. Finally, the proposed consistency model was compared with previous models. As a conclusion, the new Inertial Consistency Index allowed a more accurate estimation of the number of crashes and a better assessment of the consistency level on horizontal curves. Therefore, highway engineers have a new tool to identify where road crashes are more likely to occur during the design stage of both new two-lane rural roads and improvements of existing highways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Calibration of A Prompt Gamma Neutron Activation Analysis (PGNAA) Facility: Experience at the Oregon State University TRIGA Reactor

    Norlida Yussup

    2011-01-01

    A prompt gamma neutron activation analysis (PGNAA) facility at Oregon State University (OSU) TRIGA reactor has been built in year 2008 and been operated since then. PGNAA is a technique used to determine the presence and quantity of trace elements such as boron, hydrogen and carbon which are more difficult to detect with other neutron analysis method. A calibration is essential to ensure the system works as required and the output is valid and reliable. The calibration was carried out by using Standard Reference Material (SRM). Besides, background data was also acquired for comparisons and analysis. The results are analyzed and discussed in this paper. (author)

  17. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-01-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening ε) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  18. Least-squares calibration method based on a universal phase and height mapping formula in Fourier transform profilometry

    Wen, Yongfu; Cheng, Haobo; Gao, Ya; Zhang, Huijing; Feng, Yunpeng; Pan, Baozhu

    2011-01-01

    In Fourier transform profilometry (FTP), we perform a strict theoretical analysis of the phase–height mapping relationship and give a universal calculation formula in which the constraints on the experimental setup are removed. In that case, the projector and camera can be located arbitrarily to get better information on fringes, which makes the system easy to manipulate and improves the speed of measurement. As the relationship between the phase and height distribution depends on system parameters (such as the relative position of the projector and camera) which are difficult to obtain, we propose a least-squares calibration approach for FTP, which can avoid measuring the system parameters directly. Both the simulation and experimental results prove that the 3D shape of the tested objects can be reconstructed exactly by using the calculation formula and calibration method, and that the system has better universality

  19. Tritium β-radiation induction of chromosomal damage: a calibration curve for low dose, low dose rate exposures of human cells to tritiated water

    Morrison, D.P.; Gale, K.L.; Lucas, J.N.

    1997-01-01

    Radiation exposures from tritium contribute to the occupational radiation exposures associated with CANDU reactors. Tritiated water is of particular interest since it is readily taken up by human cells and its elimination from the body, and, consequently, the radiation exposure of the cells, is spread over a period of days. Occupational exposures to tritiated water result in what are effectively chronic β-radiation exposures. The doses and dose rates ordinarily used in the definition of cellular responses to radiation in vitro, for use in biological dosimetry (the assessment of radiation exposures based on the observed levels of changes in the cells of exposed individuals), are usually much higher than for most occupational exposures and involve radiations other than tritium β-rays. As a result, their use in assessing the effects from tritiated water exposures may not be appropriate. We describe here an in vitro calibration curve for chronic tritium β-radiation induction of reciprocal chromosomal translocations in humn peripheral blood lymphocytes (PBLs) for use in biodosimetry. (author)

  20. Jagiellonian University Drift Chamber Calibration and Track Reconstruction in the P349 Antiproton Polarization Experiment

    Alfs, D; Moskal, P; Zieliński, M; Grzonka, D; Hauenstein, F; Kilian, K; Lersch, D; Ritman, J; Sefzick, T; Oelert, W; Diermaier, M; Widmann, E; Zmeskal, J; Wolke, M; Nadel-Turonski, P; Carmignotto, M; Horn, T; Mkrtchyan, H; Asaturyan, A; Mkrtchyan, A; Tadevosyan, V; Zhamkochyan, S; Malbrunot-Ettenauer, S; Eyrich, W; Zink, A

    2017-01-01

    The goal of the P349 experiment is to test whether the antiproton production process can be itself a source of antiproton polarization. In this article, we present the motivation and details of the performed measurement. We report on the status of the analysis focusing mainly on calibration of the drift chambers and 3d track reconstruction.

  1. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-01-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  2. Universal stability curve for pattern formation in pulsed gas-solid fluidized beds of sandlike particles

    de Martín, Lilian; Ottevanger, Coen; van Ommen, J. Ruud; Coppens, Marc-Olivier

    2018-03-01

    A granular layer can form regular patterns, such as squares, stripes, and hexagons, when it is fluidized with a pulsating gas flow. These structures are reminiscent of the well-known patterns found in granular layers excited through vibration, but, contrarily to them, they have been hardly explored since they were first discovered. In this work, we investigate experimentally the conditions leading to pattern formation in pulsed fluidized beds and the dimensionless numbers governing the phenomenon. We show that the onset to the instability is universal for Geldart B (sandlike) particles and governed by the hydrodynamical parameters Γ =ua/(utϕ ¯) and f /fn , where ua and f are the amplitude and frequency of the gas velocity, respectively, ut is the terminal velocity of the particles, ϕ ¯ is the average solids fraction, and fn is the natural frequency of the bed. These findings suggest that patterns emerge as a result of a parametric resonance between the kinematic waves originating from the oscillating gas flow and the bulk dynamics. Particle friction plays virtually no role in the onset to pattern formation, but it is fundamental for pattern selection and stabilization.

  3. Near room temperature magnetocaloric properties and the universal curve of MnCoGe1-xCux

    Si, Xiaodong; Liu, Yongsheng; Lu, Xiaofei; Shen, Yulong; Wang, Wenli; Yu, Wenying; Zhou, Tao; Gao, Tian

    2017-05-01

    Intermetallic compounds based on MnCoGe have drawn attention due to the coupled magnetic and structural transformations and the large magnetocaloric entropy. Here, we provide a systematic comparison of experimental data under different magnetic fields with magnetic and the magnetocaloric properties. The ferromagnetic transition temperature (TC) increases from 353.4(6) K for x = 0.01 to 363.4(4) K for x = 0.04 with increasing nominal copper content. The maximum magnetic entropy change |ΔSM| in a magnetic field change of 5 T is found to be 18.3(2) J/(kg K) with a large relative cooling power (RCP) value of 292.5(4) J/kg for x = 0.01, revealing that the present system can provide an acceptable magnetocaloric effect at a cheaper price for magnetic refrigeration materials. Making attempt to contrast a master curve for the present system, we find the experimental values of magnetic field dependence of the magnetic entropy change are consistent with a phenomenological universal curve.

  4. Universal Algorithm for Online Trading Based on the Method of Calibration

    V'yugin, Vladimir; Trunov, Vladimir

    2012-01-01

    We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized ...

  5. Calculation of dose absorbed for the verification of the calibration curves UH-Density electronic relative obtained with various mannequins; Calculo de dosis absorbida para la verificacion de las curvas de calibracion UH-Densidad electronica relativa obtenidas con distintos maniquies

    Perez Alvarez, M. E.; Sena Espinel, E. de; Delgado Aparicio, J. M.; Martin Rincon, C.; Garcia Repiso, S.; Ramos Pacho, J. A.; Verde Velasco, J. M.; Gomez Gonzalez, N.; Cons Perez, N.; Saez Beltran, M.

    2013-07-01

    In order to discern with what calibration curve is obtained a more accurate dosimetry distribution, dose measurements are carried out on the treatment unit and the values found are evaluated. (Author)

  6. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction

    Wennberg, Berit M.; Baumann, Pia; Gagliardi, Giovanna

    2011-01-01

    Background. In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Material and methods. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D 0 = 1.0 Gy, n = 10, α 0.206 Gy-1 and d T = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether 'high doses to small volumes' or 'low doses to large volumes' are most important for lung toxicity. Results and Discussion. NTCP analysis with the LKB-model using parameters m = 0.4, D50 = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D 50 = 20 Gy n = 0.93 with LQ correction and n 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling

  7. Measurement of extrapolation curves for the secondary pattern of beta radiation Nr. 86 calibrated in rapidity of absorbed dose for tissue equivalent by the Physikalisch Technische Bundesanstalt

    Alvarez R, J.T.

    1988-10-01

    The following report has as objective to present the obtained results of measuring - with a camera of extrapolation of variable electrodes (CE) - the dose speed absorbed in equivalent fabric given by the group of sources of the secondary pattern of radiation Beta Nr. 86, (PSB), and to compare this results with those presented by the calibration certificates that accompany the PSB extended by the primary laboratory Physikalisch Technische Bundesanstalt, (PTB), of the R.F.A. as well as the uncertainties associated to the measure process. (Author)

  8. Comparison of the order of magnetic phase transitions in several magnetocaloric materials using the rescaled universal curve, Banerjee and mean field theory criteria

    Burrola-Gándara, L. A., E-mail: andres.burrola@gmail.com; Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A. [Departamento de Física de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico)

    2015-05-07

    Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.

  9. A METHOD TO SET-UP CALIBRATION CURVE FOR INSTRUMENTED SPHERE IS100 TO CONTROL MECHANICAL DAMAGE DURING POST-HARVESTING AND HANDLING OF ORANGES

    Giovanni Carlo Di Renzo

    2009-12-01

    Full Text Available Oranges quality is strictly dependent on their variety, pre-harvest and post-harvest practices. Especially post harvest management is responsible for fruits damages, causing quality deterioration and commercial losses, as underlined by many authors, which studied the influence of individual post harvest operations on the fruit quality. In this article Authors, using an instrumented sphere (IS 100 similar for shape and size to a true orange, showed a method for the control of orange damages along the processing line. Results allow a fundamental knowledge about the critical damage curve, which defines the incidence of the damages during the oranges processing and packaging. Data show that the fruit discharge (bins or boxes discharge and the packaging step are the most critical operations in order to reduce or eliminate the fruits collisions and the consequent damages

  10. Sensitivity of film measured off-axis ratios to film calibration curve using radiochromic film; Sensibilidade das razoes fora do eixo central medidas para a curva de calibracao de filmes usando filme radiocromico

    Garcia-Hernandez, Diana [Universidad Nacional Autnoma de Mexico (UNAM), Mexico City (Mexico). Inst. de Fisica; Larraga-Gutierrez, Jose M. [Instituto Nacional de Neurologia y Neurocirugia, Mexico City (Mexico). Unidad de Radioneurocirugia. Lab. de Fisica Medica

    2011-07-01

    Off-axis ratios of conical beams generated with a stereotactic radiosurgery-dedicated Linac were measured with EBT2 film and stereotactic diode. The sensitivity of both full width at half maximum (FWHM) and penumbras (80-20% and 90-10%, respectively), with respect to the characteristics of the film calibration curve fit, was investigated. In all cases, penumbras resulted to be more sensitive than FWHM. However, these differences were, in general, smaller than the ones found between EBT2 reference values and the stereotactic diode measurements. The larger variation in OAR parameters was found to depend on whether the fit intersected or not the origin. A 1D gamma-index analysis showed this difference can be important in all measured conical beams. (author)

  11. On the work of the International Committee on Calibration of the Radiocarbon Dating Time Scale

    Olsson, I.U.

    1982-01-01

    Over one thousand reliable measurements of the 14 C content of tree rings have now been published by different scientists, allowing construction of a curve or band for calibration purposes. Since 1969 we have agreed on the general trend of the variations, although the interpretations of the measurements naturally diverge, causing confusion. It is obvious that different calibration principles must be used depending on the type of material. An international committee is working on the construction of a universal curve or band which is intended to be the basis for all calibration procedures. (author)

  12. Power Curve Measurements, FGW

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  13. Power Curve Measurements

    Federici, Paolo; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  14. Power Curve Measurements

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  15. Power curve report

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  16. Power Curve Measurements FGW

    Federici, Paolo; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  17. Quantum field theory in curved space-times: with an application to the reduced model of deSitter universe

    Peter, I. J.

    1995-06-01

    The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)

  18. An In vitro Comparison of Apically Extruded Debris Using Reciproc, ProTaper Universal, Neolix and Hyflex in Curved Canals

    Labbaf, Hossein; Nazari Moghadam, Kiumars; Shahab, Shahriar; Mohammadi Bassir, Mahshid; Fahimi, Mohammad Amin

    2017-01-01

    Introduction: As a consequence of root canal preparation, dentinal chips, irrigants and pulp remnants are extruded into preradicular space. This phenomenon may lead to post endodontic flare-ups. The purpose of this study was to compare the amount of extruded debris with four endodontic NiTi engine-driven systems. Methods and Materials: Sixty mesiobuccal roots of maxillary molars with 15-30˚ curvature were divided randomly into four groups (n=15). Each group was instrumented up to apical size of 25 using Reciproc, ProTaper Universal, Neolix and Hyflex. Bidistilled water was used as irrigant and extruded debris was collected in pre-weighted Eppendorf tubes. Tubes were stored in incubator for drying the debris. Extruded debris were weighted in electronic microbalance with accuracy of 0.0001 g. The raw data was analyzed with one way analysis of variance (ANOVA) and Tukey’s HSD post hoc test. Level of significance was set at 0.05. Results: The debris extrusion with Reciproc files was significantly higher than the other groups (P<0.05). Hyflex significantly extruded less debris than other files (P<0.05). There was no significant difference between ProTaper Universal and Neolix regarding the amount of extruded debris (P=0.98). Conclusion: All systems extruded debris during the instrumentation. Reciproc system significantly extruded more debris. Caution should be taken when interpreting the results of this study and applying it to the real clinical situation. PMID:28808456

  19. Radiocarbon calibration - past, present and future

    Plicht, J. van der E-mail: plicht@phys.rug.nl

    2004-08-01

    Calibration of the Radiocarbon timescale is traditionally based on tree-rings dated by dendrochronology. At present, the tree-ring curve dates back to about 9900 BC. Beyond this limit, marine datasets extend the present calibration curve INTCAL98 to about 15 600 years ago. Since 1998, a wealth of AMS measurements became available, covering the complete {sup 14}C dating range. No calibration curve can presently be recommended for the older part of the dating range until discrepancies are resolved.

  20. Radiocarbon calibration - past, present and future

    Plicht, J. van der

    2004-01-01

    Calibration of the Radiocarbon timescale is traditionally based on tree-rings dated by dendrochronology. At present, the tree-ring curve dates back to about 9900 BC. Beyond this limit, marine datasets extend the present calibration curve INTCAL98 to about 15 600 years ago. Since 1998, a wealth of AMS measurements became available, covering the complete 14 C dating range. No calibration curve can presently be recommended for the older part of the dating range until discrepancies are resolved

  1. Pulse-based internal calibration of polarimetric SAR

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  2. EFFICACY OF PROTAPER NEXT AND PROTAPER UNIVERSAL RETREATMENT SYSTEMS IN REMOVING GUTTA-PERCHA IN CURVED ROOT CANALS DURING ROOT CANAL RETREATMENT

    Taha ÖZYÜREK

    2017-04-01

    Full Text Available Purpose: The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN, ProTaper Universal Retreatment (PTR nickel-titanium (NiTi systems and Hedström hand files in curved mesial canals of mandibular molar teeth and the time required for gutta-percha and sealer removal. Materials and Methods: Ninety mandibular molar teeth with curved mesial roots were instrumented up to #35.04 with Mtwo NiTi rotary instruments and obturated using the continuous wave of condensation technique. Removal of gutta-percha and sealer was performed using one of the following: PTN and PTR NiTi systems and Hedström hand files. Samples were placed on the VistaScan phosphor plates in the mesio-distal direction and the radiographs were taken. The digital radiographs were analyzed using AutoCAD software. Also, the total time required for gutta-percha removal was calculated by a chronometer. Results: The total retreatment time was significantly shorter in the PTN and PTR groups compared with the manual group (p<0.05. There was a significant difference between the groups according to the total residual gutta-percha and sealer (p<0.05. The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the manual group (p<0.001. Conclusion: Within the limitations of this study, the PTN and PTR groups showed less residual gutta-percha and sealer than the manual group. The NiTi rotary systems were significantly faster than the manual group in the time required for gutta-percha and sealer removal.

  3. Efficacy of protaper next and protaper universal retreatment systems in removing gutta-percha in curved root canals during root canal retreatment.

    Ozyurek, Taha; Ozsezer-Demiryurek, Ebru

    2017-01-01

    The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN), ProTaper Universal Retreatment (PTR) nickel-titanium (NiTi) systems and Hedström hand files in curved mesial canals of mandibular molar teeth and the time required for gutta-percha and sealer removal. Ninety mandibular molar teeth with curved mesial roots were instrumented up to #35.04 with Mtwo NiTi rotary instruments and obturated using the continuous wave of condensation technique. Removal of gutta-percha and sealer was performed using one of the following: PTN and PTR NiTi systems and Hedström hand files. Samples were placed on the VistaScan phosphor plates in the mesio-distal direction and the radiographs were taken. The digital radiographs were analyzed using AutoCAD software. Also, the total time required for gutta-percha removal was calculated by a chronometer. The total retreatment time was significantly shorter in the PTN and PTR groups compared with the manual group (p<0.05). There was a significant difference between the groups according to the total residual gutta-percha and sealer (p<0.05). The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the manual group (p<0.001). Within the limitations of this study, the PTN and PTR groups showed less residual gutta-percha and sealer than the manual group. The NiTi rotary systems were significantly faster than the manual group in the time required for gutta-percha and sealer removal.

  4. UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API

    Poeter, Eileen E.; Hill, Mary C.; Banta, Edward R.; Mehl, Steffen; Christensen, Steen

    2006-01-01

    This report documents the computer codes UCODE_2005 and six post-processors. Together the codes can be used with existing process models to perform sensitivity analysis, data needs assessment, calibration, prediction, and uncertainty analysis. Any process model or set of models can be used; the only requirements are that models have numerical (ASCII or text only) input and output files, that the numbers in these files have sufficient significant digits, that all required models can be run from a single batch file or script, and that simulated values are continuous functions of the parameter values. Process models can include pre-processors and post-processors as well as one or more models related to the processes of interest (physical, chemical, and so on), making UCODE_2005 extremely powerful. An estimated parameter can be a quantity that appears in the input files of the process model(s), or a quantity used in an equation that produces a value that appears in the input files. In the latter situation, the equation is user-defined. UCODE_2005 can compare observations and simulated equivalents. The simulated equivalents can be any simulated value written in the process-model output files or can be calculated from simulated values with user-defined equations. The quantities can be model results, or dependent variables. For example, for ground-water models they can be heads, flows, concentrations, and so on. Prior, or direct, information on estimated parameters also can be considered. Statistics are calculated to quantify the comparison of observations and simulated equivalents, including a weighted least-squares objective function. In addition, data-exchange files are produced that facilitate graphical analysis. UCODE_2005 can be used fruitfully in model calibration through its sensitivity analysis capabilities and its ability to estimate parameter values that result in the best possible fit to the observations. Parameters are estimated using nonlinear regression: a

  5. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis

    Wu, Yiping; Liu, Shuguang; Yan, Wende

    2014-01-01

    Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.

  6. Calibration uncertainty

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  7. Calibration factor or calibration coefficient?

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  8. Sensor Calibration Design Based on D-Optimality Criterion

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  9. Inherent calibration of microdosemeters for dose distributions in lineal energy

    Crossman, J.S.P.; Watt, D.E. [Saint Andrews Univ. (United Kingdom). Dept. of Physics and Astronomy

    1994-12-31

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with `exact stopper` electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of {sup 137}Cs are obtained for comparison. A `universal` calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author).

  10. Inherent calibration of microdosemeters for dose distributions in lineal energy

    Crossman, J.S.P.; Watt, D.E.

    1994-01-01

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with 'exact stopper' electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of 137 Cs are obtained for comparison. A 'universal' calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author)

  11. Calibration curve to establish the exposure dose at Co{sup 60} gamma radiation; Curva de calibracion para establecer dosis de exposicion a radiacion gamma de Co{sup 60}

    Guerrero C, C; Brena V, M [Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  12. SELECTION AND TREATMENT OF DATA FOR RADIOCARBON CALIBRATION : AN UPDATE TO THE INTERNATIONAL CALIBRATION (INTCAL) CRITERIA

    Reimer, Paula J.; Bard, Edouard; Bayliss, Alex; Beck, J. Warren; Blackwell, Paul G.; Ramsey, Christopher Bronk; Brown, David M.; Buck, Caitlin E.; Edwards, R. Lawrence; Friedrich, Michael; Grootes, Pieter M.; Guilderson, Thomas P.; Haflidason, Haflidi; Hajdas, Irka; Hatte, Christine; Heaton, Timothy J.; Hogg, Alan G.; Hughen, Konrad A.; Kaiser, K. Felix; Kromer, Bernd; Manning, Sturt W.; Reimer, Ron W.; Richards, David A.; Scott, E. Marian; Southon, John R.; Turney, Christian S. M.; van der Plicht, Johannes

    2013-01-01

    High-quality data from appropriate archives are needed for the continuing improvement of radiocarbon calibration curves. We discuss here the basic assumptions behind C-14 dating that necessitate calibration and the relative strengths and weaknesses of archives from which calibration data are

  13. Calibration and evaluation of neutron moisturemeter

    Tang Zhangxiong; Hu Jiangchao; Sun Laiyan; Wang Huaihui; Wu Weixue

    1992-02-01

    Factors influencing the calibration curve of neutron moisture meter, such as soil type, texture, volume weight and depth, were studied. When the soil bulk density water content is between 15% to 45%, the calibration curve is approximately a straight line, and the intercept and slope are only influenced by the above factors. The growing plants also influence the calibration curve slightly. The measuring error for top soil (< 20 cm) is larger. The relative error between neutron method and weighing method is about 8%. The neutron method has many advantages such as non-interfering, simple, fast and non-time-delay

  14. Calibration of film radiochromic EBT2 for sources of I-125 encapsulated

    Huerga Cabrerizo, C.; Luquero Llopis, N.; Torre Hernandez, I. de la; Ferrer Garcia, C.; Corredoira silva, E.; Serrada Hierro, A.

    2013-01-01

    This paper determines the calibration curve in absolute dose for sources of I-125 encapsulated to estimate its uncertainty. In order to assess energy dependence is compared with the obtained for an accelerator of 6MV calibration curve. (Author)

  15. Report on International Spaceborne Imaging Spectroscopy Technical Committee Calibration and Validation Workshop, National Environment Research Council Field Spectroscopy Facility, University of Edinburgh

    Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.; hide

    2016-01-01

    Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.

  16. Calibration of ratemeters used for gamma radiation detection

    Hantanirina, P.A.

    2017-01-01

    The Secondary Standard Dosimetry Laboratory (SSDL) of INSTN-Madagascar is in charge of the calibration of every dosimetry measurement instrument in hospitals and companies using radioactive sources in Madagascar. It has a secondary standard delivered and calibrated by a Primary Standard Laboratory in Dosimetry (PSLD). This standard is used to compare its reference values with those displayed on the instruments to be calibrated. During our training period, three (3) ratemeters were calibrated, the Graetz X5DE, the Graetz X5C and the Identifinder 2. We have determined the calibration factor for every ratemeter by doing calculation with the reference value. By using the three surveymeters for direct radiations measurements, it has been found that the difference between the displayed values and the real values for every ratemeter does not exceed the tolerance limit which is 20 %. Then we can conclude that these ratemeters are still in good condition of functioning. Concerning the calibration factor curve N_k with the K_a_i_r , we can observe that for the Graetz X5C ratemeter, this curve is almost constant. As well as for the linearity, it is still the Graetz X5C ratemeter which is linear almost integrally for the measured and calculated dose rate values. So we can say that this ratemeter is the most recommended for the radiations measurements.This work which has been carried within the framework of collaboration between the section PNAE (Physique Nucléaire Appliquée et Environnement) of the University of Antananarivo and INSTN-Madagascar has been a good and rewarding experience which allowed us to put into practice all knowledges acquired during our years of studies. [fr

  17. Calibration of nuclear medicine gamma counters

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  18. The accident of overexposure at the University hospital center of Toulouse. Expertise report n.1. Checking of experimental protocols of micro-beams calibration before and after dysfunction correction

    2007-01-01

    The regional center of stereotaxic radiosurgery of the University hospital center of Toulouse is equipped since april 2006 of a Novalis accelerator (Brainlab) devoted to the intra-skull stereotaxic radiosurgery. In april 2007, during an intercomparison of dosimetry computer files coming from different sites, the Brainlab society finds an anomaly in the files. The analysis made by the society concludes to to the use of an inappropriate detector for the measurement of a dosimetry parameter during the initial calibration of the accelerator. following this error, 145 patients (on the 172 treated by the service in question) suffer the consequences of an overdose whom importance is variable according the cases. The I.R.S.N. in charge of an expertise about the protocols of calibration of micro-beams before and after the correction of the dysfunction, took up with the search of the technical causes of the dysfunction. This report presents successively: the documents base on which is founded the expertise; the material of dosimetry and quality control necessary to the initial calibration of the device and to its follow-up; the formula made at the accelerator commissioning; the calibration of micro-beams in the two configurations that allows the device (micro-multi-knives and conic collimator) and the definition of parameters of the software of treatment planning; the maintenance and quality control implemented in the frame of its clinical use. (N.C.)

  19. Instrumentation calibration

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  20. Efficacy of D-RaCe and ProTaper Universal Retreatment NiTi instruments and hand files in removing gutta-percha from curved root canals - a micro-computed tomography study.

    Rödig, T; Hausdörfer, T; Konietschke, F; Dullin, C; Hahn, W; Hülsmann, M

    2012-06-01

    To compare the efficacy of two rotary NiTi retreatment systems and Hedström files in removing filling material from curved root canals. Curved root canals of 57 extracted teeth were prepared using FlexMaster instruments and filled with gutta-percha and AH Plus. After determination of root canal curvatures and radii in two directions, the teeth were assigned to three identical groups (n = 19). The root fillings were removed with D-RaCe instruments, ProTaper Universal Retreatment instruments or Hedström files. Pre- and postoperative micro-CT imaging was used to assess the percentage of residual filling material as well as the amount of dentine removal. Working time and procedural errors were recorded. Data were analysed using analysis of covariance and analysis of variance procedures. D-RaCe instruments were significantly more effective than ProTaper Universal Retreatment instruments and Hedström files (P ProTaper group, four instrument fractures and one lateral perforation were observed. Five instrument fractures were recorded for D-RaCe. D-RaCe instruments were associated with significantly less residual filling material than ProTaper Universal Retreatment instruments and hand files. Hedström files removed significantly less dentine than both rotary NiTi systems. Retreatment with rotary NiTi systems resulted in a high incidence of procedural errors. © 2012 International Endodontic Journal.

  1. Financial model calibration using consistency hints.

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  2. Universe

    2009-01-01

    The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  3. Soil texture and depth influence on the neutron probe calibration

    Santos, Reginaldo Ferreira; Carlesso, Reimar

    1998-01-01

    The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisimeter group, protected from the rains with transparent plastic. There different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied form o,02 to 0,06 cm3/cm3 of the soil water content and the correlation coefficients were 0,86 0,95 and 0,89 for clayray, franc-silt-clayey and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. (author)

  4. Lagrangian Curves on Spectral Curves of Monopoles

    Guilfoyle, Brendan; Khalid, Madeeha; Ramon Mari, Jose J.

    2010-01-01

    We study Lagrangian points on smooth holomorphic curves in TP 1 equipped with a natural neutral Kaehler structure, and prove that they must form real curves. By virtue of the identification of TP 1 with the space LE 3 of oriented affine lines in Euclidean 3-space, these Lagrangian curves give rise to ruled surfaces in E 3 , which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in E 3 , called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in E 3 where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.

  5. Identification of variables for site calibration and power curve assessment in complex terrain. Task 8, a literature survey on theory and practice of parameter identification, specification and estimation (ISE) techniques

    Verhoef, J.P.; Leendertse, G.P. [ECN Wind, Petten (Netherlands)

    2001-04-01

    This document presents the literature survey results on Identification, Specification and Estimation (ISE) techniques for variables within the SiteParIden project. Besides an overview of the different general techniques also an overview is given on EU funded wind energy projects where some of these techniques have been applied more specifically. The main problem in applications like power performance assessment and site calibration is to establish an appropriate model for predicting the considered dependent variable with the aid of measured independent (explanatory) variables. In these applications detailed knowledge on what the relevant variables are and how their precise appearance in the model would be is typically missing. Therefore, the identification (of variables) and the specification (of the model relation) are important steps in the model building phase. For the determination of the parameters in the model a reliable variable estimation technique is required. In EU funded wind energy projects the linear regression technique is the most commonly applied tool for the estimation step. The linear regression technique may fail in finding reliable parameter estimates when the model variables are strongly correlated, either due to the experimental set-up or because of their particular appearance in the model. This situation of multicollinearity sometimes results in unrealistic parameter values, e.g. with the wrong algebraic sign. It is concluded that different approaches, like multi-binning can provide a better way of identifying the relevant variables. However further research in these applications is needed and it is recommended that alternative methods (neural networks, singular value decomposition etc.) should also be tested on their usefulness in a succeeding project. Increased interest in complex terrains, as feasible locations for wind farms, has also emphasised the need for adequate models. A common standard procedure to prescribe the statistical

  6. Calibration of the neutron scintillation counter threshold

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  7. ECM using Edwards curves

    Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja

    2013-01-01

    -arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...

  8. Vessel calibration for accurate material accountancy at RRP

    Yanagisawa, Yuu; Ono, Sawako; Iwamoto, Tomonori

    2004-01-01

    RRP has a 800t·Upr capacity a year to re-process, where would be handled a large amount of nuclear materials as solution. A large scale plant like RRP will require accurate materials accountancy system, so that the vessel calibration with high-precision is very important as initial vessel calibration before operation. In order to obtain the calibration curve, it is needed well-known each the increment volume related with liquid height. Then we performed at least 2 or 3 times run with water for vessel calibration and careful evaluation for the calibration data should be needed. We performed vessel calibration overall 210 vessels, and the calibration of 81 vessels including IAT and OAT were held under presence of JSGO and IAEA inspectors taking into account importance on the material accountancy. This paper describes outline of the initial vessel calibration and calibration results based on back pressure measurement with dip tubes. (author)

  9. Migration and the Wage Curve:

    Brücker, Herbert; Jahn, Elke J.

    in a general equilibrium framework. For the empirical analysis we employ the IABS, a two percent sample of the German labor force. We find that the elasticity of the wage curve is particularly high for young workers and workers with a university degree, while it is low for older workers and workers......  Based on a wage curve approach we examine the labor market effects of migration in Germany. The wage curve relies on the assumption that wages respond to a change in the unemployment rate, albeit imperfectly. This allows one to derive the wage and employment effects of migration simultaneously...... with a vocational degree. The wage and employment effects of migration are moderate: a 1 percent increase in the German labor force through immigration increases the aggregate unemployment rate by less than 0.1 percentage points and reduces average wages by less 0.1 percent. While native workers benefit from...

  10. On the Photometric Error Calibration for the Differential Light Curves ...

    a value of 1.75 was estimated using the DLCs derived for pairs of steady stars ... apparently steady comparison stars present on the same CCD frame. ...... (2)) on the 262 steady star–star DLCs after accounting for the photometric error.

  11. Calibration-free optical chemical sensors

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  12. Fuel conditioning facility electrorefiner volume calibration

    Bucher, R.G.; Orechwa, Y.

    1995-01-01

    In one of the electrometallurgical process steps of the Fuel Conditioning Facility (FCF), die in-process nuclear material is dissolved in the electrorefiner tank in an upper layer of a mixture of liquid LiCl-KCl salt and a lower layer of liquid cadmium. The electrorefiner tank, as most process tanks, is not a smooth right-circular cylinder for which a single linear volume calibration curve could be fitted over the whole height of the tank. Rather, the tank contains many internal components, which cause systematic deviations from a single linear function. The nominal operating temperature of the electrorefiner is 500 degrees C although the salt and cadmium are introduced at 410 degrees C. The operating materials and temperatures preclude multiple calibration runs at operating conditions. In order to maximize the calibration information, multiple calibration runs were performed with water at room temperature. These data allow identification of calibration segments, and preliminary estimation of the calibration function and calibration uncertainties. The final calibration function is based on a combination of data from die water calibrations and the measurements made during the filling of the electrorefiner with salt and cadmium for operation

  13. Contractibility of curves

    Janusz Charatonik

    1991-11-01

    Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.

  14. Automated calibration of TECAN genesis liquid handling workstation utilizing an online balance and density meter.

    Xie, Iris H; Wang, Michael H; Carpenter, Richard; Wu, Henry Y

    2004-02-01

    With robotics widely used in bioanalytical assays, accurate system performance is essential to ensure the quality and productivity of the robotics. In our lab, an automated calibration procedure has been developed to evaluate the precision and accuracy of the TECAN (Research Triangle Park, NC, U.S.A.) Genesis liquid handling system in a bioanalytical laboratory setting. The calibrations were performed by transferring and weighing the solvents automatically on a microbalance controlled by a Gemini program. From the data acquired, calibration reports were generated using a template. The novel aspect of this approach is the use of an on-line balance and a density meter, both of which combine to make the calibration process simple, efficient, and precise. For quantitative bioanalysis, a variety of solvents, including methanol, water, mixed solvents, and plasma, are typically used to prepare standards and unknown samples. Density information is usually unknown for the mixed solvents, and the density of plasma can vary from species to species. However, with the use of a universal density meter, the density could be obtained in seconds. The issue of solvent evaporation during the calibration process was also addressed. Calibration curves were set up for various liquid classes. Pipetting volumes ranged from 10 microL to 900 microL. Precision and accuracy results obtained from the semiannual performance evaluations showed this procedure to be reliable and user-friendly. Using the automated calibration procedure, the calibration and performance evaluation of the robotic system is considerably more efficient, and the incidence of unacceptable precision and accuracy is greatly reduced.

  15. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

    Kim, Y; Waldron, T; Pennington, E

    2016-01-01

    Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for a single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.

  16. On the calibration methods for neutron moisture gauges

    Apostol, I.

    1975-01-01

    Theoretical and experimental calibration methods for devices using neutron sources to measure the water content in subsurface soil and other samples are investigated. Neutron flux density is evaluated by means of the two and three group diffusion and Fermi age theories. The correction criteria for the calibration curves are presented. The agreement of the theoretical curves with the determined experimental data may be considered as excellent. (author)

  17. Actualizing of calibration curves of "1"4C/C, "9"0Sr/Ca, "2"2"8Th/"2"3"2Th in ivory for the determination of the post mortal interval of elephants and consequences of the radiation protection of non-human species

    Schupfner, R.

    2016-01-01

    The determination of the activity concentration of the radionuclides "1"4C/C and "9"0Sr/Ca and "2"2"8Th/"2"3"2Th applying combined radionuclide analyses methods has been proved to be a suitable tool for the purpose of an unambiguous age determination of elephant ivory [1, 2, 3, 10, 11, 12, 13]. Analysing representative and independently dated samples (N = 28) of ivory the curves fitting the post mortal interval (PMI) versus the activity concentration of the radionuclides mentioned above produced the data base enabling a more unambiguous age determination. Data from these studies origin [1, 2, 3, 10, 11, 12, 13] in analyses of ivory samples which were available up to the 2012. During the last five years there was a gap in information of the future trend of "1"4C/C and "9"0Sr/Ca. Up to this study it was not possible to assess whether the future level of "1"4C/C as well as "9"0Sr/Ca can analytically be distinguished from the level before 1954. At about 1954 the activity concentration of radionuclides from the atmospheric nuclear explosion, as "1"4C and "9"0Sr, increased in ivory significantly. This study aims in closing this information gap. The results of analyses of "1"4C/C, "9"0Sr/Ca, "2"2"8Th/"2"3"2Th in ivory with PMI values ranging from 1 to 5 years are presented and interpreted. These data enable an actualization of the calibration curves of PMI versus specific activities. This is necessary for a better understanding of the effect of blindness of "1"4C/C dating and its prevention. On the base of all available results form independent dated ivory sample available up to 2015 a suitable analytical procedure is suggested which aims in a more precise and reliable age determination of elephant tusks. Results of determining of radionuclides "1"4C/C and "9"0Sr/Ca and "2"2"8Th/"2"3"2Th in ivory are shown from before 1950 to 2015. These results are discussed with respect the purposes of dating as well as their significance to the radiation protection of nonhuman species.

  18. Maximum respiratory pressure measuring system : calibration and evaluation of uncertainty

    Ferreira, J.L.; Pereira, N.C.; Oliveira Júnior, M.; Vasconcelos, F.H.; Parreira, V.F.; Tierra-Criollo, C.J.

    2010-01-01

    The objective of this paper is to present a methodology for the evaluation of uncertainties in the measurements results obtained during the calibration of a digital manovacuometer prototype (DM) with a load cell sensor pressure device incorporated. Calibration curves were obtained for both pressure

  19. Application of effective variance method for contamination monitor calibration

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  20. Laboratory implantation for well type ionization chambers calibration

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de

    1998-01-01

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  1. Mechanics of log calibration

    Waller, W.C.; Cram, M.E.; Hall, J.E.

    1975-01-01

    For any measurement to have meaning, it must be related to generally accepted standard units by a valid and specified system of comparison. To calibrate well-logging tools, sensing systems are designed which produce consistent and repeatable indications over the range for which the tool was intended. The basics of calibration theory, procedures, and calibration record presentations are reviewed. Calibrations for induction, electrical, radioactivity, and sonic logging tools will be discussed. The authors' intent is to provide an understanding of the sources of errors, of the way errors are minimized in the calibration process, and of the significance of changes in recorded calibration data

  2. Variability of the Wind Turbine Power Curve

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  3. JUMPING THE CURVE

    René Pellissier

    2012-01-01

    Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.

  4. Climbing the health learning curve together | IDRC - International ...

    2011-01-25

    Jan 25, 2011 ... Climbing the health learning curve together ... Many of the projects are creating master's programs at their host universities ... Formerly based in the high Arctic, Atlantis is described by Dr Martin Forde of St George's University ...

  5. Synthesis Polarimetry Calibration

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  6. ORNL calibrations facility

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  7. Tornado-Shaped Curves

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  8. Simulating Supernova Light Curves

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  9. Simulating Supernova Light Curves

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  10. Image scaling curve generation

    2012-01-01

    The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then

  11. Image scaling curve generation.

    2011-01-01

    The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then

  12. Tempo curves considered harmful

    Desain, P.; Honing, H.

    1993-01-01

    In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression

  13. Calibration of higher eigenmodes of cantilevers

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin

    2016-01-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  14. Calibration of higher eigenmodes of cantilevers

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States); Lysy, Martin [Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-07-15

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  15. The curve shortening problem

    Chou, Kai-Seng

    2001-01-01

    Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.

  16. NotCal04 : Comparison/calibration C-14 records 26-50 cal kyr BP

    Plicht, J. van der; Beck, J.W.; Bard, E.; Baillie, M.G.L.; Blackwell, P.G.; Buck, C.E.; Friedrich, M.; Guilderson, T.P.; Hughen, K.A.; Kromer, B.; McCormac, F.G.; Bronk Ramsey, C.; Reimer, P.J.; Reimer, R.W.; Remmele, S.; Richards, D.A.; Southon, J.R.; Stuiver, M.; Weyhenmeyer, C.E.

    2004-01-01

    The radiocarbon calibration curve ImCal04 extends back to 26 cal kyr BP. While several high-resolution records exist beyond this limit, these data sets exhibit discrepancies of up, to several millennia. As a result, no calibration curve for the time range 26-50 cal kyr BP can be recommended as yet,

  17. A new technique for the calibration of neutron probes by volumetric method

    Encarnacao, F.A.F. da.

    1988-01-01

    Laboratory and field studies were performed for the determination of a calibration curve of a neutron probe in three different kinds of soils: Red Yellow PODZOLIC, LITOLIC and ALLUVIAL, in the last one laboratory studies were done to determine local humidity on the calibration curve parameters. (A.C.A.S.) [pt

  18. Exploring Alternative Characteristic Curve Approaches to Linking Parameter Estimates from the Generalized Partial Credit Model.

    Roberts, James S.; Bao, Han; Huang, Chun-Wei; Gagne, Phill

    Characteristic curve approaches for linking parameters from the generalized partial credit model were examined for cases in which common (anchor) items are calibrated separately in two groups. Three of these approaches are simple extensions of the test characteristic curve (TCC), item characteristic curve (ICC), and operating characteristic curve…

  19. Calibration of a Modified Californium Shuffler

    Sadowski, E.T.; Armstrong, F.; Oldham, R.; Ceo, R.; Williams, N.

    1995-01-01

    A californium shuffler originally designed to assay hollow cylindrical pieces of UA1 has been modified to assay solid cylinders. Calibration standards were characterized via chemical analysis of the molten UA1 taken during casting of the standards. The melt samples yielded much more reliable characterization data than drill samples taken from standards after the standards had solidified. By normalizing one well-characterized calibration curve to several standards at different enrichments, a relatively small number of standards was required to develop an enrichment-dependent calibration. The precision of this shuffler is 0.65%, and the typical random and systematic uncertainties are 0.53% and 0.73%, respectively, for a six minute assay of an ingot containing approximately 700 grams of 235 U. This paper will discuss (1) the discrepancies encountered when UA1 standards were characterized via melt samples versus drill samples, (2) a calibration methodology employing a small number of standards, and (3) a comparison of results from a previously unused shuffler with an existing shuffler. A small number of UA1 standards have been characterized using samples from the homogeneous molten state and have yielded enrichment-dependent and enrichment-independent calibration curves on two different shufflers

  20. Automated system for the calibration of magnetometers

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical Uni...... through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented. ©2009 American Institute of Physics...

  1. Learning Curve? Which One?

    Paulo Prochno

    2004-07-01

    Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.

  2. The crime kuznets curve

    Buonanno, Paolo; Fergusson, Leopoldo; Vargas, Juan Fernando

    2014-01-01

    We document the existence of a Crime Kuznets Curve in US states since the 1970s. As income levels have risen, crime has followed an inverted U-shaped pattern, first increasing and then dropping. The Crime Kuznets Curve is not explained by income inequality. In fact, we show that during the sample period inequality has risen monotonically with income, ruling out the traditional Kuznets Curve. Our finding is robust to adding a large set of controls that are used in the literature to explain the...

  3. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

    Reimer, Paula J.; Baillie, Mike G.L.; Bard, Edouard; Bayliss, Alex; Beck, J. Warren; Bertrand, Chanda J.H.; Blackwell, Paul G.; Buck, Caitlin E.; Burr, George S.; Cutler, Kirsten B.; Damon, Paul E.; Edwards, R. Lawrence; Fairbanks, Richard G.; Friedrich, Michael; Guilderson, Thomas P.; Hogg, Alan G.; Hughen, Konrad A.; Kromer, Bernd; McCormac, Gerry; Manning, Sturt; Bronk Ramsey, Christopher; Reimer, Ron W.; Remmele, Sabine; Southon, John R.; Stuiver, Minze; Talamo, Sahra; Taylor, F.W.; Plicht, Johannes van der; Weyhenmeyer, Constanze E.

    2004-01-01

    A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from

  4. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

    Kim, Y; Waldron, T; Pennington, E [University Of Iowa, College of Medicine, Iowa City, IA (United States)

    2016-06-15

    Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for a single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.

  5. Bond yield curve construction

    Kožul Nataša

    2014-01-01

    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  6. Bragg Curve Spectroscopy

    Gruhn, C.R.

    1981-05-01

    An alternative utilization is presented for the gaseous ionization chamber in the detection of energetic heavy ions, which is called Bragg Curve Spectroscopy (BCS). Conceptually, BCS involves using the maximum data available from the Bragg curve of the stopping heavy ion (HI) for purposes of identifying the particle and measuring its energy. A detector has been designed that measures the Bragg curve with high precision. From the Bragg curve the range from the length of the track, the total energy from the integral of the specific ionization over the track, the dE/dx from the specific ionization at the beginning of the track, and the Bragg peak from the maximum of the specific ionization of the HI are determined. This last signal measures the atomic number, Z, of the HI unambiguously

  7. ROBUST DECLINE CURVE ANALYSIS

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  8. Power Curve Measurements FGW

    Georgieva Yankova, Ginka; Federici, Paolo

    This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2.......This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2....

  9. Curves and Abelian varieties

    Alexeev, Valery; Clemens, C Herbert; Beauville, Arnaud

    2008-01-01

    This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes. In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors, of compactified Jacobians of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties.

  10. A Linear Viscoelastic Model Calibration of Sylgard 184.

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.

  11. Astrid-2 EMMA Magnetic Calibration

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    The Swedish micro-satellite Astrid-2 contains a tri-axial fluxgate magnetometer with the sensor co-located with a Technical University of Denmark (DTU) star camera for absolute attitude, and extended about 0.9 m on a hinged boom. The magnetometer is part of the RIT EMMA electric and magnetic fields...... experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... Survey of Sweden near Stockholm on the night of May 15.-16., 1997. The magnetic calibration and the intercalibration between the star camera and the magnetic sensor was performed by measuring the Earth's magnetic field and simultaneously observing the star sky with the camera. The rotation matrix between...

  12. Quality control for dose calibrators

    Mendes, L.C.G.

    1984-01-01

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  13. Calibration of Flick standards

    Thalmann, Ruedi; Spiller, Jürg; Küng, Alain; Jusko, Otto

    2012-01-01

    Flick standards or magnification standards are widely used for an efficient and functional calibration of the sensitivity of form measuring instruments. The results of a recent measurement comparison have shown to be partially unsatisfactory and revealed problems related to the calibration of these standards. In this paper the influence factors for the calibration of Flick standards using roundness measurement instruments are discussed in detail, in particular the bandwidth of the measurement chain, residual form errors of the device under test, profile distortions due to the diameter of the probing element and questions related to the definition of the measurand. The different contributions are estimated using simulations and are experimentally verified. Also alternative methods to calibrate Flick standards are investigated. Finally the practical limitations of Flick standard calibration are shown and the usability of Flick standards both to calibrate the sensitivity of roundness instruments and to check the filter function of such instruments is analysed. (paper)

  14. RF impedance measurement calibration

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  15. Approximation by planar elastic curves

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  16. Carbon resistor pressure gauge calibration at low stresses

    Cunningham, Bruce; Vandersall, Kevin S.; Niles, Angela M.; Greenwood, Daniel W.; Garcia, Frank; Forbes, Jerry W.; Wilson, William H.

    2002-01-01

    The 470 Ohm carbon resistor gauge has been used in the stress range up to 4-5 GPa for highly heterogeneous materials and/or divergent flow experiments. The attractiveness of the gauge is its rugged nature, simple construction, low cost, reproducibility, and survivability in dynamic events. Gauge drawbacks are the long time response to pressure equilibration and gauge resistance hysteresis. In the regime below 0.4 GPa, gauge calibration has been extrapolated. Because of the need for calibration data within this low stress regime, calibration experiments were performed using a split-Hopkinson bar, drop tower apparatus, and gas pressure chamber. Since the performance of the gauge at elevated temperatures is a concern, the change in resistance due to heating at atmospheric pressure was also investigated. Details of the various calibration arrangements and the results are discussed and compared to a calibration curve fit to previously published calibration data

  17. Calibration of the TVO spent BWR reference fuel assembly

    Tarvainen, M.; Baecklin, A.; Haakanson, A.

    1992-02-01

    In 1989 the Support Programmes of Finland (FSP) and Sweden (SSP) initiated a joint task to cross calibrate the burnup of the IAEA spent BWR reference fuel assembly at the TVO AFR storage facility (TVO KPA-STORE) in Finland. The reference assembly, kept separately under the IAEA seal, is used for verification measurements of spent fuel by GBUV method (SG-NDA-38). The cross calibration was performed by establishing a calibration curve, 244 Cm neutron rate versus burnup, using passive neutron assay (PNA) measurements. The declared burnup of the reference assembly was compared with the burnup value deduced from the calibration curve. A calibration line was also established by using the GBUV method with the aid of high resolution gamma ray spectrometry (HRGS). Normalization between the two different facilities was performed using sealed neutron and gamma calibration sources. The results of the passive neutron assay show consistency, better than 1 %, between the declared mean burnup of the reference assembly and the burnup deduced from the calibration curve. The corresponding consistency is within +-2 % for the HRGS measurements

  18. Power Curve Measurements REWS

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  19. Curved electromagnetic missiles

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  20. Algebraic curves and cryptography

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  1. IGMtransmission: Transmission curve computation

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  2. Calibration of moisture monitors

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  3. Site Calibration report

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...

  4. Topics in Statistical Calibration

    2014-03-27

    Natural cubic spline speed di st 110 B.2 The calibrate function The most basic calibration problem, the one often encountered in more advanced ...0040-1706, 1537-2723. A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. McGraw-Hill, Auckland , U.A, 1974. ISBN

  5. Comparison of radiotherapy dosimetry for 3D-CRT, IMRT, and SBRT based on electron density calibration

    Kartutik, K; Pawiro, S A; Wibowo, W E

    2016-01-01

    Accurate calculation of dose distribution affected by inhomogeneity tissue is required in radiotherapy planning. This study was performed to determine the ratio between radiotherapy planning using 3D-CRT, IMRT, and SBRT based on a calibrated curve of CT-number in the lung for different target's shape in 3D-CRT, IMRT, and spinal cord for SBRT. Calibration curves of CT-number were generated under measurement basis and introduced into TPS, then planning was performed for 3D-CRT, IMRT, and SBRT with 7, and 15 radiation fields. Afterwards, planning evaluation was performed by comparing the DVH curve, HI, and CI. 3D-CRT and IMRT produced the lowest HI at calibration curve of CIRS 002LFC with the value 0.24 and 10. Whereas SBRT produced the lowest HI on a linear calibration curve with a value of 0.361. The highest CI in IMRT and SBRT technique achieved using a linear calibration curve was 0.97 and 1.77 respectively. For 3D-CRT, the highest CI was obtained by using calibration curve of CIRS 062M with the value of 0.45. From the results of CI and HI, it is concluded that the calibration curve of CT-number does not significantly differ with Schneider's calibrated curve, and inverse planning gives a better result than forward planning. (paper)

  6. Sandia WIPP calibration traceability

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  7. The GERDA calibration system

    Baudis, Laura; Froborg, Francis; Tarka, Michael; Bruch, Tobias; Ferella, Alfredo [Physik-Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2012-07-01

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the {sup 228}Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the {sup 228}Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  8. Sandia WIPP calibration traceability

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  9. Analysis of threshold curves for superconducting interferometers

    Peterson, R.L.; Hamilton, C.A.

    1979-01-01

    Threshold curves for multijunction superconducting interferometers have been calculated previously, showing general agreement with observed features, especially in symmetric cases. We here add some more details to the analysis, paying particular attention to the effects of asymmetries in coupling, inductance, or critical currents. Feed-loop inductance and flux quantization in the feed loop can be important. A changing lobe pattern over many periods, asymmetries within a period, shifting patterns between runs spanning a warm-up, and sudden changes in pattern because of noise in the environment are all quantitatively explainable on the basis of this model. By use of a single ''calibration curve'', the inductance for symmetric two- or three-junction interferometers can be obtained immediately

  10. Estimation of curve number by DAWAST model

    Kim, Tai Cheol; Park, Seung Ki; Moon, Jong Pil [Chungnam National University, Taejon (Korea, Republic of)

    1997-10-31

    It is one of the most important factors to determine the effective rainfall for estimation of flood hydrograph in design schedule. SCS curve number (CN) method has been frequently used to estimate the effective rainfall of synthesized design flood hydrograph for hydraulic structures. But, it should be cautious to apply SCS-CN originally developed in U.S.A to watersheds in Korea, because characteristics of watersheds in Korea and cropping patterns especially like a paddy land cultivation are quite different from those in USA. New CN method has been introduced. Maximum storage capacity which was herein defined as U{sub max} can be calibrated from the stream flow data and converted to new CN-I of driest condition of soil moisture in the given watershed. Effective rainfall for design flood hydrograph can be estimated by the curve number developed in the watersheds in Korea. (author). 14 refs., 5 tabs., 3 figs.

  11. Learning from uncertain curves

    Mallasto, Anton; Feragen, Aasa

    2017-01-01

    We introduce a novel framework for statistical analysis of populations of nondegenerate Gaussian processes (GPs), which are natural representations of uncertain curves. This allows inherent variation or uncertainty in function-valued data to be properly incorporated in the population analysis. Us...

  12. Power Curve Measurements

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  13. Carbon Lorenz Curves

    Groot, L.F.M.|info:eu-repo/dai/nl/073642398

    2008-01-01

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across

  14. The Axial Curve Rotator.

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  15. Nacelle lidar power curve

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  16. Textbook Factor Demand Curves.

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  17. ECM using Edwards curves

    Bernstein, D.J.; Birkner, P.; Lange, T.; Peters, C.P.

    2013-01-01

    This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the

  18. Alternative technique to neutron probe calibration in situ

    Encarnacao, F.; Carneiro, C.; Dall'Olio, A.

    1990-01-01

    An alternative technique of neutron probe calibration in situ was applied for Podzolic soil. Under field condition, the neutron probe calibration was performed using a special arrangement that prevented the lateral movement of water around the access tube of the neutron probe. During the experiments, successive amounts of water were uniformly infiltrated through the soil profile. Two plots were set to study the effect of the plot dimension on the slope of the calibration curve. The results obtained shown that the amounts of water transferred to the soil profile were significantly correlated to the integrals of count ratio along the soil profile on both plots. In consequence, the slope of calibration curve in field condition was determined. (author)

  19. Improved capacitive melting curve measurements

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  20. Calibration of areal surface topography measuring instruments

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  1. Online examiner calibration across specialties.

    Sturman, Nancy; Wong, Wai Yee; Turner, Jane; Allan, Chris

    2017-09-26

    Integrating undergraduate medical curricula horizontally across clinical medical specialties may be a more patient-centred and learner-centred approach than rotating students through specialty-specific teaching and assessment, but requires some interspecialty calibration of examiner judgements. Our aim was to evaluate the acceptability and feasibility of an online pilot of interdisciplinary examiner calibration. Fair clinical assessment is important to both medical students and clinical teachers METHODS: Clinical teachers were invited to rate video-recorded student objective structured clinical examination (OSCE) performances and join subsequent online discussions using the university's learning management system. Post-project survey free-text and Likert-scale participant responses were analysed to evaluate the acceptability of the pilot and to identify recommendations for improvement. Although 68 clinicians were recruited to participate, and there were 1599 hits on recordings and discussion threads, only 25 clinical teachers rated at least one student performance, and 18 posted at least one comment. Participants, including rural doctors, appeared to value the opportunity for interdisciplinary rating calibration and discussion. Although the asynchronous online format had advantages, especially for rural doctors, participants reported considerable IT challenges. Our findings suggest that fair clinical assessment is important to both medical students and clinical teachers. Interspecialty discussions about assessment may have the potential to enrich intraspecialty perspectives, enhance interspecialty engagement and collaboration, and improve the quality of clinical teacher assessment. Better alignment of university and hospital systems, a face to face component and other modifications may have enhanced clinician engagement with this project. Findings suggest that specialty assessment cultures and content expertise may not be barriers to pursuing more integrated

  2. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  3. Compact radiometric microwave calibrator

    Fixsen, D. J.; Wollack, E. J.; Kogut, A.; Limon, M.; Mirel, P.; Singal, J.; Fixsen, S. M.

    2006-01-01

    The calibration methods for the ARCADE II instrument are described and the accuracy estimated. The Steelcast coated aluminum cones which comprise the calibrator have a low reflection while maintaining 94% of the absorber volume within 5 mK of the base temperature (modeled). The calibrator demonstrates an absorber with the active part less than one wavelength thick and only marginally larger than the mouth of the largest horn and yet black (less than -40 dB or 0.01% reflection) over five octaves in frequency

  4. Lidar to lidar calibration

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  5. Codes and curves

    Walker, Judy L

    2000-01-01

    When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...

  6. Carbon Lorenz Curves

    Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2008-11-15

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.

  7. Using Calibrated Peer Review to Teach Basic Research Skills

    Bracke, Marianne S.; Graveel, John G.

    2014-01-01

    Calibrated Peer Review (CPR) is an online tool being used in the class Introduction to Agriculture and Purdue University (AGR 10100) to integrate a writing and research component (http://cpr.molsci.ucla.edu/Home.aspx). Calibrated Peer Review combines the ability to create writing intensive assignments with an introduction to the peer-review…

  8. Construction of growth curve of Rn-222 activity for use as a calibration factor for determination of Rn-222 in water by LSC; Construção de curva de crescimento da atividade do Rn-222 para utilização como fator de calibração para determinação de Rn-222 em água por LSC

    Santos, M.L.O.; Farias, E.E.G.; Amaral, D.S.; Hazin, C.A.; França, E.J., E-mail: emersonemiliano@yahoo.com.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Souza Neto, J.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2017-07-01

    Liquid Scintillation Spectrometry (LSC) is one of the most used techniques for quantification of alpha and beta particles in aqueous medium, being used to determine the concentration of Radon-222 in water. The counting efficiency of this methodology depends on the good extraction of the radionuclide and the definition of the most appropriate scintillator cocktail. The study aimed to construct a growth curve of Rn-222 activity in aqueous medium and to test the counting efficiency of this method. For this, samples containing 12 mL Ra-226 standard solution and 12 mL scintillator cocktail were prepared in triplicate. The cocktail was prepared using 1 L of p-xylene, 7 g of 2,5-diphenyloxazole (PPO) and 0.75 g of 1,4-bis- [2- (5-diphenyloxazol)] benzene (POPOP). Subsequently, the containers were sealed and agitated for five minutes, seeking an efficient transfer of the radon to the organic phase. Analytical white was prepared using deionized water and the scintillation cocktail. After 3 hours, the concentrations of this radionuclide were determined by the LSC technique, using QUANTULUS 1220 equipment, Perkin Elmer. Analyzes were performed on nine different days, making a total of 21 days between the first and last analysis. The results obtained allowed to make an analytical curve with good fit (r{sup 2} = 0.98), which could be used as a calibration factor for this method. The method used showed a counting efficiency of 78%. A suitable analytical protocol for determination of Rn-222 in water samples was established.

  9. Dynamics of curved fronts

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  10. International Wage Curves

    David G. Blanchflower; Andrew J. Oswald

    1992-01-01

    The paper provides evidence for the existence of a negatively sloped locus linking the level of pay to the rate of regional (or industry) unemployment. This "wage curve" is estimated using microeconomic data for Britain, the US, Canada, Korea, Austria, Italy, Holland, Switzerland, Norway, and Germany, The average unemployment elasticity of pay is approximately -0.1. The paper sets out a multi-region efficiency wage model and argues that its predictions are consistent with the data.

  11. Anatomical curve identification

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  12. Estimating Corporate Yield Curves

    Antionio Diaz; Frank Skinner

    2001-01-01

    This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...

  13. LCC: Light Curves Classifier

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  14. Geometric invariant theory for polarized curves

    Bini, Gilberto; Melo, Margarida; Viviani, Filippo

    2014-01-01

    We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5curves. If 2curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseu...

  15. Fractal properties of critical invariant curves

    Hunt, B.R.; Yorke, J.A.; Khanin, K.M.; Sinai, Y.G.

    1996-01-01

    We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension

  16. Air Data Calibration Facility

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  17. BES online calibration system

    Zhang Bingyun; Li Xiaonan; Zhu Kejun; Zhang Jiawen; Gong Mingyu

    2003-01-01

    We constructed BES (Beijing Spectrometer) online calibration system to ensure the coherence of readout electronic channels due to huge data volume in high energy physics experiment. This paper describes the structure of hardware and software, and its characteristic and function

  18. Calibrated Properties Model

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  19. Calibrated Properties Model

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  20. SPOTS Calibration Example

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  1. Scanner calibration revisited

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  2. Calibration of thermoluminiscent materials

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  3. An interactive editor for curve-skeletons: SkeletonLab

    Barbieri, Simone; Meloni, P.; Usai, F.; Spano, L.D.; Scateni, R.

    2016-01-01

    Curve-skeletons are powerful shape descriptors able to provide higher level information on topology, structure and semantics of a given digital object. Their range of application is wide and encompasses computer animation, shape matching, modelling and remeshing. While a universally accepted definition of curve-skeleton is still lacking, there are currently many algorithms for the curve-skeleton computation (or skeletonization) as well as different techniques for building a mesh around a give...

  4. Calibration for plutonium-238 lung counting at Mound Laboratory

    Tomlinson, F.K.

    1976-01-01

    The lung counting facility at Mound Laboratory was calibrated for making plutonium-238 lung deposition assessments in the fall of 1969. Phoswich detectors have been used since that time; however, the technique of calibration has improved considerably. The current technique of calibrating the lung counter is described as well as the method of error analysis and determination of the minimum detectable activity. A Remab hybrid phantom is used along with an attenuation curve which is derived from plutonium loaded lungs and ground beef absorber measurements. The errors that are included in an analysis as well as those that are excluded are described. The method of calculating the minimum detectable activity is also included

  5. Calibrating nacelle lidars

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  6. Vacuum polarization in curved spacetime

    Guy, R.W.

    1979-01-01

    A necessary step in the process of understanding the quantum theory of gravity is the calculation of the stress-energy tensor of quantized fields in curved space-times. The determination of the stress tensor, a formally divergent object, is made possible in this dissertation by utilizing the zeta-function method of regularization and renormalization. By employing this scheme's representation of the renormalized effective action functional, an expression of the stress tensor for a massless, conformally invariant scalar field, first given by DeWitt, is derived. The form of the renormalized stress tensor is first tested in various examples of flat space-times. It is shown to vanish in Minkowski space and to yield the accepted value of the energy density in the Casimir effect. Next, the stress tensor is calculated in two space-times of constant curvature, the Einstein universe and the deSitter universe, and the results are shown to agree with those given by an expression of the stress tensor that is valid in conformally flat space-times. This work culminates in the determination of the stress tensor on the horizon of a Schwarzschild black hole. This is accomplished by approximating the radial part of the eigen-functions and the metric in the vicinity of the horizon. The stress tensor at this level approximation is found to be pure trace. The approximated forms of the Schwarzschild metric describes a conformally flat space-time that possesses horizons

  7. New method of assigning uncertainty in volume calibration

    Lechner, J.A.; Reeve, C.P.; Spiegelman, C.H.

    1980-12-01

    This paper presents a practical statistical overview of the pressure-volume calibration curve for large nuclear materials processing tanks. It explains the appropriateness of applying splines (piecewise polynomials) to this curve, and it presents an overview of the associated statistical uncertainties. In order to implement these procedures, a practical and portable FORTRAN IV program is provided along with its users' manual. Finally, the recommended procedure is demonstrated on actual tank data collected by NBS

  8. Development of the FISH technique for biological dosimetry applications in the Gregorio Maranon General University Hospital

    Moreno, M.; Jesus Prieto, M.; Olivares, P.; Gomez, M.; Herranz, R.

    1997-01-01

    Since 1989 cytogenetic analysis for dose estimation has been regularly used In the Gregorio Maranon General University Hospital (HGUGM) of Madrid on individuals suspected of having accidentally been exposed to ionizing radiation. The method used is the study of chromosomal aberrations found in lymphocytes of peripheral blood. The technique recommended by the IAEA in 1986 permits to establish a dicentrics/dose ratio through an effective dose calibration curve prepared in-vitro. This methodology of dose estimation presents serious limitations which can partially be eliminated by means of new molecular cytogenetic techniques, such as chromosomal painting through in-situ hybridization with fluorescence (FISH). At HGUGM, research work has been finished for standardization of the above mentioned technique including effective dose calibration curves, the utilization of adequate aberrations and the intercomparision of the results with other centres

  9. Calibration of ionization chambers used in LDR brachytherapy

    Alvarez, Oscar T.B.; Caldas, Linda V.E.

    2005-01-01

    In this work was developed a calibration procedure of well-type ionization chambers used for measurements of I-125, seed type. It was used as a standard an ionization chamber Capintec CRC-15BT, with calibration certificate of the University of Wisconsin. It were calibrated two well-type ionization chambers of Capintec CRC-15R model. A source of I-125 was used in clinical use (18.5 to 7.4 MBq). The results showed that with the application of calibration factors was possible to decrease read deviate from 16% to just 1.0%

  10. Uniformization of elliptic curves

    Ülkem, Özge; Ulkem, Ozge

    2015-01-01

    Every elliptic curve E defined over C is analytically isomorphic to C*=qZ for some q ∊ C*. Similarly, Tate has shown that if E is defined over a p-adic field K, then E is analytically isomorphic to K*=qZ for some q ∊ K . Further the isomorphism E(K) ≅ K*/qZ respects the action of the Galois group GK/K, where K is the algebraic closure of K. I will explain the construction of this isomorphism.

  11. Roc curves for continuous data

    Krzanowski, Wojtek J

    2009-01-01

    Since ROC curves have become ubiquitous in many application areas, the various advances have been scattered across disparate articles and texts. ROC Curves for Continuous Data is the first book solely devoted to the subject, bringing together all the relevant material to provide a clear understanding of how to analyze ROC curves.The fundamental theory of ROC curvesThe book first discusses the relationship between the ROC curve and numerous performance measures and then extends the theory into practice by describing how ROC curves are estimated. Further building on the theory, the authors prese

  12. Improving calibration accuracy in gel dosimetry

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  13. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  14. Vibration transducer calibration techniques

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  15. Calibration Under Uncertainty.

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  16. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago; Laboratorio secundario de calibracion para dosimetria en niveles de terapia en la Universidad de Santiago

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-07-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  17. Detection of flaws below curved surfaces

    Elsley, R.K.; Addison, R.C.; Graham, L.J.

    1983-01-01

    A measurement model has been developed to describe ultrasonic measurements made with circular piston transducers in parts with flat or cylindrically curved surfaces. The model includes noise terms to describe electrical noise, scatterer noise and echo noise as well as effects of attenuation, diffraction and Fresnel loss. An experimental procedure for calibrating the noise terms of the model was developed. Experimental measurements were made on a set of known flaws located beneath a cylindrically curved surface. The model was verified by using it to correct the experimental measurements to obtain the absolute scattering amplitude of the flaws. For longitudinal wave propagation within the part, the derived scattering amplitudes were consistent with predictions at internal angles of less than 30 0 . At larger angles, focusing and aberrations caused a lack of agreement; the model needs further refinement in this case. For shear waves, it was found that the frequency for optimum flaw detection in the presence of material noise is lower than that for longitudinal waves; lower frequency measurements are currently in progress. The measurement model was then used to make preliminary predictions of the best experimental measurement technique for the detection of cracks located under cylindrically curved surfaces

  18. A new measurement-while-drilling gamma ray log calibrator

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  19. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A.

    2015-01-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  20. Calibration method for a carbon nanotube field-effect transistor biosensor

    Abe, Masuhiro; Murata, Katsuyuki; Ataka, Tatsuaki; Matsumoto, Kazuhiko

    2008-01-01

    An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures

  1. Seismic Calibration of Group 1 IMS Stations in Eastern Asia for Improved IDC Event Location

    Murphy, J. R; Rodi, W. L; Johnson, M; Sultanov, J. D; Bennett, T. J; Toksoz, M. N; Ovtchinnikov, V; Barker, B. W; Rosca, A. M; Shchukin, Y

    2006-01-01

    .... In order to establish a robust nuclear test monitoring capability, it is necessary to calibrate the IMS seismic stations used in monitoring, to account for systematic deviations from the nominal travel time curves...

  2. A simplified method of power calibration

    Jones, M.; Elliott, A.

    1974-01-01

    The Nuclear Reactor Facility, University of Missouri Rolla, has developed a unique method of power calibration for pool type reactors. Since water is incompressible it can be assumed that a rise in the water level of the pool while operating at power can be attributed to the heat input from the reactor core. Water level changes of a small magnitude are easily detectable. This method has proven to be less costly, less time consuming, and more reproducible than the conventional gold foil calibration, and has proven to be more accurate than a heat balance because several problems with heat flow through the walls and to the atmosphere are automatically compensated for with this method. The accuracy of this means of calibration depends upon the accuracy of the measurement of the water level and can normally be expected to be two to four percent. (author)

  3. A simplified method of power calibration

    Jones, M; Elliott, A [University of Missouri-Rolla (United States)

    1974-07-01

    The Nuclear Reactor Facility, University of Missouri Rolla, has developed a unique method of power calibration for pool type reactors. Since water is incompressible it can be assumed that a rise in the water level of the pool while operating at power can be attributed to the heat input from the reactor core. Water level changes of a small magnitude are easily detectable. This method has proven to be less costly, less time consuming, and more reproducible than the conventional gold foil calibration, and has proven to be more accurate than a heat balance because several problems with heat flow through the walls and to the atmosphere are automatically compensated for with this method. The accuracy of this means of calibration depends upon the accuracy of the measurement of the water level and can normally be expected to be two to four percent. (author)

  4. Ibis ground calibration

    Bird, A.J.; Barlow, E.J.; Tikkanen, T.; Bazzano, A.; Del Santo, M.; Ubertini, P.; Blondel, C.; Laurent, P.; Lebrun, F.; Di Cocco, G.; Malaguti, E.; Gabriele, M.; La Rosa, G.; Segreto, A.; Quadrini, E.; Volkmer, R.

    2003-01-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system

  5. Gamma counter calibration system

    1977-01-01

    A method and apparatus are described for the calibration of a gamma radiation measurement instrument to be used over any of a number of different absolute energy ranges. The method includes the steps of adjusting the overall signal gain associated with pulses which are derived from detected gamma rays, until the instrument is calibrated for a particular absolute energy range; then storing parameter settings corresponding to the adjusted overall signal gain, and repeating the process for other desired absolute energy ranges. The stored settings can be subsequently retrieved and reapplied so that test measurements can be made using a selected one of the absolute energy ranges. Means are provided for adjusting the overall signal gain and a specific technique is disclosed for making coarse, then fine adjustments to the signal gain, for rapid convergence of the required calibration settings. (C.F.)

  6. Calibration of the 90Sr+90Y ophthalmic and dermatological applicators with an extrapolation ionization minichamber

    Antonio, Patrícia L.; Oliveira, Mércia L.; Caldas, Linda V.E.

    2014-01-01

    90 Sr+ 90 Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90 Sr+ 90 Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90 Sr+ 90 Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%

  7. Calibration of radon-222 detectors using closed circuit radium-226 sources

    Perna, Allan Felipe Nunes; Paschuk, Sergei Anatolyevich; Correa, Janine Nicolosi; Del Claro, Flavia

    2012-01-01

    This paper presents the results of the calibration of the Radon-222 detectors used by the Laboratories specializing in measuring natural radiation from this gas. The research was conducted in collaboration between UTFPR, CDTN/CNEN, UFRN and IRD/CNEN. During the calibration the detectors were exposed in isolated chambers with radioactive calibrated sources. The calibration procedure was supported with four instant radon monitors AlphaGUARD (SAPHYMO Co.) responsible for radon activity measurements in the experimental chamber. The calibration procedure resulted an equation that relates the number of tracks found in solid-state detector CR-39 (Track-Etch detector) with the concentration of radon in the atmosphere. Obtained results are compatible with previously performed calibration at the National Institute of Radiological Sciences (NIRS, Japan) using high activity levels of radon in air. Present results of calibration give the possibility to expand the calibration curve of CR-39 for medium and low activity levels of radon. (author)

  8. Curved Josephson junction

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  9. Fast film dosimetry calibration method for IMRT treatment plan verification

    Schwob, N.; Wygoda, A.

    2004-01-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments are delivered dynamically and as so, require routinely performed verification measurements [1]. Radiographic film dosimetry is a well-adapted method for integral measurements of dynamic treatments fields, with some drawbacks related to the known problems of dose calibration of films. Classically, several films are exposed to increasing doses, and a Net Optical Density (N.O.D) vs. dose sensitometric curve (S.C.) is generated. In order to speed up the process, some authors have developed a method based on the irradiation of a single film with a non-uniform pattern of O.D., delivered with a dynamic MLC. However, this curve still needs to be calibrated to dose by the means of measurements in a water phantom. It is recommended to make a new calibration for every series of measurements, in order to avoid the processing quality dependence of the film response. These frequent measurements are very time consuming. We developed a simple method for quick dose calibration of films, including a check of the accuracy of the calibration curve obtained

  10. Curved-Duct

    Je Hyun Baekt

    2000-01-01

    Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

  11. Individual dosimetry and calibration

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  12. Radiation Calibration Measurements

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  13. Calibrating Legal Judgments

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  14. Calibration of scanning Lidar

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  15. Elliptic curves for applications (Tutorial)

    Lange, T.; Bernstein, D.J.; Chatterjee, S.

    2011-01-01

    More than 25 years ago, elliptic curves over finite fields were suggested as a group in which the Discrete Logarithm Problem (DLP) can be hard. Since then many researchers have scrutinized the security of the DLP on elliptic curves with the result that for suitably chosen curves only exponential

  16. Titration Curves: Fact and Fiction.

    Chamberlain, John

    1997-01-01

    Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…

  17. Detector calibration measurements in CRESST

    Westphal, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany)]. E-mail: westphal@ph.tum.de; Coppi, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Feilitzsch, F. von [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Isaila, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Jagemann, T. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Jochum, J. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Koenig, J. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lachenmaier, T. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lanfranchi, J.-C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Potzel, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Rau, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Stark, M. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Wernicke, D. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, D-85737 Ismaning (Germany)

    2006-04-15

    The CRESST dark matter experiment uses the simultaneous measurement of the scintillation light and the heat signal of a CaWO{sub 4} crystal to discriminate between background electron recoil and nuclear recoil events. At the Technical University of Munich calibration measurements have been performed to characterize the detectors. These measurements include the determination of the light output and scintillation time constants of CaWO{sub 4} at temperatures below 50 mK. The setup used in these measurements consist of a CaWO{sub 4} crystal, which is mounted in a reflective housing together with a silicon light detector carrying an Ir/Au transition edge sensor (TES) evaporated directly onto it.

  18. Neutron activation procedures used for the calibration of a nitrogen-16 reactor power monitor

    Jester, W.A.; Daubenspeck, T.

    2000-01-01

    Personnel from the Pennsylvania State University's Breazeale Nuclear Reactor assisted NRC (Nuclear Research Corporation) personnel in calibrating a new MSL/ 16 N Nitrogen-16 Monitor. Neutron flux calibration procedures utilized and the results obtained for the production of a nitrogen-16 source of known activity for a BGO detector calibration are described. (author)

  19. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  20. Measurement of extrapolation curves for the secondary pattern of beta radiation Nr. 86 calibrated in rapidity of absorbed dose for tissue equivalent by the Physikalisch Technische Bundesanstalt; Medicion de curvas de extrapolacion para el patron secundario de radiacion beta Nr. 86 calibrado en rapidez de dosis absorbida para tejido equivalente por el Physikalisch Technische Bundesanstalt

    Alvarez R, J.T

    1988-10-15

    The following report has as objective to present the obtained results of measuring - with a camera of extrapolation of variable electrodes (CE) - the dose speed absorbed in equivalent fabric given by the group of sources of the secondary pattern of radiation Beta Nr. 86, (PSB), and to compare this results with those presented by the calibration certificates that accompany the PSB extended by the primary laboratory Physikalisch Technische Bundesanstalt, (PTB), of the R.F.A. as well as the uncertainties associated to the measure process. (Author)

  1. Automated system for the calibration of magnetometers

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented

  2. A Journey Between Two Curves

    Sergey A. Cherkis

    2007-03-01

    Full Text Available A typical solution of an integrable system is described in terms of a holomorphic curve and a line bundle over it. The curve provides the action variables while the time evolution is a linear flow on the curve's Jacobian. Even though the system of Nahm equations is closely related to the Hitchin system, the curves appearing in these two cases have very different nature. The former can be described in terms of some classical scattering problem while the latter provides a solution to some Seiberg-Witten gauge theory. This note identifies the setup in which one can formulate the question of relating the two curves.

  3. Actualizing of calibration curves of {sup 14}C/C, {sup 90}Sr/Ca, {sup 228}Th/{sup 232}Th in ivory for the determination of the post mortal interval of elephants and consequences of the radiation protection of non-human species; Aktualisierung von Kalibierkurven von {sup 14}C/C, {sup 90}Sr/Ca und {sup 228}Th/{sup 232}Th in Elefantenelfenbein zum Zwecke der Alterbestimmung und die Konsequenzen fuer den Strahlenschutz nicht-menschlicher Arten

    Schupfner, R. [Regensburg Univ. (Germany). ZRN-URA Lab.

    2016-07-01

    The determination of the activity concentration of the radionuclides {sup 14}C/C and {sup 90}Sr/Ca and {sup 228}Th/{sup 232}Th applying combined radionuclide analyses methods has been proved to be a suitable tool for the purpose of an unambiguous age determination of elephant ivory [1, 2, 3, 10, 11, 12, 13]. Analysing representative and independently dated samples (N = 28) of ivory the curves fitting the post mortal interval (PMI) versus the activity concentration of the radionuclides mentioned above produced the data base enabling a more unambiguous age determination. Data from these studies origin [1, 2, 3, 10, 11, 12, 13] in analyses of ivory samples which were available up to the 2012. During the last five years there was a gap in information of the future trend of {sup 14}C/C and {sup 90}Sr/Ca. Up to this study it was not possible to assess whether the future level of {sup 14}C/C as well as {sup 90}Sr/Ca can analytically be distinguished from the level before 1954. At about 1954 the activity concentration of radionuclides from the atmospheric nuclear explosion, as {sup 14}C and {sup 90}Sr, increased in ivory significantly. This study aims in closing this information gap. The results of analyses of {sup 14}C/C, {sup 90}Sr/Ca, {sup 228}Th/{sup 232}Th in ivory with PMI values ranging from 1 to 5 years are presented and interpreted. These data enable an actualization of the calibration curves of PMI versus specific activities. This is necessary for a better understanding of the effect of blindness of {sup 14}C/C dating and its prevention. On the base of all available results form independent dated ivory sample available up to 2015 a suitable analytical procedure is suggested which aims in a more precise and reliable age determination of elephant tusks. Results of determining of radionuclides {sup 14}C/C and {sup 90}Sr/Ca and {sup 228}Th/{sup 232}Th in ivory are shown from before 1950 to 2015. These results are discussed with respect the purposes of dating as well

  4. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP

    Hughen, Konrad A.; Baillie, Mike G.L.; Bard, Edouard; Beck, J. Warren; Bertrand, Chanda J.H.; Blackwell, Paul G.; Buck, Caitlin E.; Burr, George S.; Cutler, Kirsten B.; Damon, Paul E.; Edwards, Richard L.; Fairbanks, Richard G.; Friedrich, Michael; Guilderson, Thomas P.; Kromer, Bernd; McCormac, Gerry; Manning, Sturt; Bronk Ramsey, Christopher; Reimer, Paula J.; Reimer, Ron W.; Remmele, Sabine; Southon, John R.; Stuiver, Minze; Talamo, Sahra; Taylor, F.W.; Plicht, Johannes van der; Weyhenmeyer, Constanze E.

    2004-01-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0–26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and

  5. ECAL Energy Flow Calibration

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  6. Calibration with Absolute Shrinkage

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  7. Calibration bench of flowmeters

    Bremond, J.; Da Costa, D.; Calvet, A.; Vieuxmaire, C.

    1966-01-01

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  8. Calibration of farmer dosemeters

    Ahmad, S.S.; Anwar, K.; Arshed, W.; Mubarak, M.A.; Orfi, S.D.

    1984-08-01

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  9. Physiotherapy ultrasound calibrations

    Gledhill, M.

    1996-01-01

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  10. NVLAP calibration laboratory program

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  11. NVLAP calibration laboratory program

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  12. Gamma ray calibration system

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  13. On the long-term stability of calibration standards in different matrices.

    Kandić, A; Vukanac, I; Djurašević, M; Novković, D; Šešlak, B; Milošević, Z

    2012-09-01

    In order to assure Quality Control in accordance with ISO/IEC 17025, it was important, from metrological point of view, to examine the long-term stability of calibration standards previously prepared. Comprehensive reconsideration on efficiency curves with respect to the ageing of calibration standards is presented in this paper. The calibration standards were re-used after a period of 5 years and analysis of the results showed discrepancies in efficiency values. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  15. Page curves for tripartite systems

    Hwang, Junha; Lee, Deok Sang; Nho, Dongju; Oh, Jeonghun; Park, Hyosub; Zoe, Heeseung; Yeom, Dong-han

    2017-01-01

    We investigate information flow and Page curves for tripartite systems. We prepare a tripartite system (say, A , B , and C ) of a given number of states and calculate information and entropy contents by assuming random states. Initially, every particle was in A (this means a black hole), and as time goes on, particles move to either B (this means Hawking radiation) or C (this means a broadly defined remnant, including a non-local transport of information, the last burst, an interior large volume, or a bubble universe, etc). If the final number of states of the remnant is smaller than that of Hawking radiation, then information will be stored by both the radiation and the mutual information between the radiation and the remnant, while the remnant itself does not contain information. On the other hand, if the final number of states of the remnant is greater than that of Hawking radiation, then the radiation contains negligible information, while the remnant and the mutual information between the radiation and the remnant contain information. Unless the number of states of the remnant is large enough compared to the entropy of the black hole, Hawking radiation must contain information; and we meet the menace of black hole complementarity again. Therefore, this contrasts the tension between various assumptions and candidates of the resolution of the information loss problem. (paper)

  16. Preliminary calibration of the ACP safeguards neutron counter

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  17. Soil Water Retention Curve

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  18. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  19. Development of neutron calibration field using accelerators

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  20. Mercury CEM Calibration

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  1. Fermions in curved spacetimes

    Lippoldt, Stefan

    2016-01-21

    In this thesis we study a formulation of Dirac fermions in curved spacetime that respects general coordinate invariance as well as invariance under local spin base transformations. We emphasize the advantages of the spin base invariant formalism both from a conceptual as well as from a practical viewpoint. This suggests that local spin base invariance should be added to the list of (effective) properties of (quantum) gravity theories. We find support for this viewpoint by the explicit construction of a global realization of the Clifford algebra on a 2-sphere which is impossible in the spin-base non-invariant vielbein formalism. The natural variables for this formulation are spacetime-dependent Dirac matrices subject to the Clifford-algebra constraint. In particular, a coframe, i.e. vielbein field is not required. We disclose the hidden spin base invariance of the vielbein formalism. Explicit formulas for the spin connection as a function of the Dirac matrices are found. This connection consists of a canonical part that is completely fixed in terms of the Dirac matrices and a free part that can be interpreted as spin torsion. The common Lorentz symmetric gauge for the vielbein is constructed for the Dirac matrices, even for metrics which are not linearly connected. Under certain criteria, it constitutes the simplest possible gauge, demonstrating why this gauge is so useful. Using the spin base formulation for building a field theory of quantized gravity and matter fields, we show that it suffices to quantize the metric and the matter fields. This observation is of particular relevance for field theory approaches to quantum gravity, as it can serve for a purely metric-based quantization scheme for gravity even in the presence of fermions. Hence, in the second part of this thesis we critically examine the gauge, and the field-parametrization dependence of renormalization group flows in the vicinity of non-Gaussian fixed points in quantum gravity. While physical

  2. Field calibration of cup anemometers

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  3. Novae, supernovae, and the island universe hypothesis

    Van Den Bergh, S.

    1988-01-01

    Arguments in Curtis's (1917) paper related to the island universe hypothesis and the existence of novae in spiral nebulae are considered. It is noted that the maximum magnitude versus rate-of-decline relation for novae may be the best tool presently available for the calibration of the extragalactic distance scale. Light curve observations of six novae are used to determine a distance of 18.6 + or - 3.5 MPc to the Virgo cluster. Results suggest that Type Ia supernovae cannot easily be used as standard candles, and that Type II supernovae are unsuitable as distance indicators. Factors other than precursor mass are probably responsible for determining the ultimate fate of evolving stars. 83 references

  4. Individual dosimetry and calibration

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  5. SCALA: In situ calibration for integral field spectrographs

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  6. Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields

    Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.

    2018-01-01

    This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.

  7. MAVEN SEP Calibrated Data Bundle

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  8. Ultrasonic calibration assembly

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  9. Travelling gradient thermocouple calibration

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  10. Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve.

    Yolci Omeroglu, Perihan; Ambrus, Árpad; Boyacioglu, Dilek

    2018-03-28

    Determination of pesticide residues is based on calibration curves constructed for each batch of analysis. Calibration standard solutions are prepared from a known amount of reference material at different concentration levels covering the concentration range of the analyte in the analysed samples. In the scope of this study, the applicability of both ordinary linear and weighted linear regression (OLR and WLR) for pesticide residue analysis was investigated. We used 782 multipoint calibration curves obtained for 72 different analytical batches with high-pressure liquid chromatography equipped with an ultraviolet detector, and gas chromatography with electron capture, nitrogen phosphorus or mass spectrophotometer detectors. Quality criteria of the linear curves including regression coefficient, standard deviation of relative residuals and deviation of back calculated concentrations were calculated both for WLR and OLR methods. Moreover, the relative uncertainty of the predicted analyte concentration was estimated for both methods. It was concluded that calibration curve based on WLR complies with all the quality criteria set by international guidelines compared to those calculated with OLR. It means that all the data fit well with WLR for pesticide residue analysis. It was estimated that, regardless of the actual concentration range of the calibration, relative uncertainty at the lowest calibrated level ranged between 0.3% and 113.7% for OLR and between 0.2% and 22.1% for WLR. At or above 1/3 of the calibrated range, uncertainty of calibration curve ranged between 0.1% and 16.3% for OLR and 0% and 12.2% for WLR, and therefore, the two methods gave comparable results.

  11. Mesoscale hybrid calibration artifact

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  12. Calibration of germanium detectors

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  13. Calibration of hydrometers

    Lorefice, Salvatore; Malengo, Andrea

    2006-10-01

    After a brief description of the different methods employed in periodic calibration of hydrometers used in most cases to measure the density of liquids in the range between 500 kg m-3 and 2000 kg m-3, particular emphasis is given to the multipoint procedure based on hydrostatic weighing, known as well as Cuckow's method. The features of the calibration apparatus and the procedure used at the INRiM (formerly IMGC-CNR) density laboratory have been considered to assess all relevant contributions involved in the calibration of different kinds of hydrometers. The uncertainty is strongly dependent on the kind of hydrometer; in particular, the results highlight the importance of the density of the reference buoyant liquid, the temperature of calibration and the skill of operator in the reading of the scale in the whole assessment of the uncertainty. It is also interesting to realize that for high-resolution hydrometers (division of 0.1 kg m-3), the uncertainty contribution of the density of the reference liquid is the main source of the total uncertainty, but its importance falls under about 50% for hydrometers with a division of 0.5 kg m-3 and becomes somewhat negligible for hydrometers with a division of 1 kg m-3, for which the reading uncertainty is the predominant part of the total uncertainty. At present the best INRiM result is obtained with commercially available hydrometers having a scale division of 0.1 kg m-3, for which the relative uncertainty is about 12 × 10-6.

  14. THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy

    Burns, Christopher R.; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Stritzinger, Maximilian; Phillips, M. M.; Boldt, Luis; Campillay, Abdo; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Kattner, ShiAnne; Contreras, Carlos; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  15. Observation models in radiocarbon calibration

    Jones, M.D.; Nicholls, G.K.

    2001-01-01

    The observation model underlying any calibration process dictates the precise mathematical details of the calibration calculations. Accordingly it is important that an appropriate observation model is used. Here this is illustrated with reference to the use of reservoir offsets where the standard calibration approach is based on a different model to that which the practitioners clearly believe is being applied. This sort of error can give rise to significantly erroneous calibration results. (author). 12 refs., 1 fig

  16. Dosimetry and Calibration Section

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  17. Calibrated Properties Model

    Ghezzehej, T.

    2004-01-01

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  18. Models of genus one curves

    Sadek, Mohammad

    2010-01-01

    In this thesis we give insight into the minimisation problem of genus one curves defined by equations other than Weierstrass equations. We are interested in genus one curves given as double covers of P1, plane cubics, or complete intersections of two quadrics in P3. By minimising such a curve we mean making the invariants associated to its defining equations as small as possible using a suitable change of coordinates. We study the non-uniqueness of minimisations of the genus one curves des...

  19. Daylight calculations using constant luminance curves

    Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda

    2005-02-01

    This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)

  20. On Calibration of pH Meters

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  1. Analysis of Gafchromic EBT3 film calibration irradiated with gamma rays from different systems: Gamma Knife and Cobalt-60 unit.

    Najafi, Mohsen; Geraily, Ghazale; Shirazi, Alireza; Esfahani, Mahbod; Teimouri, Javad

    2017-01-01

    In recent years, Gafchromic films are used as an advanced instrument for dosimetry systems. The EBT3 films are a new generation of Gafchromic films. Our main interest is to compare the response of the EBT3 films exposed to gamma rays provided by the Theratron 780C as a conventional radiotherapy system and the Leksell Gamma Knife as a stereotactic radiotherapy system (SRS). Both systems use Cobalt-60 sources, thus using the same energy. However, other factors such as source-to-axis distance, number of sources, dose rate, direction of irradiation, shape of phantom, the field shape of radiation, and different scatter contribution may influence the calibration curve. Calibration curves for the 2 systems were measured and plotted for doses ranging from 0 to 40 Gy at the red and green channels. The best fitting curve was obtained with the Levenberg-Marquardt algorithm. Also, the component of dose uncertainty was obtained for any calibration curve. With the best fitting curve for the EBT3 films, we can use the calibration curve to measure the absolute dose in radiation therapy. Although there is a small deviation between the 2 curves, the p-value at any channel shows no significant difference between the 2 calibration curves. Therefore, the calibration curve for each system can be the same because of minor differences. The results show that with the best fitting curve from measured data, while considering the measurement uncertainties related to them, the EBT3 calibration curve can be used to measure the unknown dose both in SRS and in conventional radiotherapy. Copyright © 2017. Published by Elsevier Inc.

  2. Calibration of triaxial fluxgate gradiometer

    Vcelak, Jan

    2006-01-01

    The description of simple and fast calibration procedures used for double-probe triaxial fluxgate gradiometer is provided in this paper. The calibration procedure consists of three basic steps. In the first step both probes are calibrated independently in order to reach constant total field reading in every position. Both probes are numerically aligned in the second step in order that the gradient reading is zero in homogenous magnetic field. The third step consists of periodic drift calibration during measurement. The results and detailed description of each calibration step are presented and discussed in the paper. The gradiometer is finally verified during the detection of the metal object in the measuring grid

  3. Primary calibration in acoustics metrology

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  4. Mercury CEM Calibration

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  5. Quantum fields in curved space

    Birrell, N.D.; Davies, P.C.W.

    1982-01-01

    The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)

  6. Extended analysis of cooling curves

    Djurdjevic, M.B.; Kierkus, W.T.; Liliac, R.E.; Sokolowski, J.H.

    2002-01-01

    Thermal Analysis (TA) is the measurement of changes in a physical property of a material that is heated through a phase transformation temperature range. The temperature changes in the material are recorded as a function of the heating or cooling time in such a manner that allows for the detection of phase transformations. In order to increase accuracy, characteristic points on the cooling curve have been identified using the first derivative curve plotted versus time. In this paper, an alternative approach to the analysis of the cooling curve has been proposed. The first derivative curve has been plotted versus temperature and all characteristic points have been identified with the same accuracy achieved using the traditional method. The new cooling curve analysis also enables the Dendrite Coherency Point (DCP) to be detected using only one thermocouple. (author)

  7. p-Curve and p-Hacking in Observational Research.

    Bruns, Stephan B; Ioannidis, John P A

    2016-01-01

    The p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.g., unaccounted confounding) p-curves based on true effects and p-curves based on null-effects with p-hacking cannot be reliably distinguished. We also demonstrate this problem using as practical example the evaluation of the effect of malaria prevalence on economic growth between 1960 and 1996. These findings call recent studies into question that use the p-curve to infer that most published research findings are based on true effects in the medical literature and in a wide range of disciplines. p-values in observational research may need to be empirically calibrated to be interpretable with respect to the commonly used significance threshold of 0.05. Violations of randomization in experimental studies may also result in situations where the use of p-curves is similarly unreliable.

  8. Photoelectic BV Light Curves of Algol and the Interpretations of the Light Curves

    Ho-Il Kim

    1985-06-01

    Full Text Available Standardized B and V photoelectric light curves of Algol are made with the observations obtained during 1982-84 with the 40-cm and the 61-cm reflectors of Yonsei University Observatory. These light curves show asymmetry between ascending and descending shoulders. The ascending shoulder is 0.02 mag brighter than descending shoulder in V light curve and 0.03 mag in B light curve. These asymmetric light curves are interpreted as the result of inhomogeneous energy distribution on the surface of one star of the eclipsing pair rather than the result of gaseous stream flowing from KOIV to B8V star. The 180-year periodicity, so called great inequality, are most likely the result proposed by Kim et al. (1983 that the abrupt and discrete mass losses of cooler component may be the cause of this orbital change. The amount of mass loss deduced from these discrete period changes turned out to be of the order of 10^(-6 - 10^(-5 Msolar.

  9. Light Curve Solution of the Contact Binary AW UMa

    J. H. Jeong

    1997-12-01

    Full Text Available A total of 1088 observations (272 in B,272 in V, 272 in R, and 272 in I were made from January to February in 1995 at Chungbuk National University observatory(CbNUO. We constructed BVRI light curves with our data. The photometric solution of these light curves was obtained by means of the Wilson-Devinney method. Our result was compared with those by previous investigators.

  10. The CHEOPS calibration bench

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of < 2 arcsec rms. This relatively modest pointing performance makes high quality flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  11. CALIBRATED HYDRODYNAMIC MODEL

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  12. Radionuclide calibrators performance evaluation

    Mora Ramirez, E.; Zeledon Fonseca, P.; Jimenez Cordero, M.

    2008-01-01

    Radionuclide calibrators are used to estimate accurately activity prior to administration to a patient, so it is very important that this equipment meets its performance requirements. The purpose of this paper is to compare the commercially available 'Calicheck' (Calcorp. Inc), used to assess linearity, versus the well-known source decay method, and also to show our results after performing several recommended quality control tests. The parameters that we wanted to evaluate were carried on using the Capintec CRC-15R and CRC-15 β radionuclide calibrators. The evaluated tests were: high voltage, display, zero adjust, background, reproducibility, source constancy, accuracy, precision and linearity. The first six tests were evaluated on the daily practice, here we analyzed the 2007 recorded data; and the last three were evaluated once a year. During the daily evaluation both calibrators performance were satisfactory comparing with the manufacture's requirements. The accuracy test show result within the ± 10% allowed for a field instrument. Precision performance is within the ± 1 % allowed. On the other hand, the linearity test shows that using the source decay method the relative coefficient is 0.9998, for both equipment and using the Calicheck the relative coefficient is 0.997. However, looking the percentage of error, during the 'Calicheck' test, its range goes from 0.0 % up to -25.35%, and using the source decay method, the range goes from 0.0 % up to -31.05 %, taking into account both instruments. Checking the 'Calicheck' results we can see that the results varying randomly, but using the source decay method the percentage of error increase as the source activity decrease. We conclude that both devices meet its manufactures requirements, in the case of the linearity using the decay method, decreasing the activity source, increasing the percentage of error, this may happen because of the equipment age. (author)

  13. Self-calibrating interferometer

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  14. Photometric Calibration of Consumer Video Cameras

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  15. Dosimetry and Calibration Section

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  16. Piezoelectric trace vapor calibrator

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  17. A Simple Accelerometer Calibrator

    Salam, R A; Islamy, M R F; Khairurrijal; Munir, M M; Latief, H; Irsyam, M

    2016-01-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. (paper)

  18. Calibration samples for accelerator mass spectrometry

    Hershberger, R.L.; Flynn, D.S.; Gabbard, F.

    1981-01-01

    Radioactive samples with precisely known numbers of atoms are useful as calibration sources for lifetime measurements using accelerator mass spectrometry. Such samples can be obtained in two ways: either by measuring the production rate as the sample is created or by measuring the decay rate after the sample has been obtained. The latter method requires that a large sample be produced and that the decay constant be accurately known. The former method is a useful and independent alternative, especially when the decay constant is not well known. The facilities at the University of Kentucky for precision measurements of total neutron production cross sections offer a source of such calibration samples. The possibilities, while quite extensive, would be limited to the proton rich side of the line of stability because of the use of (p,n) and (α,n) reactions for sample production

  19. Calibration and flight qualification of FORTIS

    Fleming, Brian T.; McCandliss, Stephan R.; Redwine, Keith; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2013-09-01

    The Johns Hopkins University sounding rocket group has completed the assembly and calibration of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of up to 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. FORTIS is capable of selecting the far-UV brightest regions of the target area by utilizing an autonomous targeting system. Medium resolution (R ~ 400) spectra are recorded in redundant dual-order spectroscopic channels with ~40 cm2 of effective area at 1216 Å. The maiden launch of FORTIS occurred on May 10, 2013 out of the White Sands Missile Range, targeting the extended spiral galaxy M61 and nearby companion NGC 4301. We report on the final flight calibrations of the instrument, as well as the flight results.

  20. Computational aspects of algebraic curves

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  1. Investigation of factors affecting the calibration of strain gage based transducers (''Goodzeit gages'') for SSC magnets

    Davidson, M.; Gilbertson, A.; Dougherty, M.

    1991-03-01

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched ''backing plate'' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a ''backing plate'' is used, the similarities or difficulties between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab -- what caused these differences, the investigation into the differences between coils and ten-stacks and how they relate to transducer calibration, and some suggestions for future calibrations

  2. Fabrication and calibration of FORTIS

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-09-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of- view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z ~ 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (~ 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the microshutter arrays.

  3. Learning curve for radical retropubic prostatectomy

    Fernando J. A. Saito

    2011-02-01

    Full Text Available PURPOSE: The learning curve is a period in which the surgical procedure is performed with difficulty and slowness, leading to a higher risk of complications and reduced effectiveness due the surgeon's inexperience. We sought to analyze the residents' learning curve for open radical prostatectomy (RP in a training program. MATERIALS AND METHODS: We conducted a prospective study from June 2006 to January 2008 in the academic environment of the University of São Paulo. Five residents operated on 184 patients during a four-month rotation in the urologic oncology division, mentored by the same physician assistants. We performed sequential analyses according to the number of surgeries, as follows: = 10, 11 to 19, 20 to 28, and = 29. RESULTS: The residents performed an average of 37 RP each. The average psa was 9.3 ng/mL and clinical stage T1c in 71% of the patients. The pathological stage was pT2 (73%, pT3 (23%, pT4 (4%, and 46% of the patients had a Gleason score 7 or higher. In all surgeries, the average operative time and estimated blood loss was 140 minutes and 488 mL. Overall, 7.2% of patients required blood transfusion, and 23% had positive surgical margins. CONCLUSION: During the initial RP learning curve, we found a significant reduction in the operative time; blood transfusion during the procedures and positive surgical margin rate were stable in our series.

  4. Synchrotron radiation calibration for soft X-ray detector

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  5. Reference sources for radionuclide calibrations in nuclear programmes

    Almeida, M.C.M. de; Delgado, J.U.; Poledna, R.; Silva, R.L. da; Oliveira, E.M. de; Di Prinzio, M.A.R.

    2009-01-01

    The radionuclide metrology laboratories aim to provide radioactive standards for detector calibrations in nuclear safety areas. To produce the reference sources to be furnished to users the following standards of 57 Co, 60 Co, 133 Ba, 241 Am, 152 Eu and 166 Ho are commonly used. In this work was made a verifying of the uncertainties obtained for the two methods: comparative (sample-standards) and efficiency curve. The total uncertainties obtained by sample-standard method varied from 0.4 to 1.2% (k = 1). The results using efficiency curve method to the same radioisotopes and same conditions are between 0.9 to 2.2% (k = 1). (author)

  6. Study on efficiency calibration of tritium in liquid scintillation spectrometry

    Zhai Xiufang; Wang Yaoqin; Li Weiping; Liang Wei; Xu Hui; Zhang Ruirong

    2014-01-01

    The method for efficiency calibration of tritium sample in liquid scintillation spectrometry was presented. The quenching effects from different chemical quenchers (Acidbase, CH_3NO_2, CCl_4, CH_3COCH_3) and color quencher (Na_2CrO_4) were studied. For each quencher, the methods of sample channel ratio (SCR), spectrum index of the sample (SIS) and spectral quenching parameter of the external standard (SQP (E)) were used for efficiency calibration respectively, and three methods were compared. The results show that the quenching from the various chemical quencher can be unified for one chemical quenching for efficiency calibration. There is great difference in the correction curves of chemical quenching and color quenching, and the fact is independent of the used efficiency calibration method. The SCR method is not advantageous for the tritium sample with low radioactivity or strong quenching. The SQP (E) method is independent of the sample count rate, and it is especially suitable for the efficiency calibration of low radioactivity tritium. The SIS method can be used for samples with high radioactivity. The accurate efficiency calibration for various quenching can be carried out by combining the SIS method and the SQP (E) method. (authors)

  7. 51Cr - erythrocyte survival curves

    Paiva Costa, J. de.

    1982-07-01

    Sixteen patients were studied, being fifteen patients in hemolytic state, and a normal individual as a witness. The aim was to obtain better techniques for the analysis of the erythrocytes, survival curves, according to the recommendations of the International Committee of Hematology. It was used the radiochromatic method as a tracer. Previously a revisional study of the International Literature was made in its aspects inherent to the work in execution, rendering possible to establish comparisons and clarify phonomena observed in cur investigation. Several parameters were considered in this study, hindering both the exponential and the linear curves. The analysis of the survival curves of the erythrocytes in the studied group, revealed that the elution factor did not present a homogeneous answer quantitatively to all, though, the result of the analysis of these curves have been established, through listed programs in the electronic calculator. (Author) [pt

  8. Melting curves of gammairradiated DNA

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  9. Management of the learning curve

    Pedersen, Peter-Christian; Slepniov, Dmitrij

    2016-01-01

    Purpose – This paper focuses on the management of the learning curve in overseas capacity expansions. The purpose of this paper is to unravel the direct as well as indirect influences on the learning curve and to advance the understanding of how these affect its management. Design...... the dimensions of the learning process involved in a capacity expansion project and identified the direct and indirect labour influences on the production learning curve. On this basis, the study proposes solutions to managing learning curves in overseas capacity expansions. Furthermore, the paper concludes...... with measures that have the potential to significantly reduce the non-value-added time when establishing new capacities overseas. Originality/value – The paper uses a longitudinal in-depth case study of a Danish wind turbine manufacturer and goes beyond a simplistic treatment of the lead time and learning...

  10. On chromatic and geometrical calibration

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...

  11. Development of portable flow calibrator

    Akiyama, Kiyomitsu; Iijima, Nobuo

    1995-01-01

    In the nuclear facilities, air sniffer system is often utilized to evaluate atmospheric concentration of radioactivity in the working environment. The system collects airborne dust on the filter during some sampling period. In this method, total air flow during the sampling period is an important parameter to evaluate the radioactivity concentration correctly. Therefore, calibration for the flow meter of air sniffer system must be done periodically according to Japan Industry Standards (JIS). As we have had to available device to calibrate the flow meter in the working area, we had to remove the flow meters from the installed place and carry them to another place where calibration can be made. This work required a great deal of labor. Now we have developed a portable flow calibrator for air sniffer system which enables us to make in-site calibration of the flow meter in the working area more easily. This report describes the outline of portable flow calibrator and it's experimental results. (author)

  12. Growth curves for Laron syndrome.

    Laron, Z; Lilos, P; Klinger, B

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls co...

  13. Flow over riblet curved surfaces

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  14. Color calibration and color-managed medical displays: does the calibration method matter?

    Roehrig, Hans; Rehm, Kelly; Silverstein, Louis D.; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.

    2010-02-01

    Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ▵E = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target.

  15. High Pressure Physics at Brigham Young University

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  16. Intersection numbers of spectral curves

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  17. Dissolution glow curve in LLD

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  18. Quality Management and Calibration

    Merkus, Henk G.

    Good specification of a product’s performance requires adequate characterization of relevant properties. Particulate products are usually characterized by some PSD, shape or porosity parameter(s). For proper characterization, adequate sampling, dispersion, and measurement procedures should be available or developed and skilful personnel should use appropriate, well-calibrated/qualified equipment. The characterization should be executed, in agreement with customers, in a wellorganized laboratory. All related aspects should be laid down in a quality handbook. The laboratory should provide proof for its capability to perform the characterization of stated products and/or reference materials within stated confidence limits. This can be done either by internal validation and audits or by external GLP accreditation.

  19. SURF Model Calibration Strategy

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  20. Calibration of Nanopositioning Stages

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  1. Radiological Calibration and Standards Facility

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  2. Portable compact multifunction IR calibrator

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  3. BXS Re-calibration

    Welch, J.

    2010-01-01

    Early in the commissioning it was noticed by Cecile Limborg that the calibration of the BXS spectrometer magnet seemed to be different from the strength of the BX01/BX02 magnets. First the BX01/BX02 currents were adjusted to 135 MeV and the beam energy was adjusted to make the horizontal orbit flat. Then BX01/BX02 magnets were switched off and BXS was adjusted to make the horizontal orbit in the spectrometer line flat, without changing the energy of the beam. The result was that about 140-141 MeV were required on the BXS magnet. This measurement was repeated several times by others with the same results. It was not clear what was causing the error: magnet strength or layout. A position error of about 19 mm of the BXS magnet could explain the difference. Because there was a significant misalignment of the vacuum chamber in the BXS line, the alignment of the whole spectrometer line was checked. The vacuum chamber was corrected, but the magnets were found to be in the proper alignment. So we were left with one (or conceivably two) magnet calibration errors. Because BXS is a wedged shaped magnet, the bend angle depends on the horizontal position of the incoming beam. As mentioned, an offset of the beam position of 19 mm would increase or decrease the bend angle roughly by the ratio of 135/141. The figure of 19 mm is special and caused a considerable confusion during the design and measurement of the BXS magnet. This is best illustrated in Figure 1 which was taken out of the BXS Traveler document. The distance between the horizontal midplanes of the poles and the apex of the beam path was chosen to be 19 mm so the beam is close to the good field region throughout its entire path. Thus it seemed possible that there was an error that resulted in the beam not being on this trajectory, or conversely, that the magnetic measurements were done on the wrong trajectory and the magnet was then mis-calibrated. Mechanical measurements of the vacuum chamber made in the tunnel

  4. Set-up and calibration of a method to measure {sup 10}B concentration in biological samples by neutron autoradiography

    Gadan, M.A. [National Commission for Atomic Energy (CNEA), Buenos Aires (Argentina); Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Postuma, I. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Protti, N.; Santoro, D.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Cansolino, L.; Clerici, A.; Ferrari, C.; Zonta, A.; Zonta, C. [Department of Experimental Surgery, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy)

    2012-03-01

    A selective uptake of boron in the tumor is the base of Boron Neutron Capture Therapy, which can destroy the tumor substantially sparing the normal tissue. In order to deliver a lethal dose to the tumor, keeping the dose absorbed by normal tissues below the tolerance level, it is mandatory to know the {sup 10}B concentration present in each kind of tissue at the moment of irradiation. This work presents the calibration procedure adopted for a boron concentration measurement method based on neutron autoradiography, where biological samples are deposited on sensitive films and irradiated in the thermal column of the TRIGA reactor (University of Pavia). The latent tracks produced in the film by the charged particles coming from the neutron capture in {sup 10}B are made visible by a proper etching, allowing the measurement of the track density. A calibration procedure with standard samples provides curves of track density as a function of boron concentration, to be used in the measurement of biological samples. In this paper, the bulk etch rate parameter and the calibration curves obtained for both liquid samples and biological tissues with known boron concentration are presented. A bulk etch rate value of (1.64 {+-} 0.02) {mu}m/h and a linear dependence with etching time were found. The plots representing the track density versus the boron concentration in a range between 5 and 50 {mu}g/g (ppm) are linear, with an angular coefficient of (1.614 {+-} 0.169){center_dot}10{sup -3} tracks/({mu}m{sup 2} ppm) for liquids and (1.598 {+-} 0.097){center_dot}10{sup -2} tracks/({mu}m{sup 2} ppm) for tissues.

  5. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  6. On the long-term stability of calibration standards in different matrices

    Kandić, A.; Vukanac, I.; Djurašević, M.; Novković, D.; Šešlak, B.; Milošević, Z.

    2012-01-01

    In order to assure Quality Control in accordance with ISO/IEC 17025, it was important, from metrological point of view, to examine the long-term stability of calibration standards previously prepared. Comprehensive reconsideration on efficiency curves with respect to the ageing of calibration standards is presented in this paper. The calibration standards were re-used after a period of 5 years and analysis of the results showed discrepancies in efficiency values. - Highlights: ► Long-term stability of calibration standards (ISO 17025 Quality Control) was analyzed. ► Calibration standards covered the wide range of densities and chemical composition. ► Mineralized grass, powdered milk, surface soil and sand were used as standard matrices. ► Calibration standards were re-evaluated after 5 years. ► Results showed discrepancies of efficiency values.

  7. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    2016-03-01

    each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for

  8. Radiochromic film calibration for the RQT9 quality beam

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  9. Calibration and use of a rugged new piezoresistive pressure transducer

    Lucht, R.A.; Charest, J.A.

    1995-09-01

    A new 50-ohm piezoresistive pressure gauge has been developed and calibrated in the range 0 to 4.0 GPa. This ``pinducer`` consists of one half of 100 ohm, one quarter watt, carbon composition resistor mounted coaxially at the end of a small brass tube. Three techniques have been used to calibrate this new gauge. Good agreement is found between all calibration data, and a smooth curve is fit through all resistance change versus pressure data up to 1.5 GPa. The gauges exhibit rise times of about 0.5 {mu}s. They offer advantages in raggedness, cost, and flexibility of application. The pinducer can be successfully used in divergent flows, harsh environments, and positions where lead protection would be impossible with thin-film gauges. A unique application is demonstrated.

  10. New approach for calibration the efficiency of HPGe detectors

    Alnour, I.A.; Wagiran, H.; Suhaimi Hamzah; Siong, W.B.; Mohd Suhaimi Elias

    2013-01-01

    Full-text: This work evaluates the efficiency calibrating of HPGe detector coupled with Canberra GC3018 with Genie 2000 software and Ortec GEM25-76-XLB-C with Gamma Vision software; available at Neutron activation analysis laboratory in Malaysian Nuclear Agency (NM). The efficiency calibration curve was constructed from measurement of an IAEA, standard gamma point sources set composed by 214 Am, 57 Co, 133 Ba, 152 Eu, 137 Cs and 60 Co. The efficiency calibrations were performed for three different geometries: 5, 10 and 15 cm distances from the end cap detector. The polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points. The efficiency equation was established from the known fitted parameters which allow for the efficiency evaluation at particular energy of interest. The study shows that significant deviations in the efficiency, depending on the source-detector distance and photon energy. (author)

  11. Universal Zero Specular Reflection Curves for MetaMaterials

    2012-09-01

    parents, Tony Ting and Li Chin, who always taught me the real values and meaning of life. Finally, I would like to thank my boss, Mr. Tan Ching Eng, and...Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett., vol. 85, pp. 3966, Imperial College, London, 2000. [10] J.B. Pendry, A.J. Holden, D.J. Robbins

  12. Exposure-rate calibration using large-area calibration pads

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data

  13. Considerations for reference pump curves

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  14. Theoretical foundations for environmental Kuznets curve analysis

    Lantz, Van

    This thesis provides a dynamic theory for analyzing the paths of aggregate output and pollution in a country over time. An infinite horizon, competitive growth-pollution model is explored in order to determine the role that economic scale, production techniques, and pollution regulations play in explaining the inverted U-shaped relationship between output and some forms of pollution (otherwise known as the Environmental Kuznets Curve, or EKC). Results indicate that the output-pollution relationship may follow a strictly increasing, strictly decreasing (but bounded), inverted U-shaped, or some combination of curves. While the 'scale' effect may cause output and pollution to exhibit a monotonic relationship, 'technique' and 'regulation' effects may ultimately cause a de-linking of these two variables. Pollution-minimizing energy regulation policies are also investigated within this framework. It is found that the EKC may be 'flattened' or even eliminated moving from a poorly-regulated economy to one that minimizes pollution. The model is calibrated to the US economy for output (gross national product, GNP) and two pollutants (sulfur dioxide, SO2, and carbon dioxide, CO2) over the period 1900 to 1990. Results indicate that the model replicates the observations quite well. The predominance of 'scale' effects cause aggregate SO2 and CO2 levels to increase with GNP in the early stages of development. Then, in the case of SO 2, 'technique' and 'regulation' effects may be the cause of falling SO2 levels with continued economic growth (establishing the EKC). CO2 continues to monotonically increase as output levels increase over time. The positive relationship may be due to the lack of regulations on this pollutant. If stricter regulation policies were instituted in the two case studies, an improved allocation of resources may result. While GNP may be 2.596 to 20% lower than what has been realized in the US economy (depending on the pollution variable analyzed), individual

  15. New radiation protection calibration facility at CERN.

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Calibration and intercomparison of neutron moderation spectrometers

    Rimpler, A.; Hermanska, J.; Prouza, Z.

    1989-01-01

    Results have been reported of comparative measurements of neutron fields from bare PuBe and Cf sources using multisphere (Bonner) spectrometers. The experiments were carried out by the Institute of Biophysics and Nuclear Medicine at Charles University in Prague and the National Board for Atomic Safety and Radiation Protection in Berlin. Both sides agreed upon uniform measuring conditions and calibration factors thus rendering possible the comparability of the dosimetric parameters which have been determined and verified, respectively, to an accuracy of ± 10%. 20 refs., 10 tabs., 2 figs. (author)

  17. SU-F-T-368: Improved HPGe Detector Precise Efficiency Calibration with Monte Carlo Simulations and Radioactive Sources

    Zhai, Y. John [Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 (United States)

    2016-06-15

    Purpose: To obtain an improved precise gamma efficiency calibration curve of HPGe (High Purity Germanium) detector with a new comprehensive approach. Methods: Both of radioactive sources and Monte Carlo simulation (CYLTRAN) are used to determine HPGe gamma efficiency for energy range of 0–8 MeV. The HPGe is a GMX coaxial 280 cm{sup 3} N-type 70% gamma detector. Using Momentum Achromat Recoil Spectrometer (MARS) at the K500 superconducting cyclotron of Texas A&M University, the radioactive nucleus {sup 24} Al was produced and separated. This nucleus has positron decays followed by gamma transitions up to 8 MeV from {sup 24} Mg excited states which is used to do HPGe efficiency calibration. Results: With {sup 24} Al gamma energy spectrum up to 8MeV, the efficiency for γ ray 7.07 MeV at 4.9 cm distance away from the radioactive source {sup 24} Al was obtained at a value of 0.194(4)%, by carefully considering various factors such as positron annihilation, peak summing effect, beta detector efficiency and internal conversion effect. The Monte Carlo simulation (CYLTRAN) gave a value of 0.189%, which was in agreement with the experimental measurements. Applying to different energy points, then a precise efficiency calibration curve of HPGe detector up to 7.07 MeV at 4.9 cm distance away from the source {sup 24} Al was obtained. Using the same data analysis procedure, the efficiency for the 7.07 MeV gamma ray at 15.1 cm from the source {sup 24} Al was obtained at a value of 0.0387(6)%. MC simulation got a similar value of 0.0395%. This discrepancy led us to assign an uncertainty of 3% to the efficiency at 15.1 cm up to 7.07 MeV. The MC calculations also reproduced the intensity of observed single-and double-escape peaks, providing that the effects of positron annihilation-in-flight were incorporated. Conclusion: The precision improved gamma efficiency calibration curve provides more accurate radiation detection and dose calculation for cancer radiotherapy treatment.

  18. Development and application of a calibration technique for laser ablation - ICP - MS

    Boue-Bigne, F

    2000-08-20

    Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) is a powerful analytical technique for the direct elemental analysis of solid samples, with spatial resolution down to a few microns. However, calibration remains the limiting factor in obtaining quantitative analysis by LA-ICP-MS for a wide range of sample types. No universal method exists as yet and the ones that are currently used tend to employ matrix-matched solid standards. Matrix-matched solid standards are not available for many types of sample, such as polymers, biological materials, fluid inclusions, etc. The need for a universal method of calibration that involves standards that are easy to prepare and suitable for any type of sample is required. Additional to matrix-matching, internal standards are widely used in LA-ICP-MS for quantitative analyses. The internal standard compensates for the different ablation yields from the sample and the standard and for the laser shot-to-shot variation. Given that the use of an internal standard is required to obtain reliable results, the need for matrix-matching might be regarded as questionable. This project has focused on the development and application of a new method of calibration for LA-ICP-MS. It involves the use of aqueous standards whose absorption characteristics are modified by the addition of a chromophore to the solution. Additives were selected for ablation with KrF excimer, and Nd:YAG lasers. The influence of the additive concentration on the ablation yield was investigated for different laser energies. Response curves were obtained showing that as the additive concentration was increased, less energy was required to ablate the modified standard solutions efficiently. A general procedure was then defined for the preparation and use of the modified standard solutions for a given sample. The new method of calibration was used for the quantitative analysis of different sample types: low density polyethylene (LDPE), polyketone (PK

  19. Development and application of a calibration technique for laser ablation - ICP - MS

    Boue-Bigne, F.

    2000-01-01

    Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) is a powerful analytical technique for the direct elemental analysis of solid samples, with spatial resolution down to a few microns. However, calibration remains the limiting factor in obtaining quantitative analysis by LA-ICP-MS for a wide range of sample types. No universal method exists as yet and the ones that are currently used tend to employ matrix-matched solid standards. Matrix-matched solid standards are not available for many types of sample, such as polymers, biological materials, fluid inclusions, etc. The need for a universal method of calibration that involves standards that are easy to prepare and suitable for any type of sample is required. Additional to matrix-matching, internal standards are widely used in LA-ICP-MS for quantitative analyses. The internal standard compensates for the different ablation yields from the sample and the standard and for the laser shot-to-shot variation. Given that the use of an internal standard is required to obtain reliable results, the need for matrix-matching might be regarded as questionable. This project has focused on the development and application of a new method of calibration for LA-ICP-MS. It involves the use of aqueous standards whose absorption characteristics are modified by the addition of a chromophore to the solution. Additives were selected for ablation with KrF excimer, and Nd:YAG lasers. The influence of the additive concentration on the ablation yield was investigated for different laser energies. Response curves were obtained showing that as the additive concentration was increased, less energy was required to ablate the modified standard solutions efficiently. A general procedure was then defined for the preparation and use of the modified standard solutions for a given sample. The new method of calibration was used for the quantitative analysis of different sample types: low density polyethylene (LDPE), polyketone (PK

  20. Curve Digitizer – A software for multiple curves digitizing

    Florentin ŞPERLEA

    2010-06-01

    Full Text Available The Curve Digitizer is software that extracts data from an image file representing a graphicand returns them as pairs of numbers which can then be used for further analysis and applications.Numbers can be read on a computer screen stored in files or copied on paper. The final result is adata set that can be used with other tools such as MSEXCEL. Curve Digitizer provides a useful toolfor any researcher or engineer interested in quantifying the data displayed graphically. The image filecan be obtained by scanning a document

  1. Camera calibration based on the back projection process

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  2. Deriving Area-storage Curves of Global Reservoirs

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  3. LANL MTI calibration team experience

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  4. Field calibration of cup anemometers

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions...

  5. Cobalt source calibration

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  6. Laboratory implantation for well type ionization chambers calibration; Implantacao de um laboratorio para calibracao de camaras de ionizacao tipo poco

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de [Laboratorio de Ciencias Radiologicas- LCR- DBB (UERJ). R. Sao Francisco Xavier, 524- Pav. HLC, sala 136 terreo- CEP 20.550-013. Rio de Janeiro (Brazil)

    1998-12-31

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  7. Liquid Krypton Calorimeter Calibration Software

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  8. Permanently calibrated interpolating time counter

    Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

    2015-01-01

    We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

  9. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  10. A NURBS approximation of experimental stress-strain curves

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  11. Vertex algebras and algebraic curves

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  12. Curve collection, extension of databases

    Gillemot, F.

    1992-01-01

    Full text: Databases: generally calculated data only. The original measurements: diagrams. Information loss between them Expensive research eg. irradiation, aging, creep etc. Original curves should be stored for reanalysing. The format of the stored curves: a. Data in ASCII files, only numbers b. Other information in strings in a second file Same name, but different extension. Extensions shows the type of the test and the type of the file. EXAMPLES. TEN is tensile information, TED is tensile data, CHN is Charpy informations, CHD is Charpy data. Storing techniques: digitalised measurements, digitalising old curves stored on paper. Use: making catalogues, reanalysing, comparison with new data. Tools: mathematical software packages like quattro, genplot, exel, mathcad, qbasic, pascal, fortran, mathlab, grapher etc. (author)

  13. Rational points on elliptic curves

    Silverman, Joseph H

    2015-01-01

    The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...

  14. Theoretical melting curve of caesium

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  15. Laffer Curves and Home Production

    Kotamäki Mauri

    2017-06-01

    Full Text Available In the earlier related literature, consumption tax rate Laffer curve is found to be strictly increasing (see Trabandt and Uhlig (2011. In this paper, a general equilibrium macro model is augmented by introducing a substitute for private consumption in the form of home production. The introduction of home production brings about an additional margin of adjustment – an increase in consumption tax rate not only decreases labor supply and reduces the consumption tax base but also allows a substitution of market goods with home-produced goods. The main objective of this paper is to show that, after the introduction of home production, the consumption tax Laffer curve exhibits an inverse U-shape. Also the income tax Laffer curves are significantly altered. The result shown in this paper casts doubt on some of the earlier results in the literature.

  16. Complexity of Curved Glass Structures

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  17. Calibration belt for quality-of-care assessment based on dichotomous outcomes.

    Stefano Finazzi

    Full Text Available Prognostic models applied in medicine must be validated on independent samples, before their use can be recommended. The assessment of calibration, i.e., the model's ability to provide reliable predictions, is crucial in external validation studies. Besides having several shortcomings, statistical techniques such as the computation of the standardized mortality ratio (SMR and its confidence intervals, the Hosmer-Lemeshow statistics, and the Cox calibration test, are all non-informative with respect to calibration across risk classes. Accordingly, calibration plots reporting expected versus observed outcomes across risk subsets have been used for many years. Erroneously, the points in the plot (frequently representing deciles of risk have been connected with lines, generating false calibration curves. Here we propose a methodology to create a confidence band for the calibration curve based on a function that relates expected to observed probabilities across classes of risk. The calibration belt allows the ranges of risk to be spotted where there is a significant deviation from the ideal calibration, and the direction of the deviation to be indicated. This method thus offers a more analytical view in the assessment of quality of care, compared to other approaches.

  18. Calibration of spent fuel measurement assembly

    Koleska, Michal; Viererbl, Ladislav; Marek, Milan

    2014-01-01

    The LVR-15 research reactor (Czech Republic) had been converted from the highly enriched IRT-2M to the low enriched IRT-4M fuel. For the possibility of the independent pre-transport evaluation of IRT-2M burnup, a spectrometric system was developed. This spectrometric system consists of the fuel holder, the collimator and the portable Canberra Big MAC HPGe (High Purity Germanium) detector. In order to have well reproducible and reliable experimental data for modeling of the measurement system, calibration with the 110m Ag isotope with known activity was performed. This isotope was chosen for having energies similar to isotopes measured in fuel assemblies. The 110m Ag isotope was prepared by irradiating of the silver foil in LVR-15 research reactor; its activity was evaluated in the LVR-15's spectrometric laboratory. From the measured data, an efficiency curve of the spectrometric system has been determined. The experimental data were compared to the calculation results with the MCNPX model of the spectrometric system. - Highlights: • Calibration of research reactor spent fuel measurement assembly. • On-site prepared 110m Ag isotope used for the measurement. • Calculated self-shielding factor for the IRT-2M fuel. • Applicable to other research reactor fuel geometries

  19. Model- and calibration-independent test of cosmic acceleration

    Seikel, Marina; Schwarz, Dominik J.

    2009-01-01

    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3σ in the 2007 Gold sample, 7.2σ in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established

  20. Calibrating the Cryogenian

    MacDonald, F. A.; Schmitz, M. D.; Crowley, J. L.; Haam, E.; Huybers, P.; Cohen, P. A.; Johnston, D. T.

    2009-12-01

    The IGCP 512 sub-commission on the Neoproterozoic is currently discussing criteria for the definition of the Cryogenian period. Herein we provide new U/Pb ID-TIMS ages and carbon and oxygen isotope data from Fifteenmile and Mt. Harper Groups in the Yukon Territory that inform the basis for the placement of the basal Cryogenian “golden spike”. Our U/Pb ages are from volcanic tuffs interbedded within glaciogenic, fossiliferous, and carbonate strata. With the current lack of Neoproterozoic index fossils and the paucity of radiogenic age constraints, chemo-stratigraphic correlations are particularly important for tuning the Neoproterozoic timescale. In an effort to move beyond conventional 'wiggle matching', chemostratigraphic correlations are determined using a new statistical method1, which indicates that the resulting chemo-stratigraphic correlations are statistically significant. These results permit us to refine and integrate Neoproterozoic climate, microfossil, and geochemical proxy records both regionally and globally. The newly calibrated microfossil record points to a eukaryotic radiation roughly coincident with the Bitter Springs isotopic stage and a barren interval between the Sturtian and Marinoan glaciations. 1 Haam, E. & Huybers, P., 2009, A test for the presence of covariance between time-uncertain series of data with applications to the Dongge Cave speleothem and atmospheric radiocarbon records, Paleoceanography, in press.

  1. Photometric Observation and Light Curve Analysis of Binary System ...

    2016-01-27

    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  2. Photometric Observation and Light Curve Analysis of Binary System ...

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  3. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  4. Optimization on Spaces of Curves

    Møller-Andersen, Jakob

    in Rd, and methods to solve the initial and boundary value problem for geodesics allowing us to compute the Karcher mean and principal components analysis of data of curves. We apply the methods to study shape variation in synthetic data in the Kimia shape database, in HeLa cell nuclei and cycles...... of cardiac deformations. Finally we investigate a new application of Riemannian shape analysis in shape optimization. We setup a simple elliptic model problem, and describe how to apply shape calculus to obtain directional derivatives in the manifold of planar curves. We present an implementation based...

  5. Tracing a planar algebraic curve

    Chen Falai; Kozak, J.

    1994-09-01

    In this paper, an algorithm that determines a real algebraic curve is outlined. Its basic step is to divide the plane into subdomains that include only simple branches of the algebraic curve without singular points. Each of the branches is then stably and efficiently traced in the particular subdomain. Except for the tracing, the algorithm requires only a couple of simple operations on polynomials that can be carried out exactly if the coefficients are rational, and the determination of zeros of several polynomials of one variable. (author). 5 refs, 4 figs

  6. The New Keynesian Phillips Curve

    Ólafsson, Tjörvi

    This paper provides a survey on the recent literature on the new Keynesian Phillips curve: the controversies surrounding its microfoundation and estimation, the approaches that have been tried to improve its empirical fit and the challenges it faces adapting to the open-economy framework. The new......, learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...... forecasting in a small open economy like Iceland....

  7. Mercury Continuous Emmission Monitor Calibration

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  8. Calibration technique for radiation measurements in vacuum ultraviolet - soft x-ray region

    Mizui, Jun-ichi

    1986-05-01

    This is a collection of the papers presented at the workshop on ''Calibration Technique for Radiation Measurements in Vacuum Ultraviolet - Soft X-ray Region'' held at the Institute of Plasma Physics, Nagoya University, on December 19 - 20, 1985, under the Collaborating Research Program at the Institute. The following topics were discussed at the workshop: the needs for the calibration of plasma diagnostic devices, present status of the calibration technique, use of the Synchrotron Orbit Radiations for radiometry, and others. (author)

  9. X-ray photoelectron spectrometer calibration and thin film investigations on germanium oxides

    Deegan, Terri

    1998-01-01

    The first aim of this project was the characterisation of the VG Scientific Clam 100 based, XPS (X-ray Photoelectron Spectroscopy). Spectrometer in the Physics department at Dublin City University Detailed energy scale and intensity scale calibrations were carried out using sputter-cleaned Au (Gold), Ag (Silver), Cu (Copper) and Pd (Palladium) foil samples. Analysis of these calibration spectra against standard reference spectra led to an accurate energy calibration and the production of indi...

  10. Optimal Aging and Death: Understanding the Preston Curve

    Dalgaard, Carl-Johan Lars; Strulik, Holger

    2014-01-01

    Does prosperity lead to greater longevity? If so, what is the strength of the income channel? To address these questions we develop a life cycle model in which households are subject to physiological aging. In modeling aging we draw on recent research in the fields of biology and medicine....... The speed of the aging process, and thus the age of death, are endogenously determined by optimal health investments. A calibrated version of the model accounts well for the observed nonlinear cross-country link between longevity and income, also known as the Preston curve...

  11. Signature Curves Statistics of DNA Supercoils

    Shakiban, Cheri; Lloyd, Peter

    2004-01-01

    In this paper we describe the Euclidean signature curves for two dimensional closed curves in the plane and their generalization to closed space curves. The focus will be on discrete numerical methods for approximating such curves. Further we will apply these numerical methods to plot the signature curves related to three-dimensional simulated DNA supercoils. Our primary focus will be on statistical analysis of the data generated for the signature curves of the supercoils. We will try to esta...

  12. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  13. Leptogenesis from loop effects in curved spacetime

    McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2016-04-05

    We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.

  14. Energy calibration of the EGP-10M accelerator

    Simakov, S.P.; Spirin, V.I.; Trufanov, A.M.; Lovchikova, G.N.

    1979-01-01

    Energy calibration of an electrostatic charge exchange proton accelerator in the energy range from 3 to 9 MeV is described. The calibration has been measuring the (p, n) reaction thresholds on 13 C, 63 Cu, 27 Al, 60 Ni and 50 Cr nuclei. The neutron yield is measured by a long counter located at a distance of 10-15 cm from a target. Given also are the reaction thresholds and the values of the calibration factor determined according to the yield of neutrons from (p, n) reactions for the mentioned nuclei. The analysis of the resultant calibration curve of the EGP-10 M accelerator showed that errors are practically equal to the energy instability of the beam extracted from the accelerator and constitute approximately 0.06%. Variations of the calibration factor in the 3-9 MeV range are equal to 0.38%. The success in using this method is guaranteed due to the absence of isolated resonances in the (p, n) reaction cross-section above the threshold and emission of mainly S-neutrons in the exit channel

  15. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere

    Kahraman, Tanju; Hüseyin Ugurlu, Hasan

    2016-01-01

    In this paper, we give Darboux approximation for dual Smarandache curves of time like curve on unit dual Lorentzian sphere. Firstly, we define the four types of dual Smarandache curves of a timelike curve lying on dual Lorentzian sphere.

  16. Electro-Mechanical Resonance Curves

    Greenslade, Thomas B., Jr.

    2018-01-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This…

  17. Texas curve margin of safety.

    2013-01-01

    This software can be used to assist with the assessment of margin of safety for a horizontal curve. It is intended for use by engineers and technicians responsible for safety analysis or management of rural highway pavement or traffic control devices...

  18. Principal Curves on Riemannian Manifolds.

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  19. Elliptic curves and primality proving

    Atkin, A. O. L.; Morain, F.

    1993-07-01

    The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret.

  20. A Curve for all Reasons

    from biology, feel that every pattern in the living world, ranging from the folding of ... curves band c have the same rate of increase but reach different asymptotes. If these .... not at x = 0, but at xo' which is the minimum size at birth that will permit ...

  1. Survival curves for irradiated cells

    Gibson, D.K.

    1975-01-01

    The subject of the lecture is the probability of survival of biological cells which have been subjected to ionising radiation. The basic mathematical theories of cell survival as a function of radiation dose are developed. A brief comparison with observed survival curves is made. (author)

  2. Calibration of an accountability tank by bubbling pressure method: correction factors to be taken into account

    Cauchetier, Ph.

    1993-01-01

    To obtain the needed precision in the calibration of an accountability tank by bubbling pressure method, it requires to use very slow bubbling. The measured data (mass and pressure) must be transformed into physical sizes of the vessel (height and cubic capacity). All corrections to take in account (buoyancy, calibration curve of the sensor, density of the liquid, weight of the gas column, bubbling overpressure, temperature...) are reviewed and valuated. We give the used equations. (author). 3 figs., 1 tab., 2 refs

  3. Energy calibration for LaBr3(Ce) scintillator detector in the region of 1-10 MeV

    Zhang Jianhua; Zhu Chengsheng; Zeng Jun; Ding Ge; Xiang Qingpei; Liu Zhao; Yang Chaowen

    2013-01-01

    Background: LaBr 3 (Ce) detector has played an important role in detecting explosive, contraband and landmine because of its high y detection efficiency and good energy resolution etc. Purpose: To calibrate detector in wide energy region. Methods: The gamma spectra of NH 4 Cl and C 3 H 6 N 6 induced by 252 Cf neutron source were measured. Results: Comparing their gamma spectra, characteristic gamma lines can be located and the energy calibration curve was obtained. Conclusions: Radio nuclides can be identified by the calibration curve fitted with quadratic or cubic polynomial. (authors)

  4. Mentorship, learning curves, and balance.

    Cohen, Meryl S; Jacobs, Jeffrey P; Quintessenza, James A; Chai, Paul J; Lindberg, Harald L; Dickey, Jamie; Ungerleider, Ross M

    2007-09-01

    Professionals working in the arena of health care face a variety of challenges as their careers evolve and develop. In this review, we analyze the role of mentorship, learning curves, and balance in overcoming challenges that all such professionals are likely to encounter. These challenges can exist both in professional and personal life. As any professional involved in health care matures, complex professional skills must be mastered, and new professional skills must be acquired. These skills are both technical and judgmental. In most circumstances, these skills must be learned. In 2007, despite the continued need for obtaining new knowledge and learning new skills, the professional and public tolerance for a "learning curve" is much less than in previous decades. Mentorship is the key to success in these endeavours. The success of mentorship is two-sided, with responsibilities for both the mentor and the mentee. The benefits of this relationship must be bidirectional. It is the responsibility of both the student and the mentor to assure this bidirectional exchange of benefit. This relationship requires time, patience, dedication, and to some degree selflessness. This mentorship will ultimately be the best tool for mastering complex professional skills and maturing through various learning curves. Professional mentorship also requires that mentors identify and explicitly teach their mentees the relational skills and abilities inherent in learning the management of the triad of self, relationships with others, and professional responsibilities.Up to two decades ago, a learning curve was tolerated, and even expected, while professionals involved in healthcare developed the techniques that allowed for the treatment of previously untreatable diseases. Outcomes have now improved to the point that this type of learning curve is no longer acceptable to the public. Still, professionals must learn to perform and develop independence and confidence. The responsibility to

  5. X-ray calibration qualities

    Burns, J.E.

    1998-01-01

    Since the recent publication of IAEA Technical Reports Series No. 374 ''Calibration of Dosimeters Used in Radiotheraphy'', there have been a number of queries about the origin of, and the rationale behind, the X-ray qualities recommended for calibration purposes. The simple answer is that these are the qualities derived at the UK National Physical Laboratory (NPL) in 1971 for calibration of therapy-level dosimeters and which are still in use for that purpose. As some SSDLs may have difficulties in adopting these exact combinations of kV and filtration. This paper discusses the basic ideas involved, and how to go about deriving a different series of qualities

  6. Comparison of methods of calibration of a neutron probe by gravimetry or neutron-capture model

    Vachaud, G.; Royer, J.M.; Cooper, J.D.

    1977-01-01

    This paper presents a systematic analysis of two methods used for determining calibration curves of neutron probes. The uncertainties resulting from the use of the gravimetric method, with a linear correlation between count rates and water content of soil samples, are considered first. Particular care is given to the determination of errors in the values of water content and count rates, and to the difficulties arising from the choice of the correlation technique. The neutron-calibration curve of the soil was also obtained with a technique based on the determination of neutron thermal adsorption and diffusion constants. The importance of errors associated with this method is also analyzed. Different field examples are then presented. It appears that the neutron-capture technique should be particularly well suited for determining the calibration curve of clay soils or heterogeneous materials for which the gravimetric calibration technique cannot be applied with confidence. On the other hand, it is also shown that for a soil with a very well-defined gravimetric calibration curve, the neutron-capture technique gives results still at least as good as with the former method

  7. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A., E-mail: marcelazoo@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-10-15

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. (author)

  8. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  9. Hydrological processes and model representation: impact of soft data on calibration

    J.G. Arnold; M.A. Youssef; H. Yen; M.J. White; A.Y. Sheshukov; A.M. Sadeghi; D.N. Moriasi; J.L. Steiner; Devendra Amatya; R.W. Skaggs; E.B. Haney; J. Jeong; M. Arabi; P.H. Gowda

    2015-01-01

    Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration...

  10. Light Curve Variations of AR Lacertae

    Il-Seong Nha

    1991-12-01

    Full Text Available Sixteen unitary Light curves of AR Lac in B and V are made at Yonsei University Observatory in the period of 1980-1988. Some overview findings of light variations are made. (1 The light variations outside eclipse follow none of the wave migration patterns reported by previous investigators. (2 Complicated shapes outside eclipse are apparently much reduced in the light curves of 1983-1984. This suggests that, in the future, AR Lac has a chance to attain a normal state with mo complicated interactions. (3 The depths of the primary and the secondary mid-eclipses are changing year-to-year. (4 The K0 star, the larger component, has brightened by 0.m14 V, while the G2 star has shown a fluctuation of about 0.m05 in V. (5 The B-V values at primary mid-eclipse have no correlation with the depth variations. (6 Independently of the increase of maximum brightness, the B-V colors in the non-eclipsed phases changed slightly over the years.

  11. Zero-point field in curved spaces

    Hacyan, S.; Sarmiento, A.; Cocho, G.; Soto, F.

    1985-01-01

    Boyer's conjecture that the thermal effects of acceleration are manifestations of the zero-point field is further investigated within the context of quantum field theory in curved spaces. The energy-momentum current for a spinless field is defined rigorously and used as the basis for investigating the energy density observed in a noninertial frame. The following examples are considered: (i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein universe. The energy spectra which have been previously calculated appear in the present formalism as an additional contribution to the energy of the zero-point field, but particle creation does not occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)

  12. Quantifying and Reducing Curve-Fitting Uncertainty in Isc

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-06-14

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  13. Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-09-28

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  14. Spectrophotometric calibration system for DECam

    Rheault, J.-P.; DePoy, D. L.; Marshall, J. L.; Prochaska, T.; Allen, R.; Wise, J.; Martin, E.; Williams, P.

    2012-09-01

    We describe a spectrophotometric calibration system that is being implemented as part of the DES DECam project at the Blanco 4 meter at CTIO. Our calibration system uses a 1nm wide tunable source to measure the instrumental response function of the telescope optics and detector from 300nm up to 1100nm. This calibration will be performed regularly to monitor any change in the transmission function of the telescope during the 5 year survey. The system consists of a monochromator based tunable light source that provides illumination on a dome flat that is monitored by calibrated photodiodes that allow us to measure the telescope throughput as a function of wavelength. Our system has a peak output power of 2 mW, equivalent to a flux of approximately 800 photons/s/pixel on DECam.

  15. Recommended inorganic chemicals for calibration

    Moody, J.R.; Greenberg, R.R.; Pratt, K.W.; Rains, T.C.

    1988-01-01

    All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to an instrumental parameter. A fundamental component in the preparation of calibration solutions is the weighing of a pure chemical or metal before preparing a solution standard. The analyst must be assured that the purity, stoichiometry, and assay of the chemical are known. These terms have different meanings, and each has an important influence. This report is intended to assist the analyst in the selection and use of chemical standards for instrumental calibration. Purity, stoichiometry, and preparation of solutions for different purposes are discussed, and a critical evaluation of the best materials available for each element is presented for use in preparing solutions or calibration standards. Information on the chemical form, source, purity, drying, and appropriate precautions is given. In some cases, multiple sources or chemical forms are available. Certain radioactive elements, the transuranic elements, and the noble gases are not considered

  16. Field calibration of cup anemometers

    Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statistical significance of the calibration expressions. It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometers may take more than one month in order to have wind speeds covering a sufficiently large magnitude range in a wind direction sector where we can be sure that the instruments are exposed to identical, simultaneous wind flows. Another main conclusion is that statistical uncertainty must be carefully evaluated since the individual 10 minute wind-speed averages are not statistically independent. (au)

  17. Calibration of radiation monitoring instruments

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  18. Calibration of "Babyline" RP instruments

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  19. Calibration of radiation monitoring instruments

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  20. Rotary mode system initial instrument calibration

    Johns, B.R.

    1994-01-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  1. Pressures Detector Calibration and Measurement

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  2. Photometric Calibration of the SPRED at the FTU Tokamak

    May, M J

    1999-01-01

    The SPRED spectrometer was photometrically calibrated by using the FTU tokamak plasma and the Grazing Incidence Time Resolving Spectrometer (GRITS) from the Johns Hopkins University [Stratton, Nucl. Fusion, Vol. 24, No. 6, pp. 767-777, 1984]. The photometric calibration of the GRITS spectrometer was transferred to the SPRED [Fonck, R.J., Applied Optics, Vol. 21, No. 12, p. 2115 (1982)] by directly comparing the intensity of bright lines emitted from the FTU tokamak plasma that were simultaneously measured by both spectrometers. The GRITS spectrometer (λ = 10 - 360 (angstrom); Δλ ∼ 0.7 (angstrom)) was photometrically calibrated in the 50 - 360 (angstrom) spectral range at the SURF II synchrotron light source at NIST in Gaithersburg MD in August 1997. The calibration of each SPRED grating was performed separately. These gratings covered the short wavelengths: 100 - 300 (angstrom)(Δλ - 1.4 (angstrom)) and the long wavelengths: 200 - 1800 (angstrom) (Δλ ∼ 7 (angstrom)). This calibration should be accurate until the microchannel plate of the SPRED is exposed to atmospheric pressure. This calibration is similar to the one obtained by Stratton [Stratton, Rev. Sci. Instrum. 57 (8), pp. 204,3 August 1986

  3. The KLOE online calibration system

    Pasqualucci, E.; Alexander, G.; Aloisio, A.

    2001-01-01

    Based on all the features of the KLOE online software, the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed. A calibration manager process controls the system, implementing the interface to the online system, receiving information from the run control and translating its state transitions to a separate state machine. It acts as a 'calibration run controller' and performs failure recovery when requested by a set of process checkers. The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms. A client library and C, fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an book-like interface. Several calibration processes running in parallel in a distributed, multiplatform environment can fill the same histograms, allowing fast external information check. A monitor thread allow remote browsing for visual inspection. Pre-filtered data are read in non-privileged spy mode from the data acquisition system via the Kloe Integrated Dataflow. The main characteristics of the system are presented

  4. A catalog of special plane curves

    Lawrence, J Dennis

    2014-01-01

    Among the largest, finest collections available-illustrated not only once for each curve, but also for various values of any parameters present. Covers general properties of curves and types of derived curves. Curves illustrated by a CalComp digital incremental plotter. 12 illustrations.

  5. Computation of undulator tuning curves

    Dejus, Roger J.

    1997-01-01

    Computer codes for fast computation of on-axis brilliance tuning curves and flux tuning curves have been developed. They are valid for an ideal device (regular planar device or a helical device) using the Bessel function formalism. The effects of the particle beam emittance and the beam energy spread on the spectrum are taken into account. The applicability of the codes and the importance of magnetic field errors of real insertion devices are addressed. The validity of the codes has been experimentally verified at the APS and observed discrepancies are in agreement with predicted reduction of intensities due to magnetic field errors. The codes are distributed as part of the graphical user interface XOP (X-ray OPtics utilities), which simplifies execution and viewing of the results

  6. Curved canals: Ancestral files revisited

    Jain Nidhi

    2008-01-01

    Full Text Available The aim of this article is to provide an insight into different techniques of cleaning and shaping of curved root canals with hand instruments. Although a plethora of root canal instruments like ProFile, ProTaper, LightSpeed ® etc dominate the current scenario, the inexpensive conventional root canal hand files such as K-files and flexible files can be used to get optimum results when handled meticulously. Special emphasis has been put on the modifications in biomechanical canal preparation in a variety of curved canal cases. This article compiles a series of clinical cases of root canals with curvatures in the middle and apical third and with S-shaped curvatures that were successfully completed by employing only conventional root canal hand instruments.

  7. Invariance for Single Curved Manifold

    Castro, Pedro Machado Manhaes de

    2012-01-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  8. Invariance for Single Curved Manifold

    Castro, Pedro Machado Manhaes de

    2012-08-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  9. Curved Folded Plate Timber Structures

    Buri, Hans Ulrich; Stotz, Ivo; Weinand, Yves

    2011-01-01

    This work investigates the development of a Curved Origami Prototype made with timber panels. In the last fifteen years the timber industry has developed new, large size, timber panels. Composition and dimensions of these panels and the possibility of milling them with Computer Numerical Controlled machines shows great potential for folded plate structures. To generate the form of these structures we were inspired by Origami, the Japanese art of paper folding. Common paper tessellations are c...

  10. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  11. Projection-based curve clustering

    Auder, Benjamin; Fischer, Aurelie

    2012-01-01

    This paper focuses on unsupervised curve classification in the context of nuclear industry. At the Commissariat a l'Energie Atomique (CEA), Cadarache (France), the thermal-hydraulic computer code CATHARE is used to study the reliability of reactor vessels. The code inputs are physical parameters and the outputs are time evolution curves of a few other physical quantities. As the CATHARE code is quite complex and CPU time-consuming, it has to be approximated by a regression model. This regression process involves a clustering step. In the present paper, the CATHARE output curves are clustered using a k-means scheme, with a projection onto a lower dimensional space. We study the properties of the empirically optimal cluster centres found by the clustering method based on projections, compared with the 'true' ones. The choice of the projection basis is discussed, and an algorithm is implemented to select the best projection basis among a library of orthonormal bases. The approach is illustrated on a simulated example and then applied to the industrial problem. (authors)

  12. Growth curves for Laron syndrome.

    Laron, Z; Lilos, P; Klinger, B

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls completed their growth between the age of 16-19 years to a final mean (SD) height of 119 (8.5) cm whereas the boys continued growing beyond the age of 20 years, achieving a final height of 124 (8.5) cm. At all ages the upper to lower body segment ratio was more than 2 SD above the normal mean. These growth curves constitute a model not only for primary, hereditary insulin-like growth factor-I (IGF-I) deficiency (Laron syndrome) but also for untreated secondary IGF-I deficiencies such as growth hormone gene deletion and idiopathic congenital isolated growth hormone deficiency. They should also be useful in the follow up of children with Laron syndrome treated with biosynthetic recombinant IGF-I. PMID:8333769

  13. Elementary particles in curved spaces

    Lazanu, I.

    2004-01-01

    The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)

  14. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  15. Using Active Learning for Speeding up Calibration in Simulation Models.

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  16. Dual Smarandache Curves and Smarandache Ruled Surfaces

    Tanju KAHRAMAN; Mehmet ÖNDER; H. Hüseyin UGURLU

    2013-01-01

    In this paper, by considering dual geodesic trihedron (dual Darboux frame) we define dual Smarandache curves lying fully on dual unit sphere S^2 and corresponding to ruled surfaces. We obtain the relationships between the elements of curvature of dual spherical curve (ruled surface) x(s) and its dual Smarandache curve (Smarandache ruled surface) x1(s) and we give an example for dual Smarandache curves of a dual spherical curve.

  17. Online Resource for Earth-Observing Satellite Sensor Calibration

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  18. Investigation on calibration parameter of mammography calibration facilities at MINT

    Asmaliza Hashim; Wan Hazlinda Ismail; Md Saion Salikin; Muhammad Jamal Md Isa; Azuhar Ripin; Norriza Mohd Isa

    2004-01-01

    A mammography calibration facility has been established in the Medical Physics Laboratory, Malaysian Institute for Nuclear Technology Research (MINT). The calibration facility is established at the national level mainly to provide calibration services for radiation measuring test instruments or test tools used in quality assurance programme in mammography, which is being implemented in Malaysia. One of the accepted parameters that determine the quality of a radiation beam is the homogeneity coefficient. It is determined from the values of the 1 st and 2 nd Half Value Layer (HVL). In this paper, the consistency of the mammography machine beam qualities that is available in MINT, is investigated and presented. For calibration purposes, five radiation qualities namely 23, 25, 28, 30 and 35 kV, selectable from the control panel of the X-ray machine is used. Important parameters that are set for this calibration facility are exposure time, tube current, focal spot to detector distance (FDD) and beam size at specific distance. The values of homogeneity coefficient of this laboratory for the past few years tip to now be presented in this paper. Backscatter radiations are also considered in this investigation. (Author)

  19. Calibration of radioprotection equipment gamma radiation at the Laboratory of Ionizing Radiation Metrology - DEN/UFPE

    Nazario, Macilene; Khoury, Helen; Hazin, Clovis

    2003-01-01

    This work presents aspects of the radioprotection equipment calibration service of the Laboratory for Metrology of Ionizing Radiations (LMRI) of the DEN/UFPE related to the calibration procedures, characteristics of the radiation beam and the evaluation of equipment calibrated in the period of 2001-2002. The LMRI-DEN/UFPE is one of the four laboratories in Brazil licensed by the Brazilian Nuclear Energy Commission for the execution of calibration services on area, surface contamination and personal monitors used by industries, hospitals, universities and research institutes using radioactive sources

  20. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data

    Wenting Luo

    2016-04-01

    Full Text Available Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU. The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with kinematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.

  1. Calibration issues for neutron diagnostics

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  2. Dating the time of birth: A radiocarbon calibration curve for human eye-lens crystallines

    Kjeldsen, Henrik; Heinemeier, Jan; Heegaard, Steffen

    2010-01-01

    Radiocarbon bomb-pulse dating has been used to measure the formation age of human eye-lens crystallines. Lens crystallines are special proteins in the eye-lens that consist of virtually inert tissue. The experimental data show that the radiocarbon ages to a large extent reflect the time of birth...

  3. Determination of Vanadium and Titanium in oil using aqueous calibration curves by X-ray fluorescence

    Ayala, R.E.; Letona, S.M.

    1989-10-01

    It is shown that the determination of minor elements in oil can be realized with high accuracy and precision using standard aqueous solutions. The relationship Ii/(Ia-Io)=KCi must be used, where Ii concentration Ci, Ia is the intensity of the scattered radiation of 5.894 keV from a Fe-55 radioisotope source and K is a constant. Io is calculated through the equation Ii/K(Ia-Io)=Ji/K(Ja-Io), where Ii and Ia are measured from the spectrum of an aqueous standard; Ji and Ja are measured from the spectrum of an oil sample, which has a concentration of the element i equal to that in the aqueous solution. The relationship Ii/Ia=KCi, used in previous work, does not include the term Io, therefore it must be used only for semi-quantitative analysis. An experiment on the determination of vanadium and titanium in standard oils (CONOSTAN S-12 and CONOSTAN S-21) confirmed this derivation. Reproducibility equal or below 5 and accuracy of 7 were achieved. (author)

  4. New methodology for calibration of hydrodynamic models in curved open-channel flow

    Hernán Javier Gómez-Zambrano

    2017-01-01

    Full Text Available Se propone una nueva metodología para la calibración de modelos hidrodinámicos a partir de la aplicación del diseño estadístico de experimentos. Un modelo hidrodinámico Euleriano-Euleriano homogéneo se usa para realizar los experimentos numéricos, el cual está incorporado en el software comercial CFX de Ansys Inc. En la etapa de calibración se utiliza un diseño factorial fraccionado, 27-2, seguido de un diseño Draper-Lin de segundo orden, para encontrar el punto óptimo de la calibración. Se introduce un nuevo método para generar los niveles de los puntos al centro necesarios para la realización de la prueba de falta de ajuste, logrando configurar una metodología validada para la calibración de modelos hidrodinámicos determinísticos con varios factores de entrada. Se logra un modelo de regresión de segundo orden para la predicción del punto óptimo de las simulaciones, con una aceptable precisión en la predicción de la variable de respuesta analizada.

  5. Effects of specimen size and crack depth ratio on calibration curves for modified compact tension specimens

    Seitl, Stanislav; Viszlay, V.; Cifuentes, H.; Canteli, A.

    2015-01-01

    Roč. 15, č. 2 (2015) ISSN 1804-4824 Institutional support: RVO:68081723 Keywords : Modified compact tension test * fracture * concrete * core drill * stress intensity factor Subject RIV: JL - Materials Fatigue, Friction Mechanics

  6. Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves

    Fedosov, Sergey; Brask, Jesper; Xu, Xuebing

    2011-01-01

    Biodiesel (BD) is a fuel produced by the (trans)esterification reaction between the components of vegetable oil (or animal fat) and an alcohol. The presence of several substrates complicates analytical separation of the mixture, yet understanding of the complex reaction kinetics requires acquisit......Biodiesel (BD) is a fuel produced by the (trans)esterification reaction between the components of vegetable oil (or animal fat) and an alcohol. The presence of several substrates complicates analytical separation of the mixture, yet understanding of the complex reaction kinetics requires...

  7. Towards a global network of gamma-ray detector calibration facilities

    Tijs, Marco; Koomans, Ronald; Limburg, Han

    2016-09-01

    Gamma-ray logging tools are applied worldwide. At various locations, calibration facilities are used to calibrate these gamma-ray logging systems. Several attempts have been made to cross-correlate well known calibration pits, but this cross-correlation does not include calibration facilities in Europe or private company calibration facilities. Our aim is to set-up a framework that gives the possibility to interlink all calibration facilities worldwide by using `tools of opportunity' - tools that have been calibrated in different calibration facilities, whether this usage was on a coordinated basis or by coincidence. To compare the measurement of different tools, it is important to understand the behaviour of the tools in the different calibration pits. Borehole properties, such as diameter, fluid, casing and probe diameter strongly influence the outcome of gamma-ray borehole logging. Logs need to be properly calibrated and compensated for these borehole properties in order to obtain in-situ grades or to do cross-hole correlation. Some tool providers provide tool-specific correction curves for this purpose. Others rely on reference measurements against sources of known radionuclide concentration and geometry. In this article, we present an attempt to set-up a framework for transferring `local' calibrations to be applied `globally'. This framework includes corrections for any geometry and detector size to give absolute concentrations of radionuclides from borehole measurements. This model is used to compare measurements in the calibration pits of Grand Junction, located in the USA; Adelaide (previously known as AMDEL), located in Adelaide Australia; and Stonehenge, located at Medusa Explorations BV in the Netherlands.

  8. FTIR Calibration Methods and Issues

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  9. Investigation of ground-based microwave radiometer calibration techniques at 530 hPa

    G. Maschwitz

    2013-10-01

    Full Text Available Ground-based microwave radiometers (MWR are becoming more and more common for remotely sensing the atmospheric temperature and humidity profile as well as path-integrated cloud liquid water content. The calibration accuracy of the state-of-the-art MWR HATPRO-G2 (Humidity And Temperature Profiler – Generation 2 was investigated during the second phase of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II in northern Chile (5320 m above mean sea level, 530 hPa conducted by the Atmospheric Radiation Measurement (ARM program conducted between August and October 2009. This study assesses the quality of the two frequently used liquid nitrogen and tipping curve calibrations by performing a detailed error propagation study, which exploits the unique atmospheric conditions of RHUBC-II. Both methods are known to have open issues concerning systematic offsets and calibration repeatability. For the tipping curve calibration an uncertainty of ±0.1 to ±0.2 K (K-band and ±0.6 to ±0.7 K (V-band is found. The uncertainty in the tipping curve calibration is mainly due to atmospheric inhomogeneities and the assumed air mass correction for the Earth curvature. For the liquid nitrogen calibration the estimated uncertainty of ±0.3 to ±1.6 K is dominated by the uncertainty of the reflectivity of the liquid nitrogen target. A direct comparison between the two calibration techniques shows that for six of the nine channels that can be calibrated with both methods, they agree within the assessed uncertainties. For the other three channels the unexplained discrepancy is below 0.5 K. Systematic offsets, which may cause the disagreement of both methods within their estimated uncertainties, are discussed.

  10. Automatic calibration of gamma spectrometers

    Tluchor, D.; Jiranek, V.

    1989-01-01

    The principle is described of energy calibration of the spectrometric path based on the measurement of the standard of one radionuclide or a set of them. The entire computer-aided process is divided into three main steps, viz.: the insertion of the calibration standard by the operator; the start of the calibration program; energy calibration by the computer. The program was selected such that the spectrum identification should not depend on adjustment of the digital or analog elements of the gamma spectrometric measuring path. The ECL program is described for automatic energy calibration as is its control, the organization of data file ECL.DAT and the necessary hardware support. The computer-multichannel analyzer communication was provided using an interface pair of Canberra 8673V and Canberra 8573 operating in the RS-422 standard. All subroutines for communication with the multichannel analyzer were written in MACRO 11 while the main program and the other subroutines were written in FORTRAN-77. (E.J.). 1 tab., 4 refs

  11. Calibration of the SNO+ experiment

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  12. Calibration strategies for the Cherenkov Telescope Array

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  13. A note on families of fragility curves

    Kaplan, S.; Bier, V.M.; Bley, D.C.

    1989-01-01

    In the quantitative assessment of seismic risk, uncertainty in the fragility of a structural component is usually expressed by putting forth a family of fragility curves, with probability serving as the parameter of the family. Commonly, a lognormal shape is used both for the individual curves and for the expression of uncertainty over the family. A so-called composite single curve can also be drawn and used for purposes of approximation. This composite curve is often regarded as equivalent to the mean curve of the family. The equality seems intuitively reasonable, but according to the authors has never been proven. The paper presented proves this equivalence hypothesis mathematically. Moreover, the authors show that this equivalence hypothesis between fragility curves is itself equivalent to an identity property of the standard normal probability curve. Thus, in the course of proving the fragility curve hypothesis, the authors have also proved a rather obscure, but interesting and perhaps previously unrecognized, property of the standard normal curve

  14. Evaluation of J-R curve testing of nuclear piping materials using the direct current potential drop technique

    Hackett, E.M.; Kirk, M.T.; Hays, R.A.

    1986-08-01

    A method is described for developing J-R curves for nuclear piping materials using the DC Potential Drop (DCPD) technique. Experimental calibration curves were developed for both three point bend and compact specimen geometries using ASTM A106 steel, a type 304 stainless steel and a high strength aluminum alloy. These curves were fit with a power law expression over the range of crack extension encountered during J-R curve tests (0.6 a/W to 0.8 a/W). The calibration curves were insensitive to both material and sidegrooving and depended solely on specimen geometry and lead attachment points. Crack initiation in J-R curve tests using DCPD was determined by a deviation from a linear region on a plot of COD vs. DCPD. The validity of this criterion for ASTM A106 steel was determined by a series of multispecimen tests that bracketed the initiation region. A statistical differential slope procedure for determination of the crack initiation point is presented and discussed. J-R curve tests were performed on ASTM A106 steel and type 304 stainless steel using both the elastic compliance and DCPD techniques to assess R-curve comparability. J-R curves determined using the two approaches were found to be in good agreement for ASTM A106 steel. The applicability of the DCPD technique to type 304 stainless steel and high rate loading of ferromagnetic materials is discussed. 15 refs., 33 figs

  15. Observable Zitterbewegung in curved spacetimes

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  16. Observable Zitterbewegung in curved spacetimes

    Kobakhidze, Archil, E-mail: archilk@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Manning, Adrian, E-mail: a.manning@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Tureanu, Anca, E-mail: anca.tureanu@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki (Finland)

    2016-06-10

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  17. Differential geometry curves, surfaces, manifolds

    Kohnel, Wolfgang

    2002-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

  18. LINS Curve in Romanian Economy

    Emilian Dobrescu

    2016-02-01

    Full Text Available The paper presents theoretical considerations and empirical evidence to test the validity of the Laffer in Narrower Sense (LINS curve as a parabola with a maximum. Attention is focused on the so-called legal-effective tax gap (letg. The econometric application is based on statistical data (1990-2013 for Romania as an emerging European economy. Three cointegrating regressions (fully modified least squares, canonical cointegrating regression and dynamic least squares and three algorithms, which are based on instrumental variables (two-stage least squares, generalized method of moments, and limited information maximum likelihood, are involved.

  19. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  20. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  1. Effect of Using Extreme Years in Hydrologic Model Calibration Performance

    Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.

    2017-12-01

    Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.

  2. Differential geometry and topology of curves

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  3. Calibration pipeline for VIR data

    Carraro, F.; Fonte, S.; Coradini, A.; Filacchione, G.; de Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Cartacci, M.; Noschese, R.; Tosi, F.; Capaccioni, F.

    2011-10-01

    During the second quarter of 2011 VIR-MS (VIS and IR Mapping Spectrometer) [1] aboard Dawn mission [2] has approached Vesta in order to start a long period of acquisitions that will end at the beginning of 2012. Data acquired by each instrument always require a calibration process in order to remove all the instrument effects that could affect the scientific evaluations and analysis. VIR-MS instrument team has realized a calibration pipeline which has the goal of producing calibrated (1b level) data starting from the raw (1a level) ones. The other goal of the tool has been the check of the goodness of acquired data by means of the evaluation of a series of minimum requisites of each data file, such as the percentage of the saturated pixels, the presence of spikes or the mean S/N ratio of each qube.

  4. Reliability-Based Code Calibration

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  5. Radiation protection dosimetry and calibrations

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  6. XRD alignment, calibration and performance

    Davy, L.

    2002-01-01

    Full text: The quality of any diffractometer system is very much dependent on the alignment, calibration and performance. The three subjects are very much related. Firstly, you must know how to carry out the full diffractometer alignment. XRD alignment is easy once you know how. The presentation will show you step by step to carry out the full alignment. Secondly, you need to know how to calibrate the diffractometer system. The presentation will show you how to calibrate the goniometer, detector etc. Thirdly, to prove the system is working within the manufacturer specification. The presentation will show you how to carry out the resolution, reproducibility and linearity test. Copyright (2002) Australian X-ray Analytical Association Inc

  7. THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Binkert, W. S.; Butler, K.; Everett, M.; Wood-Vasey, W. M.; Adams, J. J.; Anderson, R. E.; Beck, T. L.; Bentz, M. C.; Bershady, M. A.; Eigenbrot, A.; Gallagher, J. S.; Camarata, M. A.; Garnavich, P. M.; Glikman, E.; Harbeck, D.

    2012-01-01

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 ± 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  8. THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Binkert, W. S.; Butler, K.; Everett, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wood-Vasey, W. M. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Adams, J. J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, R. E.; Beck, T. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Bershady, M. A.; Eigenbrot, A.; Gallagher, J. S. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Camarata, M. A. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Garnavich, P. M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Glikman, E. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Harbeck, D., E-mail: matheson@noao.edu [WIYN Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); and others

    2012-07-20

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 {+-} 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  9. Flow characteristics of curved ducts

    Rudolf P.

    2007-10-01

    Full Text Available Curved channels are very often present in real hydraulic systems, e.g. curved diffusers of hydraulic turbines, S-shaped bulb turbines, fittings, etc. Curvature brings change of velocity profile, generation of vortices and production of hydraulic losses. Flow simulation using CFD techniques were performed to understand these phenomena. Cases ranging from single elbow to coupled elbows in shapes of U, S and spatial right angle position with circular cross-section were modeled for Re = 60000. Spatial development of the flow was studied and consequently it was deduced that minor losses are connected with the transformation of pressure energy into kinetic energy and vice versa. This transformation is a dissipative process and is reflected in the amount of the energy irreversibly lost. Least loss coefficient is connected with flow in U-shape elbows, biggest one with flow in Sshape elbows. Finally, the extent of the flow domain influenced by presence of curvature was examined. This isimportant for proper placement of mano- and flowmeters during experimental tests. Simulations were verified with experimental results presented in literature.

  10. Classical optics and curved spaces

    Bailyn, M.; Ragusa, S.

    1976-01-01

    In the eikonal approximation of classical optics, the unit polarization 3-vector of light satisfies an equation that depends only on the index, n, of refraction. It is known that if the original 3-space line element is d sigma 2 , then this polarization direction propagates parallely in the fictitious space n 2 d sigma 2 . Since the equation depends only on n, it is possible to invent a fictitious curved 4-space in which the light performs a null geodesic, and the polarization 3-vector behaves as the 'shadow' of a parallely propagated 4-vector. The inverse, namely, the reduction of Maxwell's equation, on a curve 'dielectric free) space, to a classical space with dielectric constant n=(-g 00 ) -1 / 2 is well known, but in the latter the dielectric constant epsilon and permeability μ must also equal (-g 00 ) -1 / 2 . The rotation of polarization as light bends around the sun by utilizing the reduction to the classical space, is calculated. This (non-) rotation may then be interpreted as parallel transport in the 3-space n 2 d sigma 2 [pt

  11. Some problems of calibration technique in charged particle activation analysis

    Krasnov, N.N.; Zatolokin, B.V.; Konstantinov, I.O.

    1977-01-01

    It is shown that three different approaches to calibration technique based on the use of average cross-section, equivalent target thickness and thick target yield are adequate. Using the concept of thick target yield, a convenient charged particle activation equation is obtained. The possibility of simultaneous determination of two impurities, from which the same isotope is formed, is pointed out. The use of the concept of thick target yield facilitates the derivation of a simple formula for an absolute and comparative methods of analysis. The methodical error does not exceed 10%. Calibration technique and determination of expected sensitivity based on the thick target yield concept is also very convenient because experimental determination of thick target yield values is a much simpler procedure than getting activation curve or excitation function. (T.G.)

  12. The Fossil Calibration Database-A New Resource for Divergence Dating.

    Ksepka, Daniel T; Parham, James F; Allman, James F; Benton, Michael J; Carrano, Matthew T; Cranston, Karen A; Donoghue, Philip C J; Head, Jason J; Hermsen, Elizabeth J; Irmis, Randall B; Joyce, Walter G; Kohli, Manpreet; Lamm, Kristin D; Leehr, Dan; Patané, Josés L; Polly, P David; Phillips, Matthew J; Smith, N Adam; Smith, Nathan D; Van Tuinen, Marcel; Ware, Jessica L; Warnock, Rachel C M

    2015-09-01

    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  14. Performance standard for dose Calibrator

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  15. Model Calibration in Option Pricing

    Andre Loerx

    2012-04-01

    Full Text Available We consider calibration problems for models of pricing derivatives which occur in mathematical finance. We discuss various approaches such as using stochastic differential equations or partial differential equations for the modeling process. We discuss the development in the past literature and give an outlook into modern approaches of modelling. Furthermore, we address important numerical issues in the valuation of options and likewise the calibration of these models. This leads to interesting problems in optimization, where, e.g., the use of adjoint equations or the choice of the parametrization for the model parameters play an important role.

  16. Instrument Calibration and Certification Procedure

    Davis, R. Wesley [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-31

    The Amptec 640SL-2 is a 4-wire Kelvin failsafe resistance meter, designed to reliably use very low-test currents for its resistance measurements. The 640SL-1 is a 2-wire version, designed to support customers using the Reynolds Industries type 311 connector. For both versions, a passive (analog) dual function DC Milliameter/Voltmeter allows the user to verify the actual 640SL output current level and the open circuit voltage on the test leads. This procedure includes tests of essential performance parameters. Any malfunction noticed during calibration, whether specifically tested for or not, shall be corrected before calibration continues or is completed.

  17. NIST display colorimeter calibration facility

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  18. Tank calibration; Arqueacao de tanques

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  19. Calibration of a neutron probe for determining the humidity in deep alluvial soils

    Ferrer, A.; Rivero, H.; Lopez, F.; Cantillo, O.

    1993-01-01

    Preliminary data for the calibration of a neutron probe in deep alluvial soils for determining the humidity are reported. Comparisons of Neutron flow behaviour with the depth of the land are established. A characteristic curve of amount of detected neutrons according to the humidity percentage (from 50 to 100 % of the field humidity) is obtained

  20. Extinction, seeing and sky transparency monitoring at the Observatorio Astrofísico de Javalambre for J-PAS and J-PLUS calibration and scheduling

    Vázquez Ramió, H.; Díaz-Martín, M. C.; Varela, J.; Ederoclite, A.; Maícas, N. Lamadrid, J. L.; Abril, J.; Iglesias-Marzoa, R.; Rodríguez, S.; Tilve, V.; Cenarro, A. J.; Antón Bravo, J. L.; Bello Ferrer, R.; Cristóbal-Hornillos, D.; Guillén Civera, L.; Hernández-Fuertes, J.; Jiménez Mejías, D.; Lasso-Cabrera, N. M.; López Alegre, G.; López Sainz, A.; Luis-Simoes, R. M.; Marín-Franch, A.; Moles, M.; Rueda-Teruel, F.; Rueda-Teruel, S.; Suárez López, O.; Yanes-Díaz, A.

    2015-05-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS; see Benítez et al. 2014) and the Javalambre-Photometric Local Universe Survey (J-PLUS) will be conducted at the brand-new Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. J-PLUS is planned to start by the first half of 2015 while J-PAS first light is expected to happen along 2015. Besides the two main telescopes (with 2.5 m and 80 cm apertures), several smaller-sized facilities are present at the OAJ devoted to site characterization and supporting measurements to be used to calibrate the J-PAS and J-PLUS photometry and to feed up the OAJ's Sequencer with the integrated seeing and the sky transparency. These instruments are: i) an extinction monitor, an 11 " telescope estimating the atmospheric extinction to finally obtain the OAJ extinction curve, which is the initial step to J-PAS overall photometric calibration procedure; ii) an 8 " telescope implementing the Differential Image Motion Monitor (DIMM) technique to obtain the integrated seeing; and iii) an All-Sky Transmission MONitor (ASTMON), a roughly all-sky instrument providing the sky transparency as well as sky brightness and the atmospheric extinction too.