WorldWideScience

Sample records for units system design

  1. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  2. The vacuum system for technological unit development and design

    Science.gov (United States)

    Zhukeshov, A. M.; Gabdullina, A. T.; Amrenova, A. U.; Giniyatova, Sh G.; Kaibar, A.; Sundetov, A.; Fermakhan, K.

    2015-11-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process.

  3. The vacuum system for technological unit development and design

    International Nuclear Information System (INIS)

    Zhukeshov, A M; Gabdullina, A T; Amrenova, A U; Giniyatova, Sh G; Kaibar, A; Sundetov, A; Fermakhan, K

    2015-01-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process. (paper)

  4. Design of double-fed control system for J-TEXT 100 MVA pulse generator unit

    International Nuclear Information System (INIS)

    Fang, Jianming; Yu, Kexun; Zhang, Ming; Zhuang, Ge; Xiao, Zhiguo; Jiang, Guozhong; Yang, Cheng; Xu, Jiayu

    2013-01-01

    Highlights: ► A double-fed control system is designed for J-TEXT 100 MVA pulse generator unit. ► The double-fed system can control the motor speed and reactive power individually. ► Experiment on a prototype motor shows a good control result. -- Abstract: The 100 MVA pulse generator unit is the main power supply of J-TEXT. This unit supplies energy for the toroidal coil, the ohmic heat coil and the divertor coil, with the maximum stored energy 185 MJ. For the difference of grid frequency between China and USA, the rotational speed and stored energy of this unit are less than the designed value. A double-fed control system for the unit is designed to raise them. This double-fed system has applied a control method using a rotational reference frame oriented by stator flux. With this control system, the speed and reactive power of motor could be controlled individually. Experiments on a prototype motor show a good control result

  5. Conceptual design of free-piston Stirling conversion system for solar power units

    Science.gov (United States)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  6. [Design of modulating intermediate frequency electrotherapy system based on microcontroller unit].

    Science.gov (United States)

    Yu, Xuefei; Liu, Xianfeng; Peng, Daming

    2010-12-01

    This article is devoted to the design of a system for modulating intermediate frequency electrotherapy waveform output. Prescriptions with different output waveform combinations were produced using microcontroller unit (MCU). The rich output waveforms effectively improve tolerance of human adaptability and achieve a therapeutic effect.

  7. Designing a logistic control system : dealing with changes in Fokker's sheet metal unit

    NARCIS (Netherlands)

    Gomes, Javier

    2008-01-01

    The following report presents the results of the Logistics Design Project carried out at the sheet metal unit of Stork-Fokker AESP, from October 2007 to March 2008. Stork Fokker AESP designs, develops and produces advanced structures and electrical systems for the aerospace and defense industry. The

  8. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  9. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  10. Design and accomplishment for the monitoring unit of the sup 6 sup 0 Co train freight inspection system

    CERN Document Server

    Cong Peng

    2002-01-01

    The sup 6 sup 0 Co railway cargo inspection system has super automaticity. And the monitoring unit is an important part of the automatic control system. The author introduces the idea of designing the monitoring unit in detail and accomplishes a new-style unit which is different from the traditional one. The monitoring unit which is highly integrated, easy to be mounted and debugged and convenient to be operated and maintained has play an excellent role in the work of the whole inspection system

  11. Design and study of water supply system for supercritical unit boiler in thermal power station

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    In order to design and optimize the boiler feed water system of supercritical unit, the establishment of a highly accurate controlled object model and its dynamic characteristics are prerequisites for developing a perfect thermal control system. In this paper, the method of mechanism modeling often leads to large systematic errors. Aiming at the information contained in the historical operation data of the boiler typical thermal system, the modern intelligent identification method to establish a high-precision quantitative model is used. This method avoids the difficulties caused by the disturbance experiment modeling for the actual system in the field, and provides a strong reference for the design and optimization of the thermal automation control system in the thermal power plant.

  12. Design and Performance Evaluation of a Combined DHX unit for SFR Design Application

    International Nuclear Information System (INIS)

    Eoh, Jaehyuk; Kim, Dehee; Park, Chang-Gyu; Jeong, Ji-Young

    2015-01-01

    Based on a higher operating temperature with excellent thermal conductivity and larger thermal inertia of liquid sodium coolant, the SFR system has employed passive safety systems to ensure reliable decay heat removal (DHR) and consequential plant safety enhancement. Although a passive type DHR system has many advantages over an active one, designing a well coordinated passive system is usually more difficult than designing an effective active system. This is mainly because a cooling flow control is made directly by the system designer in an active system, while it is determined automatically by an intricate balance between the flow head loss and natural circulation head generation obtained from the density difference through the whole thermal flow system. To this end, securing a sufficient natural-circulation flow becomes one of the primary challenges for designing a reliable and successful Dh system in passive. In a current pool-type Sf design, an internal cooling flow path from the hot sodium pool to the cold pool is somewhat ambiguous owing to the split flow ratio formed in parallel paths between the intermediate heat exchangers (IHXs) and decay heat exchangers (DHXs), which results in a large uncertainty in the DHX shell-side flowrate and corresponding heat transfer to the DHR sodium loops. To improve passive the DHR performance, we proposed a new design concept with a simplified flow path from the hot pool to the cold pool through a unified flow path serially passing the DHX and IHX units. The present study aims at introducing the innovative design concept of the combined IHX-DHX unit and evaluating its design features in view of the heat transfer capability. From a comparison of the CHX performance designed by a one-dimensional approach with that made by a CFD analysis, it was quantitatively obtained that the difference in heat transfer rate is about 5.7%. It was also found that unexpected bypass flow in the shell-side CHX unit gave rise to a discrepancy

  13. The design preparation for radiation monitoring system in the frame of completion NPP Mochovce Units 3 and 4

    International Nuclear Information System (INIS)

    Sevecka, S.; Slavik, O.; Kapisovsky, V.

    2009-01-01

    In 1985 a Basic Design of Radiation Monitoring System (RMS) has been elaborated for Mochovce NPP unit 3 and 4 construction. Due to construction interruption in the following years this design solution became obsolete. A new solution of RMS have been developed with conception following that of original Basic Design accommodating also safety measures implemented in RMS of NPP EMO units 1 and 2, and based on modem instrumentation and computer technique. Following the updating of Basic Design documentation the preparation of elaboration of RMS detailed design was carried on. In the frame of this preparation a review of possible suppliers of instrumentation satisfying the conception of radiation monitoring system and the extension of required deliveries has been made. Also criteria on RMS suppliers selection have been determined. The types of monitoring systems and equipment, as well as their quantities, have been specified based on updated Basic Design requirements and production profiles and possibilities of potential suppliers. The required parameters of measurements (including measurement geometry) have been evaluated, as well as requirements of legislation and requirements of proposed RMS architecture. (authors)

  14. Design of BLDCM emulator for transmission control units

    Science.gov (United States)

    Liu, Chang; He, Yongyi; Zhang, Bodong

    2018-04-01

    According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.

  15. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  16. Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit

    Science.gov (United States)

    Sartori, John

    2005-01-01

    The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.

  17. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  18. Modelling high level system design and unit commitment for a microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, A.D. [Centre for Energy Policy and Technology, Imperial College London, London SW7 2AZ (United Kingdom); Leach, M.A. [Centre for Environmental Strategy, Faculty of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-07-15

    This article develops a linear programming cost minimisation model for the high level system design and corresponding unit commitment of generators and storage within a microgrid; a set of energy resources working co-operatively to create a cost effective, reliable and environmentally friendly energy provision system. Previous work in this area is used as a basis for formulation of a new approach to this problem, with particular emphasis on why a microgrid is different to centralised generation or other grid-connected decentralised energy resources. Specifically, the model explicitly defines the amount of time that the microgrid would be expected to operate autonomously, and restricts flow of heat between microgrid participants to defined cases. The model developed is applied to a set of United Kingdom commercial load profiles, under best current estimates of energy prices and technology capital costs, to determine investment attractiveness of the microgrid. Sensitivity analysis of results to variations in energy prices is performed. The results broadly indicate that a microgrid can offer an economic proposition, although it is necessarily slightly more expensive than regular grid-connected decentralised generation. The analysis results have raised important questions regarding a fair method for settlement between microgrid participants, and game theory has been identified as a suitable tool to analyse aspects of this situation. (author)

  19. Modelling high level system design and unit commitment for a microgrid

    International Nuclear Information System (INIS)

    Hawkes, A.D.; Leach, M.A.

    2009-01-01

    This article develops a linear programming cost minimisation model for the high level system design and corresponding unit commitment of generators and storage within a microgrid; a set of energy resources working co-operatively to create a cost effective, reliable and environmentally friendly energy provision system. Previous work in this area is used as a basis for formulation of a new approach to this problem, with particular emphasis on why a microgrid is different to centralised generation or other grid-connected decentralised energy resources. Specifically, the model explicitly defines the amount of time that the microgrid would be expected to operate autonomously, and restricts flow of heat between microgrid participants to defined cases. The model developed is applied to a set of United Kingdom commercial load profiles, under best current estimates of energy prices and technology capital costs, to determine investment attractiveness of the microgrid. Sensitivity analysis of results to variations in energy prices is performed. The results broadly indicate that a microgrid can offer an economic proposition, although it is necessarily slightly more expensive than regular grid-connected decentralised generation. The analysis results have raised important questions regarding a fair method for settlement between microgrid participants, and game theory has been identified as a suitable tool to analyse aspects of this situation. (author)

  20. Design of a one-chip board microcontrol unit for active vibration control of a naval ship mounting system

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min; Nguyen, Vien-Quoc; Moon, Seok-Jun

    2012-01-01

    This work presents an experimental implementation of a user-tunable one-chip board microcontrol unit which is specifically designed for vibration control of the active mounting system for naval ships. The proposed mounting system consists of four active mounts supporting vibration-sensitive equipment. Each active mount constitutes a rubber element, an inertial mass and the piezostack actuator. It is designed for particular applications that require effective isolation performance against wide frequency ranges, such as naval ship equipment. After describing the configuration of the active mount, dynamic characteristics of the rubber element and the piezostack actuator are experimentally identified. Accordingly, the proposed mounting system is constructed and the governing equations of motion are formulated. In order to attenuate the unwanted vibrations transferred from the upper mass, a feedforward controller with fast Fourier algorithm is designed and experimentally realized using the one-chip microcontrol board which is specially made for this practical application. In order to evaluate the performance of the one-chip microcontrol unit, vibration control results of the proposed active mounting system are presented in the frequency domain. (technical note)

  1. Design of a Mathematical Unit in FPGA for the Implementation of the Control of a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Juan José Raygoza-Panduro

    2008-01-01

    Full Text Available This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex operations such as mathematical functions including sine and cosine, among others. The proposed unit is used to synthesize a sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level of mathematical calculations in small time periods. The core is designed to calculate trigonometric and arithmetic operations in such a way that each function is performed in a clock cycle. In this paper, the results of the mathematical core are shown in terms of implementation, utilization, and application to control a magnetic levitation system.

  2. Development of design window evaluation and display system. 1. System development and performance confirmation

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2003-07-01

    Purpose: The work was performed to develop a design window evaluation and display system for the purpose of obtaining the effects of various design parameters on the typical thermal hydraulic issues resulting from a use of various kind of working fluid etc. easily. Method: The function of the system were 'confirmation of design margin' of the present design, 'confirmation of the affected design zone' when a designer changed some design parameter, and search for an design improvement' for design optimization. The system was developed using existing soft wares on PC and the database relating analytical results of typical thermal hydraulic issues provided by separate work. Results: (1) System design: In order to develop a design window evaluation and display system, 'numerical analysis unit', 'statistical analysis unit', 'MMI unit', 'optimization unit' were designed based on the result of selected optimization procedure and display visualization. Further, total system design was performed combining these units. Typical thermal hydraulic issues to be considered are upper plenum thermal hydraulics, thermal stratification, free surface sloshing, flow-induced vibration of a heat exchanger and thermal striping in the T-junction piping systems. (2) Development of prototype system and a functional check: A prototype system of a design window evaluation and display system was developed and the functions were confirmed as was planned. (author)

  3. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  4. Factors impeding flexible inpatient unit design.

    Science.gov (United States)

    Pati, Debajyoti; Evans, Jennie; Harvey, Thomas E; Bazuin, Doug

    2012-01-01

    To identify and examine factors extraneous to the design decision-making process that could impede the optimization of flexibility on inpatient units. A 2006 empirical study to identify domains of design decisions that affect flexibility on inpatient units found some indication in the context of the acuity-adaptable operational model that factors extraneous to the design process could have negatively influenced the successful implementation of the model. This raised questions regarding extraneous factors that might influence the successful optimization of flexibility. An exploratory, qualitative method was adopted to examine the question. Stakeholders from five recently built acute care inpatient units participated in the study, which involved three types of data collection: (1) verbal protocol data from a gaming session; (2) in-depth semi-structured interviews; and (3) shadowing frontline personnel. Data collection was conducted between June 2009 and November 2010. The study revealed at least nine factors extraneous to the design process that have the potential to hinder the optimization of flexibility in four domains: (1) systemic; (2) cultural; (3) human; and (4) financial. Flexibility is critical to hospital operations in the new healthcare climate, where cost reduction constitutes a vital target. From this perspective, flexibility and efficiency strategies can be influenced by (1) return on investment, (2) communication, (3) culture change, and (4) problem definition. Extraneous factors identified in this study could also affect flexibility in other care settings; therefore, these findings may be viewed from the overall context of hospital design.

  5. Design and performance of differential pumping system of coating unit

    International Nuclear Information System (INIS)

    Karmakar, P; Maiti, N; Bapat, A V

    2008-01-01

    A box type coating unit has been developed in view of dual purpose of optical and reactive coating. The system is divided in two parts namely, substrate chamber (800mm x 800 mm x 100 mm) and gun chamber (800mm x 800 mm x 100 mm). Coating material is evaporated in the substrate chamber by traverse (270 deg.) electron beams. Reactive gas is injected in the substrate chamber by up-stream pressure controller to reach set pressures in the range of 1x10 -3 mbar to 1x10 -4 mbar for gas flow rate in the range of 0-30 sccm. Traverse EB guns (10 kV, 15 kW, 2 No) are mounted inside gun chamber. The gun chamber vacuum should be better than 1x10 -5 mbar for the operation of EB guns. Both these chambers are connected by the apertures provided on the intermediate bifurcation plate for the passage of electron beams. Through the apertures the reactive gas leaks from the substrate chamber to the gun chamber due to differential pressure. The differential pumping system consists of individual pumping modules for the substrate chamber and the gun chamber. The paper focuses upon the design of differential pumping system in view of determination of steady state differential pressures for different flow rates of reactive gas. It has been noticed that on introduction of reactive gas in the substrate chamber, the pressures in the substrate chamber and the gun chamber oscillates before converging to steady state values. Theoretically calculated values have been compared with the experimental values as design validation

  6. Design, Implementation & Assessment of Local Exhaust Ventilation System and dust collectors for crushing unit

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani shahna

    2015-09-01

    Full Text Available Background & objective: Industrial ventilation systems and dust collectors are effective solutions to reduce particulate emissions in the workplace and environmental in mineral processes. In this study, Local Exhaust Ventilation System and dust collectors for control of emitted silica, coke, silicon carbide dusts from crushing unit was designed and evaluated. Methods: : Local Exhaust ventilation system based on standards and guides was designed and implemented after field study of the processes and sources of air pollutants. A set comprised of the four parallel cyclones (Stairmand model and a new design of the scrubber had been used for dust control. After set-up of systems, its effectiveness in reducing the exposure of workers in the workshops and dust collecting were assessed. Results: Test results were significant differences between the concentration of particles in both on and off the ventilation system revealed (P <0.05. The system has been implemented as means of personal exposure to pollutants and environmental emissions were reduced 93.01% and 64.64%, respectively. Also, alone and integrated collection efficiency of cyclone and scrubber, were 94.2%, 59.05% and 97.4%, respectively. The results show good agreement with the values of the parameters ventilation system was designed. Conclusion: Implementation of integrated dust collectors is a good option in industries that have the financial and technical constraints to improve change processes and devices. This method with attainment to health and environmental standards not only can be resolve of the pollution problems, but also will be economically justified of such projects with reduction of depreciation expense and dust recycling.

  7. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  8. Low cost balancing unit design

    Science.gov (United States)

    Golembiovsky, Matej; Dedek, Jan; Slanina, Zdenek

    2017-06-01

    This article deals with the design of a low-cost balancing system which consist of battery balancing units, accumulator pack units and coordinator unit with interface for higher level of battery management system. This solution allows decentralized mode of operation and the aim of this work is implementation of controlling and diagnostic mechanism into an electric scooter project realized at Technical university of Ostrava. In todays world which now fully enjoys the prime of electromobility, off-grid battery systems and other, it is important to seek the optimal balance between functionality and the economy side of BMS that being electronics which deals with secondary cells of batery packs. There were numerous sophisticated, but not too practical BMS models in the past, such as centralized system or standalone balance modules of individual cells. This article aims at development of standalone balance modules which are able to communicate with the coordinator, adjust their parameters and ensure their cells safety in case of a communication failure. With the current worldwide cutting cost trend in mind, the emphasis was put on the lowest price possible for individual component. The article is divided into two major categories, the first one being desing of power electronics with emphasis on quality, safety (cooling) and also cost. The second part describes development of a communication interface with reliability and cost in mind. The article contains numerous graphs from practical measurements. The outcome of the work and its possible future is defined in the conclusion.

  9. Computer-aided design system for a complex of problems on calculation and analysis of engineering and economical indexes of NPP power units

    International Nuclear Information System (INIS)

    Stepanov, V.I.; Koryagin, A.V.; Ruzankov, V.N.

    1988-01-01

    Computer-aided design system for a complex of problems concerning calculation and analysis of engineering and economical indices of NPP power units is described. In the system there are means for automated preparation and debugging of data base software complex, which realizes th plotted algorithm in the power unit control system. Besides, in the system there are devices for automated preparation and registration of technical documentation

  10. Parametric design studies of toroidal magnetic energy storage units

    International Nuclear Information System (INIS)

    Herring, J.S.

    1990-01-01

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round-trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code has been written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have 'D' shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. This paper presents designs for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 t to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils have been divided into modules suitable for normal truck or rail transport. 8 refs., 5 tabs

  11. Parametric design studies of toroidal magnetic energy storage units

    Science.gov (United States)

    Herring, J. Stephen

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.

  12. Quick setup of test unit for accelerator control system

    International Nuclear Information System (INIS)

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-01-01

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  13. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  14. Spent fuel pool cooling system upgrade for Kori Unit 1

    International Nuclear Information System (INIS)

    Sun Park, Jong; In Shin, Kyung

    2014-01-01

    Following Fukushima nuclear power plant accident, the needs for reliable performance of its own safety functions of Spent Fuel Pool Cooling System (SFPCS) has risen significantly to maintain the plant in a safe condition. Regulatory Guide 1.13 of United States Nuclear Regulatory Commission (USNRC) requires the SFPCS shall be designed safety related as Quality Group C and Seismic Category 1. However, the existing Spent Fuel Pool (SFP) of KORI Unit 1 was not designed as a safety system. In order to comply with the above licensing requirement for the extended operational life of KORI Unit 1, it has been decided to add a safety related Seismic Category 1 Makeup System to KORI Unit 1 and the existing SFPCS to be modified in dedicated channels with safety related equipment to enhance system's reliability as a means of providing diversity. This paper focuses on describing the relevant design requirements, applications, and supplemental facilities to the SFPCS of KORI Unit 1. (authors)

  15. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  16. Distributed model based control of multi unit evaporation systems

    International Nuclear Information System (INIS)

    Yudi Samyudia

    2006-01-01

    In this paper, we present a new approach to the analysis and design of distributed control systems for multi-unit plants. The approach is established after treating the effect of recycled dynamics as a gap metric uncertainty from which a distributed controller can be designed sequentially for each unit to tackle the uncertainty. We then use a single effect multi-unit evaporation system to illustrate how the proposed method is used to analyze different control strategies and to systematically achieve a better closed-loop performance using a distributed model-based controller

  17. Substantiation of Structure of Adaptive Control Systems for Motor Units

    Science.gov (United States)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  18. NASA work unit system file maintenance manual

    Science.gov (United States)

    1972-01-01

    The NASA Work Unit System is a management information system for research tasks (i.e., work units) performed under NASA grants and contracts. It supplies profiles on research efforts and statistics on fund distribution. The file maintenance operator can add, delete and change records at a remote terminal or can submit punched cards to the computer room for batch update. The system is designed for file maintenance by a person with little or no knowledge of data processing techniques.

  19. NPP Mochovce units 1 and 2 diagnostic systems

    International Nuclear Information System (INIS)

    Heidenreich, S.

    1997-01-01

    In this paper the diagnostic systems (leak detection monitoring, vibration monitoring, lose parts monitoring, fatigue monitoring) of NPP Mochovce units 1 and 2 are presented. All of the designed diagnostic systems are personal computer based systems

  20. Improved design features of KSNP+ BOP Fluid System

    International Nuclear Information System (INIS)

    Park, Heung Gyu; Yoon, Kyung Sup

    2002-01-01

    KOPEC (Korea Power Engineering Co.) in conjunction with the client KHNP (Korea Hydro and Nuclear Power Co.) has been developing the KSNP + (Improved Korean Standard Nuclear Power Plants) design concept since 1998. The main objective of the KSNP + is to enhance safety and economy of KSNP. The design concepts of the KSNP + will be implemented in Shin-Kori Units 1 and 2 Shin-Wolsung Units 1 and 2. This paper provides on an introduction to the improved design features of the KSNP + BOP fluid system consisting of 45 design improvement items. The design improvement concepts of the BOP fluid system have been developed as follows: optimization of system configuration and capacity, simplification of system, and adoption of advanced design features. Improved design features of the BOP fluid system allow additional benefits due to making a contribution to the optimization of plant arrangement and the reduction of operating costs during the plant life time. In conclusion, design improvement to the BOP fluid system have contributed to the KSNP + design concept being more reliable, safe and economically competitive

  1. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Directory of Open Access Journals (Sweden)

    Li Zhigang

    2016-01-01

    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  2. ARGOS laser system mechanical design

    Science.gov (United States)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  3. Epoxy resin systems for FGD units

    International Nuclear Information System (INIS)

    Brytus, V.; Puglisi, J.S.

    1984-01-01

    This paper discusses ongoing research work which is directed towards epoxy resins and curing agents which are designed to withstand aggressive environments. This work includes not only a chemical description of the materials involved, but the application testing necessary to verify the usefulness of these systems. It demonstrates that new high performance epoxy systems are superior to those which traditionally come to mind when one thinks epoxy. Finally, it discusses the results of testing designed specifically to screen candidates for use in FGD units

  4. SIMS prototype system 4: Design data brochure

    Science.gov (United States)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  5. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  6. Design of an intelligent flight instrumentation unit using embedded RTOS

    Science.gov (United States)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  7. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation.

    Science.gov (United States)

    McGrath, Susan P; Taenzer, Andreas H; Karon, Nancy; Blike, George

    2016-07-01

    The growing number of monitoring devices, combined with suboptimal patient monitoring and alarm management strategies, has increased "alarm fatigue," which have led to serious consequences. Most reported alarm man- agement approaches have focused on the critical care setting. Since 2007 Dartmouth-Hitchcock (Lebanon, New Hamp- shire) has developed a generalizable and effective design, implementation, and performance evaluation approach to alarm systems for continuous monitoring in general care settings (that is, patient surveillance monitoring). In late 2007, a patient surveillance monitoring system was piloted on the basis of a structured design and implementation approach in a 36-bed orthopedics unit. Beginning in early 2009, it was expanded to cover more than 200 inpatient beds in all medicine and surgical units, except for psychiatry and labor and delivery. Improvements in clinical outcomes (reduction of unplanned transfers by 50% and reduction of rescue events by more than 60% in 2008) and approximately two alarms per patient per 12-hour nursing shift in the original pilot unit have been sustained across most D-H general care units in spite of increasing patient acuity and unit occupancy. Sample analysis of pager notifications indicates that more than 85% of all alarm conditions are resolved within 30 seconds and that more than 99% are resolved before escalation is triggered. The D-H surveillance monitoring system employs several important, generalizable features to manage alarms in a general care setting: alarm delays, static thresholds set appropriately for the prevalence of events in this setting, directed alarm annunciation, and policy-driven customization of thresholds to allow clinicians to respond to needs of individual patients. The systematic approach to design, implementation, and performance management has been key to the success of the system.

  8. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  9. MOEA based design of decentralized controllers for LFC of interconnected power systems with nonlinearities, AC-DC parallel tie-lines and SMES units

    International Nuclear Information System (INIS)

    Ganapathy, S.; Velusami, S.

    2010-01-01

    A new design of Multi-Objective Evolutionary Algorithm based decentralized controllers for load-frequency control of interconnected power systems with Governor Dead Band and Generation Rate Constraint nonlinearities, AC-DC parallel tie-lines and Superconducting Magnetic Energy Storage (SMES) units, is proposed in this paper. The HVDC link is used as system interconnection in parallel with AC tie-line to effectively damp the frequency oscillations of AC system while the SMES unit provides bulk energy storage and release, thereby achieving combined benefits. The proposed controller satisfies two main objectives, namely, minimum Integral Squared Error of the system output and maximum closed-loop stability of the system. Simulation studies are conducted on a two area interconnected power system with nonlinearities, AC-DC tie-lines and SMES units. Results indicate that the proposed controller improves the transient responses and guarantees the closed-loop stability of the overall system even in the presence of system nonlinearities and with parameter changes.

  10. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  11. Design considerations for ITER magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The authors present here preliminary ITER magnet systems design parameters taken from trade studies, design, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit

  12. Psychogeriatric inpatient unit design: a literature review.

    Science.gov (United States)

    Dobrohotoff, John T; Llewellyn-Jones, Robert H

    2011-03-01

    In many parts of the world the provision of psychogeriatric inpatient units (PGUs) remains limited. More units will be required over coming decades given rapid population aging. Medline (1950-2010), psycINFO (1806-2009), EMBASE (1980-2009) and CINAHL (1982-2009) were searched for papers about PGU design. Selected non-peer reviewed literature such as government reports and unpublished academic dissertations were also reviewed. Data were also obtained from the literature related to general adult psychiatry inpatient units where there was limited information from studies of units designed for older people. Over 200 papers were reviewed and 130 were included. There are few good quality studies to guide the design of acute PGUs and much of the existing literature is based on opinion and anecdote or, at best, based on observational studies. Randomized controlled studies comparing different designs and assessing outcomes are virtually non-existent. Several studies have identified violence and trauma resulting from hospitalization as significant problems with current acute PGU care. Despite its limitations the available literature provides useful guidance on how PGU design can optimize patient and staff safety and improve clinical outcomes. There are significant problems with current acute PGUs, and patient mix on existing units is an important issue. Future research should examine patient and staff perceptions of different PGU ward environments, the relationship between ward design and clinical outcomes, the effects of segregating patients with challenging behaviors in dementia and the benefits or otherwise of gender segregation.

  13. An advanced NSSS integrity monitoring system for Shin-Kori nuclear units 3 and 4

    International Nuclear Information System (INIS)

    Oh, Y. G.; Kim, H. B.; Galin, S. R.; Kim, S. H.; Lee, S. J.

    2009-01-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling. (authors)

  14. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    Science.gov (United States)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  15. Design of Dolos Armour Units

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1993-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse are widely used. Many of the recent failures are such rubble mound breakwaters revealed that there is an imbalance between strength (structural integrity) of the units and the hydraulic stability (resistance to displacements......) of the armour layers. The paper deals only with dolos armour and presents the first design diagrammes and formulae where stresses from static, quasistatic and impact loads are implemented as well as the hydraulic stability. The dolos is treated as a multi shape unit where the thickness can be adjusted...

  16. Technique of design on CCTV system

    International Nuclear Information System (INIS)

    Won, Song Heui

    1996-04-01

    This book deals with design of CCTV system, which consists of nine chapters and goes as follows base of CCTV system, basic direction of system design on system element, choice of purpose and method of system choice for condition of equipment and check lists, some examples like TV system in shops, surveillance system in markets and watching system of vehicle, road and traffic, imaging unit such as CCTV camera, lens, subject, camera housing, camera support device, transmission with transmission device, transmission by wireless or wire, monitor, special monitor and VTR, system about video distribution amplifier and synchronizing signal generator, control of camera and construction and maintenance of CCTV.

  17. Using Systems Theory to Examine Patient and Nurse Structures, Processes, and Outcomes in Centralized and Decentralized Units.

    Science.gov (United States)

    Real, Kevin; Fay, Lindsey; Isaacs, Kathy; Carll-White, Allison; Schadler, Aric

    2018-01-01

    This study utilizes systems theory to understand how changes to physical design structures impact communication processes and patient and staff design-related outcomes. Many scholars and researchers have noted the importance of communication and teamwork for patient care quality. Few studies have examined changes to nursing station design within a systems theory framework. This study employed a multimethod, before-and-after, quasi-experimental research design. Nurses completed surveys in centralized units and later in decentralized units ( N = 26 pre , N = 51 post ). Patients completed surveys ( N = 62 pre ) in centralized units and later in decentralized units ( N = 49 post ). Surveys included quantitative measures and qualitative open-ended responses. Patients preferred the decentralized units because of larger single-occupancy rooms, greater privacy/confidentiality, and overall satisfaction with design. Nurses had a more complex response. Nurses approved the patient rooms, unit environment, and noise levels in decentralized units. However, they reported reduced access to support spaces, lower levels of team/mentoring communication, and less satisfaction with design than in centralized units. Qualitative findings supported these results. Nurses were more positive about centralized units and patients were more positive toward decentralized units. The results of this study suggest a need to understand how system components operate in concert. A major contribution of this study is the inclusion of patient satisfaction with design, an important yet overlooked fact in patient satisfaction. Healthcare design researchers and practitioners may consider how changing system interdependencies can lead to unexpected changes to communication processes and system outcomes in complex systems.

  18. Test procedures, AN/AIC-27 system and component units. [for space shuttle

    Science.gov (United States)

    Reiff, F. H.

    1975-01-01

    The AN/AIC-27 (v) intercommunication system is a 30-channel audio distribution which consists of: air crew station units, maintenance station units, and a central control unit. A test procedure for each of the above units and also a test procedure for the system are presented. The intent of the test is to provide data for use in shuttle audio subsystem design.

  19. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  20. Analysis of the implementation of ergonomic design at the new units of an oil refinery.

    Science.gov (United States)

    Passero, Carolina Reich Marcon; Ogasawara, Erika Lye; Baú, Lucy Mara Silva; Buso, Sandro Artur; Bianchi, Marcos Cesar

    2012-01-01

    Ergonomic design is the adaptation of working conditions to human limitations and skills in the physical design phase of a new installation, a new working system, or new products or tools. Based on this concept, the purpose of this work was to analyze the implementation of ergonomic design at the new industrial units of an oil refinery, using the method of Ergonomic Workplace Assessment. This study was conducted by a multidisciplinary team composed of operation, maintenance and industrial safety technicians, ergonomists, designers and engineers. The analysis involved 6 production units, 1 industrial wastewater treatment unit, and 3 utilities units, all in the design detailing phase, for which 455 ergonomic requirements were identified. An analysis and characterization of the requirements identified for 5 of the production units, involving a total of 246 items, indicated that 62% were related to difficult access and blockage operations, while 15% were related to difficulties in the circulation of employees inside the units. Based on these data, it was found that the ergonomic requirements identified in the design detailing phase of an industrial unit involve physical ergonomics, and that it is very difficult to identify requirements related to organizational or cognitive ergonomics.

  1. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    Kilgore, J.J.; Tripp, H.A.; Hunt, C.L. Jr.

    1991-01-01

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  2. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  3. Design of voice coil motor dynamic focusing unit for a laser scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho, E-mail: princaps@ajou.ac.kr [Department of Mechanical Engineering, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-749 (Korea, Republic of)

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  4. Design of integrated systems for control and detection of actuator/sensor faults

    DEFF Research Database (Denmark)

    Stoustrup, J.; Grimble, M.J.; Niemann, Hans Henrik

    1997-01-01

    Consider control systems operating under potentially faulty conditions. Discusses the problems of designing a single unit which not only handle the required control but also identified faults occuring in actuators and sensors. In common practice, unites for control and for diagnosis are designed......-integrated design of control and diagnosis unit. Shows how a combined module for control and diagnosis can be designed which is able to follow references and reject disturbances robustly, control the system so that the undertected faults do not have disastrous effect, reduce the number of false alarams and indetify...

  5. Design parameters for toroidal and bobbin magnetics. [conversion from English to metric units

    Science.gov (United States)

    Mclyman, W. T.

    1974-01-01

    The adoption by NASA of the metric system for dimensioning to replace long-used English units imposes a requirement on the U.S. transformer designer to convert from the familiar units to the less familiar metric equivalents. Material is presented to assist in that transition in the field of transformer design and fabrication. The conversion data makes it possible for the designer to obtain a fast and close approximation of significant parameters such as size, weight, and temperature rise. Nomographs are included to provide a close approximation for breadboarding purposes. For greater convenience, derivations of some of the parameters are also presented.

  6. Unit cell-based computer-aided manufacturing system for tissue engineering

    International Nuclear Information System (INIS)

    Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo

    2012-01-01

    Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering. (paper)

  7. Unit cell-based computer-aided manufacturing system for tissue engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo

    2012-03-01

    Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.

  8. A haptic unit designed for magnetic-resonance-guided biopsy.

    Science.gov (United States)

    Tse, Z T H; Elhawary, H; Rea, M; Young, I; Davis, B L; Lamperth, M

    2009-02-01

    The magnetic fields present in the magnetic resonance (MR) environment impose severe constraints on any mechatronic device present in its midst, requiring alternative actuators, sensors, and materials to those conventionally used in traditional system engineering. In addition the spatial constraints of closed-bore scanners require a physical separation between the radiologist and the imaged region of the patient. This configuration produces a loss of the sense of touch from the target anatomy for the clinician, which often provides useful information. To recover the force feedback from the tissue, an MR-compatible haptic unit, designed to be integrated with a five-degrees-of-freedom mechatronic system for MR-guided prostate biopsy, has been developed which incorporates position control and force feedback to the operator. The haptic unit is designed to be located inside the scanner isocentre with the master console in the control room. MR compatibility of the device has been demonstrated, showing a negligible degradation of the signal-to-noise ratio and virtually no geometric distortion. By combining information from the position encoder and force sensor, tissue stiffness measurement along the needle trajectory is demonstrated in a lamb liver to aid diagnosis of suspected cancerous tissue.

  9. Optimal design of a general warm standby system

    International Nuclear Information System (INIS)

    Yun, Won Young; Cha, Ji Hwan

    2010-01-01

    Redundancy or standby is a technique that has been widely applied to improving system reliability and availability in the stage of system design. In this paper, we consider a standby system with two units in which the first unit (unit 1) starts its operation under active state and the other unit (unit 2) is under cold standby state at the starting point. After a specified time s (switching time), the state of unit 2 is changed to warm standby state and, as soon as the operating unit 1 fails, the state of unit 2 is changed to active state. If unit 1 fails before time s, the system fails. Units can fail at both active and warm standby states. A general method for modeling the standby system is adopted and system performance measures (system reliability and mean life) based on the proposed model are derived. Three models - a perfect switching model and two imperfect switching models - are considered in this paper. Two imperfect switching models include an imperfect switching probability and a preliminary warm-up period which is required for the change from cold standby state to warm standby state. We consider the problem of determining the optimal switching time which maximizes the expected system life and related allocation problem is also discussed. Some numerical examples are studied.

  10. Remote Maintenance Design Guide for Compact Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    2000-07-13

    Oak Ridge National Laboratory (ORNL) Robotics and Process Systems (RPSD) personnel have extensive experience working with remotely operated and maintained systems. These systems require expert knowledge in teleoperation, human factors, telerobotics, and other robotic devices so that remote equipment may be manipulated, operated, serviced, surveyed, and moved about in a hazardous environment. The RPSD staff has a wealth of experience in this area, including knowledge in the broad topics of human factors, modular electronics, modular mechanical systems, hardware design, and specialized tooling. Examples of projects that illustrate and highlight RPSD's unique experience in remote systems design and application include the following: (1) design of a remote shear and remote dissolver systems in support of U.S. Department of Energy (DOE) fuel recycling research and nuclear power missions; (2) building remotely operated mobile systems for metrology and characterizing hazardous facilities in support of remote operations within those facilities; (3) construction of modular robotic arms, including the Laboratory Telerobotic Manipulator, which was designed for the National Aeronautics and Space Administration (NASA) and the Advanced ServoManipulator, which was designed for the DOE; (4) design of remotely operated laboratories, including chemical analysis and biochemical processing laboratories; (5) construction of remote systems for environmental clean up and characterization, including underwater, buried waste, underground storage tank (UST) and decontamination and dismantlement (D&D) applications. Remote maintenance has played a significant role in fuel reprocessing because of combined chemical and radiological contamination. Furthermore, remote maintenance is expected to play a strong role in future waste remediation. The compact processing units (CPUs) being designed for use in underground waste storage tank remediation are examples of improvements in systems

  11. The EU-project United4Health: User-centred design of an information system for a Norwegian telemedicine service.

    Science.gov (United States)

    Smaradottir, Berglind; Gerdes, Martin; Martinez, Santiago; Fensli, Rune

    2016-10-01

    Organizational changes of health care services in Norway brought to light a need for new clinical pathways. This study presents the design and evaluation of an information system for a new telemedicine service for chronic obstructive pulmonary disease patients after hospital discharge. A user-centred design approach was employed composed of a workshop with end-users, two user tests and a field trial. For data collection, qualitative methods such as observations, semi-structured interviews and a questionnaire were used. User workshop's outcome informed the implementation of the system initial prototype, evaluated by end-users in a usability laboratory. Several usability and functionality issues were identified and solved, such as the interface between the initial colour scheme and the triage colours. Iterative refinements were made and a second user evaluation showed that the main issues were solved. The responses to a questionnaire presented a high score of user satisfaction. In the final phase, a field trial showed satisfactory use of the system. This study showed how the target end-users groups were actively involved in identifying the needs, suggestions and preferences. These aspects were addressed in the development of an information system through a user-centred design process. The process efficiently enabled users to give feedback about design and functionality. Continuous refinement of the system was the key to full development and suitability for the telemedicine service. This research was a result of the international cooperation between partners within the project United4Health, a part of the Seventh Framework Programme for Research of the European Union. © The Author(s) 2015.

  12. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  13. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    Science.gov (United States)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  14. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Science.gov (United States)

    2012-06-29

    ... Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled Nuclear Power... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... draft regulatory guide (DG), DG-1280, ``Design, Inspection, and Testing Criteria for Air Filtration and...

  15. Improved control system power unit for large parachutes

    Science.gov (United States)

    Chandler, J. A.; Grubbs, T. M.

    1968-01-01

    Improved control system power unit drives the control surfaces of very large controllable parachutes. The design features subassemblies for determining control surface position and cable loading, and protection of the load sensor against the possibility of damage during manipulation.

  16. On the Design of a Wireless Multi-antenna Monitoring System

    NARCIS (Netherlands)

    Hofstra, K.L.; Cronie, H.S.

    2004-01-01

    In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several

  17. The design and evaluation of an antimicrobial resistance surveillance system for neonatal intensive care units in Iran.

    Science.gov (United States)

    Rezaei-Hachesu, Peyman; Samad-Soltani, Taha; Yaghoubi, Sajad; GhaziSaeedi, Marjan; Mirnia, Kayvan; Masoumi-Asl, Hossein; Safdari, Reza

    2018-07-01

    Neonatal intensive care units (NICUs) have complex patients in terms of their diagnoses and required treatments. Antimicrobial treatment is a common therapy for patients in NICUs. To solve problems pertaining to empirical therapy, antimicrobial stewardship programs have recently been introduced. Despite the success of these programs in terms of data collection, there is still inefficiency in terms of analyzing and reporting the data. Thus, to successfully implement these stewardship programs, the design of antimicrobial resistance (AMR) surveillance systems is recommended as a first step. As a result, this study aimed to design an AMR surveillance system for use in the NICUs in northwestern Iranian hospitals to cover these information gaps. The recommended system is compatible with the World Health Organization (WHO) guidelines. The business intelligence (BI) requirements were extracted in an interview with a product owner (PO) using a valid and reliable checklist. Following this, an AMR surveillance system was designed and evaluated in relation to user experiences via a user experience questionnaire (UEQ). Finally, an association analysis was performed on the database, and the results were reported by identifying the important multidrug resistances in the database. A customized software development methodology was proposed. The three major modules of the AMR surveillance are the data registry, dashboard, and decision support modules. The data registry module was implemented based on a three-tier architecture, and the Clinical Decision Support System (CDSS) and dashboard modules were designed based on the BI requirements of the Scrum product owner (PO). The mean values of UEQ measures were in a good range. This measures showed the suitable usability of the AMR surveillance system. Applying efficient software development methodologies allows for the systems' compatibility with users' opinions and requirements. In addition, the construction of interdisciplinary

  18. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  19. Special requirements for the fluid mechanical design of hard coal-fired SCR retrofit units

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The system design of high-dust SCR units for retrofits is a challenge that is to be mastered in order to meet the fluid mechanical requirements. Retrofitting power plants with NOx control technologies is a cost-intensive adventure that many utilities are undertaking. Except for a few recent new boiler installations, SCR installations must be considered as retrofit projects. In most cases the limitation of space on site entails unfavorable conditions that do not allow appropriate upstream conditions for SCR catalysts. To comply with the requirements of high performance DeNOx systems and to lower the investment costs for retrofit units, several technical solutions and concepts for the reactor layout, for NOx and dust distribution, for flow stabilization in diffusers, and advanced ammonia injection systems are explained in this paper. Balcke-Duerr offers customer-tailored solutions for flow optimization, which are evaluated by model studies. Physical flow and dust model tests in an appropriate scale provide flexibility to test various engineering concepts. The experience of Balcke-Duerr is based on continuous research and development activities over the last 25 years and more than 350 executed projects for gas flow optimization applications. The success of these installations is a direct result of the key decisions based on the improved fluid mechanical design and proper system integration. This paper also identifies the sensible design particularities and solutions that have two be considered in the fluid mechanical design of high-dust SCR retrofit units. This article demonstrates that the layout of SCR units must be carefully reviewed in order to meet the performance requirements and to avoid problems, i.e. wear, catalyst plugging and ammonia slip. 9 refs., 18 figs.

  20. The design of RFID convey or belt gate systems using an antenna control unit.

    Science.gov (United States)

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  1. The Design of RFID Conveyor Belt Gate Systems Using an Antenna Control Unit

    Directory of Open Access Journals (Sweden)

    Ki Hwan Eom

    2011-09-01

    Full Text Available This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPCglobal for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  2. Design aspects of 50 m3/d prototype mobile desalination unit

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Srivastava, V.K.; Tewari, P.K.

    2004-01-01

    Supply of fresh water on sustainable basis to all inhabitants is the national responsibility. As a part of national programme to improve quality of life in our society, Desalination Division, BARC has undertaken a project on construction of barge mounted mobile desalination unit of capacity 50 m 3 /d under the domain of health care. The plant is capable of producing safe drinking water at any site and condition where potable water is limited from water sources as lakes and dams, spring, river, bores, estuaries, and open sea. The unit is also capable of purifying nuclear, biological and chemical contaminated water source namely arsenic, fluoride and nitrate. However, the main objective of this prototype mobile unit is to derive potable water from sea water. The barge mounted desalination plant could be useful to the people on shore, in areas like Rann of Kutch or coastal areas which had been affected by natural calamities like floods or severe drought; in small islands like Lakshadeep and Andaman and Nicobar. This type of mobile unit could also be useful for constructional purposes of plants located adjoining to the shore. The plant encompasses state of art reverse osmosis (RO) technology with membrane based ultrafiltration (UF) pretreatment system along with built-in back wash provision and remineralisation. The system is designed for heavy duty tasks in order to withstand frequent relocation from site to site and in skid patterns for portable transportation via road upon requirement. The conceptual design of the plant is over. The design and constructional aspects of the mobile plant are elaborated in this paper. (author)

  3. Analysis of Thermal Design of Heating Units with Meteorological Climate Peculiarities

    Science.gov (United States)

    Seminenko, A. S.; Elistratova, Y. V.; Pererva, M. I.; Moiseev, M. V.

    2018-03-01

    This article is devoted to the analysis of thermal design of heating units, one of the compulsory calculations of heating systems, which ensures their stable and efficient operation. The article analyses the option of a single-pipe heating system with shifted end-capping areas and the overhead supply main; the difference is shown in the calculation results between heat balance equation of the heating unit and calculation of the actual heat flux (heat transfer coefficient) taking into account deviation from the standardized (technical passport) operating conditions. The calculation of the thermal conditions of residential premises is given, the deviation of the internal air temperature is shown taking into account the discrepancy between the calculation results for thermal energy.

  4. Designing a Probe To Explore Home Information Systems in the United Kingdom.

    Science.gov (United States)

    Davenport, Elisabeth; And Others

    1996-01-01

    Describes a three-year study of home information systems in the United Kingdom being conducted by Queen Margaret College (Scotland). Topics include development of an interview protocol; interactive multimedia; perceptions of technology; use of technology; work versus entertainment; gender issues; and time factors. (Author/LRW)

  5. Design and Implementation of High Precision Temperature Measurement Unit

    Science.gov (United States)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  6. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  7. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  8. Design of combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2001-01-01

    system based on a tank in tank heat storage are investigated experimentally in a laboratory test facility. One of the units is based on a mantle tank the other is based on a tank with a built-in heat exchanger spiral. The thermal performances of the systems in the laboratory test facility are measured...... with constant daily hot water consumption, consumption patterns and space heating demand for all days, and the results are used to validate TrnSys models. Based on simulation models of the combi systems, the thermal behavior is simulated and the thermal performance and the solar fraction of the systems...... simulation models where a number of different design-, control- and consumption parameters are varied....

  9. 46 CFR 58.60-9 - Industrial systems: Design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  10. Development of GT-MGR plant power conversion unit design

    International Nuclear Information System (INIS)

    Kostin, V.I.; Kodochigov, N.G.; Belov, S.E.; Vasyaev, A.V.; Golovko, V.F.; Shenoj, A.

    2007-01-01

    The General Atomic Company (USA) and the Pilot Design Bureau for Machine-Building (Russia) are involved in the efforts to design the GT-MGR modular helium cooled reactor and the energy conversion unit with the direct gas turbine cycle. The reactor capacity is equal to 600 MW, it is cooled by helium under 7 MPa pressure. The energy conversion unit consists of a gas turbine, a recuperator, preliminary and intermediate coolers, a generator. The turbine shaft rotation frequency is equal to 4400 rotation/minute. One analyzed the alternate designs of the energy conversion unit to choose its configuration [ru

  11. Experience in designing the automatic nuclear power plant control system

    International Nuclear Information System (INIS)

    Sedov, V.K.; Busygin, B.F.; Eliseeva, O.V.; Mikhajlov, V.A.

    1981-01-01

    The integrated automatic control system (ACS) is designed at the Novovoronezh NPP (NVNPP). It comprises automatic technological control of all the five power un+ts and the plant in the whole (ACST) and automatic organizational-economic production control system (ACSP). The NVNPP ACS is designed as a two-level system. The two M-4030 and M-4030-1 computers are the technical base of the upper layer while a set of block NPP (computer-M-60 and M-700 for unit 5; M-60 and SM-2 for units 1-4) of the lower level. Block diagram of the NVNPP ACS, flowsheet of NVNPP ACS technical means and external communications of the control centre are described. The NVNPP ACS is supposed to be put into operation by stages. It is noted that design and introduction of the typical NPP ACS at the NVNPP permits to maximally reduce in the future the period of developing automatic control systems at nly introduced units and NPPs with the WWER reactors [ru

  12. Engine Tune-up Service. Unit 2: Charging System. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the posttest is on the testing of the charging system. One multiple choice posttest is provided, that covers the three performance objectives contained in the unit. (No answer key is…

  13. Design and Economic Analysis of a Photovoltaic System: A Case Study

    Directory of Open Access Journals (Sweden)

    COC Oko

    2012-11-01

    Full Text Available This paper presents the design analysis of a photovoltaic (PV system to power the CAD/CAM Laboratory at the Department of Mechanical Engineering, University of Port Harcourt. Life cycle cost and break-even point analyses are also carried out to assess the economic viability of the system. The unit cost of electricity for the designed PV system is high compared to the current unit cost of the municipally supplied electricity, but will be competitive with lowering cost of PV system components and favourable government policies on renewable energy. The approach and data provided are useful for designing solar systems in the area. The automated MS Excel spreadsheet developed could be used for the design and economic analyses of PV system in any other geographical region once the input data are sorted. Since about 90% of businesses in Nigeria currently own diesel generators, it is expected that future work should be devoted to the optimum combination of PV-Battery-Diesel system in electricity generation for optimum economic benefits to the country. Keywords: photovoltaic system design, renewable energy technology, solar energy economics

  14. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  15. The software design of area γ radiation monitoring system

    International Nuclear Information System (INIS)

    Song Chenxin; Deng Changming; Cheng Chang; Ren Yi; Meng Dan; Liu Yun

    2007-01-01

    This paper main introduction the system structure, software architecture, design ideas of the area γ radiation monitoring system. Detailed introduction some programming technology about the computer communication with the local display unit. (authors)

  16. The software design of area γ radiation monitoring system

    International Nuclear Information System (INIS)

    Song Chenxin; Deng Changming; Cheng Chang; Ren Yi; Meng Dan; Liu Yun

    2008-01-01

    This paper main introduction the system structure, software architecture, design ideas of the area γ radiation monitoring system. Detailed introduction some programming technology about the computer communication with the local display unit. (authors)

  17. Liner system design

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This paper discusses one of the most important regulatory and design decisions which is determining the type of liner system. The liner system includes a combination of low hydraulic conductivity and leakage control materials to be provided beneath a mine waste management unit to avoid seepage losses, which could result in an unacceptable threat to beneficial uses of ground water. This is more difficult for mine wastes than for other types of waste disposal because: The physical and chemical properties of mine wastes vary widely; The sizes )volume and areal extent) of mine waste management units is often very large so that the costs of liners can impact economic feasibility of some operations. The U.S. Congress considered the differences between mine wastes and other types of wastes when it passed the Bevill amendment to the Resource Conservation and Recovery Act (RCRA) in 1980. That amendment exempted most mine wastes from hazardous waste regulation until the United States Environmental Protection Agency (EPA) conducted a study to determine the appropriate degree of regulation for mine wastes. In 1986, the EPA issued a report recognizing that, with a few exceptions for certain processed materials, mine wastes do not present the same level of threat as other wastes and therefore should be regulated differently. An additional important factor which differentiates mine waste disposal management units form other solid waste disposal units is that, except in unusual circumstances, mine and process facilities are located where the mineral resource is being extracted. Therefore, the location of the mine waste disposal facilities cannot solely be based upon a site selection study. as a result, some mines are located where the distance or depth to a valuable water resource is relatively small, while others are located in remote desert areas with no contiguous surface water resources, and deep ground water of limited quantity and/or quality

  18. PWR design for low doses in the United Kingdom: The present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Zodiates, A.M.; Willcock, A. [PWR Project Group, Knutsford, England (United Kingdom)

    1995-03-01

    The Pressurizer Water Reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS). This design was developed to meet the United Kingdom (UK) requirements and those improvements are embodied in the Sizewell B plant. Nuclear Electric plc is now looking to the design of the future PWRs to be built in the UK. These PWRs will be based as replicas of the Sizewell B design, but attention will be given to reducing operator doses further. This paper details the approach in operator protection improvements incorporated at Sizewall B, presents the estimated annual collective dose, and identifies the approach being adopted to reduce further operator doses in future plants.

  19. [Design considerations for clinical data management in an integrated remote medical system].

    Science.gov (United States)

    Bautu, E; Bautu, A; Ciorap, R; Pomazan, V M; Petcu, L C

    2009-01-01

    In this paper, we present a proposal for the design of a telemedicine system. The system (called SIMPA) will be used for noninvasive monitoring of some vital parameters of patients with chronic diseases. The telemedicine system contains a fixed unit and some mobile units. The mobile unit contains various sensors used to gather data about vital biosignals, a transceiver and a medical processor. On the fixed unit side, the host transceiver must be compatible with the mobile transceiver. On the server side, an application analyzes and processes the data and further stores it in dedicated databases. The database support for the telemedicine application is ensured by open source technologies and already available communication infrastructures (GSM networks). The requirements for the application were thoroughly analyzed and the Entity-Relationship diagram of the system was designed and translated into relational model. SIMPA will be implemented using only free and open source technologies, which will ensure a low cost and improved extensibility and portability. We presented some design considerations for a low-cost telemedicine system. The system will help optimize medical decisions and will increase the quality of the medical act and lower the cost, to the ultimate benefit of the patient.

  20. Low-cost compact ECG with graphic LCD and phonocardiogram system design.

    Science.gov (United States)

    Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil

    2006-06-01

    Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.

  1. Design of coolant distribution system (CDS) for ITER PF AC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng; Xu, Xuesong; Li, Chuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Min; Dong, Lin [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China)

    2016-10-15

    Highlights: • System process and arrangement has been proposed to meet the multiple requirements from the converter system. • Thermal hydraulic analysis model has been developed to size and predict the system operation behavior. • Prototype test has been performed to validate the proposed design methodology. - Abstract: The Poloidal Field (PF) converter unit, playing an essential role in the plasma shape and position control in vertical and horizontal direction, which is an important part of ITER power supply system. As an important subsystem of the converter unit, the coolant distribution system has the function to distribute the cooling water from ITER component cooling water system (CCWS) to its main components at the required flow rate, pressure and temperature. This paper presents the thermal hydraulic design of coolant distribution system for the ITER PF converter unit. Different operational requirements of the PF converter unit regarding flow rate, temperature and pressure have been analyzed to design the system process and arrangement. A thermal-hydraulic analysis model has been built to size the system and predict the flow rate and temperature distribution of the system under the normal operation. Based on the system thermal-hydraulic analysis results, the system pressure profile has been plotted to evaluate the pressure behavior along each client flow path. A CDS prototype for the ITER PF converter has been constructed and some experiments have been performed on it. A good agreement of the flow distribution and temperature behavior between the simulated and test results validate the proposed design methodology.

  2. Design of the De-Orbit Sail Boom Deployment Unit

    Science.gov (United States)

    Meyer, Sebastian; Hillebrandt, Martin; Straubel, Marco; Huhne, Christian

    2014-06-01

    The design of the De-Orbit Sail boom deployment unit is strongly driven by volume constraints, which are given by the cubesat container. Four CFRP (carbon fiber reinforced polymer) booms [4] with a cross-sectional shape of a double-omega and a length of 3.6 m are reeled on one spool in the center of the unit. The deployment of the four booms are controlled by an electric motor, which acts on the boom spool. Due to the volume limitation caused by the dimensions of the cubesat deployer the deployment unit has little room for the mechanisms components. With the aim to achieve a robust design, the deployment concept of the unit has greatly changed during the development process. The history of the design as well as the mechanisms are described. Additionally the results of the flight model testing are presented.

  3. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  4. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  5. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW t (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment

  6. Cold Vacuum Drying Facility Condensate Collection System Design Description. System 19

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    2000-01-01

    The Cold Vacuum Drying (CVD) Facility of Spent Nuclear Fuel (SNF) provides required process systems, supporting equipment, and facilities to support the SNF Project mission. This system design description (SDD) addresses the Condensate Collection System (CCS). This is a general service system. The CCS begins at the condensate outlet of the general process air-handling unit (AHU) and the condensate outlets for the active process bays AHUs. The system terminates at each condensate collection tank (5 total)

  7. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  8. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  9. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  10. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  11. Consistent approach to air-cleaning system duct design

    International Nuclear Information System (INIS)

    Miller, W.H.; Ornberg, S.C.; Rooney, K.L.

    1981-01-01

    Nuclear power plant air-cleaning system effectiveness is dependent on the capability of a duct system to safely convey contaminated gas to a filtration unit and subsequently to a point of discharge. This paper presents a logical and consistent design approach for selecting sheet metal ductwork construction to meet applicable criteria. The differences in design engineers' duct construction specifications are acknowledged. Typical duct construction details and suggestions for their effective use are presented. Improvements in duct design sections of ANSI/ASME N509-80 are highlighted. A detailed leakage analysis of a control room HVAC system is undertaken to illustrate the effects of conceptual design variations on duct construction requirements. Shortcomings of previously published analyses and interpretations of a current standard are included

  12. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  13. Designing and Conducting Health Systems Research Projects ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Resources · Publications. Designing and Conducting Health Systems Research Projects Volume 1: Proposal Development and Fieldwork ... IDRC and the United Kingdom's Global AMR Innovation Fund—managed by the ... New website will help record vital life events to improve access to services for all.

  14. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  15. Designing and evaluating risk-based surveillance systems

    DEFF Research Database (Denmark)

    Willeberg, Preben; Nielsen, Liza Rosenbaum; Salman, Mo

    2012-01-01

    Risk-based surveillance systems reveal occurrence of disease or infection in a sample of population units, which are selected on the basis of risk factors for the condition under study. The purpose of such systems for supporting practical animal disease policy formulations and management decisions...... with prudent use of resources while maintaining acceptable system performance. High-risk category units are selected for testing by identification of the presence of specific high-risk factor(s), while disregarding other factors that might also influence the risk. On this basis we argue that the most...... applicable risk estimate for use in designing and evaluating a risk-based surveillance system would be a crude (unadjusted) relative risk, odds ratio or apparent prevalence. Risk estimates found in the published literature, however, are often the results of multivariable analyses implicitly adjusting...

  16. Design and implementation of a nanosecond time-stamping readout system-on-chip for photo-detectors

    International Nuclear Information System (INIS)

    Anvar, Shebli; Château, Frédéric; Le Provost, Hervé; Louis, Frédéric; Manolopoulos, Konstantinos; Moudden, Yassir; Vallage, Bertrand; Zonca, Eric

    2014-01-01

    A readout system suitable for a large number of synchronized photo-detection units has been designed. Each unit embeds a specifically designed fully integrated communicating system based on Xilinx FPGA SoC technology. It runs the VxWorks real-time OS and a custom data acquisition software designed within the Ice middleware framework, resulting in a highly flexible, controllable and scalable distributed application. Clock distribution and delay calibration over customized fixed latency gigabit Ethernet links enable synchronous time-stamping of events with nanosecond precision. The implementation of this readout system on several data-collecting units as well as its performances are described

  17. The applicability of ALPHA/PHOENIX/ANC nuclear design code system on Korean standard PWR's

    International Nuclear Information System (INIS)

    Lee, Kookjong; Choi, Kie-Yong; Lee, Hae-Chan; Roh, Eun-Rae

    1996-01-01

    For the Korean Standard Nuclear Power Plant (KSNPP) designed based on Combustion Engineering (CE) System 80, the Westinghouse nuclear design code system ALPHA/PHOENIX/ANC was applied to the follow-up design of initial and reload core of KSNPP. The follow-up design results of Yonggwang Unit 3 Cycle 1, 2 and Yonggwang Unit 4 Cycle 1 have shown good agreements with the measured data. The assemblywise power distributions have shown less than 2% average differences and critical boron concentrations have shown less than 20 ppm differences. All the low power physics test parameters are in good agreement. Consequently, APA design code system can be applied to KNSPP cores. (author)

  18. Units of measurement past, present and future international system of units

    CERN Document Server

    Gupta, S V

    2010-01-01

    It is for the first time that the subject of quantities and their respective units is dealt this much in detail a glimpse of units of measurements of base quantities of length, time, mass and volume is given for ancient India three and four dimensional systems of measurement units are critically examined establishment of the fact that only four base units are needed to describe a system of units the basics to arrive at the unit of a derived quantity are explained basic, derived and dimensionless quantities including quantity calculus are introduced life history of scientists concerned with measurements units are presented to be inspiring to working metrologists and students. The International System of Units including, Metre Convention Treaty and its various organs including International National of Weights and Measure are described. The realisation of base units is given in detail. Classes of derived units within the SI, units permitted for time to come, units outside SI but used in special fields of measur...

  19. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  20. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  1. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit

    International Nuclear Information System (INIS)

    Liu, Ji-Zhen; Yan, Shu; Zeng, De-Liang; Hu, Yong; Lv, You

    2015-01-01

    Supercritical OTB (once-through boiler) units with high steam temperature and pressure have been widely used in modern power plants due to their high cycle efficiency and less emissions. To ensure the effective operation of such power generation systems, it is necessary to build a model for the design of the overall control system. There are already detailed models of once-through boilers; however, their complexity prevents them from being applied in the controller design. This study describes a lumped parameter dynamic model that has a relatively low complexity while faithfully capturing the essential overall plant dynamics. The model structure was derived by fundamental physical laws utilizing reasonable simplifications and data analysis to avoid the phase transition position problem. Parameter identification for the model structure was completed using operational data from a 1000 MW ultra-supercritical OTB. The model was determined to be reasonable by comparison tests between computed data and measured data for both steady and dynamic states. The simplified model is verified to have appropriate fidelity in control system design to achieve effective and economic operation of the unit. - Highlights: • A simplified dynamic model of once-through boiler-turbine unit is given. • The essential dynamics of active power and throttle pressure is presented. • The change of phase transition position is avoided in modeling process. • The model has appropriate complexity and fidelity for controller design.

  2. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  3. A Database Design for a Unit Status Reporting System.

    Science.gov (United States)

    1987-03-01

    s wl. h i l be co~ivlywnsidered a, __) Do a. &ca tcmh W111111 winng 940r determining a aes training and overall porn " GROW. ’~.*.. .21W ISfsota i Ql...field in which arabic unit~s will not be organized or used solely for A six-position numeric code that signifi nmrls0(eo)esuh a anb e non wartime

  4. Detailed design and first tests of the application software for the instrument control unit of Euclid-NISP

    Science.gov (United States)

    Ligori, S.; Corcione, L.; Capobianco, V.; Bonino, D.; Sirri, G.; Fornari, F.; Giacomini, F.; Patrizii, L.; Valenziano, L.; Travaglini, R.; Colodro, C.; Bortoletto, F.; Bonoli, C.; Chiarusi, T.; Margiotta, A.; Mauri, N.; Pasqualini, L.; Spurio, M.; Tenti, M.; Dal Corso, F.; Dusini, S.; Laudisio, F.; Sirignano, C.; Stanco, L.; Ventura, S.; Auricchio, N.; Balestra, A.; Franceschi, E.; Morgante, G.; Trifoglio, M.; Medinaceli, E.; Guizzo, G. P.; Debei, S.; Stephen, J. B.

    2016-07-01

    In this paper we describe the detailed design of the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management. We briefly review the main requirements driving the design and the architecture of the software that is approaching the Critical Design Review level. The interaction with the data processing unit (DPU), which is the intelligent subunit controlling the detector system, is described in detail, as well as the concept for the implementation of the failure detection, isolation and recovery (FDIR) algorithms. The first version of the software is under development on a Breadboard model produced by AIRBUS/CRISA. We describe the results of the tests and the main performances and budgets.

  5. Modeling and simulation of a New Design of the SMCEC Desalination Unit Using Solar Energy

    International Nuclear Information System (INIS)

    Zhani, K.; Ben Bacha, H.

    2009-01-01

    The aim of this research is to parametrically study a new process working design with Humidification/Dehumidification (HD) technique using solar energy which is developed to ameliorate the production of the SMCEC unit (Solar Multiple Condensation Evaporation Cycle). The SMCEC unit is currently operating at Sfax's national engineering school in Tunisia. The improvement of the production consists in increasing the capacity of air to load water vapor with heating and subsequent humidification of air at the exit of the condensation tower instead of rejecting or recycling it. So, to attend our objective, we need to integrate into the SMCEC unit a flat plate solar air collector for heating air and a humidifier for its humidification. Then, the newly designed system is basically composed of a flat plate solar air collector, a flat plate solar water collector, a humidifier, an evaporation tower and a condensation tower. A general model based on heat and mass transfers in each component of the unit is developed in a steady state regime. The obtained set of ordinary differential equations is converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to investigate both the effect of different operating modes on the water condensation rate and the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions.

  6. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  7. Rupture of DN 500 - design basic accident at units 3 and 4 of Kozloduy NPP

    International Nuclear Information System (INIS)

    Uruchev, V.; Vassilev, P.; Ivanova, A.; Sartmadjiev, A.

    2005-01-01

    The original design of Kozloduy NPP Units 3 and 4 assumes as Design Basis Accident (DBA) the rupture of DN 32 mm primary pipeline, while an initial event of double-sided guillotine break of primary pipeline with maximal diameter is not considered. In the course of units modernization it have been demonstrated once and again that both the emergency core cooling systems and the localization systems can cope with larger and larger primary circuit leaks. After the installation of a Jet-Vortex Condenser (JVC) at Units 3 and 4 it was substantiated that, the integrity of the hermetic rooms is ensured even in case of double-sided guillotine break of a primary circuit pipeline with maximal diameter (DEGB). The technical justification of the jet-vortex condenser, elaborated by VNIAEC, contains calculations determining both the source term and the doses obtained outside the NPP site after LOCA DN 500. LOCA DN 500 is considered in these analyses as a beyond design basis accident and it is so included in the SAR and approved by the Nuclear Regulatory Agency (NRA). The thermo-hydraulic calculations performed later on show that the emergency core cooling systems can cope with this initial event at conservative assumptions. In order to classify this initiating event as a design basis accident it is necessary to demonstrate that the core cooling criteria are fulfilled and the internal and external doses outside the NPP site are within the permissible limits fixed for design basis accident by the Bulgarian regulatory body (NRA), when using conservative assumptions. For this purpose two consecutive studies were performed - evaluation of the DEGB probability and categorization of the initial event according to the contemporary regulations acting in Republic of Bulgaria. The presented report summarizes the results of the performed conservative analyses of double-sided guillotine break accident of main circulation line taking into account the probability of rupture of large diameter

  8. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  9. NSSS design and cycle 1 operating history data for Arkansas Nuclear One, Unit-2. Final report

    International Nuclear Information System (INIS)

    Gagne, P.A.

    1981-03-01

    This report contains design and cycle 1 operating data for the Arkansas Nuclear One, Unit-2 nuclear steam supply system. The design data include descriptions of the reactor core, reactor coolant system, and control systems which are a part of the nuclear steam supply system. Operating history data are provided for the period of December 1978 through January 1980. The most important operating history data provided include reactor power, cumulative fuel burnup, control rod position, primary coolant temperature, and a series of power distribution state points

  10. Human-centered environment design in intensive care unit

    OpenAIRE

    Li, Y.; Albayrak, A.; Goossens, R.H.M.; Xiao, D.; Jakimowicz, J.J.

    2013-01-01

    Because of high risk and instability of the patients in Intensive care unit(ICU), the design of ICU is very difficult. ICU design, auxiliary building design, lighting design, noise control and other aspects can also enhance its management. In this paper, we compare ICU design in China and Holland based on related standards. We also premeditate the indoor environment from planning perspective, analyze patients, their families, medical staff and space requirement to conduct research in ICU desi...

  11. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the posttests is the testing of the battery and cranking system. Four multiple choice posttests are provided, one for each of the performance objectives contained in the unit. (No answer keys are provided.)…

  12. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  13. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  14. Design aspects of commercial open-loop heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2000-01-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  15. Design Aspects of Commerical Open-Loop Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-03-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  16. Design of an Autonomous Transport System for Coastal Areas

    Directory of Open Access Journals (Sweden)

    Andrzej Lebkowski

    2018-03-01

    Full Text Available The article presents a project of an autonomous transport system that can be deployed in coastal waters, bays or between islands. Presented solutions and development trends in the transport of autonomous and unmanned units (ghost ships are presented. The structure of the control system of autonomous units is discussed together with the presentation of applied solutions in the field of artificial intelligence. The paper presents the concept of a transport system consisting of autonomous electric powered vessels designed to carry passengers, bikes, mopeds, motorcycles or passenger cars. The transport task is to be implemented in an optimal way, that is, most economically and at the same time as safe as possible. For this reason, the structure of the electric propulsion system that can be found on such units is shown. The results of simulation studies of autonomous system operation using simulator of marine navigational environment are presented.

  17. Software for the Design of Swimming Pool Dehumidifiers Units

    Science.gov (United States)

    Rubina, Aleš; Blasinski, Petr; Tesař, Zdeněk

    2013-06-01

    The article deals with the description and solution of physical phenomena taking place during evaporation of water. The topicality of the theme is given a number of built indoor swimming pool and wellness centers at present. In addressing HVAC systems serving these areas, it is necessary to know the various design parameters in the interior including the water temperature as the pool temperature and humidity. Following is a description of the calculation module, air handling units, including optimizing the settings of the physical changes in order to ensure the lowest energy consumption for air treatment and required maintaining internal microclimate parameters.

  18. Petri Net Approach of Collision Prevention Supervisor Design in Port Transport System

    Directory of Open Access Journals (Sweden)

    Danko Kezić

    2007-09-01

    Full Text Available Modern port terminals are equipped with various localtransport systems, which have the main task to transport cargobetween local storehouses and transport resources (ships,trains, trucks in the fastest and most efficient way, and at thelowest possible cost. These local transport systems consist offully automated transport units (AGV- automatic guided vehiclewhich are controlled by the computer system. The portcomputer system controls the fully automated transport units inthe way to avoid possible deadlocks and collisions betweenthem. However, beside the fully automated local transportunits, there are human operated transport units (fork-lifttrucks, cranes etc. which cross the path oftheAGVfrom timeto time. The collision of human operated transp011 unit andA GV is possible due to human inattention. To solve this problem,it is necesswy to design a supe1vismy control system thatcoordinates and controls both human driven transport unit andA G V In other words, the human-machine interactions need tobe supen·ised. The supen•ising system can be realized in the waythat the port terminal is divided into zones. Vehicle movementsare supen•ised by a video system which detects the moving ofparticular l'ehicles as a discrete event. Based on detected events,dangerous moving of certain vehicles is blocked by the supe1visi11gsystem. The paper considers the design of collision preventionsupen•isor by using discrete event dynamic themy. The portterminal is modeled by using ordi1za1y Petri nets. The design ofcollision prevention supe1visor is cmTied out by using the P-inl'ariantmethod. The verification of the supervisor is done bycomputer simulation.

  19. Prototype design of singles processing unit for the small animal PET

    Science.gov (United States)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  20. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  1. Design of the breeder units in the new HCPB modular blanket concept and material requirements

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Hermsmeyer, S.; Reimann, J.; Xu, Z.; Koehly, C.

    2004-01-01

    A major revision of the DEMO HCPB blanket concept took place in 2002-2003 as consequence of the results of the EU Power Plant Conceptual Study. In particular, it was decided to give up the previous maintenance schema based on segments in favour of a large module concept extrapolated from ITER. The adaptation of the HCPB concept to these modules (typical dimension at the FW of 2.0 x 2.0 m) required a complete revision of the box. The coolant flow scheme is based on a radial He flow (at 8 MPa) in order to have the entire manifold system in the rear part of the box. Furthermore, the requirement of a box capable of withstanding the coolant pressure of 8 MPa in case of an in-box LOCA led to a design of modules with an internal stiffening grid in toroidal and poloidal direction This grid results in cells open in the rear radial direction with toroidal-poloidal dimensions of about 20 cm x 20 cm that accommodate the breeder units. These units contain the ceramic breeder (CB) and the Beryllium in form of pebble beds and have to assure the main functions of the blanket, namely, a tritium breeding ratio significantly above one, heat removal with a temperature control in the beds and in the structure, mechanical stability of the beds and extraction of the produced tritium. Due to the relatively high quantity of steel necessary to assure the mechanical stability of the box, a strong requirement for the design of these units is to minimise the amount of steel to improve the neutronic performance. A satisfactory design has been achieved with a radial-toroidal bed configuration similar to the old DEMO design reaching the Tritium self-sufficiency with a radial depth of 47 cm, using monosized Beryllium and CB beds and, using Li 4 SiO 4 , a 6 Li enrichment of about 40%. This design allows a satisfactory control of the maximum acceptable temperatures in the CB and Be beds and the steel structure. The design of the breeder units has not been yet analysed thermo-mechanically in detail

  2. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  3. Design, implementation and evalution of a central unit for controlling climatic conditions in the greenhouse

    OpenAIRE

    Gh. Zarei; A. Azizi

    2016-01-01

    In greenhouse culture, in addition to increasing the quantity and quality of crop production in comparison with traditional methods, the agricultural inputs are saved, too. Recently, using new methods, designs and materials, and higher automation in greenhouses, better management has become possible for enhancing yield and improving the quality of greenhouse crops. The constructed and evaluated central controller unit (CCU) is a central controller system and computerized monitoring unit for g...

  4. Information system and website design to support theautomotive manufacture ERP system

    Science.gov (United States)

    Amran, T. G.; Azmi, N.; Surjawati, A. A.

    2017-12-01

    This research is to create an on-time production system design with Heijunka model so that the product diversity for all models could meet time and capacity requirements, own production flexibility, high quality, meet the customers’ demands, realistic in production as well as creating a web-based local components’ order information system that supports the Enterprise Resource Planning (ERP) system. The Heijunka model for equalization with heuristic and stochastic model has been implemented for productions up to 3000 units by implementing Suzuki International Manufacturing. The inefficiency in the local order information system demanded the need for a new information system design that is integrated in ERP. Kaizen needs to be done is the Supplier Network that all vendors can download and utilize those data to deliver the components to the company and for vendors’ internal uses as well. The model design is presumed effective where the model is able to be utilized as a solution so that the production can run according to the schedule and presumed efficient were the model is able to show the reduction of loss time and stock.

  5. Design Guidelines of a Spring-Damper System for Emergency Diesel Generator Sets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2007-05-15

    This guidelines described about the procedure of isolation system design for Emergency Diesel Generator (EDG) of Nuclear Power Plant (NPP). First of all, a vibration concept including the ground vibration was described and vibration control system and seismic isolation system were considered. The behavior characteristics and design consideration of coil spring-viscose damper system were summarized. The material properties of foundation of EDG system and the ground were considered. A design load and seismic load for isolation system design were described and an analysis method was explained. Finally, a design example for an EDG in Yonggwang Nuclear Unit 5 and 6 was attached of Appendix. First of all, this design guideline can apply to design of a vibration and seismic isolation system for EDG system and the design example present a design procedure practically. Moreover, this design guideline can be used for isolation design of other rotational machines and other isolation system except spring-damper system.

  6. System 80+ Design and Licensing : Improving Plant Reliability

    International Nuclear Information System (INIS)

    Newman, Robert E.

    1989-01-01

    The U. S. nuclear industry is striving to improve plant reliability and availability through improved plant design, component designs and plant maintenance. In an effort to improve safety and to demonstrate that commercial nuclear power is economically competitive with other energy sources, the utilities, nuclear vendors, architect engineers and constructors, and component suppliers are all participating in an industry-wide effort to develop improved Light Water Reactor (LWR) designs that are based upon the many years of successful LWR operation. In an age when the world faces the environmental pressures of the greenhouse effect and acid rain, electricity generated from nuclear energy must play an increasing role in the energy picture of Korea, the United States and the rest of the world. This paper discusses the plant availability requirement that has been established by the industry-wide effort mentioned above. After briefly describing Combustion Engineering's program for development of the System 80 Plus standard design and the participation of the Korea Advanced Energy Research Institute (KAERI) in the program, the paper then describes the design features that are being incorporated into System 80+. The industry ALRR Program has established a very ambitious criterion of 87% for the plant availability of future nuclear units. To satisfy such a requirement, the next generation of nuclear plants will include a great many design improvements that reflect the hundreds of years of operating experience that we have accrued. C-ESA's System 80+ will include a number of design changes that improve operating margins and make the plant easier to operate and maintain. Not surprisingly, there is a great deal of overlap between improved safety and improved reliability. In the end, our design will satisfy the future needs of the utilities, the regulators, and the public. C-E is very pleased that KAERI is working with US to achieve these important goals

  7. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  8. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  9. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  10. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Yuri Yu. Yankin

    2014-11-01

    Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

  11. Progress of Design Improvements for APR1400 Computerized Procedure System from HFE V and V results and Design Experience

    International Nuclear Information System (INIS)

    Lee, Sungjin; Seong, Nokyu

    2015-01-01

    This study shows major already improved design features from the above three processes and a design proposal for to-be-improving items. APR1400 CPS has been verified and validated by the HFE process, internal design review and site acceptance tests. APR1400 Computerized Procedure System (CPS) has been applied to Shin-Kori Nuclear Power Plant (SKN) 3 and 4 units, Shin-Hanul Nuclear Power Plant (SHN) 1 and 2 units and Baraka Nuclear Power Plant (BNPP) 1, 2, 3 and 4 units. Since APR1400 CPS is a first-of-a-kind (FOAK) human machine interface (HMI) for executing a computerized procedure in the nuclear power plant's main control room in South Korea, it has been continuously improved through a) the human factor engineering (HFE) verification and validation (V and V), b) the internal design review and c) prototype tests. Human engineering discrepancies (HEDs) can be identified by the HFE V and V activity. Some HEDs of APR1400 CPS for SKN 3 and 4 and SHN 1 and 2 have been adopted as a role of design improvement in the CPS system while others were regarded as an operator training requirement or part of task contents. Various requests for improving the CPS have been collected from those results. A HMI system should be improved continuously for removing potential defects. Some of introduced design features in this paper has been adopted for APR1400 nuclear power plants. Some of them are under the review in the CPS design team of KHNP

  12. Development of the design of standardized units for the production of artificial radionuclides

    International Nuclear Information System (INIS)

    Auger, J.P.

    1976-01-01

    The production of artificial radionuclides began more than 20 years ago and has seen continuous growth at the rate over 20% a year. Technology has had to be adapted constantly to this growth in order to guarantee production and at the same time ensure the safety of personnel. The Department, which started its career in underground workings at Chatillon and then moved to the Saclay hot laboratories, is now housed in a building designed specially for the production of artificial radionuclides and equipped with standard production units. The first generation of standard units was sufficient to handle production which had begun to grow. Subsequently, thanks to the experience gained, there came into being a second generation of standardized units perfectly adapted to the new production requirements. The paper describes the evolution of design solutions between the first and the second standard, relating to contained cells, cell containment, remote control, interchangeability of cells, ventilation, waste discharge systems and repair of internal equipment. A highly positive evaluation can be made of the experience gained from the present standard. (author)

  13. Competent authority approval of package designs in the United Kingdom

    International Nuclear Information System (INIS)

    Morgan-Warren, E.J.

    1999-01-01

    Type B packages and all packages containing fissile material, as well as special form radioactive materials, special arrangements and certain shipments, are required to be approved by the competent authority. In the United Kingdom competent authority approval is carried out on behalf of the Secretary of State by the Radioactive Materials Transport Division (RMTD) of the Department of the Environment, Transport and the Regions (DETR). Competent authority approval of a package design is given only after a detailed assessment of the design by the specialist staff of RMTD. There are three facets to the assessment procedure, namely engineering, criticality and radiation protection, and quality assurance. The engineering assessor ensures that the designer has demonstrated the integrity of the containment and shielding systems under the regulatory conditions. The criticality assessor examines criticality safety and radiation protection measures, and together with the engineering assessor, decides whether this is maintained under regulatory conditions. The quality assurance assessor verifies that the applicant has established the necessary controls to ensure that the design requirements are met. The applicant is responsible for making the case for approval, but the assessment is facilitated if the competent authority is involved with the designer at an early stage in development and during the construction of any test prototype. When a regulatory test programme is required, it is designed and carried out by the applicant, but agreed and witnessed by representatives of RMTD. Following the test programme, the applicant submits a formal application, supported by a design safety report (DSR). The DSR provides a full analysis of the design and the test results, including the behaviour of the package under normal and accident conditions of transport, the manufacturing and maintenance procedures, quality assurance and the emergency provisions for the operation of the package

  14. Design considerations for a servo optical projection system

    Science.gov (United States)

    Nadalsky, Michael; Allen, Daniel; Bien, Joseph

    1987-01-01

    The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.

  15. Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    G. Avanzini

    2005-01-01

    Full Text Available Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV, developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented. 

  16. Design and Demonstration of a Miniature Lidar System for Rover Applications

    Science.gov (United States)

    Robinson, Benjamin

    2010-01-01

    A basic small and portable lidar system for rover applications has been designed. It uses a 20 Hz Nd:YAG pulsed laser, a 4-inch diameter telescope receiver, a custom-built power distribution unit (PDU), and a custom-built 532 nm photomultiplier tube (PMT) to measure the lidar signal. The receiving optics have been designed, but not constructed yet. LabVIEW and MATLAB programs have also been written to control the system, acquire data, and analyze data. The proposed system design, along with some measurements, is described. Future work to be completed is also discussed.

  17. Management information systems. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.; Spence, A.C.

    1985-02-01

    The successful application in the United Kingdom of the real time monitoring and control systems (MINOS) for underground mining operations, particularly in coal transport and the development of coalface monitoring (FIDO) in 1980 led naturally to the design of an operational data base for management. A User Group of experienced colliery managers produced a Management Information System (MIS) requirements specification and began the evolution of the systems of today. Twenty-four mines operate MIS in different ways from total dependency to a means of checking their manual reporting system. MIS collects useful data from all the major MINOS applications and provides a means of manually inputting other, relevant information. A wide variety of displays and reports are available to management, adjusted to meet individual requirements. The benefits from the use of MIS are difficult to quantify, since they become part of the management process. Further developments are taking place based on operational experience and requirements and taking advantage of the recent advances in computer technology. MIS is the modern management tool in British coal mining, collecting, storing, analysing and presenting accurate information upon which management decision making is based.

  18. Evaluation and optimization of General Atomics' GT-MHR reactor cavity cooling system using an axiomatic design approach

    International Nuclear Information System (INIS)

    Thielman, Jeff; Ge, Ping; Wu, Qiao; Parme, Laurence

    2005-01-01

    The development of the Generation IV (Gen-IV) nuclear reactors has presented social, technical, and economical challenges to nuclear engineering design and research. To develop a robust, reliable nuclear reactor system with minimal environmental impact and cost, modularity has been gradually accepted as a key concept in designing high-quality nuclear reactor systems. While the establishment and reliability of a nuclear power plant is largely facilitated by the installment of standardized base units, the realization of modularity at the sub-system/sub-unit level in a base unit is still highly heuristic, and lacks consistent, quantifiable measures. In this work, an axiomatic design approach is developed to evaluate and optimize the reactor cavity cooling system (RCCS) of General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) nuclear reactor, for the purpose of constructing a quantitative tool that is applicable to Gen-IV systems. According to Suh's axiomatic design theory, modularity is consistently represented by functional independence through the design process. Both qualitative and quantitative measures are developed here to evaluate the modularity of the current RCCS design. Optimization techniques are also used to improve the modularity at both conceptual and parametric level. The preliminary results of this study have demonstrated that the axiomatic design approach has great potential in enhancing modular design, and generating more robust, safer, and less expensive nuclear reactor sub-units

  19. The impact of a noise reduction quality improvement project upon sound levels in the open-unit-design neonatal intensive care unit.

    Science.gov (United States)

    Liu, W F

    2010-07-01

    To decrease measured sound levels in the neonatal intensive care unit through implementation of human factor and minor design modification strategies. Prospective time series. Two open-unit-design neonatal centers. Implementation of a coordinated program of noise reduction strategies did not result in any measurable improvement in levels of loudness or quiet. Two centers, using primarily human behavior noise reduction strategies, were unable to demonstrate measurable improvements in sound levels within the occupied open-unit-design neonatal intensive care unit.

  20. Embedded DAQ System Design for Temperature and Humidity Measurement

    International Nuclear Information System (INIS)

    Memon, T.R.

    2013-01-01

    In this work, we have proposed a cost effective DAQ (Data Acquisition) system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench). The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity). Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays. (author)

  1. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  2. The making of automation air fiddling unit (AHU) for G 71 cooler system

    International Nuclear Information System (INIS)

    Suripto

    2003-01-01

    A design of the making automation of air handling unit (AHU) for G. 71 cooler system at the design it has been conducted AHU operational time programming for G. 71 cooler system, when applied if will operate as programmed. flopefully, it mill save electric power and the dependency to the operator can be reduced significantly therefore it will increase efficiency and optimization in the usage of the cooler system. At the and if will reduce and save operational cost mainly in maintenance cost

  3. Transfer cask system design activities: status and plan

    International Nuclear Information System (INIS)

    Locke, D.; Gutierrez, C. Gonzalez; Damiani, C.; Gracia, V.; Friconneau, J.-P.; Martins, J.-P.; Blight, J.

    2011-01-01

    The ITER Cask and Plug Remote Handling System (CPRHS), a.k.a. Transfer Cask System, is a critical element of the ITER Remote Maintenance System (IRMS) devoted to transportation of components between the Tokamak building and Hot Cell. Due to the necessary confinement of contaminated components the CPRHS is defined as Safety Importance Class 1 (SIC-1) plus the mobile nature of the CPRHS brings with it a significant number of complex interfaces with other ITER sub-systems. With a total CPRHS fleet in excess of 20 units, including seven typologies, the management of design and procurement needs to be carefully planned and implemented to ensure compliance with ITER's requirements. Fusion for Energy (F4E) and its beneficiaries/contractors are currently working under ITER Task Agreements (ITAs) on the conceptual design of the CPRHS and, following the signing of the Procurement Arrangement (PA) in mid 2012, will take responsibility for the entire CPRHS fleet. F4E must, therefore, develop a robust strategy to meet the needs of both ITER machine assembly (for which a number of CPRHS units will be utilised) and the remote maintenance of ITER. Within this context this paper will present the status of the current CPRHS design activities, highlight some of the significant issues which will be faced during procurement and present the overall strategy which is being implemented by F4E in order to meet these challenging objectives.

  4. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  5. Design parameters for waste effluent treatment unit from beverages production

    OpenAIRE

    Mona A. Abdel-Fatah; H.O. Sherif; S.I. Hawash

    2017-01-01

    Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been con...

  6. A Design of Dual Broadband Antenna in Mobile Communication System

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A design of dual broadband antenna is proposed in this paper; it consists of one low frequency unit and two high frequency units. The low frequency unit consists of a pair of printing vibrators; the high frequency unit consists of a pair of printing oscillators, which is bent at its end, and high frequency unit and low frequency unit are set on the same dielectric substrate. Through adding a parasitic unit on antenna, it can enhance frequency bandwidth without affecting the bandwidth. In the high frequency unit, it adopts gap-coupled microstrip line feeding method in order to get enough bandwidth. Through the test of dual broadband antenna, it can be found that, in the low frequency part, the antenna covers 20% bandwidth of the total bandwidth, and it covers the frequency from 800 MHz to 980 MHz. In the high frequency, the antenna covers 60% of total bandwidth and its frequency is from 1540 MHz to 2860 MHz, so the designed antenna can satisfy the frequency requirements of 2G/3G/LTE (4G communication system.

  7. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  8. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  9. Lithium test module on ITER: engineering design of the tritium recovery system

    International Nuclear Information System (INIS)

    Finn, P.A.

    1988-01-01

    The design presented is an overview of the tritium recovery system for a lithium module on an ITER type reactor. The design of a tritium recovery system for larger blanket units, sectors, etc. could use the information developed in this report. A goal of this design was to ensure that a reliable, integrated performance of the tritium recovery system could be demonstrated. An equally important goal was to measure and account for the tritium in the liquid lithium blanket module and its recovery system in order to validate the operation of the blanket module

  10. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  11. Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    Science.gov (United States)

    Baez, A. N.

    1985-01-01

    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.

  12. Design of reciprocal unit based on the Newton-Raphson approximation

    DEFF Research Database (Denmark)

    Gundersen, Anders Torp; Winther-Almstrup, Rasmus; Boesen, Michael

    A design of a reciprocal unit based on Newton-Raphson approximation is described and implemented. We present two different designs for single precisions where one of them is extremely fast but the trade-off is an increase in area. The solution behind the fast design is that the design is fully...

  13. System and Software Design for the Man Machine Interface System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong Seock; Kim, Chang Ho; Lee, Yoon Hee; Sohn, Se Do; Baek, Seung Min [KEPCO E and C, Daejeon (Korea, Republic of)

    2015-10-15

    The design of the safety MMIS(Man Machine Interface System) system has been performed using POSAFE-Q Programmable Logic Controller (PLC). The design of the non-safety MMIS has been performed using OPERASYSTEM Distributed Control System (DCS). This paper describes the design experiences from the design work of the MMIS using these new platforms. The SHN 1 and 2 MMIS has been developed using POSAFE-Q platform for safety and OPERASYSTEM for non-safety system. Through the utilization of the standardized platform, the safety system was developed using the above hardware and software blocks resulting in efficient safety system development. An integrated CASE tool has been setup for reliable software development. The integrated development environment has been setup formally resulting in consistent work. Even we have setup integrated development environment, the independent verification and validation including testing environment needs to be setup for more advanced environment which will be used for future plant.

  14. Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

  15. Design and implementation of STD32-BUS based reactor protection trip unit on FPGA imbaby

    International Nuclear Information System (INIS)

    Mahmoud, I.; Elnokity, O.A.; Refai, M.K.

    2007-01-01

    This paper presents a way to design and implement the Trip Unit of a Reactor Protection System (RPS) using a Field Programmable Gate Arrays (FPGA). Instead of the traditional embedded Microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the Trip Unit (TL1) existing in Egypt's 2' ' Research reactor ETRR-2. The existing embedded system is built around the STD32 field Computer Bus which used in industrial and process control applications. It is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. Therefore, the state machine of this bus is extracted from its timing diagrams and implemented in VHDL to interface the designed TU circuit. The proposed designed circuit implemented using ALTERA EPF10K10LC84-3 chip replaces the Single Board Computer which have the embedded SAY program of the TU providing the same integrated HAV and SAV functions implemented in FPGA Chip housed in an printed circuit board, which uses the same shape and specifications of STD32 boards. H/W implementation of both TU and STD32 Bus in VHDL addresses the issues of safety and reusability

  16. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  17. Applications of the systems theory to the designing of the sand preparation sub-system in foundry plants

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2009-07-01

    Full Text Available This study provides the basic principles for designing the functional structure of manufacturing systems and their components. The analysis of functional values is applied to create the technological and manufacturing model underlying the design of the foundry equipment with machine units and materials handling systems. Quoted examples illustrate the approved procedure to be applied to control the sand preparation process in a foundry.

  18. Some problems raised by the operation of large nuclear turbo-generator sets. Automatic control system for steam turbo-generator units

    International Nuclear Information System (INIS)

    Cecconi, F.

    1976-01-01

    The design of an appropriate automatic system was found to be useful to improve the control of large size turbo-generator units so as to provide easy and efficient control and monitoring. The experience of the manufacturer of these turbo-generator units allowed a system well suited for this function to be designed [fr

  19. Knowledge representation and knowledge base design for operator advisor system

    International Nuclear Information System (INIS)

    Hangos, K.M.; Sziano, T.; Tapolcai, L.

    1990-01-01

    The problems of knowledge representation, knowledge base handling and design has been described for an Operator Advisor System in the Paks Nuclear Power Plant. The Operator Advisor System is to be implemented as a part of the 5th and 6th unit. The knowledge of the Operator Advisor system is described by a few elementary knowledge items (diagnostic event functions, fault graph, action trees), weighted directed graphs have been found as their common structure. List-type and relational representation of these graphs have been used for the on-line and off-line part of the knowledge base respectively. A uniform data base design and handling has been proposed which consists of a design system, a knowledge base editor and a knowledge base compiler

  20. Primary shutdown system monitoring unit for nuclear power plants

    International Nuclear Information System (INIS)

    Khan, Tahir Kamal; Balasubramanian, R.; Agilandaeswari, K.

    2013-01-01

    Shut off rods made up of neutron absorbing material are used as Primary Shutdown System. To reduce the power of the reactor under certain abnormal operating conditions, these rods must go down into the core within a specified time. Any malfunctioning in the movement of rods cannot be tolerated and Secondary Shutdown System (SSS) must be actuated within stipulated time to reduce the reactor power. A special safety critical, hardwired electronics unit has been designed to detect failure of PSS Shut off rods movements and generate trip signals for initiating SSS. (author)

  1. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the exercises and pretests is testing the battery and cranking system. Pretests and performance checklists are provided for each of the four performance objectives contained in the unit.…

  2. Design and development of microblaze processor based Remote Terminal Units for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Gour, Aditya; Santhanaraj, A.; Behera, R.P.; Murali, N.; Satyamurty, S.A.V.

    2013-01-01

    Remote Terminal Units (RTUs) are single board remote data acquisition and control systems that are widely used in FBRs during all states of plant operation. Distributed Digital Control System (DDCS) architecture is being followed for the plant control and operation, which mandates the need for multiple sockets support in TCPIP Ethernet communication in an embedded system. Existing RTUs are 89C51 microcontroller based systems where the TCPIP communication is done using Wiznet Module. These modules can support maximum of four sockets and are already obsolete from the market. In this paper a new RTU design is described where the complete digital logic of a board is implemented in one single FPGA device using Soft-core processor and EMAC controller with multiple socket support for the Ethernet communication. This makes design more reliable and immune to obsolescence. (author)

  3. Design of the MiniSLAR system for Bruce A

    International Nuclear Information System (INIS)

    Gray, M.G.

    1995-01-01

    Cancellation of Bruce A Retube created the need to perform SLAR on Unit 1. The existing SLAR system cannot reach Unit 1 and alternative systems had limitations. The concept and design of MiniSLAR were driven by the availability of existing components made for Retube. The MiniSLAR concept was developed by a team with members representing operators, technicians, and designers from various departments within Ontario Hydro and GE Canada. Overall project leadership was provided by Bruce A Projects and Modifications Department with assistance from Ontario Hydro Nuclear Technology Services. The responsibility for detailed design was assigned by Ontario Hydro to GE Canada. The detailed design proceeded with continual input and review by the team. The MiniSLAR delivery machine consists of a closure removal ram, a shield plug removal ram and a SLAR tool delivery ram attached to the sliding plate of a horizontal indexing mechanism. The moving plate is constrained by guide rails to a fixed plate and seals against it with o-rings. A snout and clamping mechanism mounts on the front of the fixed plate. The machine mounts atop a work table which provides the various motions required for endfitting engagement. Some operations are performed manually while others are remote and automatic. (author)

  4. Development of design program for air handling units

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J. K.; Kim, J. H.; Kim, Y. K.; Kim, Y. I.; Kang, P. Y. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    An Air Handling Unit(AHU) has been usually designed by manual calculations. Drawing works together with design calculations should be redone for every designing work, and also be needed to make some corrections of them. In order to design the AHU more efficiently, an AHU program has been developed. The developed program on the Windows environment is operated by the Graphic User Interface(GUI) realized using the Visual Basic Interpreter. The program provides calculation sheet of coils, weights and pressures in a MS-Excel file format as well as design drawing of the AHU in a auto CAD file format idealized by AutoLISP. Those files of the commercial softwares make easier for a designer to transfer design results to the another company for bid via e-mail.

  5. Development of design program for air handling units

    International Nuclear Information System (INIS)

    Ham, J. K.; Kim, J. H.; Kim, Y. K.; Kim, Y. I.; Kang, P. Y.

    2000-01-01

    An Air Handling Unit(AHU) has been usually designed by manual calculations. Drawing works together with design calculations should be redone for every designing work, and also be needed to make some corrections of them. In order to design the AHU more efficiently, an AHU program has been developed. The developed program on the Windows environment is operated by the Graphic User Interface(GUI) realized using the Visual Basic Interpreter. The program provides calculation sheet of coils, weights and pressures in a MS-Excel file format as well as design drawing of the AHU in a auto CAD file format idealized by AutoLISP. Those files of the commercial softwares make easier for a designer to transfer design results to the another company for bid via e-mail

  6. Development of design program for air handling units

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.K.; Kim, J.H.; Kim, Y.K.; Kim, Y.I.; Kang, P.Y. [Hyundai Heavy Industries Co., Ltd. (Korea)

    2000-11-01

    An air handling unit(AHU) has been usually designed by manual calculations. Drawing works together with design calculations should be redone for every designing work, and also be needed to make some corrections of them. In order to design the AHU more efficiently, an AHU program has been developed. The developed program on the Windows environment is operated by the graphic user interface(GUI) realized using the Visual Basic Interpreter. The program provides calculation sheet of coils, weights and pressures in a MS-Excel file format as well as design drawing of the AHU in a Auto CAD file format idealized by AutoLISP. Those files of the commercial softwares make easier for a designer to transfer design results to the another company for bid via e-mail. (author). 5 refs., 9 figs., 3 tabs.

  7. Design and Performance of Energy Conversion Units of Betavoltaic Isotopic Batteries

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Zhang Huaming; Hu Rui; Wei Hongyuan; Xiong Xiaoling; Luo Shunzhong

    2010-01-01

    Based on the single crystal silicon semiconductor junction devices, the relationships between their configurable parameters and the electrical properties were discussed for the purpose of design of energy conversion units of betavoltaic isotopic batteries. Two kinds of silicon semiconductor junction devices as energy conversion units of betavoltaic batteries were designed and customized. The electrical output properties of the devices irradiated by 63 Ni source were measured. The results show that the new designed devices perform better than the existing commercial one in open-circuit voltage, output power and energy conversion efficiency. (authors)

  8. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  9. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  10. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  11. Designing information systems

    CERN Document Server

    Blethyn, Stanley G

    2014-01-01

    Designing Information Systems focuses on the processes, methodologies, and approaches involved in designing information systems. The book first describes systems, management and control, and how to design information systems. Discussions focus on documents produced from the functional construction function, users, operators, analysts, programmers and others, process management and control, levels of management, open systems, design of management information systems, and business system description, partitioning, and leveling. The text then takes a look at functional specification and functiona

  12. Design and Construction of a Home Automation System Using a ...

    African Journals Online (AJOL)

    Output units which comprise of the Liquid Crystal Display (LCD) and the relays which powers on and off the fan and bulbs, are incorporated in the circuit to make the results of test visible and complete the system design for the smart home. The result of the test shows that the system automatically switched on and off light ...

  13. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  14. SWEPP Gamma-Ray Spectrometer System software design description

    International Nuclear Information System (INIS)

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system

  15. SWEPP Gamma-Ray Spectrometer System software design description

    Energy Technology Data Exchange (ETDEWEB)

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  16. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  17. Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system

    International Nuclear Information System (INIS)

    Almansoori, Ali; Betancourt-Torcat, Alberto

    2015-01-01

    Highlights: • A design optimization model for the power sector has been developed. • We examine the influence of exogenous variables in the UAE power infrastructure. • Subsidizing fuel prices will stimulate fossil-based electricity generation. • Carbon tax and higher fuel prices are suitable options to decrease air emissions. • Accounting the social benefits of emissions avoidance incentivizes diversification. - Abstract: A Mixed Integer Linear Programming (MILP) formulation is presented for the optimal design of the United Arab Emirates’ (UAE) power system. The model was formulated in the General Algebraic Modeling System (GAMS), which is a mathematical modeling language for programming and optimization. Previous studies have either focused on the estimation of the UAE’s energy demands or the simulation of the operation of power technologies to plan future electricity supply. However, these studies have used international simulation tools such as “MARKAL” and “MESSAGE”; whereas the present work presents an optimization model. The proposed design optimization model can be used to estimate the most suitable combination of power plants under CO 2 emission and alternative energy targets, carbon tax, and social benefits of air emissions avoidance. Although the proposed model was used to estimate the future power infrastructure in the UAE, the model includes several standard power technologies; thus, it can be extended to other countries. The proposed optimization model was verified using historical data of the UAE power sector operation in the year 2011. Likewise, the proposed model was used to study the 2020 UAE power sector operations under three scenarios: domestic vs. international natural gas prices (considering different carbon tax levels), social benefits of using low emission power technologies (e.g., renewable and nuclear), and CO 2 emission constraints. The results show that the optimization model is a practical tool for designing the

  18. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to

  19. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to

  20. Testing of an End-Point Control Unit Designed to Enable Precision Control of Manipulator-Coupled Spacecraft

    Science.gov (United States)

    Montgomery, Raymond C.; Ghosh, Dave; Tobbe, Patrick A.; Weathers, John M.; Manouchehri, Davoud; Lindsay, Thomas S.

    1994-01-01

    This paper presents an end-point control concept designed to enable precision telerobotic control of manipulator-coupled spacecraft. The concept employs a hardware unit (end-point control unit EPCU) that is positioned between the end-effector of the Space Shuttle Remote Manipulator System and the payload. Features of the unit are active compliance (control of the displacement between the end-effector and the payload), to allow precision control of payload motions, and inertial load relief, to prevent the transmission of loads between the end-effector and the payload. This paper presents the concept and studies the active compliance feature using a simulation and hardware. Results of the simulation show the effectiveness of the EPCU in smoothing the motion of the payload. Results are presented from initial, limited tests of a laboratory hardware unit on a robotic arm testbed at the l Space Flight Center. Tracking performance of the arm in a constant speed automated retraction and extension maneuver of a heavy payload with and without the unit active is compared for the design speed and higher speeds. Simultaneous load reduction and tracking performance are demonstrated using the EPCU.

  1. Integrity Assessment of Essential Service Water System of Ulchin unit 1 and 2

    International Nuclear Information System (INIS)

    Lee, Sun Ki; Lee, Sang Kook; Jeong, Il Suk; Song, Taek Ho; Kwon, Jong Ju; Hong, Seong Yul; Lee, Jin Hwan

    2005-01-01

    Because of circulating water filtration system(CFI) and essential service water system(SEC) of Ulchin unit 1 and 2 were designed by commonness water intake structure, circulating water filtration system is managed by quality grade Q class. In this study, circulating water filtration system (CFI) examined revision possibility from present quality grade Q class to R class. It is proving that the operation of essential service water system (SEC) is always available regardless CFI conditions

  2. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  3. PORFLOW Simulations Supporting Saltstone Disposal Unit Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hang, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Taylor, G. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-10

    SRNL was requested by SRR to perform PORFLOW simulations to support potential cost-saving design modifications to future Saltstone Disposal Units in Z-Area (SRR-CWDA-2015-00120). The design sensitivity cases are defined in a modeling input specification document SRR-CWDA-2015-00133 Rev. 1. A high-level description of PORFLOW modeling and interpretation of results are provided in SRR-CWDA-2015-00169. The present report focuses on underlying technical issues and details of PORFLOW modeling not addressed by the input specification and results interpretation documents. Design checking of PORFLOW modeling is documented in SRNL-L3200-2015-00146.

  4. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    Science.gov (United States)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  5. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  6. E-ELT M5 field stabilisation unit scale 1 demonstrator design and performances evaluation

    Science.gov (United States)

    Casalta, J. M.; Barriga, J.; Ariño, J.; Mercader, J.; San Andrés, M.; Serra, J.; Kjelberg, I.; Hubin, N.; Jochum, L.; Vernet, E.; Dimmler, M.; Müller, M.

    2010-07-01

    The M5 Field stabilization Unit (M5FU) for European Extremely Large Telescope (E-ELT) is a fast correcting optical system that shall provide tip-tilt corrections for the telescope dynamic pointing errors and the effect of atmospheric tiptilt and wind disturbances. A M5FU scale 1 demonstrator (M5FU1D) is being built to assess the feasibility of the key elements (actuators, sensors, mirror, mirror interfaces) and the real-time control algorithm. The strict constraints (e.g. tip-tilt control frequency range 100Hz, 3m ellipse mirror size, mirror first Eigen frequency 300Hz, maximum tip/tilt range +/- 30 arcsec, maximum tiptilt error < 40 marcsec) have been a big challenge for developing the M5FU Conceptual Design and its scale 1 demonstrator. The paper summarises the proposed design for the final unit and demonstrator and the measured performances compared to the applicable specifications.

  7. Computer aided design of fast neutron therapy units

    International Nuclear Information System (INIS)

    Gileadi, A.E.; Gomberg, H.J.; Lampe, I.

    1980-01-01

    Conceptual design of a radiation-therapy unit using fusion neutrons is presently being considered by KMS Fusion, Inc. As part of this effort, a powerful and versatile computer code, TBEAM, has been developed which enables the user to determine physical characteristics of the fast neutron beam generated in the facility under consideration, using certain given design parameters of the facility as inputs. TBEAM uses the method of statistical sampling (Monte Carlo) to solve the space, time and energy dependent neutron transport equation relating to the conceptual design described by the user-supplied input parameters. The code traces the individual source neutrons as they propagate throughout the shield-collimator structure of the unit, and it keeps track of each interaction by type, position and energy. In its present version, TBEAM is applicable to homogeneous and laminated shields of spherical geometry, to collimator apertures of conical shape, and to neutrons emitted by point sources or such plate sources as are used in neutron generators of various types. TBEAM-generated results comparing the performance of point or plate sources in otherwise identical shield-collimator configurations are presented in numerical form. (H.K.)

  8. Computer-aided Nonlinear Control System Design Using Describing Function Models

    CERN Document Server

    Nassirharand, Amir

    2012-01-01

    A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...

  9. Verification and uncertainty evaluation of HELIOS/MASTER nuclear design system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Seung; Kim, J. C.; Cho, B. O. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    A nuclear design system HELIOS/MASTER was established and core follow calculations were performed for Yonggwang Unit 1 cycles 1 through 7 and Yonggwang Unit 3 cycles 1 through 2. The accuracy of HELIOS/MASTER system was evaluated by estimations of uncertainties of reactivity and peaking factors and by comparisons of the maximum differences of isothermal temperature coefficient, inverse boron worth and control rod worth with the CASMO-3/MASTER uncertainties. The reactivity uncertainty was estimated by 362 pcm, and the uncertainties of three-dimensional, axially integrated radial, and planar peaking factors were evaluated by 0.048, 0.034, and 0.044 in relative power unit, respectively. The maximum differences of isothermal temperature coefficient, inverse boron worth and control rod worth were within the CASMO-3/MASTER uncertainties. 17 refs., 17 figs., 10 tabs. (Author)

  10. Heat recovery unit operation of HVAC system in IMEF

    International Nuclear Information System (INIS)

    Paek, S. R.; Oh, Y. W.; Song, E. S.; Park, D. K.; Joo, Y. S.; Hong, K. P.

    2003-01-01

    HVAC system including a supply and exhaust air system in IMEF(Irradiated Materials Examination Facility) is an essential facility for preventing a leakage of radioactive materials and for a preservation of a working environment. It costs a lot to operate the HVAC system in IMEF because our ventilation type is once-through system, and an air flow is maintained from low level contamination area to high level and maintained high turns of ventilation air under certain conditions. As HRU(Heat Recovery Unit) at HVAC system based on PIEF(Post Irradiation Examination Facility) operation experiences is designed and adopted, it prevents from a heating coil freezing destruction in winter and makes much energy saving etc.. Heat pipe type HRU is adopted in IMEF, and a construction and operation result of HRU is examined

  11. Units for designing multidetector system for spectrometric data storage on the base of the 16Kx24 bit memory device

    International Nuclear Information System (INIS)

    Vagov, V.A.; Korobchenko, M.L.; Sirotin, A.P.

    1985-01-01

    Main units of the system for spectrometric data accumulation on the base of the 16Kx24 bit memory device are considered. Input units: counter unit and unit for organization of analysis are described. The applied method for multiplexing data removed into the counter unit permits to essentially reduce hardware loading. Application of some special functions in the unit for analysis organization simplifies data accumulation control to a large extent. The unit for analysis organization allows application of the memory with an address field up to 64K

  12. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  13. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  14. Experimental system design of liquid lithium-lead alloy bubbler for DFLL-TBM

    International Nuclear Information System (INIS)

    Xie Bo; Li Junge; Xu Shaomei; Weng Kuiping

    2011-01-01

    The liquid lithium-lead alloy bubbler is a very important composition in the tritium unit of Chinese Dual-Functional Lithium Lead Test Blanket Module (DFLL-TBM). In order to complete the construction and run of the bubbler experimental system,overall design of the system, main circuit design and auxiliary system design have been proposed on the basis of theoretical calculations for the interaction of hydrogen isotope with lithium-lead alloy and experiment for hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle. The key of this design is gas-liquid exchange packed column, to achieve the measurement and extraction of hydrogen isotopes from liquid lithium-lead alloy. (authors)

  15. Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  16. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  17. A mechanical design for a detection unit for a deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wolf, E. de, E-mail: e.dewolf@nikhef.nl [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2013-10-11

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector.

  18. A mechanical design for a detection unit for a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G.; Wolf, E. de

    2013-01-01

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector

  19. Measuring healthcare productivity - from unit to system level.

    Science.gov (United States)

    Kämäräinen, Vesa Johannes; Peltokorpi, Antti; Torkki, Paulus; Tallbacka, Kaj

    2016-04-18

    Purpose - Healthcare productivity is a growing issue in most Western countries where healthcare expenditure is rapidly increasing. Therefore, accurate productivity metrics are essential to avoid sub-optimization within a healthcare system. The purpose of this paper is to focus on healthcare production system productivity measurement. Design/methodology/approach - Traditionally, healthcare productivity has been studied and measured independently at the unit, organization and system level. Suggesting that productivity measurement should be done in different levels, while simultaneously linking productivity measurement to incentives, this study presents the challenges of productivity measurement at the different levels. The study introduces different methods to measure productivity in healthcare. In addition, it provides background information on the methods used to measure productivity and the parameters used in these methods. A pilot investigation of productivity measurement is used to illustrate the challenges of measurement, to test the developed measures and to prove the practical information for managers. Findings - The study introduces different approaches and methods to measure productivity in healthcare. Practical implications - A pilot investigation of productivity measurement is used to illustrate the challenges of measurement, to test the developed measures and to prove the practical benefits for managers. Originality/value - The authors focus on the measurement of the whole healthcare production system and try to avoid sub-optimization. Additionally considering an individual patient approach, productivity measurement is examined at the unit level, the organizational level and the system level.

  20. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Delfani, Shahram; Esmaeelian, Jafar; Karami, Maryam [Department of Installation, Building and Housing Research Center (BHRC), PO Box 13145-1696, Tehran (Iran, Islamic Republic of); Pasdarshahri, Hadi [Department of Mechanical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-11-15

    The performance of indirect evaporative cooling system (IEC) to pre-cool air for a conventional mechanical cooling system has been investigated for four cities of Iran. For this purpose, a combined experimental setup consisting of an IEC unit followed by a packaged unit air conditioner (PUA) was designed, constructed and tested. Two air simulators were designed and used to simulate indoor heating load and outdoor design conditions. Using of experimental data and an appropriate analytical method, the performance and energy reduction capability of combined system has been evaluated through the cooling season. The results indicate IEC can reduce cooling load up to 75% during cooling seasons. Also, 55% reduction in electrical energy consumption of PUA can be obtained. (author)

  1. Building Units Design and Scale Chemistry

    Science.gov (United States)

    Férey, Gérard

    2000-06-01

    The concept of a building unit (BU) is used in two ways: the first is an a posteriori tool for description of structures which can be used to imagine new topologies originating from the description; the second one, restricted to the routes leading to the solid from the solution, starts from the reality of these building units in the solution to design new solids obtained by the tuned precipitation of these BUs with proper counterions. The room temperature and the hydrothermal routes are examined. The existence of BUs with different sizes with close topologies, revealed by numerous examples, leads us to define the notion of "scale chemistry" which concerns the edification of solids with various BUs, either organic, hybrid, or inorganic, and the consequences it has for the corresponding frameworks and the voids they generate. Not only the framework is important, and applications of the existence of large cavities are discussed. The paper ends with a discussion of the new trends which arise from this topological concept.

  2. Unit Testing for Command and Control Systems

    Science.gov (United States)

    Alexander, Joshua

    2018-01-01

    Unit tests were created to evaluate the functionality of a Data Generation and Publication tool for a command and control system. These unit tests are developed to constantly evaluate the tool and ensure it functions properly as the command and control system grows in size and scope. Unit tests are a crucial part of testing any software project and are especially instrumental in the development of a command and control system. They save resources, time and costs associated with testing, and catch issues before they become increasingly difficult and costly. The unit tests produced for the Data Generation and Publication tool to be used in a command and control system assure the users and stakeholders of its functionality and offer assurances which are vital in the launching of spacecraft safely.

  3. Money, the Banking System and Monetary Policy in Canada: A Teaching Unit.

    Science.gov (United States)

    Curtis, Douglas C. A.; Staunton, Ted, Ed.

    One of a series of teaching units designed to introduce secondary school students to the Canadian economy, this handbook contains instructional materials on Canada's monetary system and policy. Material is organized and presented in terms of specific topic readings and illustrative activities. The topics covered in six sections are money, the…

  4. Internal fire protection analysis for the United Kingdom EPR design

    Energy Technology Data Exchange (ETDEWEB)

    Laid, Abdallah [Nuclear New Build Generation Company Ltd. (NNB GenCo), Barnwood (United Kingdom). EDF Energy Plc.; Cesbron, Mickael [Service Etudes et Project Thermiques et Nucleaires (SEPTEN), Lyon (France). EDF-SA

    2015-12-15

    In the deterministic design basis analysis of the United Kingdom (UK) EPR based nuclear power plants all postulated initiating events are grouped into two different types, internal faults and internal/external hazards. ''Internal Fires'' is one of the internal hazards analysed at the design stage of the UK EPR. In effect, the main safety objective for fire protection is to ensure that all the required safety functions are performed in the event of an internal fire. To achieve this safety objective, provisions for protection against fire risks are taken to: (i) limit the spread of a fire, protect the safety functions of the facility; (ii) limit the propagation of smoke and dispersion of toxic, radioactive, inflammable, corrosive or explosive materials, and (iii) ensure the achievement of a safe shutdown state, personnel evacuation and all other necessary emergency actions. This paper presents the UK EPR approach on how the above provisions are applied. Such provisions involve implementing means of fire prevention, surveillance, firefighting and limiting fire consequences, appropriate to the risks inherent to the facility. Overall, the design of the UK EPR fire protection systems is based on three types of measures: prevention, containment and control.

  5. Upgrade of Control and Protection System of the Ignalina Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Wright, Ronald E.; Fletcher, Norman; Sidnev, Victor E.; Bickel, John H.; Vianello, Aldo; Pearsall, Raymond D.

    2003-01-01

    The Ignalina nuclear power plant (NPP) Units 1 and 2 are Soviet-designed, RBMK (Reaktor Bolshoi Moschnosti Kipyashchiy), channelized, large power-type reactors. The original-design electrical capacity for each unit was 1500 MW. Unit 1 began operating in 1983, and Unit 2 was started up in 1987. In 1994, the government of Lithuania agreed to accept grant support for the Ignalina NPP Safety Improvement Program with funding supplied by the Nuclear Safety Account of the European Bank for Reconstruction and Development (EBRD). As conditions for receiving this funding, the Ignalina NPP agreed to prepare a comprehensive safety analysis report that would undergo independent peer review after it was issued. The EBRD Safety Panel oversaw preparation and review of the report. In 1996, the safety analysis report for Unit 1 was completed and delivered to the EBRD. Part of the analyses covered anticipated transients without scram (ATWS). The analysis showed that some ATWS scenarios could lead to unacceptable consequences in <1 min. The EBRD Safety Panel recommended to the government of Lithuania that the Ignalina NPP develop and implement a program of compensatory measures for the control and protection system before the unit would be allowed to return to operation following its 1998 maintenance outage. A compensatory control and protection system that would mitigate the unacceptable consequences was designed, procured, manufactured, tested, and installed. The project was funded by U.S. Department of Energy

  6. Overview of internal fire hazards aspects of ABWR design for United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kawai, Hiroki [Hitachi-GE Nuclear Energy, Ltd., Ibaraki (Japan)

    2015-12-15

    The ABWR (Advanced Boiling Water Reactor) is a generation III+ reactor, the most modern operational generation of nuclear power plants. The UK ABWR design is proposed for development and construction in the United Kingdom (UK), and under review by the Office for Nuclear Regulation (ONR) through Generic Design Assessment (GDA). The UK ABWR design has mainly two types of the safety system: ''preventing'' and ''mitigating'' a fault and their consequences. The prevention of internal hazards starts with design processes and procedures. These processes lead to limiting the sources of potential hazards. The mitigative safety systems are required to ensure the fundamental safety functions (FSFs): control of reactivity, Fuel cooling, long term heat removal, confinement/containment of radioactive materials, and others. Implementation of the safety philosophy is based upon redundant and diverse safety systems that deliver the FSFs. Three mechanical divisions are provided, each of which contains redundant systems, structures, and components (SSCs) capable of carrying out all the FSFs. The safety divisions are separated by robust barriers which act to contain a hazard in an affected division and prevent the spread of the hazard to a different division. The deterministic assessments and the hazard schedule argue that the rooms containing SSCs providing the FSFs are located in different fire safety divisions. The approach to maintaining the FSFs during and after internal fires is to ensure fires do not spread beyond that division to affect redundant equipment in other divisions. During the GDA process, it is demonstrated that generally barrier compartmentation (the divisional barrier walls, ceilings and floors) is sufficient to contain the postulated fires. The UK ABWR design has sufficient capability of withstanding the postulated internal fire hazard to achieve the FSFs. Further development is being undertaken with feedback in the GDA

  7. HTGR molten salt sensible energy transmission and storage system design and costs

    International Nuclear Information System (INIS)

    1981-09-01

    This report, which was prepared for Gas-Cooled Reactor Associates by United Engineers and Constructors under Contract No. GCRA/UE and C 81-203, presents the design and cost for a molten salt Sensible Energy Transmission and Storage (SETS) System. Although the reference system for this study is sized to be compatible with an 1170 MW(t) HTGR Nuclear Heat Source, the results and conclusions should be generally applicable to most large scale molten salt energy transmission system applications. A preliminary conceptual design is presented and alternative configurations are discussed. The sensitivity of system costs to variations in important system parameters are also presented. Costs for a reference case conceptual design are reported in constant 1980 dollars and inflated 1995 dollars

  8. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  9. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  10. Expansion of the Reporting System Paradigm to the United States Maritime Industry

    OpenAIRE

    Bixler, Jeffrey A.

    2009-01-01

    This paper focuses on the creation of a U.S. maritime reporting system designed to alert the industry of safety incidents and prevent accidents. A brief history of aviation safety reporting will be provided, followed by an analysis of eight recent U.S. maritime accidents that reveal a gap in maritime safety information sharing. This paper will also describe the United Kingdom’s maritime reporting system and the previous work completed on a U.S. maritime reporting system. This paper concludes ...

  11. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    Science.gov (United States)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-06-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  12. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    Science.gov (United States)

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Design of a didactic unit: the energy

    International Nuclear Information System (INIS)

    Meneses V, J.A.; Caballero S, C.

    2003-01-01

    In order to design didactic units a model is proposed which includes the following items: justify the subject of study, carry out a didactic approach and scientific analysis, specify the main principles, spell out the teaching materials and their sequence, define the teaching process and the activities programme, and finally to agree on the criteria and assessment strategies involved. An example of a lesson about the energy concept is shown. (Author)

  14. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  15. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    Science.gov (United States)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  16. Computer System Design System-on-Chip

    CERN Document Server

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  17. Nuclear thermal source transfer unit, post-blast soil sample drying system

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ralph S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valencia, Matthew J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-03

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in tool design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.

  18. Nuclear thermal source transfer unit, post-blast soil sample drying system

    International Nuclear Information System (INIS)

    Wiser, Ralph S.; Valencia, Matthew J

    2017-01-01

    Los Alamos National Laboratory states that its mission is ''To solve national security challenges through scientific excellence.'' The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in tool design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.

  19. Engine Tune-up Service. Unit 2: Charging System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the exercises and pretests is testing the charging system. Pretests and performance checklists are provided for each of the three performance objectives contained in…

  20. Engine Tune-Up Service. Unit 5: Fuel and Carburetion Systems. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Morse, David T.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 5, Fuel and Carburetion Systems; available separately as CE 031 217. Focus of the posttests is the inspecting and servicing of the fuel and carburetion systems. One multiple choice posttest is provided that covers the 10 performance objectives…

  1. A Modular Approach to Arithmetic and Logic Unit Design on a Reconfigurable Hardware Platform for Educational Purpose

    Science.gov (United States)

    Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali

    The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.

  2. General review of diagnostic systems in EDF PWR units

    International Nuclear Information System (INIS)

    Chevalier, R.; Brasseur, S.; Ricard, B.

    1998-01-01

    Since the beginning of the French nuclear program, Electricite de France (EDF) has looked for ways to improve the availability and safety of its nuclear units. Therefore, monitoring systems on turbogenerators, reactor coolant pumps, primary circuits and core internal structures were designed by the Research and Development Division and implemented with technologies available during the 1970's. However, mainly because of difficulties for data interpretation by plant personnel, EDF subsequently decided to design and develop different tools to help plant operators to process a diagnosis: - a new generation of the Monitoring and Diagnostic System called PSAD, - expert systems for diagnosis on reactor coolant pumps (RCP) 'DIAPO' and turbogenerator units (TG) 'DIVA', - diagnostic guides written for most equipment pending the installation of new monitoring and diagnosis systems. The first version of PSAD, installed in five units, performs on-line monitoring of the turbogenerator shaft line, steam inlet valves, the reactor coolant pumps and the generator stator. The second version not yet implemented, will include Loose Part Detection (LPD) and Core Internal Structure Monitoring (CISM). The level of diagnosis achieved by PSAD depends on the component monitored. The TG and RCP monitoring functions of PSAD compute high level diagnosis descriptors such as natural frequencies and long term trends but do not elaborate a diagnosis automatically. However, a diagnostic assistance window is available on-line, whenever a warning message is displayed, whether for immediate or later action. The window presents a diagnostic approach whose purpose is to find the causes of the symptoms observed. This diagnosis approach is automated in the DIVA and DIAPO expert systems. Numerous potential faults can be identified for both systems thanks to a hierarchy of abnormal situations. The user interactively answers questions when information is needed to progress in the diagnosis. The resulting

  3. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  4. Optimal maintenance policy incorporating system level and unit level for mechanical systems

    Science.gov (United States)

    Duan, Chaoqun; Deng, Chao; Wang, Bingran

    2018-04-01

    The study works on a multi-level maintenance policy combining system level and unit level under soft and hard failure modes. The system experiences system-level preventive maintenance (SLPM) when the conditional reliability of entire system exceeds SLPM threshold, and also undergoes a two-level maintenance for each single unit, which is initiated when a single unit exceeds its preventive maintenance (PM) threshold, and the other is performed simultaneously the moment when any unit is going for maintenance. The units experience both periodic inspections and aperiodic inspections provided by failures of hard-type units. To model the practical situations, two types of economic dependence have been taken into account, which are set-up cost dependence and maintenance expertise dependence due to the same technology and tool/equipment can be utilised. The optimisation problem is formulated and solved in a semi-Markov decision process framework. The objective is to find the optimal system-level threshold and unit-level thresholds by minimising the long-run expected average cost per unit time. A formula for the mean residual life is derived for the proposed multi-level maintenance policy. The method is illustrated by a real case study of feed subsystem from a boring machine, and a comparison with other policies demonstrates the effectiveness of our approach.

  5. HAL/SM system functional design specification. [systems analysis and design analysis of central processing units

    Science.gov (United States)

    Ross, C.; Williams, G. P. W., Jr.

    1975-01-01

    The functional design of a preprocessor, and subsystems is described. A structure chart and a data flow diagram are included for each subsystem. Also a group of intermodule interface definitions (one definition per module) is included immediately following the structure chart and data flow for a particular subsystem. Each of these intermodule interface definitions consists of the identification of the module, the function the module is to perform, the identification and definition of parameter interfaces to the module, and any design notes associated with the module. Also described are compilers and computer libraries.

  6. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  7. Conceptual design of a Langmuir probe system for the tokamak ASDEX-UPGRADE

    International Nuclear Information System (INIS)

    Anastassiadis, A.; Tsingas, A.C.; Tsois, N.N.; Zoumbos, G.A.

    1985-05-01

    The conceptual design of a Langmuir probe system for the tokamak ASDEX-UPG is presented. This system is intended to carry out electrostatic measurements, in space and time, on the boundary layer plasma over the largest possible volume of the divertor plasma during discharges. Conducted by preset design requirements a fast probe system is proposed. During discharges signal measurements will be performed by means of a data-acquisition system and the motion will be controlled by a real-time computer. The desired information concerning plasma parameters and the motion of the probe system will be available to the diagnostician via a video display unit. (author)

  8. Information System Design Methodology Based on PERT/CPM Networking and Optimization Techniques.

    Science.gov (United States)

    Bose, Anindya

    The dissertation attempts to demonstrate that the program evaluation and review technique (PERT)/Critical Path Method (CPM) or some modified version thereof can be developed into an information system design methodology. The methodology utilizes PERT/CPM which isolates the basic functional units of a system and sets them in a dynamic time/cost…

  9. VLSI System Implementation of 200 MHz, 8-bit, 90nm CMOS Arithmetic and Logic Unit (ALU Processor Controller

    Directory of Open Access Journals (Sweden)

    Fazal NOORBASHA

    2012-08-01

    Full Text Available In this present study includes the Very Large Scale Integration (VLSI system implementation of 200MHz, 8-bit, 90nm Complementary Metal Oxide Semiconductor (CMOS Arithmetic and Logic Unit (ALU processor control with logic gate design style and 0.12µm six metal 90nm CMOS fabrication technology. The system blocks and the behaviour are defined and the logical design is implemented in gate level in the design phase. Then, the logic circuits are simulated and the subunits are converted in to 90nm CMOS layout. Finally, in order to construct the VLSI system these units are placed in the floor plan and simulated with analog and digital, logic and switch level simulators. The results of the simulations indicates that the VLSI system can control different instructions which can divided into sub groups: transfer instructions, arithmetic and logic instructions, rotate and shift instructions, branch instructions, input/output instructions, control instructions. The data bus of the system is 16-bit. It runs at 200MHz, and operating power is 1.2V. In this paper, the parametric analysis of the system, the design steps and obtained results are explained.

  10. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  11. Foundations of the International System of Units (SI).

    Science.gov (United States)

    Nelson, Robert A.

    1981-01-01

    Traces the events leading to the creation of the International Bureau of Weights and Measures (BIPM). Discusses how the units have been represented by their standards, and investigates how the original metric system evolved into the International System of Units (SI), focusing on the meter, second, kilogram, and electrical units. (SK)

  12. Operator support system for power unit control in abnormal modes of operation

    International Nuclear Information System (INIS)

    Kurka, J.

    1993-01-01

    I and C system technology, partly Soviet and partly Czechoslovakian, used on the NPP Dukovany units represents the control technology standard of late 70-ties and it becomes the weak part of the whole system. The modernization of the system, therefore, is necessary and it is already in preparation. The specification of both the scope and the depth of upgrading/replacement is being carried out within the framework of the PHARE program. The second phase of the program aimed at the final specifications of requirements on new I and C system is in progress. The output will serve as detailed specification for bid invitation for control system supplier. Parallely, the preparation of specification for WWER-440 full-scope plant simulator for operator training is in progress as well. In the case of two units with WWER-1000 MW reactors, the completion of construction of which was even threaten for a certain period of time, essential changes have taken place in the design of both the I and C systems and the reactor core. 7 figs

  13. Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Kai Juan

    2016-11-01

    Full Text Available The concept of greywater recycling and reuse has gradually become one of the most important strategies in water stressed countries. Due to a high population density and uneven rainfall distribution, the annual average rainfall distribution per capita in Taiwan is one fifth of the global average, which makes Taiwan a seriously water-stressed country. This study used the unit of a family of four as the target and reexamined the zoning concepts of water usage areas, followed by integrating pipeline configuration, water storage design and a filtering system to propose an Interior Customized Greywater System (ICGS which is based on the application for the family unit. This system can be customized and flexibly adjusted according to household space. In order to verify the feasibility and viability of system, this study performed system configuration and design based on real cases and proposed three scenarios to simulate a 20 year life cycle for cost economic analysis. The result reveals that this system has a minimum payback period of 4 years and provides investment incentives. For regions or countries which have higher water cost or are more water stressed, ICGS can significantly improve the processing and utilization of water.

  14. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  15. Optimal hybrid renewable energy design in autonomous system using Modified Electric System Cascade Analysis and Homer software

    International Nuclear Information System (INIS)

    Zahboune, Hassan; Zouggar, Smail; Krajacic, Goran; Varbanov, Petar Sabev; Elhafyani, Mohammed; Ziani, Elmostafa

    2016-01-01

    Highlights: • New approach to integrate the Pinch Analysis illustrated. • Total annual cost and loss of power supply probability are the objective functions. • The new Hybrid Cascade Table to determine the optimal system design. • The performances of the new method are compared with Homer Pro. - Abstract: In this paper, a method for designing hybrid electricity generation systems is presented. It is based on the Modified Electric System Cascade Analysis method. The Power Pinch analysis is used as a guideline for development of an isolated power supply system, which consists of photovoltaic panels, wind turbines and energy storage units. The design procedure uses a simulation model, developed using MATLAB/SIMULINK and applies the developed algorithms for obtaining an optimal design. A validation of the Modified Electric System Cascade Analysis method is performed by comparing the obtained results with those from the Homer Pro software. The procedure takes as inputs hourly wind speed, solar radiation, demands, as well as cost data, for the generation and storage facilities. It is also applied to minimize the loss of power supply probability and to minimize the number of storage units. The algorithm has been demonstrated with a case study on a site in Oujda city, with daily electrical energy demand of 18.7 kWh, resulting in a combination of photovoltaic panels, wind turbine and batteries at minimal cost. The results from the Modified Electric System Cascade Analysis and HOMER Pro show that both tools successfully identified the optimal solution with difference of 0.04% in produced energy, 5.4% in potential excess of electricity and 0.07% in the cost of the energy.

  16. A review on progress of man-machine interface system designs for Japanese PWRs

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Yamamoto, Yoshihiro; Magari, Takayuki.

    1994-01-01

    Historical development of Instrumentation and Control (I and C) system designing for the PWR plants in Kansai Electric Co. Ltd is firstly reviewed with respect to the conventional PWRs in the past, brand-new PWRs (Ohi 3/4 units) and advanced PWRs (APWR) in Japan. The major features of the APWR I and C system design are extensive application of digital computer control technology and advanced man-machine interface in order to enhance safety and reliability of total I and C system and to improve human factors in nuclear power plant operation. Comparative study of the APWR's I and C system design with the EPRI's User Requirement Definitions (URD) resulted in that the current Japanese APWR I and C system design meets generally with the EPRI URD conditions except for those items mainly set by the present national regulatory guidelines. The remaining problems in the current I and C system design are discussed which include the issues on future direction of man-machine interface development. (author)

  17. 24 CFR 3280.904 - Specific requirements for designing the transportation system.

    Science.gov (United States)

    2010-04-01

    ... utilize a fabricated steel frame assembly, upon which the manufactured home structure is constructed, it.... (a) General. The entire system (frame, drawbar and coupling mechanism, running gear assembly, and lights) shall be designed and constructed as an integrated, balanced and durable unit which is safe and...

  18. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  19. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    Science.gov (United States)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  20. A socio-technical approach for the design of a production control system : towards controllable production units

    NARCIS (Netherlands)

    Slomp, Jannes; Ruël, Gwenny C.

    2000-01-01

    In the design of a production control system much attention is usually paid to technicalaspects, whereas the elaboration upon social aspects remain underexposed. SociotechnicalSystems Theory (SST) emphasizes the importance of finding a joint optimization between the technical and the social systems

  1. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  2. Design of a quality assurance system in the nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Garcia Rojas Palacios, L.

    1992-01-01

    A)For the first time a project on nuclear fuel fabrication is going to be lead in this country. For this reason the work is oriented to establish a quality assurance system for the different stages of fuel fabrication. C) The work of this thesis was developed first by means of an analysis of quality philosophies of Deming, Ishikawa, Juran and Crosby from which several important points were stracted to be used in the designed quality system. Metrology and normalization are so important for quality control that a study of them is made considering definitions, unit systems and type of errors (for Metrology) as well as standards for quality systems, qualification, destructive and non destructive tests, shipment, packing for nuclear power plants. With the standards as a basis, the working strategy for the system was reached, as well as the design of control cards and the design of documents for inspection control, personnel and its documentation and finally the diagrams for each one of the fabrication stages

  3. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  4. Design of improved fuel cell controller for distributed generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Olsen Berenguer, F.A. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    The world has been undergoing a deregulation process which allowed competition in the electricity generation sector. This situation is bringing the opportunity for electricity users to generate power by using small-scale generation systems with emerging technologies, allowing the development of distributed generation (DG). A fuel cell power plant (FCPP) is a distributed generation technology with a rapid development because it has promising characteristics, such as low pollutant emissions, silent operation, high efficiency and long lifetime because of its small number of moving parts. The power conditioning system (PCS) is the interface that allows the effective connection to the electric power system. With the appropriate topology of the PCS and its control system design, the FCPP unit is capable of simultaneously performing both instantaneous active and reactive power flow control. This paper describes the design and implementation of a novel high performance PCS of an FCPP and its controller, for applications in distributed generation systems. A full detailed model of the FCPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed system is validated by digital simulation in SimPowerSystems (SPS) of MATLAB/Simulink. (author)

  5. Organizational Design within University Extension Units: Some Concepts, Options, and Guidelines

    Science.gov (United States)

    Baker, Harold R.

    1976-01-01

    Drawing on the behavioral sciences, the author outlines alternative modes of structuring and organizing an extension unit. The advantages and disadvantages of several organizational design options, the purposes and management of the temporary task force, and some general guidelines for making organizational design decisions are discussed.…

  6. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    International Nuclear Information System (INIS)

    Tate, R.E.

    1982-01-01

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a 238 PuO 2 -fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g

  7. The Design, Implementation, and Evaluation of a Digital Interactive Globe System Integrated into an Earth Science Course

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2018-01-01

    The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…

  8. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  9. Photovoltaic balance-of-system designs and costs at PVUSA

    Science.gov (United States)

    Reyes, A. B.; Jennings, C.

    1995-05-01

    This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA's main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA's key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

  10. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  11. Design of the environment of care for safety of patients and personnel: does form follow function or vice versa in the intensive care unit?

    Science.gov (United States)

    Bartley, Judene; Streifel, Andrew J

    2010-08-01

    We review the context of the environment of care in the intensive care unit setting in relation to patient safety and quality, specifically addressing healthcare-associated infection issues and solutions involving interdisciplinary teams. Issues addressed include current and future architectural design and layout trends, construction trends affecting intensive care units, and prevention of construction-associated healthcare-associated infections related to airborne and waterborne risks and design solutions. Specific elements include single-occupancy, acuity-scalable intensive care unit rooms; environmental aspects of hand hygiene, such as water risks, sink design/location, human waste management, surface selection (floor covering, countertops, furniture, and equipment) and cleaning, antimicrobial-treated or similar materials, ultraviolet germicidal irradiation, specialized rooms (airborne infection isolation and protective environments), and water system design and strategies for safe use of potable water and mitigation of water intrusion. Effective design and operational use of the intensive care unit environment of care must engage critical care personnel from initial planning and design through occupancy of the new/renovated intensive care unit as part of the infection control risk assessment team. The interdisciplinary infection control risk assessment team can address key environment of care design features to enhance the safety of intensive care unit patients, personnel, and visitors. This perspective will ensure the environment of care supports human factors and behavioral aspects of the interaction between the environment of care and its occupants.

  12. Assessment and Design of Illumination in the Unit of Carbon Dioxide Gas of Khuzestan Zam Zam Company

    Directory of Open Access Journals (Sweden)

    Rangkooy

    2015-04-01

    Full Text Available Background Light is the first that necessary for any effort. This factor, more than any physical variable, affects human labor. Two properties of cognitive and psychological lighting in the workplace can affect human performance. Objectives This study aimed to assess the illuminance in CO2 Gas unit of Khuzestan Zam Zam Company, and resolve its light deficiency through artificial lighting design. Materials and Methods This study is a descriptive-analytical based on survey of natural and artificial lighting sources in the workplace. It also included measurement of lighting levels in 3 shifts, calculating the average illuminance and comparing with recommended values, drawing graphs of results measured illuminance and finally designing the lighting of the unit by lumen method with room index (Kr. The study was conducted between March and June 2006 and its data were analyzed with 1-way analysis of variance (ANOVA. Results Mean ± SD level of illuminance in the morning, evening, and night was 211.31 ± 292.07, 182.16 ± 205.16, 67.47 ± 71.10 (lx, respectively. The results showed that there is a significant difference (P < 0.001 between average illuminance of 3 shifts of morning (day light, evening, and night (artificial light and the standard illuminance value (300 lx, which entails the lighting design’s work area for this unit. According to the design of artificial lighting base on the lumen method calculations in CO2 Gas unit, 400, 250 watt Metal Halides and 10585 watt compact fluorescent lamps were required, which their numbers were 610 and 44, respectively. Conclusions This paper considered the method based on comprehensive surveys of workplace illuminance levels (natural light and artificial light and design of lighting system as one of workplace physical factors in order to increase the efficiency of the production unit, decrease in carelessness, fatigue errors, and work accident.

  13. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  14. Design, fabrication, and dynamic testing of a V-groove radiator mechanical development unit

    Science.gov (United States)

    Petrick, S. Walter; Bard, Steven

    1988-01-01

    This paper describes the design, fabrication, and dynamic testing of a V-groove radiator development unit. The intended goal was to survive the dynamic environment of the Mars Observer mission. The development unit was designed to achieve a temperature of 80 K with a heat load of about 80 milliwatts. An analysis was performed to predict the thermal performance of the development unit. The radiator with a mass mockup of a Gamma Ray Spectrometer detector, the most massive of the candidate Mars Observer instrument detectors (1.7 Kg), passed vibration and acoustic testing to the Mars Observer requirements in effect at that time.

  15. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  16. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liao, Huafei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constituted a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.

  17. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  18. Development of a unit suitable for corrosion monitoring in district heating systems. Experiences with the LOCOR-cell test method

    DEFF Research Database (Denmark)

    Andersen, Asbjørn; Hilbert, Lisbeth Rischel

    2004-01-01

    A by-pass unit suitable for placement of a number of different probes for corrosion monitoring has been designed. Also measurements of water parameters are allowed in a side stream from the unit. The project is a part of the Nordic Innovation Fund project KORMOF. The by-pass unit has been installed...... in 6 pressurised circulating heating systems and in one cooling system. 7 different corrosion monitoring methods have been used to study corrosion rates and types in dependency of water chemistry. This paper describes the design of the by-pass unit including water analysis methods. It also describes...... the purpose, background and gained results of one of the used monitoring techniques, the crevice corrosion measurements obtained by the LOCOR-Cell„§. The crevice corrosion cell was developed by FORCE Technology in a previous district heating project financed by Nordic Industrial Fund (1)(2). Results from...

  19. Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe

    Science.gov (United States)

    James Wacker; James (Scott) Groenier

    2010-01-01

    The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...

  20. Design of overload vehicle monitoring and response system based on DSP

    Science.gov (United States)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  1. ShakeAlert—An earthquake early warning system for the United States west coast

    Science.gov (United States)

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  2. Intelligent Balanced Device and its Sensing System for Beam Pumping Units

    Directory of Open Access Journals (Sweden)

    Hangxin WEI

    2014-11-01

    Full Text Available In order to save the energy of the beam pumping unit, the intelligent balanced device was developed. The device can adjust the position of the balanced-block automatically by the single chip microcomputer controller, and the fuzzy PD control algorithm was used to control the servo motor of the device. Since some signals should be inputted into the intelligent balanced device to calculate the balanced index of the pumping unit, the signals sensing system were designed. The sensing system includes the electric current sensor and voltage sensor of the main motor, the displacement sensor and the force sensor of the horse head. The sensing network has three layers: slave station, relay station and master station. The data transmission between them is based on ZigBee and GPRS method which can adapt the environment of the oil field. The results of application show that the intelligent balanced device and its sensing system can have the effect of reducing the power consumption, working reliability and communication efficiently.

  3. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  4. Effects of SMES units on power system stability

    International Nuclear Information System (INIS)

    Byerly, R.T.; Juves, J.A.

    1980-01-01

    A mathematical model suitable for representing SMES units in power system stability studies has been developed and incorporated into an existing large-scale stability program. Demonstration studies have been performed which emphasize the use of SMES units to improve the damping of oscillations associated with synchronizing power flow among generators. The capability exists to conduct stability studies of large systems which include SMES units

  5. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  6. Performance test of the prototype-unit for J-PARC machine protection system

    International Nuclear Information System (INIS)

    Sakaki, Hironao; Nakamura, Naoki; Takahashi, Hiroki; Yoshikawa, Hiroshi

    2004-03-01

    In High Intensity Proton Accelerator Project (J-PARC), the high-power proton beam is accelerated. If the beam in J-PARC is not stopped at a few micro seconds or less, the fatal thermal shock destruction is caused on the surface of accelerating structure, because of the high-power proton beam. To avoid the thermal shock damage, we designed the high-speed machine protection system. And, the prototype unit for the system was produced. This report shows the result of its performance test. (author)

  7. Application of Digital Technology for the Plant Protection System in Ulchin Nuclear Power Plant Units 5 and 6

    International Nuclear Information System (INIS)

    Deucksoo, Lee; Insik, Kim

    2006-01-01

    Since the completion of construction of Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4), the first units of the OPR (Optimized Power Reactor) series, various advanced design features have been incorporated to the following OPRs. The Ulchin Nuclear Power Plant Units 5 and 6(UCN 5 and 6) which started commercial operation in Korea from 2004 and 2005 respectively, are designed to provide improvements in safety, reliability and costs by applying both advanced proven technology and experiences gained from the construction and operation of the previous OPRs. Among those improvements, the digital plant protection system (DPPS) and the digital engineered safety feature actuation system (DESFAS) are the key elements to the UCN 5 and 6 designs. The DPPS and DESFAS utilizing the digital computer technology offer a solution to the obsolescence problem of analog system. These features also provide the potential for additional benefits such as ease of maintenance, increased performance, reduction of internal and external cross channel wiring, improvement of the surveillance testability and flexibility of control logic programming change. During the initial design stage, the Korean regulatory body had evaluated these design concepts intensively and concluded it to be acceptable for the safety point of view. Also, in-depth review on the detailed design and the special evaluation/audit for the software design process has been performed to secure the quality of the software. As a result, every issue raised during licensing review has been clarified and the operating licenses for the UCN 5 and 6 were issued in October, 2003 and October, 2004 respectively, by the government. In this paper, design characteristics of the UCN 5 and 6 are introduced, and advanced design features and implementation process are presented focused on the DPPS/DESFAS with some benefit analysis results. (authors)

  8. Conceptual design and related R and D on ITER mechanical based primary pumping system

    International Nuclear Information System (INIS)

    Tanzawa, Sadamitsu; Hiroki, Seiji; Abe, Tetsuya; Shimizu, Katsusuke; Inoue, Masahiko; Watanabe, Mitsunori; Iguchi, Masashi; Sugimoto, Tomoko; Inohara, Takashi; Nakamura, Jun-ichi

    2008-12-01

    The primary vacuum pumping system of the International Thermonuclear Experimental Reactor (ITER) exhausts a helium (He) ash resulting from the DT-burn with excess DT fueling gas, as well as performing a variety of functions such as pump-down, leak testing and wall conditioning. A mechanical based vacuum pumping system has some merits of a continuous pumping, a much lower tritium inventory, a lower operational cost and easy maintenance, comparing with a cryopump system, although demerits of an indispensable magnetic shield and insufficient performance for hydrogen (H 2 ) pumping is are well recognized. To overcome the demerits, we newly fabricated and tested a helical grooved pump (HGP) unit suitable for H 2 pumping at the ITER divertor pressure of 0.1-10 Pa. Through this R and D, we successfully established many design and manufacturing databases of large HGP units for the lightweight gas pumping. Based on the databases, we conceptually designed the ITER vacuum pumping system mainly comprising the HGP with an optimal pump unit layout and a magnetic shield. We also designed conceptually the reduced cost (RC)-ITER pumping system, where a compound molecular pump combining turbine bladed rotors and helical grooved ones was mainly used. The ITER mechanical based primary pumping system proposed has eventually been a back-up solution, whereas a cryopump based one was formally selected to the ITER for construction. The mechanical pumps are increasingly used in many areas with well sophisticated performance, so we believe that fusion reactors of subsequent prototype ones will select the mechanical based pumping system due to primarily a high operational reliability and a cost melt. (author)

  9. An operating nuclear utility's experience with the ALARA design of a new nuclear unit

    International Nuclear Information System (INIS)

    Rodgers, R.C.

    1985-01-01

    This talk presents a review of how operating experience at Northeast Utilities has been factored into the design of a new nuclear unit and the development and management of the radiation protection program. Their operational experience has indicated that there are two facets to keeping radiation exposures ALARA. The first is the proper ALARA design of the unit. The other facet is the design of a comprehensive radiation protection program. The author discusses these facets in some detail

  10. Ball handling system for tech united soccer robots

    NARCIS (Netherlands)

    Gerrits, K.P.; Molengraft, van de M.J.G.; Hoogendijk, R.; Steinbuch, M.

    2012-01-01

    This pre-master end project is done for team Tech United of Eindhoven University of Technology. The Tech United team is a group of students and employees who design, build and program soccer robots to compete in the RoboCup Middle Size League. RoboCup is a worldwide competition in which two teams of

  11. Expression of interest: transcriptomics and the designation of conservation units.

    Science.gov (United States)

    Hansen, Michael M

    2010-05-01

    An important task within conservation genetics consists in defining intraspecific conservation units. Most conceptual frameworks involve two steps: (i) identifying demographically independent units, and (ii) evaluating their degree of adaptive divergence. Whereas a plethora of methods are available for delineating genetic population structure, assessment of functional genetic divergence remains a challenge. In this issue, Tymchuk et al. (2010) study Atlantic salmon (Salmo salar) populations using both microsatellite markers and analysis of global gene expression. They show that important gene expression differences exist that can be interpreted in the context of different ecological conditions experienced by the populations, along with the populations' histories. This demonstrates an important potential role of transcriptomics for designating conservation units.

  12. A Framework for Systemic Design

    Directory of Open Access Journals (Sweden)

    Alex Ryan

    2014-12-01

    Full Text Available As designers move upstream from traditional product and service design to engage with challenges characterised by complexity, uniqueness, value conflict, and ambiguity over objectives, they have increasingly integrated systems approaches into their practice. This synthesis of systems thinking with design thinking is forming a distinct new field of systemic design. This paper presents a framework for systemic design as a mindset, methodology, and set of methods that together enable teams to learn, innovate, and adapt to a complex and dynamic environment. We suggest that a systemic design mindset is inquiring, open, integrative, collaborative, and centred. We propose a systemic design methodology composed of six main activities: framing, formulating, generating, reflecting, inquiring, and facilitating. We view systemic design methods as a flexible and open-ended set of procedures for facilitating group collaboration that are both systemic and designerly.  

  13. Nursing Leaders' Satisfaction with Information Systems in the Day-to-Day Operations Management in Hospital Units.

    Science.gov (United States)

    Peltonen, Laura-Maria; Junttila, Kristiina; Salanterä, Sanna

    2018-01-01

    Information usage in the day-to-day operations management of hospital units is complex due to numerous information systems in use. The aim of this study was to describe and compare nurse leaders' satisfaction with information systems used in the day-to-day operations management in hospital units. The design was a cross-sectional survey with five questions rated from one (disagree) to five (fully agree). The response rate was 65 % (n = 453). Respondents reported fair satisfaction with how information systems support decision-making (median 4, IQR 3-4) and improve ease of access to information (median 4, IQR 3-4). However, respondents were less satisfied with how systems improve speed of access to information (median 3, IQR 3-4). Nor did respondents think that systems were developed for them (median 3, IQR 2-4). Respondents further reported needing numerous systems daily to support decision-making (median 4, IQR 3-5). A clear need for one system, which would gather important information for display was stated (median 5, IQR 4-5). Work experience, gender and time when overseeing the unit were associated with some aspects related to satisfaction. In conclusion, information system improvements are needed to better support the day-to-day operations management in hospital units.

  14. Environmental Design for Patient Families in Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Mahbub Rashid

    2010-01-01

    Full Text Available The purpose of this paper is to define the role of environmental design in improving family integration with patient care in Intensive Care Units (ICUs. It argues that it is necessary to understand family needs, experience and behavioral responses in ICUs to develop effective models for family integration. With its two components—the “healing culture” promoting effective relationships between caregivers and care seekers, and the “environmental design” supporting the healing culture—a “healing environment of care” can be an effective family integration model. This paper presents evidence showing how environmental design may affect families in ICUs, and proposes design recommendations for creating a healing environment of care promoting family integration in ICUs.

  15. SSV Launch Monitoring Strategies: HGDS Design Implementation Through System Maturity

    Science.gov (United States)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    With over 500,000 gallons of liquid hydrogen and liquid oxygen, it is of vital importance to monitor the space shuttle vehicle (SSV) from external tank (ET) load through launch. The Hazardous Gas Detection System (HGDS) was installed as the primary system responsible for monitoring fuel leaks within the orbiter and ET. The HGDS was designed to obtain the lowest possible detection limits with the best resolution while monitoring the SSV for any hydrogen, helium, oxygen, or argon as the main requirement. The HGDS is a redundant mass spectrometer used for real-time monitoring during Power Reactant Storage and Distribution (PRSD) load and ET load through launch or scrub. This system also performs SSV processing leak checks of the Tail Service Mast (TSM) umbilical quick disconnects (QD's), Ground Umbilical Carrier Plate (GUCP) QD's and supports auxiliary power unit (APU) system tests. From design to initial implementation and operations, the HGDS has evolved into a mature and reliable launch support system. This paper will discuss the operational challenges and lessons learned from facing design deficiencies, validation and maintenance efforts, life cycle issues, and evolving requirements

  16. Designing Deliberation Systems

    DEFF Research Database (Denmark)

    Rose, Jeremy; Sæbø, Øystein

    2010-01-01

    the potential to revitalize and transform citizen engagement in democracy.  Although the majority of web 2.0 systems enable these discourses to some extent, government institutions commission and manage specialized deliberation systems (information systems designed to support participative discourse) intended...... to promote citizen engagement.  The most common examples of these are political discussion forums.  Though usually considered trivial adaptations of well-known technologies, these types of deliberative systems are often unsuccessful, and present a distinct set of design and management challenges.......  In this article we analyze the issues involved in establishing political deliberation systems under four headings: stakeholder engagement, web platform design, service management, political process re-shaping and evaluation and improvement.  We review the existing literature and present a longitudinal case study...

  17. Analysis of risk reduction measures applied to shared essential service water systems at multi-unit sites

    International Nuclear Information System (INIS)

    Kohut, P.; Musicki, Z.; Fitzpatrick, R.

    1991-06-01

    This report summarizes a study performed by Brookhaven National Laboratory for the US Nuclear Regulatory Commission in support of the resolution of NRC Generic Issue 130. GI-130 is concerned with the potential core damage vulnerability resulting from failure of the emergency service water (ESW) system in selected multiplant units. These multiplant units are all twin pressurized water reactor designs that have only two ESW pumps per unit (one per train) backed up by a unit crosstie capability. This generic issue applies to seven US sites (14 plants). The study established and analyzed the core damage vulnerability and identified potential improvements for the ESW system. It obtained generic estimates of the risk reduction potential and cost effectiveness of each potential improvement. The analysis also investigated the cost/benefit aspects of selected combinations of potential improvements. 4 figs., 62 tabs

  18. A multi-purpose unit concept to integrate storage, transportation, and the engineered barrier system

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    The Multi-Purpose Unit (MPU) is a new concept for standardizing and integrating the waste management functions of spent fuel storage, transportation, and geologic disposal. The MPU concept would use one unit, composed of a relatively thick-walled inner canister with a multi-purpose overpack, to meet the requirements for storage in 10 CFR 72, transportation in 10 CFR 71, and the engineered barrier system in 10 CFR 60. The MPU concept differs from the recently proposed Multi-Purpose Canister (MPC) concept in that the MPU concept uses a single multi-purpose overpack for storage, transportation, and geologic disposal, while the MPC concept uses separate and unique overpacks for each of these system functions. A design concept for the MPU is presented along with an estimate of unit costs. An initial evaluation of overall system cost showed that the MPU concept could be economically competitive with the current reference system. The MPU concept provides the potential for significant reduction, simplification, and standardization of Civilian Radioactive Waste Management (CRWMS) facilities and operations, including those at the utilities, during waste acceptance and transportation, and at the Monitored Retrievable Storage (MRS) facility and the repository. The primary issues for the MPU concept relate to uncertainties with respect to licensing, and the programmatic risks associated with implementing the MPU concept before the repository design is finalized. The strong potential exhibited by the MPU concept demonstrates that this option merits additional development and should be considered in the next phase of work on multi-purpose concepts for the CRWMS

  19. Design and implementation of five-axis transformation function in CNC system

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2014-04-01

    Full Text Available To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle-tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software structure, the instructions with respect to the cutter’s position and orientation can be directly carried out in the CNC system.

  20. Effects of Patient Care Unit Design and Technology on Nurse and Patient Care Technician Communication.

    Science.gov (United States)

    Beck, Mary S; Doscher, Mindy

    2018-04-01

    The current study described RN and patient care technician (PCT) communication in centralized and hybrid decentralized workstation designs using hands-free communication technology and infrared locator badge technology to facilitate communication. New construction of an oncology unit provided the opportunity to compare staff communication in two different workstation designs. Observations and questionnaires compared nurse and PCT communication in the two-unit designs. Descriptive statistics were used to analyze the differences. The hybrid decentralized unit had increased use of hands-free communication technology and hallway communication by nurses and PCTs, and increased patient room communication by nurses. Perceptions of communication between nurses and PCTs and congruency of priorities for care were similar for both units. The locator badge technology had limited adoption. Replacement of nurse workstations with new construction or remodeling impact staff communication patterns, necessitating that nurse leaders understand the impact of design and technology on communication. [Journal of Gerontological Nursing, 44(4), 17-22.]. Copyright 2018, SLACK Incorporated.

  1. Structural design by CAD system

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Shim, Jae Ku; Kim, Sun Hoon; Kim, Dae Hong; Lee, Kyung Jin; Choi, Kyu Sup; Choi, In Kil; Lee, Dong Yong

    1988-12-01

    CAD systems are now widely used for the design of many engineering problems involving static, dynamic and thermal stress analyses of structures. In order to apply CAD systems to the structural analysis and design, the function of hardwares and softwares necessary for the CAD systems must be understood. The purpose of this study is to introduce the basic elements that are indispensible in the application of CAD systems to the analysis and design of structures and to give a thorough understanding of CAD systems to design engineers, so as to participate in the further technological developments of CAD systems. Due to the complexity and variety of the shape and size of the nowa-days structures, the need of new design technologies is growing for more efficient, accurate and economical design of structures. The application of CAD systems to structural engineering fields enables to improve structural engineering analysis and design technologies and also to obtain the standardization of the design process. An active introduction of rapidly developing CAD technologies will contribute to analyzing and designing structures more efficiently and reliably. Based on this report of the current status of the application of CAD systems to the structural analysis and design, the next goal is to develop the expert system which enables to perform the design of structures by CAD systems from the preliminary conceptual design to the final detail drawings automatically. (Author)

  2. Qualification of McCARD/MASTER Code System for Yonggwang Unit 4

    International Nuclear Information System (INIS)

    Park, Ho Jin; Shim, Hyung Jin; Joo, Han Gyu; Kim, Chang Hyo

    2011-01-01

    Recently, we have developed the new two-step procedure based on the Monte Carlo (MC) methods. In this procedure, one can generate the few group constants including the few-group diffusion constants by the MC method augmented by the critical spectrum, which is provided by the solution to the homogeneous 0-dimensional B1 equation. In order to examine the qualification of the few-group constants generated by MC method, we combine MASTER with McCARD to form McCARD/MASTER code system for two-step core neutronics calculations. In the fictitious PWR system problems, the core design parameters calculated by the two-step McCARD/MASTER analysis agree well with those from the direct MC calculations. In this paper, a neutronic design analysis for the initial core of Yonggwang Nuclear Unit 4 (YGN4) is conducted using McCARD/MASTER two-step procedure to examine the qualification of two group constants from McCARD in terms of a real PWR core problem. To compare with the results, the nuclear design report and measured data are chosen as the reference solutions

  3. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  4. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  5. Design of master control unit for laboratory prototype of traction converter for locomotives

    OpenAIRE

    Žák, Jan; Peroutka, Zdeněk; Ovaska, Seppo J.

    2008-01-01

    This paper deals with the prototype of a main traction converter with medium-frequency transformer for AC trolley wire-fed locomotives. The attention is paid to the new master control and diagnostic unit. The designed master control unit has been implemented in the LabVIEW environment. Our master control unit ensures an effective human interface between a user and the control hardware. In this case, the master unit makes possible both extensive control and diagnostic operations of the laborat...

  6. School System (Re)design: Developing Educational Infrastructures to Support School Leadership and Teaching Practice

    Science.gov (United States)

    Hopkins, Megan; Woulfin, Sarah L.

    2015-01-01

    A central challenge for local education agencies (i.e., school districts in the United States) undergoing reform is to design systems that facilitate instructional improvement. At the core of these systems are educational infrastructures that bolster capacity building efforts and support teaching and leadership practices. Our goal for this special…

  7. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.

    Science.gov (United States)

    Kim, Hojeong; Kim, Minjung

    2018-01-01

    We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.

  8. Engine Tune-Up Service. Unit 5: Fuel and Carburetion Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson, Ludy

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 5, Fuel and Carburetion Systems, available separately as CE 031 217. Focus of the exercises and pretests is inspecting and servicing the fuel and carburetion systems. Pretests and performance checklists are provided for each of the…

  9. Modernization project of the rod control system and in-core instrumentation system for 34 units of the 900 MW French EDF fleet

    International Nuclear Information System (INIS)

    Tavolara, Ivan; Desgeorge, Romain; Verburgh, Pierre

    2014-01-01

    Rolls-Royce and Cegelec, in partnership, carry out a unique and considerable modernisation project of two Instrumentation and Control (I and C) systems for the entire 900 MWe fleet of Electricite De France (EDF). Both rod control (RCS) and reactor in-core measurement (RIC) systems are to be modernised in the frame of the third ten-year renovation of all 34 reactor units over 9 power plants. The RCS contributes to the control of nuclear power by actuating control rod drive mechanisms that allow insertion or withdrawal of control rods. The RCS has also monitoring functions such as controlling the actual rods' position as well as the functional consistency between commands and actual positions. The RIC system measures in-core neutron flux, providing useful information to the control room as well as to the reactor unit computer for further processing. The renovated systems shall replace the existing ageing analog technology by modern digital technology based on PLC (Programmable Logic Controllers) and FPGA (Field-Programmable Gate Array) in the case of power subassemblies of RCS. Both systems rely for certain functions on a common network linking the RCS and RIC networks, improving operations and maintenance thanks to a powerful Man Machine Interface at the different locations of the systems with an extensive suite of tools and diagnostic menus. The project whose design phase started in July 2006 is now in its deployment phase after the successful site implementation of both systems at the first of kind units of Tricastin and Fessenheim power plants, respectively in August 2009 and February 2010. With 20 units in operation in 2014, the deployment shall continue with the other 14 until 2020. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design, supply chain management, manufacturing, installation and commissioning of the nuclear island systems and equipment, as well as operational

  10. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  11. Rectenna system design

    Science.gov (United States)

    Brown, W. C.; Dickinson, R. M.; Nalos, E. J.; Ott, J. H.

    1980-01-01

    The function of the rectenna in the solar power satellite system is described and the basic design choices based on the desired microwave field concentration and ground clearance requirements are given. One important area of concern, from the EMI point of view, harmonic reradiation and scattering from the rectenna is also designed. An optimization of a rectenna system design to minimize costs was performed. The rectenna cost breakdown for a 56 w installation is given as an example.

  12. User requirements and conceptual design of the ITER Electron Cyclotron Control System

    Energy Technology Data Exchange (ETDEWEB)

    Carannante, Giuseppe, E-mail: Giuseppe.Carannante@F4E.europa.eu [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Cavinato, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Granucci, Gustavo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy); Henderson, Mark; Purohit, Dharmesh [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, Gabriella; Sartori, Filippo [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Sozzi, Carlo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy)

    2015-10-15

    The ITER Electron Cyclotron (EC) plant is a complex system, essential for plasma operation. The system is being designed to supply up to 20 MW of power at 170 GHz; it consists of 24 RF sources (or Gyrotrons) connected by switchable transmission lines to four upper and one equatorial launcher. The complexity of the EC plant requires a Plant Controller, which provides the functional and operational interface with CODAC and the Plasma Control System and coordinates the various Subsystem Control Units, i.e. the local controllers of power supplies, Gyrotrons, transmission lines and launchers. A conceptual design of the Electron Cyclotron Control System (ECCS) was developed, starting from the collection of the user requirements, which have then been organized as a set of operational scenarios exploiting the EC system. The design consists in a thorough functional analysis, including also protection functions, and in the development of a conceptual I&C architecture. The main aim of the work was to identify the physics requirements and to translate them into control system requirements, in order to define the interfaces within the components of the ECCS. The definition of these interfaces is urgent because some of the subsystems are already in an advanced design phase. The present paper describes both the methodology used and the resulting design.

  13. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems: Revision 1

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  14. Testing the Birth Unit Design Spatial Evaluation Tool (BUDSET) in Australia: a pilot study.

    Science.gov (United States)

    Foureur, Maralyn J; Leap, Nicky; Davis, Deborah L; Forbes, Ian F; Homer, Caroline E S

    2011-01-01

    To pilot test the Birth Unit Design Spatial Evaluation Tool (BUDSET) in an Australian maternity care setting to determine whether such an instrument can measure the optimality of different birth settings. Optimally designed spaces to give birth are likely to influence a woman's ability to experience physiologically normal labor and birth. This is important in the current industrialized environment, where increased caesarean section rates are causing concerns. The measurement of an optimal birth space is currently impossible, because there are limited tools available. A quantitative study was undertaken to pilot test the discriminant ability of the BUDSET in eight maternity units in New South Wales, Australia. Five auditors trained in the use of the BUDSET assessed the birth units using the BUDSET, which is based on 18 design principles and is divided into four domains (Fear Cascade, Facility, Aesthetics, and Support) with three to eight assessable items in each. Data were independently collected in eight birth units. Values for each of the domains were aggregated to provide an overall Optimality Score for each birth unit. A range of Optimality Scores was derived for each of the birth units (from 51 to 77 out of a possible 100 points). The BUDSET identified units with low-scoring domains. Essentially these were older units and conventional labor ward settings. The BUDSET provides a way to assess the optimality of birth units and determine which domain areas may need improvement. There is potential for improvements to existing birth spaces, and considerable improvement can be made with simple low-cost modifications. Further research is needed to validate the tool.

  15. The benefits of designing a stratification system for New York City pediatric intensive care units for use in regional surge capacity planning and management.

    Science.gov (United States)

    Campbell, Christiana

    2010-08-01

    Accurate assessment of New York City (NYC) pediatric intensive care unit (PICU) resources and the ability to surge them during a disaster has been recognized as an important citywide emergency preparedness activity. However, while NYC hospitals with PICUs may be expected to surge in a disaster, few of them have detailed surge capacity plans. This will likely make it difficult for them to realize their full surge capacity both on individual and regional levels. If the pediatric resources that each NYC PICU hospital has can be identified prior to a disaster, this information can be used to both determine appropriate surge capacity goals for each PICU hospital and the additional resources needed to reach those goals. City agencies can then focus citywide planning efforts on making these resources available and more easily anticipate what a hospital will need during a disaster. Communication of this hospital information both prior to and during a surge situation will be aided by a stratification system familiar to both city planners and hospitals. The goal of this project was to design a NYC PICU surge stratification system that would aid physicians, hospitals and city agencies in regional surge capacity planning for critical pediatric patients. This goal was demonstrated through two objectives. The first identified major factors to consider when designing a stratification system. The second devised a preliminary system of PICU stratification based on clinical criteria and resources.

  16. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W.

    1998-01-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  17. Implementation of a Sage-Based Stirling Model Into a System-Level Numerical Model of the Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Briggs, Maxwell H.

    2011-01-01

    The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.

  18. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    International Nuclear Information System (INIS)

    1975-01-01

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test

  19. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  20. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  1. Design of a control system for HIRFL-CSRe internal target facility in Lanzhou

    International Nuclear Information System (INIS)

    Wang Yanyu; Liu Wufeng; Shao Caojie; Lin Feiyu; Zhang Jianchuan; Xiao Wenjun

    2010-01-01

    It is described in this paper the design of the control system for HIRFL-CSRe internal target facility, in which there are many different kinds of units need to be monitored and controlled. The control system is composed of several subsystems which are designed to control the gas-jet temperature, chamber vacuum, valves and molecular pumps. A human-computer interaction interface is also realized to do the data acquisition, data processing and display. The whole system has been working stably and safely, it fully meets the requirements of physical experiments in the internal target facility. In January of 2010, the first physics experiment of the radioactive electron capture was finished successfully with the aids of this control system. (authors)

  2. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  3. Volunteered Geographic Information System Design: Project and Participation Guidelines

    Directory of Open Access Journals (Sweden)

    José-Pablo Gómez-Barrón

    2016-07-01

    Full Text Available This article sets forth the early phases of a methodological proposal for designing and developing Volunteered Geographic Information (VGI initiatives based on a system perspective analysis in which the components depend and interact dynamically among each other. First, it focuses on those characteristics of VGI projects that present different goals and modes of organization, while using a crowdsourcing strategy to manage participants and contributions. Next, a tool is developed in order to design the central crowdsourced processing unit that is best suited for a specific project definition, associating it with a trend towards crowd-based or community-driven approaches. The design is structured around the characterization of different ways of participating, and the task cognitive demand of working on geo-information management, spatial problem solving and ideation, or knowledge acquisition. Then, the crowdsourcing process design helps to identify what kind of participants are needed and outline subsequent engagement strategies. This is based on an analysis of differences among volunteers’ participatory behaviors and the associated set of factors motivating them to contribute, whether on a crowd or community-sourced basis. From a VGI system perspective, this paper presents a set of guidelines and methodological steps in order to align project goals, processes and volunteers and thus successfully attract participation. This methodology helps establish the initial requirements for a VGI system, and, in its current state, it mainly focuses on two components of the system: project and participants.

  4. Automatic Voltage Control (AVC) of Danish Transmission System - Concept design

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Lund, P.

    2014-01-01

    For more than 20 years it has been a consistent plan by all Danish governments to turn the Danish power production away from fossil fuels towards renewable energy. The result today is that 37% of the total Danish power consumption was covered by mainly wind energy in 2013 aiming at 50% by 2020......, objectives, constraints, algorithms for optimal power flow and some special functions in particular systems, which inspires the concept design of a Danish AVC system to address the future challenges of voltage control. In the concept, the Danish AVC design is based on a centralized control scheme. All...... the substation loses the telecommunications to the control center. RPCs will be integrated to the AVC system as normative regulators in the later stage. Distributed generation units can be organized as virtual power plants and participate in voltage control at transmission level. Energinet.dk as the Danish TSO...

  5. Human Systems Design Criteria

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1982-01-01

    This paper deals with the problem of designing more humanised computer systems. This problem can be formally described as the need for defining human design criteria, which — if used in the design process - will secure that the systems designed get the relevant qualities. That is not only...... the necessary functional qualities but also the needed human qualities. The author's main argument is, that the design process should be a dialectical synthesis of the two points of view: Man as a System Component, and System as Man's Environment. Based on a man's presentation of the state of the art a set...... of design criteria is suggested and their relevance discussed. The point is to focus on the operator rather than on the computer. The crucial question is not to program the computer to work on its own conditions, but to “program” the operator to function on human conditions....

  6. Design and operational experience with a portable tritium cleanup system

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Wilson, S.W.; Garcia, F.

    1991-06-01

    We built a portable tritium cleanup system to scavenge tritium from contaminated gases in any tritium-containing system in the LLNL Tritium Facility. The cleanup system uses standard catalytic oxidation of tritium to water followed by water removal with a molecular sieve dryer. The cleanup unit, complete with instrumentation, is contained in a portable cart that is rolled into place and connected to the apparatus to be cleaned. The cleanup systems is effective, low-tech, simple, and reliable. The nominal flow rate of the system is 30 liters/minute, and the decontamination factor is > 1000. In this paper we will show design information on our portable cleanup system, and will discuss our operational experience with it over the past several years

  7. Design and test of optoelectronic system of alignment control based on CCD camera

    Science.gov (United States)

    Anisimov, A. G.; Gorbachyov, A. A.; Krasnyashchikh, A. V.; Pantushin, A. N.; Timofeev, A. N.

    2008-10-01

    In this work, design, implementation and test of a system intended for positioning of the elements of turbine units relative to the line of shaft with high precision, are discussed. A procedure of the conversion of coordinates from the instrument system into the system connected with the practical position of the axis of turbine has been devised. It is shown that optoelectronic systems of aligment built by autoreflexive scheme can be used for high precision measurements.

  8. Basic design of multimedia system for the representation of human error cases in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Geun Ok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-04-01

    We have developed a multimedia system for the representation of human error cases with the education and training on human errors can be done effectively. The followings are major topics during the basic design; 1 Establishment of a basic concept for representing human error cases using multimedia, 2 Establishment of a design procedure for the multimedia system, 3 Establishment of a hardware and software environment for operating the multimedia system, 4 Design of multimedia input and output interfaces. In order to verify the results of this basic design, we implemented the basic design with an incident triggered by operator`s misaction which occurred at Uljin NPP Unit 1. (Author) 12 refs., 30 figs.,.

  9. Design of launch systems using continuous improvement process

    Science.gov (United States)

    Brown, Richard W.

    1995-01-01

    The purpose of this paper is to identify a systematic process for improving ground operations for future launch systems. This approach is based on the Total Quality Management (TQM) continuous improvement process. While the continuous improvement process is normally identified with making incremental changes to an existing system, it can be used on new systems if they use past experience as a knowledge base. In the case of the Reusable Launch Vehicle (RLV), the Space Shuttle operations provide many lessons. The TQM methodology used for this paper will be borrowed from the United States Air Force 'Quality Air Force' Program. There is a general overview of the continuous improvement process, with concentration on the formulation phase. During this phase critical analyses are conducted to determine the strategy and goals for the remaining development process. These analyses include analyzing the mission from the customers point of view, developing an operations concept for the future, assessing current capabilities and determining the gap to be closed between current capabilities and future needs and requirements. A brief analyses of the RLV, relative to the Space Shuttle, will be used to illustrate the concept. Using the continuous improvement design concept has many advantages. These include a customer oriented process which will develop a more marketable product and a better integration of operations and systems during the design phase. But, the use of TQM techniques will require changes, including more discipline in the design process and more emphasis on data gathering for operational systems. The benefits will far outweigh the additional effort.

  10. Incident Command System - Environmental Unit responsibilities

    International Nuclear Information System (INIS)

    Hillman, S. O.

    1997-01-01

    The Incident Command System (ICS) for crisis management, used for response to oil spills by the Alyeska Pipeline Service Company throughout its facilities, including the Trans Alaska Pipeline and the Valdez Marine Terminal, was described. Special attention was given to the Environmental Unit within the ICS which functions as a primary support unit for the Incident Operations Section. Details of the Unit's function were provided. These include the collection, evaluation and dissemination of information on all environmental issues concerning the crisis, provision of advice and direction on environmental aspects, and up-front agency interaction. A checklist of tasks is included. 7 refs

  11. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel – Part B: Overall system design and energy performance analysis

    International Nuclear Information System (INIS)

    Intini, M.; De Antonellis, S.; Joppolo, C.M.; Casalegno, A.

    2015-01-01

    Highlights: • Seasonal simulation of a trigeneration system for building air-conditioning. • Effects of technical constraints on trigeneration system power consumption. • Optimal PEMFC unit size for maximizing trigeneration primary energy savings. - Abstract: This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 °C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings

  12. Mathematical modelling and optimization of a large-scale combined cooling, heat, and power system that incorporates unit changeover and time-of-use electricity price

    International Nuclear Information System (INIS)

    Zhu, Qiannan; Luo, Xianglong; Zhang, Bingjian; Chen, Ying

    2017-01-01

    Highlights: • We propose a novel superstructure for the design and optimization of LSCCHP. • A multi-objective multi-period MINLP model is formulated. • The unit start-up cost and time-of-use electricity prices are involved. • Unit size discretization strategy is proposed to linearize the original MINLP model. • A case study is elaborated to demonstrate the effectiveness of the proposed method. - Abstract: Building energy systems, particularly large public ones, are major energy consumers and pollutant emission contributors. In this study, a superstructure of large-scale combined cooling, heat, and power system is constructed. The off-design unit, economic cost, and CO_2 emission models are also formulated. Moreover, a multi-objective mixed integer nonlinear programming model is formulated for the simultaneous system synthesis, technology selection, unit sizing, and operation optimization of large-scale combined cooling, heat, and power system. Time-of-use electricity price and unit changeover cost are incorporated into the problem model. The economic objective is to minimize the total annual cost, which comprises the operation and investment costs of large-scale combined cooling, heat, and power system. The environmental objective is to minimize the annual global CO_2 emission of large-scale combined cooling, heat, and power system. The augmented ε–constraint method is applied to achieve the Pareto frontier of the design configuration, thereby reflecting the set of solutions that represent optimal trade-offs between the economic and environmental objectives. Sensitivity analysis is conducted to reflect the impact of natural gas price on the combined cooling, heat, and power system. The synthesis and design of combined cooling, heat, and power system for an airport in China is studied to test the proposed synthesis and design methodology. The Pareto curve of multi-objective optimization shows that the total annual cost varies from 102.53 to 94.59 M

  13. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  14. Licensing management system prototype system design

    International Nuclear Information System (INIS)

    Immerman, W.H.; Arcuni, A.A.; Elliott, J.M.; Chapman, L.D.

    1983-11-01

    This report is a design document for a prototype implementation of a licensing management system (LMS) as defined in SAND83-7080. It describes the concept of operations for full implementation of an LMS in accordance with the previously defined functional requirements. It defines a subset of a full LMS suitable for meeting prototype implementation goals, and proposes a system design for this subset. The report describes overall system design considerations consistent with, but more explicit than the general characteristics required by the LMS functional definition. A high level design is presented for just those functions selected for prototype implementation. The report also provides a data element dictionary describing the structured logical data elements required to implement the selected functions

  15. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  16. Design, manufacturing and commissioning of mobile unit for EDF (Dow Chemical process)

    International Nuclear Information System (INIS)

    Cangini, D.; Cordier, J.P.; PEC Engineering, Osny, France)

    1985-01-01

    To process their spent ion exchange resins and the liquid wastes, EDF has ordered from PEC a mobile unit using the DOW CHEMICAL binder. This paper presents the EDF's design requirements as well as the new French regulation for waste embedding. The mobile unit was started in January 1983 and commissioned successfully in January 1985 in the TRICASTIN EDF's power plant

  17. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  18. 3 CFR - Designation of Officers of the United States Section, International Boundary and Water Commission...

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Designation of Officers of the United States Section, International Boundary and Water Commission, United States and Mexico To Act as the Commissioner of the United... States and Mexico To Act as the Commissioner of the United States Section Memorandum for the Commissioner...

  19. Core Follow Calculation for Palo Verde Unit 1 in Cycles 1 through 4 using DeCART2D/MASTER4.0 Code System

    International Nuclear Information System (INIS)

    Jeong, Hee Jeong; Choi, Yonghee; Kim, Sungmin; Lee, Kyunghoon

    2017-01-01

    To verify and validate the DeCART2D/MASTER4.0 design system, core follow calculations of Palo Verde Unit 1(PV-1) in cycles 1 through 4 are performed. The calculation results are compared with the measured data and will be used in the generation of bias and uncertainty factors in the DeCART2D/MASTER4.0 design system. The DeCART2D/MASTER codes system has been developed in KAERI for the PWR (Pressurized water reactors) core design including SMRs (Small Modular Reactors). Core follow calculations of Pale Verde Unit 1 in Cycles 1 through 4 have been performed. Reactivities, assembly powers and startup parameters such as EPC, RW, ITC and IBW are compared with the measured data. This work will be used in the generation of bias and uncertainty factors in DeCART2D/MASTER4.0 design system.

  20. Dynamic analysis and design of air spring mounting system for marine propulsion system

    Science.gov (United States)

    He, Lin; Xu, Wei; Bu, Wenjun; Shi, Liang

    2014-09-01

    Marine propulsion unit (MPU) is one of the dominant vibration and noise sources onboard ship. Its vibration can be attenuated effectively by isolating MPU with low-frequency mounting system. But this is difficult to implement due to the stringent requirement of MPU alignment with the propulsion shafting. In this paper a novel air spring mounting system (ASMS) for propulsion system is proposed consisting of air spring subsystem, alignment control subsystem and safety protection subsystem. The load distribution optimization method and dynamic model of ASMS are presented. The factors that affect system stability and natural frequencies are analyzed, as well as the design measures to enhance system performance. A theoretical model is presented to estimate the isolation effect of ASMS. The monitoring model of alignment between MPU and propulsion shafting is established, followed by the alignment control algorithm and converge rule which assures the fast and uniform convergence of both air springs load distribution and alignment control process. Safety protection mechanism is designed to ensure that the MPU can operate safely in case of ASMS failure or other extreme circumstances. A scaled ASMS prototype is manufactured and tested on a special experimental setup. Experimental results validate the effectiveness of theoretical models and show that the performance of ASMS satisfies the operation requirements of MPU.

  1. The metre-kilogram-second system of electrical units

    CERN Document Server

    Sas, R K

    1947-01-01

    Introduction ; electrostatic units, electromagnetic units, and practical units ; magnetic intensity and flux density ; rationalization ; tribulations of the student ; metres and kilograms in general and in mechanics ; pulse and aperture ; magnetostatics ; steady currents ; electrostatics ; resistance ; electromagnetic induction ; determination of Eo. capacity formulae ; field ; electrons and moving charges ; quantum theory ; memory assisted by the M.K.S. system ; short account of M.K.S. units ; list of formulae

  2. 76 FR 13209 - United States and State of Texas v. United Regional Health Care System; Proposed Final Judgment...

    Science.gov (United States)

    2011-03-10

    ... of Texas v. United Regional Health Care System, Civil Action No. 7:11-cv- 00030-O. On February 25..., ambulatory surgery center or radiology center in [a] 15 mile radius of United Regional Health Care System... 95% of billed charges for all inpatient and outpatient services at United Regional Health Care System...

  3. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    Science.gov (United States)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  4. Evaluation of the control system checkout test at 100% power for Yonggwang Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Kim, Shin Whan; Lee, Joo Han; Baek, Jong Man; Seo, Jong Tae; Lee, Sang Keun; Kang, In Koo; Ju, Hee Wan; Min, Kyung Soo; Kim, Byung Gon

    1995-01-01

    Control system checkout tests at various powers for Yonggwang Nuclear Power Plant Unit 3(YGN3) were performed to demonstrate the accuracies and proper performances of the control systems of the plant. Tested control systems included the feedwater control system, steam bypass control system, reactor regulation system, control element drive mechanism control system, pressurizer level control system, and pressurizer pressure control system. The measured test data during the control system checkout test at 100% power are evaluated. The test results showed that the control systems of YGN 3 properly control system was simulated by using the LTC code which is the performance analysis code for YGN 3 and 4 design. Comparisons of the predicted results with the measured data confirmed that the feedwater control system controls the steam generator level as designed

  5. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.

    Science.gov (United States)

    Shaaban, A F

    2007-06-25

    Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.

  6. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  7. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  8. System 80+trademark Standard Design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80 + trademark Standard Design. This volume 9 discusses Electric Power and Auxiliary Systems

  9. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  10. Airport Information Retrieval System (AIRS) System Design

    Science.gov (United States)

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  11. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2018-04-01

    Full Text Available We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input–output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites. To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.

  12. System level ESD co-design

    CERN Document Server

    Gossner, Harald

    2015-01-01

    An effective and cost efficient protection of electronic system against ESD stress pulses specified by IEC 61000-4-2 is paramount for any system design. This pioneering book presents the collective knowledge of system designers and system testing experts and state-of-the-art techniques for achieving efficient system-level ESD protection, with minimum impact on the system performance. All categories of system failures ranging from ‘hard’ to ‘soft’ types are considered to review simulation and tool applications that can be used. The principal focus of System Level ESD Co-Design is defining and establishing the importance of co-design efforts from both IC supplier and system builder perspectives. ESD designers often face challenges in meeting customers' system-level ESD requirements and, therefore, a clear understanding of the techniques presented here will facilitate effective simulation approaches leading to better solutions without compromising system performance. With contributions from Robert Asht...

  13. Modernization project of the rod control system and in-core instrumentation system for 34 units of the 900 MW French EDF fleet

    International Nuclear Information System (INIS)

    Tavolara, Ivan; Verburgh, Pierre; Menager, Antoine

    2010-01-01

    Rolls-Royce and Cegelec, in partnership, carry out a unique and considerable modernisation project of two Instrumentation and Control (I and C) systems for the entire 900 MWe fleet of Electricite De France (EDF). Both rod control (RCS) and reactor in-core measurement (RIC) systems are to be modernised in the frame of the third ten-year renovation of all 34 reactor units over 9 power plants. The RCS contributes to the control of nuclear power by actuating control rod drive mechanisms that allow insertion or withdrawal of control rods. The RCS has also monitoring functions such as controlling the actual rods' position as well as the functional consistency between commands and actual positions. The RIC system measures in-core neutron flux, providing useful information to the control room as well as to the reactor unit computer for further processing. The renovated systems shall replace the existing ageing analog technology by modern digital technology based on PLC (Programmable Logic Controllers) and FPGA (Field-Programmable Gate Array) in the case of power subassemblies of RCS. Both systems rely for certain functions on a common network linking the RCS and RIC networks, improving operations and maintenance thanks to a powerful Man Machine Interface at the different locations of the systems with an extensive suite of tools and diagnostic menus. The project whose design phase started in July 2006 is now in its deployment phase after the successful site implementation of both systems at the first units of Tricastin and Fessenheim power plants, respectively in August 2009 and February 2010. The deployment shall continue with the other 32 units until 2020. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design, supply chain management, manufacturing, installation and commissioning of the nuclear island systems and equipment, as well as operational management through life support. Cegelec, with

  14. Improved simulation design factors for unconventional crude vacuum units : cracked gas make and stripping section performance

    Energy Technology Data Exchange (ETDEWEB)

    Remesat, D. [Koch-Glitsch Canada LP, Calgary, AB (Canada)

    2008-10-15

    Operating data for unconventional heavy oil vacuum crude units were reviewed in order to optimize the design of vacuum columns. Operational data from heavy crude vacuum units operating with stripping and velocity were used to investigate the application of a proven vacuum distillation tower simulation topology designed for use with heavy oil and bitumen upgrader feeds. Design factors included a characterization of the crude oils or bitumens processed in the facility; the selection of thermodynamic models; and the non-equilibrium simulation topology. Amounts of generated cracked gas were calculated, and entrainment and stripping section performance was evaluated. Heater designs for ensuring the even distribution of heat flux were discussed. Data sets from vacuum units processing crude oils demonstrated that the amount of offgas flow increased as the transfer line temperature increased. The resulting instability caused increased coke generation and light hydrocarbon formation. Results also indicated that overhead vacuum ejector design and size as well as heat transfer capabilities of quench and pumparound zones must be considered when designing vacuum column units. Steam stripping lowered hydrocarbon partial pressure to allow materials to boil at lower temperatures. It was concluded that setting appropriate entrainment values will ensure the accuracy of sensitivity analyses for transfer line designs, inlet feed devices, and wash bed configurations. 9 refs., figs.

  15. Optimal design of integrated CHP systems for housing complexes

    International Nuclear Information System (INIS)

    Fuentes-Cortés, Luis Fabián; Ponce-Ortega, José María; Nápoles-Rivera, Fabricio; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2015-01-01

    Highlights: • An optimization formulation for designing domestic CHP systems is presented. • The operating scheme, prime mover and thermal storage system are optimized. • Weather conditions and behavior demands are considered. • Simultaneously economic and environmental objectives are considered. • Two case studies from Mexico are presented. - Abstract: This paper presents a multi-objective optimization approach for designing residential cogeneration systems based on a new superstructure that allows satisfying the demands of hot water and electricity at the minimum cost and the minimum environmental impact. The optimization involves the selection of technologies, size of required units and operating modes of equipment. Two residential complexes in different cities of the State of Michoacán in Mexico were considered as case studies. One is located on the west coast and the other one is in the mountainous area. The results show that the implementation of the proposed optimization method yields significant economic and environmental benefits due to the simultaneous reduction in the total annual cost and overall greenhouse gas emissions

  16. System Design for Telecommunication Gateways

    CERN Document Server

    Bachmutsky, Alexander

    2010-01-01

    System Design for Telecommunication Gateways provides a thorough review of designing telecommunication network equipment based on the latest hardware designs and software methods available on the market. Focusing on high-end efficient designs that challenge all aspects of the system architecture, this book helps readers to understand a broader view of the system design, analyze all its most critical components, and select the parts that best fit a particular application. In many cases new technology trends, potential future developments, system flexibility and capability extensions are outline

  17. Design of the ITER (International Thermonuclear Experimental Reactor) neutral beam system beamline, United States concept

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Cooper, W.S.; DeVries, G.E.; Lietzke, A.F.; Kunkel, W.B.; Kwan, J.W.; Matuk, C.A.; Nakai, T.; Stearns, J.W.; Soroka, L.; Wells, R.P.; Lindquist, W.B.; Neef, W.S.; Reginato, L.L.; Sedgley, D.W.; Brook, J.W.; Luzzi, T.E.; Myers, T.J.

    1989-01-01

    Design of a neutral beamline for ITER (International Thermonuclear Experimental Reactor) is described. The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to watercooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules that can be removed for remote maintenance. The neutral beam system delivers 75 MW of D degree into three ports with a total of nine modules arranged in stacks of three modules per port. To increase reliability each module is designed to deliver up to 10 MW at 1.3 MeV; this allows eight modules operating at partial capacity to deliver the required power in the event one module is removed from service. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 35 m from the port into the torus. Neutron shielding in the drift duct provides the added feature of limiting conductance and thus reducing gas flow to and from the torus. Alternative component choices are also discussed for the evolving design. 8 refs., 4 figs., 1 tab

  18. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system control unit. 161.002-10...-10 Automatic fire detecting system control unit. (a) General. The fire detecting system control unit... and the battery to be charged. (h) Automatic fire detecting system, battery charging and control—(1...

  19. System 80+trademark Standard Design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80 + trademark Standard Design. This volume 10 discusses the Steam and Power Conversion System and Radioactive Waste Management

  20. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  1. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  2. Using simulation to validate and optimize the design of a hybrid solar-GCHP system

    Energy Technology Data Exchange (ETDEWEB)

    Kummert, M.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Roy, M. [Martin Roy and Associates, Deux-Montagnes, PQ (Canada)

    2006-07-01

    A redevelopment project that involves the sustainable construction of 3 buildings with 187 affordable and environmentally sound housing units in a Montreal community was discussed. The HVAC system was part of the integrated design process that focused on reducing greenhouse gas emissions, potable water use, the production of waste water and the production of solid waste through retrofitting, reuse and waste diversion. Design options were limited by pre-existing equipment and funding opportunities. The design was also influenced by the building's management structure whereby financial benefits from the energy savings go to a non-profit, community-run utility company that will re-invest in new phases of the project. The project involved the installation of a hybrid solar geothermal heat pump system. The design was different from the usual approach because the solar thermal system was sized to provide domestic hot water but not to compensate the annual imbalance in the ground loads. It was noted that the average temperature in the ground will decrease with time, due to the imbalance. This presentation provided the results of detailed TRNSYS simulations that validated and optimized the design of the hybrid ground-coupled heating plant including solar thermal collectors in the 3 multi-unit buildings. The TRNSYS simulation used building loads that were calculated in an earlier stage of the design process with DOE-2. A global heat exchange coefficient for radiators and floor heating was estimated in order to use realistic temperature levels. An analysis of the long-term system performance of this unique design showed that on a yearly basis, 33 per cent of the total heating load can come from renewable energy sources. 18 refs., 2 tabs., 13 figs.

  3. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  4. [The design of a cardiac monitoring and analysing system with low power consumption].

    Science.gov (United States)

    Chen, Zhen-cheng; Ni, Li-li; Zhu, Yan-gao; Wang, Hong-yan; Ma, Yan

    2002-07-01

    The paper deals with a portable analyzing monitor system with liquid crystal display (LCD), which is low in power consumption and suitable for China's specific conditions. Apart from the development of the overall scheme of the system, the paper introduces the design of the hardware and the software. The 80196 single chip microcomputer is used as the central microprocessor to process and real-time electrocardiac signal data. The system have the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic paperfeeding. The portable system can be operated by alternate-current (AC) or direct-current (DC). Its hardware circuit is simplified and its software structure is optimized. Multiple low power consumption and LCD unit are adopted in its modular designs.

  5. Experience in the performance of a system of dosimetric design of radiotherapy and prospects of its development

    International Nuclear Information System (INIS)

    Tsyb, A.F.; Mardynskij, Yu.S.; Chilingarov, K.M.

    1987-01-01

    A model of a system of dosimetric design of radiotherapy on the basis of SM-4 and ES-1033 computers has been developed and is being tested. Radiotherapy for over 600 patients with tumors of different sites was designed within 1 year. The simplicity of the system allowed a radiologist to take an active part in the choice of a favourable radiotherapy design. Four variants of dose distributions on an average were computed for each patient. A study of the time characteristics of the system has shown that the time of input of the data on a patient and beam parameters does not practically depend on the computer speed and lasts for an average of 15 min. Dose field computation and optimization of inputs vary from 0.4 to 6 min depending on a volume of computation and computer type. A one-task computer system with one working place and memory is able to meet the requirements in dosimetric design for 2-3 radiotherapeutic units. More units will require multitask and all-purpose computers with 2 and more working places. Minimum standards of computer memory and speed are the same as in the first case

  6. Design upgrade of the ISOLDE target unit for HIE-ISOLDE

    CERN Document Server

    Montano, J; Gottberg, A

    2013-01-01

    The High Intensity and Energy HIE-ISOLDE project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities with the objective of increasing the energy and the intensity of the delivered radioactive ion beams (RIB) {[}1]. In order to accommodate the future increase of primary beam intensity delivered by the new LINAC4 H- driver to the Proton Synchrotron Booster (PSB) {[}2] and from this to ISOLDE, a major study is being carried out to upgrade the existing designs of the ISOLDE target and its supporting infrastructure. In particular, the extraction optics plays an important role in the initial beam transport and the quality of the beam supplied to the mass separators. Important factors include the emittance of the beam and the beam profile to avoid beam losses. A new double electrode extraction system has been developed for simplifying and improving the interface between the target unit and the frontend (target coupling table). Numerical and experimental studies have been performed in order to define ...

  7. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  8. Digital remote viewing system for coronary care unit

    International Nuclear Information System (INIS)

    Cho, P.S.; Tillisch, J.; Huang, H.K.

    1987-01-01

    A digital remote viewing system developed for the coronary care unit at the UCLA Medical Center has been in clinical operation since March 1, 1987. The present system consists of three 512-line monitors, VAX 11/750, Gould IP8500 image processor and a broad-band communication system. The patients' images are acquired with a computed radiography system and are transmitted to the coronary care unit, which is five floors above the radiology department. This exhibit presents the architecture and the performance characteristics of the system. Also, the second-generation system, which consists of an intelligent local work station with three 1,024-line monitors and a fast digital communication network, will be introduced

  9. Computer-aided system design

    Science.gov (United States)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  10. Cosmo Cassette: A Microfluidic Microgravity Microbial System For Synthetic Biology Unit Tests and Satellite Missions

    Science.gov (United States)

    Berliner, Aaron J.

    2013-01-01

    Although methods in the design-build-test life cycle of the synthetic biology field have grown rapidly, the expansion has been non-uniform. The design and build stages in development have seen innovations in the form of biological CAD and more efficient means for building DNA, RNA, and other biological constructs. The testing phase of the cycle remains in need of innovation. Presented will be both a theoretical abstraction of biological measurement and a practical demonstration of a microfluidics-based platform for characterizing synthetic biological phenomena. Such a platform demonstrates a design of additive manufacturing (3D printing) for construction of a microbial fuel cell (MFC) to be used in experiments carried out in space. First, the biocompatibility of the polypropylene chassis will be demonstrated. The novel MFCs will be cheaper, and faster to make and iterate through designs. The novel design will contain a manifold switchingdistribution system and an integrated in-chip set of reagent reservoirs fabricated via 3D printing. The automated nature of the 3D printing yields itself to higher resolution switching valves and leads to smaller sized payloads, lower cost, reduced power and a standardized platform for synthetic biology unit tests on Earth and in space. It will be demonstrated that the application of unit testing in synthetic biology will lead to the automatic construction and validation of desired constructs. Unit testing methodologies offer benefits of preemptive problem identification, change of facility, simplicity of integration, ease of documentation, and separation of interface from implementation, and automated design.

  11. Design and fabrication of a high vacuum box, to be used in one ion polarization system

    International Nuclear Information System (INIS)

    Ochoa Cano, J.M.A.

    1975-01-01

    The paper discusses in considerable detail some of the concepts associated with vacuum systems as well as some of the factors which enter into the design of components and units employed in such systems. One of the aims pursued is to establish national technology suited to designing and manufacturing needs arising in connection with problems like the one described, with training, as appropriate, for the personnel involved in the entire development process. (author)

  12. A dynamic fail-safe approach to the design of computer-based safety systems

    International Nuclear Information System (INIS)

    Smith, I.C.; Miller, M.

    1994-01-01

    For over 30 years AEA Technology has carried out research and development in the field of nuclear instrumentation and protection systems. Throughout the course of this extensive period of research and development the dominant theme has been the achievement of fully fail-safe designs. These are defined as designs in which the failure of any single component will result in the unit output reverting to a demand for trip action status. At an early stage it was recognized that the use of dynamic rather than static logic could ease the difficulties inherent in achieving a fail-safe design. The first dynamic logic systems coupled logic elements magnetically. The paper outlines the evolution from these early concepts of a dynamic fail-safe approach to the design of computer-based safety systems. Details are given of collaboration between AEA Technology and Duke Power Co. to mount an ISAT TM demonstration at Duke's Oconee Nuclear Power Station

  13. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  14. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  15. Reconstruction of -35 kV/200 kW HVPS for test of klystron units in LHCD system

    International Nuclear Information System (INIS)

    Huang Yiyun

    2004-01-01

    The paper introduces the -35 kV/200 kW high voltage power supply (HVPS) which is specially used to test klystron units in LHCD system. The new klystrons must be tested under high voltage level before operation and the old klystrons which have worked for a longtime must be exercised by HVPS in lower hybrid current drive (LHCD) system. As the former HVPS has some shortages in engineering design and operation design, the HVPS has to be modified and rebuilt by adopting new method and technology to solve existing bottle-neck problems. (author)

  16. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  17. Preliminary design of ECCO: Experimental control system which is cloud oriented

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei, E-mail: zhengwei@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Feiran; Zhang, Ming; Zhang, Jing; Wan, Kuanhong; Liu, Qiang; Pan, Yuan; Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • ECCO is a self-organized and de-centralized control system software. • ECCO integrates ECCO-SDD and ECCO-REST.. • ECCO network protocol is based on HTTP protocol and RESTful design practice, implements Hypermedia, automatic discovery, and event. • ECCO is flexible, plug-and-play, and provides a series of unified toolkits. - Abstract: As the development of the Tokamak, the scale of the facility is getting bigger and bigger. It is a great challenge to design, manage and operate a control system of such big scale. So we developed a new control system software: Experimental Control System which is Cloud Oriented (ECCO). ECCO consists two parts, ECCO-SDD and ECCO-REST. ECCO-SDD is used to design, manage and describe the whole control system, configure every subsystem statically. There is a SDD editor which is a human machine interface for control system designer to design by simply drag and drop, and it can be easily extended using plug-in. The ECCO-SDD translator is used to generate different outputs. All the system design and configuration is stored in the MongoDB database using an object relational mapping dedicated designed for ECCO-SDD. ECCO-REST mainly defines a control network protocol based on HTTP RESTful service, it also implements automatic discovery using Zero-configuration (Zeroconf) networking standard. Since this protocol is based on industrial standard and transparent protocol, it is open enough and it can be easily implemented by others. ECCO-REST application is the core of ECCO-REST, it is a cross platform control software running on distributed control units just like the EPICS IOC. It can be extended by user created models. It is configured by human readable JSON file which can be generated by ECCO-SDD translator. ECCO is a self-organized and de-centralized control system software. Based on the same protocol, every part of the system can discover each other, thus the controllers which ECCO-REST application running on can

  18. Preliminary design of ECCO: Experimental control system which is cloud oriented

    International Nuclear Information System (INIS)

    Zheng, Wei; Hu, Feiran; Zhang, Ming; Zhang, Jing; Wan, Kuanhong; Liu, Qiang; Pan, Yuan; Zhuang, Ge

    2016-01-01

    Highlights: • ECCO is a self-organized and de-centralized control system software. • ECCO integrates ECCO-SDD and ECCO-REST.. • ECCO network protocol is based on HTTP protocol and RESTful design practice, implements Hypermedia, automatic discovery, and event. • ECCO is flexible, plug-and-play, and provides a series of unified toolkits. - Abstract: As the development of the Tokamak, the scale of the facility is getting bigger and bigger. It is a great challenge to design, manage and operate a control system of such big scale. So we developed a new control system software: Experimental Control System which is Cloud Oriented (ECCO). ECCO consists two parts, ECCO-SDD and ECCO-REST. ECCO-SDD is used to design, manage and describe the whole control system, configure every subsystem statically. There is a SDD editor which is a human machine interface for control system designer to design by simply drag and drop, and it can be easily extended using plug-in. The ECCO-SDD translator is used to generate different outputs. All the system design and configuration is stored in the MongoDB database using an object relational mapping dedicated designed for ECCO-SDD. ECCO-REST mainly defines a control network protocol based on HTTP RESTful service, it also implements automatic discovery using Zero-configuration (Zeroconf) networking standard. Since this protocol is based on industrial standard and transparent protocol, it is open enough and it can be easily implemented by others. ECCO-REST application is the core of ECCO-REST, it is a cross platform control software running on distributed control units just like the EPICS IOC. It can be extended by user created models. It is configured by human readable JSON file which can be generated by ECCO-SDD translator. ECCO is a self-organized and de-centralized control system software. Based on the same protocol, every part of the system can discover each other, thus the controllers which ECCO-REST application running on can

  19. Rendering Systems Visible for Design: Synthesis Maps as Constructivist Design Narratives

    Directory of Open Access Journals (Sweden)

    Peter Jones

    Full Text Available Synthesis maps integrate research evidence, system expertise, and design proposals into visual narratives. These narratives support communication and decision-making among stakeholders. Synthesis maps evolved from earlier visualization tools in systemics and design. They help stakeholders to understand design options for complex sociotechnical systems. Other visual approaches map complexity for effective collaboration across perspectives and knowledge domains. These help stakeholder groups to work in higher-order design contexts for sociotechnical or human-ecological systems. This article describes a constructivist pedagogy for collaborative learning in small teams of mixed-discipline designers. Synthesis mapping enables these teams to learn systems methods for design research in complex problem domains. Synthesis maps integrate knowledge from research cycles and iterative sensemaking to define a coherent design narrative. While synthesis maps may include formal system modeling techniques, they do not require them. Synthesis maps tangibly render research observations and design choices. As a hybrid system design method, synthesis maps are a contribution to the design genre of visual systems thinking.

  20. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    Science.gov (United States)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  1. Product System Design – to Household Massage Design as An Example

    Directory of Open Access Journals (Sweden)

    Wang Huabin

    2016-01-01

    Full Text Available Explain what is the system design and the applications of System design in the product design process. Using The whole idea and systems design methods to analyze the design of household hand massage,Use a chart image to explain that Household hand massage products in the influence of user and the environment, the influence of large system environment for the product. The use of components of the system to anatomy product design. Each system components has a link between and mutual correlation.

  2. Semi-automatic film processing unit

    International Nuclear Information System (INIS)

    Mohamad Annuar Assadat Husain; Abdul Aziz Bin Ramli; Mohd Khalid Matori

    2005-01-01

    The design concept applied in the development of an semi-automatic film processing unit needs creativity and user support in channelling the required information to select materials and operation system that suit the design produced. Low cost and efficient operation are the challenges that need to be faced abreast with the fast technology advancement. In producing this processing unit, there are few elements which need to be considered in order to produce high quality image. Consistent movement and correct time coordination for developing and drying are a few elements which need to be controlled. Other elements which need serious attentions are temperature, liquid density and the amount of time for the chemical liquids to react. Subsequent chemical reaction that take place will cause the liquid chemical to age and this will adversely affect the quality of image produced. This unit is also equipped with liquid chemical drainage system and disposal chemical tank. This unit would be useful in GP clinics especially in rural area which practice manual system for developing and require low operational cost. (Author)

  3. A Fuzzy Logic Model to Classify Design Efficiency of Nursing Unit Floors

    Directory of Open Access Journals (Sweden)

    Tuğçe KAZANASMAZ

    2010-01-01

    Full Text Available This study was conducted to determine classifications for the planimetric design efficiency of certain public hospitals by developing a fuzzy logic algorithm. Utilizing primary areas and circulation areas from nursing unit floor plans, the study employed triangular membership functions for the fuzzy subsets. The input variables of primary areas per bed and circulation areas per bed were fuzzified in this model. The relationship between input variables and output variable of design efficiency were displayed as a result of fuzzy rules. To test existing nursing unit floors, efficiency output values were obtained and efficiency classes were constructed by this model in accordance with general norms, guidelines and previous studies. The classification of efficiency resulted from the comparison of hospitals.

  4. Resilient computer system design

    CERN Document Server

    Castano, Victor

    2015-01-01

    This book presents a paradigm for designing new generation resilient and evolving computer systems, including their key concepts, elements of supportive theory, methods of analysis and synthesis of ICT with new properties of evolving functioning, as well as implementation schemes and their prototyping. The book explains why new ICT applications require a complete redesign of computer systems to address challenges of extreme reliability, high performance, and power efficiency. The authors present a comprehensive treatment for designing the next generation of computers, especially addressing safety-critical, autonomous, real time, military, banking, and wearable health care systems.   §  Describes design solutions for new computer system - evolving reconfigurable architecture (ERA) that is free from drawbacks inherent in current ICT and related engineering models §  Pursues simplicity, reliability, scalability principles of design implemented through redundancy and re-configurability; targeted for energy-,...

  5. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  6. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  7. Attitude Control System Design for the Solar Dynamics Observatory

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  8. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  9. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  10. Design and performance of BWC replacement steam generators for PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100

  11. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  12. Reflections on designing and implementing a task-based unit using gamebooks

    OpenAIRE

    Branden, KIRCHMEYER; Sarah FAHERTY\

    2017-01-01

    A small scale action-research project was designed to explore the effectiveness of using interactive narratives to facilitate L2 output in a communicative English class. A four-week unit of instruction was implemented across five classes comprised of non-English major students at a university in Japan. Using graded reader gamebooks from the Atama-ii series, activities were designed to simultaneously engage students in English reading while also promoting active discussion in English. Data was...

  13. The vacuum system reform and test of the super-critical 600mw unit

    Science.gov (United States)

    Yan, Tao; Wan, Zhonghai; Lu, Jin; Chen, Wen; Cai, Wen

    2017-11-01

    The deficiencies of the designed vacuum system of the super-critical unit is pointed out in this paper, and then it is reformed by the steam ejector. The experimental results show that the vacuum of the condenser can be improved, the coal consumption can be reduced and the plant electricity consumption can be lowered dramatically at a small cost of the steam energy consumption. Meanwhile, the water-ring vacuum pumps cavitation problems can be solved.

  14. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  15. Pulsed Nonlinear Automatic Control System for Guidance of a Caterpillar Tractor Unit in Vineyards

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2018-04-01

    Full Text Available The automatic guidance systems of tractors for soil cultivation in vineyards have attracted the attention of researchers since the second half of the twentieth century. The purpose of this paper is to investigate the driving quality of an automatic guidance system (AGS for a caterpillar tractor unit (CTU consisting of a crawler tractor and a vineyard plow and having the orientation system by grapes stamps. Compared with the known works (in which GPS, LIDAR, and video cameras are used for orientation, the proposed system is the least expensive. For this, the existence of stability of the AGS as a whole in the range of operating speeds of the unit was proved. The dynamic model of the vineyard plow was verified on a three-point hitching system of the tractor, field tests of the AGS were carried out, which confirmed the results of theoretical studies, and suggested directions for further research. The shape and parameters of the modulation characteristic (MC of the pulse-width modulator (PWM of the AGS control system, the rational values of the hydraulic drive speeds of the sequential control mechanism of the clutch of the turn and the crawler tractor belt brake, were established, depending on the slope angle and the speed of the unit, ensuring agrotechnical requirements for driving. New solutions, in comparison with the known ones, are the ways of forming the MC of PWM using a new design probe and the associated driver MC of PWM.

  16. THE UNITED STATES EDUCATIONAL SYSTEM

    OpenAIRE

    David Suriñach Fernández

    2017-01-01

    The United States educational system is very complex. Due to the fact a big number of agents take play of its regulation, the differences between the education from one State compared to the education from another, or even between school districts, might be considerable. The last two largest federal education initiatives, No Child Left Behind and Race to the Top, have had a huge impact on the American education system. The escalation of the standardized test throughout the whole country as a ...

  17. Mechanical design of an electronic control unit using axiomatic principles

    Directory of Open Access Journals (Sweden)

    Cazacu Vlad

    2017-01-01

    Full Text Available If the engine of the car can be considered as the heart, then the E.C.U’s represents the brain of the car. Electronic control units (E.C.U’s are electronic devices which control the way different components of a car (engine, windows, airbags, etc. react in some situations (overheating, button pressed by a passenger, crash, etc.. Axiomatic design is a set of principles that theorizes the act of conceiving a new project. Based on two axiom this method comes into designers help, giving them the option to reach in a short period of time a fully functional and compliant product without supporting the design of the product on chance, past experiences or “try and fail” principle.

  18. The Connection and Distinction between the Design Argument with the Teleological Argument and the Best Creational System

    Directory of Open Access Journals (Sweden)

    Farah Ramin

    2011-09-01

    Full Text Available The design argument faced with big different writings in its Western background so that these writings have essential difference with each others. The design argument is posteriori demonstration for the existence of God which by analogy or induction and partial or general instances of the order in nature tries to affirm the intelligent designer.  Since the concepts of design and end have firm connection with each other in the Western writings of this design but the concepts of purposiveness of divine acts, purposiveness of nature and its best system is assumed the same with each other and obvious confusion has been made between the design argument with the teleological argument and the best creational system. The aim of the article is to consider order in the world based upon the united components of a system (design argument, final cause (teleological argument and best system (best creational system argument and also to manifest the connection and distinction of these three reasoning. 

  19. Cyber and physical equipment digital control system in Industry 4.0 item designing company

    Science.gov (United States)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.

  20. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  1. Design and implementation of the decision unit of the first level trigger system of the LHCb detector at the Large Hadron Collider (LHC); Conception et realisation de l'unite de decision du systeme de declenchement de premier niveau du detecteur LHCb au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Laubser, J

    2007-11-15

    The LHCb experiment is one of the four particle physic detector installed at the new Large Hadron Collider (LHC) at CERN in Geneva. In order to reduce the amount of data storage for offline analysis, an online trigger system of interesting event according to the studied physic is implemented in parallel of the Data Acquisition system. The trigger system is composed by a first level (Level-0) made by a complex electronic system and a second level made by a computing system called the High Level Trigger. The Level-0 Decision Unit is the central part of the first trigger level that takes the decision to accept or to reject the event by using a fraction of information coming from the fastest sub-triggers (432 bits at 80 MHz). It is a full custom 16 layers board using advanced FPGA (Field Programmable Gate Array) in BGA (Bill Grid Array) package. Each sub-trigger transmit their data via high speed optical links running at 1.6 Gbit/s. The processing is implemented using a 40 MHz synchronous pipelined architecture. It performs a simple physical algorithm to compute the Level-0 trigger decision in order to reduce the data flow from 40 MHz down to 1 MHz for the next trigger level. The internal design of the processing FPGA is mainly composed by a Partial Data Processing (PDP) and a Trigger Definition Unit (TDU). The aim of the PDP is to adjust the clock phase, perform the time alignment, prepare the data for the TDU and monitor the data processing. The TDU is flexible and allows to fully re-configure all the trigger conditions through the Experiment Control System without any FPGA re-programming. (author)

  2. Guidelines for planning and design of mobile radiological units

    Energy Technology Data Exchange (ETDEWEB)

    Schelenz, R [Federal Office for Environmental Radioactivity in Food, Total Diet and Infant Food, Federal Research Centre for Nutrition, Karlsruhe (Germany)

    1995-07-01

    A significant number of mobile radiological units are in operation worldwide aiming to provide reliable radiological data. They mainly have been designed and constructed on a national basis according to the particular needs and commitments of the specific laboratory or country. In most cases, these units are intended to be used in emergency situations for in-situ radiological measurements of accidentally released radioactivity, sometimes for monitoring environmental pollution. As the purpose of these units is very diversified in regard to the kind of vehicle and its in-built measuring equipment the varying outfit of these units cannot be adopted in general for other countries aiming to improve their capability for in-situ radiological measurement. In order to achieve harmonization of equipment and comparability of radiological data being obtained from field measurements it is necessary to have general guidelines available for designing mobile radiological units taking into account different sceneries and tasks to be achieved. In the very early stages of an accident most of the information available on the quantity of radioactive material being released, its radionuclide composition and the likely progression of the accident will come from the operator, and will be based on the conditions in the plant. Few environmental monitoring results from off-side can be expected within the first few hours. In this very early phase, decisions on the application of protective measures will therefore, be based largely on plant status and forecasts of changes in that status as well as on meteorological data. As time progresses, results will increasingly become available from the monitoring of radionuclides in the environment (e.g. dose rates and concentration of radionuclides in air and particular materials such as water, food etc). Monitoring results can be used to estimate potential doses to people and the need for further protective measures can thus be determined from a

  3. Guidelines for planning and design of mobile radiological units

    International Nuclear Information System (INIS)

    Schelenz, R.

    1995-01-01

    A significant number of mobile radiological units are in operation worldwide aiming to provide reliable radiological data. They mainly have been designed and constructed on a national basis according to the particular needs and commitments of the specific laboratory or country. In most cases, these units are intended to be used in emergency situations for in-situ radiological measurements of accidentally released radioactivity, sometimes for monitoring environmental pollution. As the purpose of these units is very diversified in regard to the kind of vehicle and its in-built measuring equipment the varying outfit of these units cannot be adopted in general for other countries aiming to improve their capability for in-situ radiological measurement. In order to achieve harmonization of equipment and comparability of radiological data being obtained from field measurements it is necessary to have general guidelines available for designing mobile radiological units taking into account different sceneries and tasks to be achieved. In the very early stages of an accident most of the information available on the quantity of radioactive material being released, its radionuclide composition and the likely progression of the accident will come from the operator, and will be based on the conditions in the plant. Few environmental monitoring results from off-side can be expected within the first few hours. In this very early phase, decisions on the application of protective measures will therefore, be based largely on plant status and forecasts of changes in that status as well as on meteorological data. As time progresses, results will increasingly become available from the monitoring of radionuclides in the environment (e.g. dose rates and concentration of radionuclides in air and particular materials such as water, food etc). Monitoring results can be used to estimate potential doses to people and the need for further protective measures can thus be determined from a

  4. SIFT - Design and analysis of a fault-tolerant computer for aircraft control. [Software Implemented Fault Tolerant systems

    Science.gov (United States)

    Wensley, J. H.; Lamport, L.; Goldberg, J.; Green, M. W.; Levitt, K. N.; Melliar-Smith, P. M.; Shostak, R. E.; Weinstock, C. B.

    1978-01-01

    SIFT (Software Implemented Fault Tolerance) is an ultrareliable computer for critical aircraft control applications that achieves fault tolerance by the replication of tasks among processing units. The main processing units are off-the-shelf minicomputers, with standard microcomputers serving as the interface to the I/O system. Fault isolation is achieved by using a specially designed redundant bus system to interconnect the processing units. Error detection and analysis and system reconfiguration are performed by software. Iterative tasks are redundantly executed, and the results of each iteration are voted upon before being used. Thus, any single failure in a processing unit or bus can be tolerated with triplication of tasks, and subsequent failures can be tolerated after reconfiguration. Independent execution by separate processors means that the processors need only be loosely synchronized, and a novel fault-tolerant synchronization method is described.

  5. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  6. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  7. [Single- and multi-unit fixed dental prostheses in relation to the occlusal system].

    Science.gov (United States)

    Witter, D J; Gerritsen, A E; van Spijker, A; Creugers, N H J

    2013-02-01

    Occlusion concepts based on functional aspects offer more solid ground in the diagnostic process and in the treatment of (reduced) dentitions than morphologically and mechanically oriented occlusion concepts. Nevertheless, for occlusal reconstruction morphologically oriented guidelines are necessary. These guidelines are based on the border movements and positions of the mandible in the orofacial system, and on the location and modelling of the occlusal contacts in the occlusal system. The modelling of single- and multi-unit fixed dental prostheses must harmonize with the occlusal system. Moreover, an important feature is the relation of the anterior teeth which enables mutually protected occlusion. Characteristics of a healthy orofacial and occlusal system are: absence of pathology, perceived sufficient oral functions, variability inform and function, and adaptive capacity. When designing single- or multiunit fixed dental prostheses, a pragmatic starting point is to maintain the existing occlusion and the existing speech pattern unless arguments can be provided for alterations. The occlusal design should aim at optimizing oral functions, such as mandibular and occlusal stability.

  8. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    Science.gov (United States)

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  9. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D` Avila, J S; Nascimento, R R [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1994-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  10. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D`Avila, J.S.; Nascimento, R.R. [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1993-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  11. Performance comparison of liquid metal and gas cooled ATW system point designs

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Hill, R.N.; Khalil, H.S.; Wade, D.C.

    2001-01-01

    As part of the Advanced Accelerator Application (AAA) program in the U.S., preliminary design studies have been performed at Argonne National Laboratory (ANL) and Los Alamos National Laboratory (LANL) to define and compare candidate Accelerator Transmutation of Waste (ATW) systems. The studies at ANL have focused primarily on the transmutation blanket component of the overall system. Lead-bismuth eutectic (LBE), sodium, and gas cooled systems are among the blanket technology options currently under consideration. This paper summarizes the results from neutronics trade studies performed at ANL. Core designs have been developed for LBE and sodium cooled 840 MWt fast spectrum accelerator driven systems employing re-cycle. Additionally, neutronics analyses have been performed for a helium-cooled 600 MWt hybrid thermal and fast spectrum system proposed by General Atomics (GA), which is operated in the critical mode for three cycles and in a subcritical accelerator driven mode for a subsequent single cycle. For these three point designs, isotopic inventories, consumption rates, and annual burnup rates are compared. The mass flows and the ultimate loss of transuranic (TRU) isotopes to the waste stream per unit of heat generated during transmutation are also compared on a consistent basis. (author)

  12. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  13. Internet based remote cooperative engineering system for NSSS system design

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lee, S. L.

    2000-01-01

    Implementation of information technology system through the nuclear power plant life cycle which covers site selection, design, construction, operation and decommission has been suggested continually by the reports or guidelines from NIRMA, INPO, NUMARC, USNRC and EPRI since late 1980's, and some of it has been actually implemented and applied partially to the practical design process. However, for the NSSS system design, a high level activity of nuclear power plant design phase, none of the effects has been reported with regard to implementing the information system. In Korea, KAERI studied NuIDEAS(Nuclear Integrated Database and Design Advancement System) in 1995, and KAERI (Korea Electric Power Research Institute) worked with CENP (Combustion Engineering Nuclear Power) for KNGR IMS(Information Management System) in 1997 as trials to adopt information system for NSSS system design. In this paper, after reviewing the pre-studied two information system, we introduce implementation of the information system for NSSS system design which is compatible with the on-going design works and can be used as means of concurrent engineering through internet. With this electronic design system, we expect increase of the design efficiency and productivity by switching from hard copy based design flow to internet based system. In addition, reliability and traceability of the design data is highly elevated by containing the native document file together with all the review, comment and resolution history in one database

  14. Design and implementation of a Bluetooth-based infant monitoring/saver (BIMS) system

    Science.gov (United States)

    Sonmez, Ahmet E.; Nalcaci, Murat T.; Pazarbasi, Mehmet A.; Toker, Onur; Fidanboylu, Kemal

    2007-04-01

    In this work, we discuss the design and implementation of a Bluetooth technology based infant monitoring system, which will enable the mother to monitor her baby's health condition remotely in real-time. The system will measure the heart rate, and temperature of the infant, and stream this data to the mother's Bluetooth based mobile unit, e.g. cell phone, PDA, etc. Existing infant monitors either require so many cables, or transmit only voice and/or video information, which is not enough for monitoring the health condition of an infant. With the proposed system, the mother will be warned against any abnormalities, which may be an indication of a disease, which in turn may result a sudden infant death. High temperature is a common symptom for several diseases, and heart rate is an essential sign of life, low or high heart rates are also essentials symptoms. Because of these reasons, the proposed system continously measures these two critical values. A 12 bits digital temperature sensor is used to measure infant's body temperature, and a piezo film sensor is used measure infant's heartbeat rate. These sensors, some simple analog circuitry, and a ToothPick unit are the main components of our embedded system. ToothPick unit is basically a Microchip 18LF6720 microcontroller, plus an RF circuitry with Bluetooth stack.

  15. Environmental Design for Patient Families in Intensive Care Units

    OpenAIRE

    Mahbub Rashid

    2010-01-01

    The purpose of this paper is to define the role of environmental design in improving family integration with patient care in Intensive Care Units (ICUs). It argues that it is necessary to understand family needs, experience and behavioral responses in ICUs to develop effective models for family integration. With its two components—the “healing culture” promoting effective relationships between caregivers and care seekers, and the “environmental design” supporting the healing culture—a “healin...

  16. Unattended Monitoring System Design Methodology

    International Nuclear Information System (INIS)

    Drayer, D.D.; DeLand, S.M.; Harmon, C.D.; Matter, J.C.; Martinez, R.L.; Smith, J.D.

    1999-01-01

    A methodology for designing Unattended Monitoring Systems starting at a systems level has been developed at Sandia National Laboratories. This proven methodology provides a template that describes the process for selecting and applying appropriate technologies to meet unattended system requirements, as well as providing a framework for development of both training courses and workshops associated with unattended monitoring. The design and implementation of unattended monitoring systems is generally intended to respond to some form of policy based requirements resulting from international agreements or domestic regulations. Once the monitoring requirements are established, a review of the associated process and its related facilities enables identification of strategic monitoring locations and development of a conceptual system design. The detailed design effort results in the definition of detection components as well as the supporting communications network and data management scheme. The data analyses then enables a coherent display of the knowledge generated during the monitoring effort. The resultant knowledge is then compared to the original system objectives to ensure that the design adequately addresses the fundamental principles stated in the policy agreements. Implementation of this design methodology will ensure that comprehensive unattended monitoring system designs provide appropriate answers to those critical questions imposed by specific agreements or regulations. This paper describes the main features of the methodology and discusses how it can be applied in real world situations

  17. Embedded systems design with special arithmetic and number systems

    CERN Document Server

    Sousa, Leonel; Chang, Chip-Hong

    2017-01-01

    This book introduces readers to alternative approaches to designing efficient embedded systems using unconventional number systems. The authors describe various systems that can be used for designing efficient embedded and application-specific processors, such as Residue Number System, Logarithmic Number System, Redundant Binary Number System Double-Base Number System, Decimal Floating Point Number System and Continuous Valued Number System. Readers will learn the strategies and trade-offs of using unconventional number systems in application-specific processors and be able to apply and design appropriate arithmetic operations from these number systems to boost the performance of digital systems. • Serves as a single-source reference to designing embedded systems with unconventional number systems • Covers theory as well as implementation on application-specific processors • Explains mathematical concepts in a manner accessible to readers with diverse backgrounds.

  18. Designing the upgrade of the Early Warning System in Slovenia

    International Nuclear Information System (INIS)

    Cindro, M.; Mitic, D.; Stritar, A.

    2004-01-01

    When designing an upgrade of early warning network for radiological emergencies one has to consider physical criteria as well as technical and financial possibilities, making the system the best possible compromise between the above mentioned aspects. In the case of the Slovenian Early Warning System (EWS) upgrade, the design was even harder because of the need to implement the existing measuring sites into the new scheme. We plan to add 35 new locations with external radiation and meteorology measurements to the 42 already existing sites. In the article we will describe the selection criteria for measuring sites and the requirements for the measuring equipment as well as a discussion of the physical quantities that need to be measured. In addition to gamma dose rate measurements, which are essential for radiological emergencies, meteorological measurements also provide vital information for the assessment of the situation. Especially we describe an additional necessary meteorological equipment which has to be installed. Today's communication technologies offer many possibilities for data transfer from the measuring site to the central data gathering unit and one has to choose the most appropriate one, primarily considering reliability but also cost effectiveness. For that reason new measuring sites will be at the locations already used for meteorological measurements by the Environmental Agency of the Republic of Slovenia. The Central Unit (CU) of such a network is the core of the system were all data have to be controlled, analysed and presented to the operator providing him with as much data as possible in a simple and clear fashion. (author)

  19. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1999-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  20. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1998-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  1. A new concept for filtration units for trapping radioactive aerosols and iodine in the ventilation systems of nuclear power plants with WWER reactors

    International Nuclear Information System (INIS)

    Foerster, V.; Slanina, S.

    1985-01-01

    The paper describes a concept for new filtration units in the ventilation systems of nuclear power plants with WWER reactors. The new units are characterized by more stringent requirements on the efficiency of air purification (removal of radioactive contaminants) and various requirements for the quality of air purification in the ventilation systems. Work performed at the Scientific Research Institute for Air Technology has resulted in filtration units of a universal modular type, the structural design of which permits a high degree of variation in their component parts. A brief description is given of the filtration units, their basic technical characteristics and examples of their use in nuclear power plant ventilation systems. (author)

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  3. MAS2-8 radar and digital control unit

    Science.gov (United States)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  4. Design of chemical treatment unit for radioactive liquid wastes in Serpong nuclear facilities

    International Nuclear Information System (INIS)

    Salimin, Z.; Walman, E.; Santoso, P.; Purnomo, S.; Sugito; Suwardiyono; Wintono

    1996-01-01

    The chemical treatment unit for radioactive liquid wastes arising from nuclear fuel fabrication, radioisotopes production and radiometallurgy facility has been designed. The design of chemical processing unit is based on the characteristics of liquid wastes containing fluors from uranium fluoride conversion process to ammonium uranyl carbonate on the fuel fabrication. The chemical treatment has the following process steps: coagulation-precipitation of fluoride ion by calcium hydroxide coagulant, separation of supernatant solution from sludge, coagulation of remaining fluoride on the supernatant solution by alum, separation of supernatant from sludge, and than precipitation of fluors on the supernatant by polymer resin WWS 116. The processing unit is composed of 3 storage tanks for raw liquid wastes (capacity 1 m 3 per tank), 5 storage tanks for chemicals (capacity 0.5 m 3 per tank), 2 mixing reactors (capacity 0.5 m 3 per reactor), 1 storage tank for supernatant solution (capacity 1 m 3 ), and 1 storage tank for sludge (capacity 1 m 3 )

  5. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    Science.gov (United States)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  6. Mod-2 wind turbine system concept and preliminary design report. Volume 1: Executive summary

    Science.gov (United States)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system is presented. The MOD-2 is design optimized for commercial production rates which, in multi-unit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than 4 cents per kilowatt hour.

  7. Development of an Emergency Locking Unit for a Belt-In-Seat (BIS System Using a MEMS Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Chang Hyun Baek

    2010-04-01

    Full Text Available This paper proposes an emergency locking unit (ELU for a seat belt retractor which is mounted on the back frame of a vehicle seat. The proposed unit uses a recliner sensor based on a MEMS acceleration sensor and solenoid mechanism. The seat has an upper frame supported to tilt on a lower frame. The retractor in belt in seat (BIS system is supported by the upper frame. The proposed recliner sensor based on a MEMS acceleration sensor comprises orientation means for maintaining a predetermined orientation of emergency relative to the lower frame independently of the force of gravity when the upper frame tilts on the lower frame. Experimental results show that the developed recliner sensor unit operates effectively with respect to rollover angles. Thus, the developed unit will have a considerable potential to offer a new design concept in BIS system.

  8. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  9. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  10. Optimal Design of Fixed-Point and Floating-Point Arithmetic Units for Scientific Applications

    OpenAIRE

    Pongyupinpanich, Surapong

    2012-01-01

    The challenge in designing a floating-point arithmetic co-processor/processor for scientific and engineering applications is to improve the performance, efficiency, and computational accuracy of the arithmetic unit. The arithmetic unit should efficiently support several mathematical functions corresponding to scientific and engineering computation demands. Moreover, the computations should be performed as fast as possible with a high degree of accuracy. Thus, this thesis proposes algorithm, d...

  11. Issues in holistic system design

    DEFF Research Database (Denmark)

    Lawall, Julia L.; Probst, Christian W.; Schultz, Ulrik Pagh

    2006-01-01

    The coordination of layers in computer and software systems is one of the main challenges in designing such systems today. In this paper we consider Holistic System Design as a way of integrating requirements and facilities of different system layers. We also discuss some of the challenges...

  12. CONCEPTUAL BASES OF THE ENERGY EFFICIENT SYSTEM OF MANAGEMENT OF COMBINED UNITS OF WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Shtepa

    2016-01-01

    Full Text Available A critical analysis of the shortcomings of the existing water purification systems is conducted. In order to ensure environmental safety and energy savings it is proposed to use the combined units, including physical, chemical, physical-and-chemical and biological methods. The attention is driven to the fact that the most effective way to maintain current water purification is an adaptive control system. The shortcomings of the management of water treatment units were revealed and it was proposed to produce their synthesis based on the mathematical apparatus of artificial intelligence systems. Taking into account the requirements of the environmental safety and the need in the energy savings, the energy efficiency criteria of combined system functioning has been developed. At an industrial plant (slaughterhouse wastewater treatment the compliance of the production conditions of the criterion has been undertaken that confirmed the criterion relevance and usefulness as applied to the synthesis of energy-efficient control systems. A synthetic control system combined the water treatment plants. Having based on the preliminary research and analysis of the current work in the subject area the architecture of a control system of combined water treatment units that use intelligent technology was developed. The key functional of the unit – information-analytical subsystem of the formation control actions including: multilayer perceptrons self-organization Kohonen network, fuzzy cognitive map. The basic difference between the developed design and its analogues is the ability to adjust the settings of equipment adaptively on the basis of processing sensor data, information on the price of consumables, volley discharges of pollutants, a sudden change in the flow and other force majeure. Adjustment of the parameters of the control system is carried out with the use of experimental and analytical data stored in the knowledge base of technological

  13. An intelligent interlock design support system

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kamiyama, Masahiko

    1990-01-01

    This paper presents an intelligent interlock design support system, called Handy. BWR plant interlocks have been designed on a conventional CAD system operating on a mini-computer based time sharing system. However, its ability to support interlock designers is limited, mainly due to the system not being capable of manipulating the interlock logic. Handy improves the design efficiency with consistent manipulation of the logic and drawings, interlock simulation, versatile database management, object oriented user interface, high resolution high speed graphics, and automatic interlock outlining with a design support expert system. Handy is now being tested by designers, and is expected to greatly contribute to their efficiency. (author)

  14. Valuing flexibilities in the design of urban water management systems.

    Science.gov (United States)

    Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali

    2013-12-15

    Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Distributed System Design Checklist

    Science.gov (United States)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  16. Improving the organization of the outfitting of gas and oil fields in a unitized design

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V.L.; Kurepin, B.N.; Sivergin, M.Yu.; Telegin, L.G.

    1985-01-01

    The basic tenets of the organization of outfitting gas and oil fields in a unitized design are examined. An economic and mathematical model for selecting a variant for transporting unitized devices is proposed in which the transport expenditures are minimal.

  17. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  18. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  19. The system power control unit based on the on-chip wireless communication system.

    Science.gov (United States)

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  20. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Tiefeng Li

    2013-01-01

    Full Text Available Currently, the on-chip wireless communication system (OWCS includes 2nd-generation (2G, 3rd-generation (3G, and long-term evolution (LTE communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  1. Seismic design criteria and their application to major hazard plant within the United Kingdom

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1982-12-01

    The nature of seismic motions and the implications are briefly described and the development of seismic design criteria for nuclear power plants in various countries is described including possible future developments. The seismicity of the United Kingdom is briefly reviewed leading to the present position on seismic design criteria for nuclear power plants within the United Kingdom. Damage from past destructive earthquakes is reviewed and the existing codes of practice and standards are described. Finally the effect of earthquakes on major hazard plant is discussed in general terms including the seismic analysis of a typical plant item. (author)

  2. Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters

    Directory of Open Access Journals (Sweden)

    Zhong Tang

    2014-11-01

    Full Text Available The thorough investigation of both grain threshing and grain separating processes is a crucial consideration for effective structural design and variable optimization of the tangential flow threshing cylinder and longitudinal axial flow threshing cylinder composite units (TLFC unit of small and medium-sized (SME combine harvesters. The objective of this paper was to obtain the structural variables of a TLFC unit by theoretical modeling and experimentation on a tangential flow threshing cylinder unit (TFC unit and longitudinal axial flow threshing cylinder unit (LFC unit. Threshing and separation equations for five types of threshing teeth (knife bar, trapezoidal tooth, spike tooth, rasp bar, and rectangular bar, were obtained using probability theory. Results demonstrate that the threshing and separation capacity of the knife bar TFC unit was stronger than the other threshing teeth. The length of the LFC unit was divided into four sections, with helical blades on the first section (0-0.17 m, the spike tooth on the second section (0.17-1.48 m, the trapezoidal tooth on the third section (1.48-2.91 m, and the discharge plate on the fourth section (2.91-3.35 m. Test results showed an un-threshed grain rate of 0.243%, un-separated grain rate of 0.346%, and broken grain rate of 0.184%. Evidenced by these results, threshing and separation performance is significantly improved by analyzing and optimizing the structure and variables of a TLFC unit. The results of this research can be used to successfully design the TLFC unit of small and medium-sized (SME combine harvesters.

  3. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  4. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  5. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  6. Select Components and Finish System Design of a Window Air Conditioner with Propane

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  7. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  8. Computer code validation study of PWR core design system, CASMO-3/MASTER-α

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, M. H.; Woo, S. W.

    1999-01-01

    In this paper, the feasibility of CASMO-3/MASTER-α nuclear design system was investigated for commercial PWR core. Validation calculation was performed as follows. Firstly, the accuracy of cross section generation from table set using linear feedback model was estimated. Secondly, the results of CASMO-3/MASTER-α was compared with CASMO-3/NESTLE 5.02 for a few benchmark problems. Microscopic cross sections computed from table set were almost the same with those from CASMO-3. There were small differences between calculated results of two code systems. Thirdly, the repetition of CASMO-3/MASTER-α calculation for Younggwang Unit-3, Cycle-1 core was done and their results were compared with nuclear design report(NDR) and uncertainty analysis results of KAERI. It was found that uncertainty analysis results were reliable enough because results were agreed each other. It was concluded that the use of nuclear design system CASMO-3/MASTER-α was validated for commercial PWR core

  9. Systems design for remote healthcare

    CERN Document Server

    Bonfiglio, Silvio

    2014-01-01

    This book provides a multidisciplinary overview of the design and implementation of systems for remote patient monitoring and healthcare. Readers are guided step-by-step through the components of such a system and shown how they could be integrated in a coherent framework for deployment in practice. The authors explain planning from subsystem design to complete integration and deployment, given particular application constraints. Readers will benefit from descriptions of the clinical requirements underpinning the entire application scenario, physiological parameter sensing techniques, information processing approaches and overall, application dependent system integration. Each chapter ends with a discussion of practical design challenges and two case studies are included to provide practical examples and design methods for two remote healthcare systems with different needs. ·         Provides a multi-disciplinary overview of next-generation mobile healthcare system design; ·         Includes...

  10. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  11. US-APWR human systems interface system verification and validation results. Application of the Mitsubishi advanced design to the US market

    International Nuclear Information System (INIS)

    Hall, Robert E.; Easter, James; Roth, Emilie; Kabana, Leonard; Takahashi, Koichi; Clouser, Timothy

    2009-01-01

    The US-APWR, under Design Certification Review by the US Nuclear Regulatory Commission, is a four loop evolutionary pressurized water reactor with a four train active safety system by Mitsubishi Heavy Industries and Instrumentation and Control System (I and C)/Human Systems Interface (HSI) platform applied by Mitsubishi Electric Corporation. This design is currently being applied to the latest Japanese PWR plant under construction and to the nuclear power plant I and C modernization program in Japan. The US-APWR's fully digital I and C system and HSI platform utilizes computerized systems, including computer based procedures and alarm prioritization, relying principally on an HSI system with soft controls, console based video display units and a large overview wall display panel. Conventional hard controls are limited to Safety System level manual actions and a Diverse Actuation System. The overall design philosophy is based on the concept that operator performance will be enhanced through the integration of safety- and non-safety display and control systems in a robust digital environment. This philosophy is augmented, for diversity, by the application of independent safety-only soft displays and controls. As with all advanced designs, the digital systems resolve many long- standing issues of human and system performance while opening a number of new, less understood, questions. This paper discusses a testing program that begins to address these new questions and specifically explores the needs of moving a mature design into the US market with minimum changes from its original design. Details for the program took shape during 2007 and early 2008, resulting in an eight-week testing program during the months of July and August 2008. This extensive verification and validation program on the advanced design was undertaken with the objective of assessing United States operators' performance in this digital design environment. This testing program included analyses that

  12. Hyperthermia system working in combination with an MR imaging unit

    International Nuclear Information System (INIS)

    LeBihan, D.J.; Delannoy, J.; Levin, R.L.; Hoult, D.I.

    1988-01-01

    The authors propose a hyperthermia device to be used for temperature monitoring. It consists of a modified miniannular phased array (MAPA) radio-frequency applicator designed for limb tumor treatment that works in combination with a whole-body MR imaging unit operating at 21 MHz. Highly accurate (0.5 0 c/0.8 cm 2 ) temperature images are obtained noninvasively throughout the heated volume from MR images of molecular diffusion, the relation of which with temperature is well known. The MAPA, electrically modified to be compatible with MR imagers, can be centered inside the MR head coil. The combined system was tested on a phantom in which the temperature distribution was confirmed by miniature thermocouples

  13. Software Unit Testing during the Development of Digital Reactor Protection System of HTR-PM

    International Nuclear Information System (INIS)

    Guo Chao; Xiong Huasheng; Li Duo; Zhou Shuqiao; Li Jianghai

    2014-01-01

    Reactor Protection System (RPS) of High Temperature Gas-Cooled Reactor - Pebble bed Module (HTR-PM) is the first digital RPS designed and to be operated in the Nuclear Power Plant (NPP) of China, and its development process has receives a lot of concerns around the world. As a 1E-level safety system, the RPS has to be designed and developed following a series of nuclear laws and technical disciplines including software verification and validation (software V&V). Software V&V process demonstrates whether all stages during the software development are performed correctly, completely, accurately, and consistently, and the results of each stage are testable. Software testing is one of the most significant and time-consuming effort during software V&V. In this paper, we give a comprehensive introduction to the software unit testing during the development of RPS in HTR-PM. We first introduce the objective of the testing for our project in the aspects of static testing, black-box testing, and white-box testing. Then the testing techniques, including static testing and dynamic testing, are explained, and the testing strategy we employed is also introduced. We then introduce the principles of three kinds of coverage criteria we used including statement coverage, branch coverage, and the modified condition/decision coverage. As a 1E-level safety software, testing coverage needs to be up to 100% mandatorily. Then we talk the details of safety software testing during software development in HTR-PM, including the organization, methods and tools, testing stages, and testing report. The test result and experiences are shared and finally we draw a conclusion for the unit testing process. The introduction of this paper can contribute to improve the process of unit testing and software development for other digital instrumentation and control systems in NPPs. (author)

  14. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    Science.gov (United States)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  15. Rirang Uranium Ore Processing System Design: Designing A Quencher Unit: A Continuous Quencher Has Been Designed

    International Nuclear Information System (INIS)

    Effendi, Amir; Lisa Nuri, Hafni

    1996-01-01

    The objective of the design is to make a laboratory scale quencher model that is used to facilitate the dissolution and sudden cooling of the digestion product of the Rirang ore. The designed quencher was based on the previous batch quenching data, feed capacity of 325 g/minute, and residence time of one and two hours for quenching tank and thickener, respectively. The cylindrical quenching tank has dimension of 30 cm diameter and 30 cm high. It has three 2,5 cm baffles and is equipped with a blade-impeller agitator. The bottom-pitched cylindrical thickener has the diameter of 56 cm. The thickener is divided into four zones including clarification, feed; critical, and compression with 5, 3, 3, and 4 cm zones height, respectively. In addition, the bottom pitch has 12,5 cm height. The quencher model is further used to conduct performance test against Rirang ore digestion product

  16. Design of Seat Search System in the Classroom Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jia Yu chen

    2018-01-01

    Full Text Available The purpose of this design is intended to statistics and publishes free seats information in classroom timely to students, and then save students’ time to looking for classroom. The system uses wireless sensor networks to monitor classroom vacancies. It consists of classroom monitoring system and information transmission system. The classroom monitoring system consists of a coordinator node for remote wireless communication and two collection nodes for local communications in the classroom, and that three nodes are star-connected. The tasks of the coordinator node are to collect information from the collection nodes and display and transmission. Set up two collection nodes for collecting information of the number who inter the classroom. The devices for counting include two units, signal acquisition unit is constituted with pyroelectric infrared sensor which contains RE200B probe and conditioning circuit, and the control unit is constituted with CC2530 for signal processing. LCD screen is used to real-time display in coordinator node for counting the number of coming in or out the classroom. Users who enter the teaching building check which classroom have seats available. The manner of local communication is using ZIGBEE. The entire system uses sensor technology and mobile network communication technology to achieve real-time acquisition and release of information. The ability to identify and stability of the experimental system currently implemented are strong.

  17. Software-Controlled Dynamically Swappable Hardware Design in Partially Reconfigurable Systems

    Directory of Open Access Journals (Sweden)

    Huang Chun-Hsian

    2008-01-01

    Full Text Available Abstract We propose two basic wrapper designs and an enhanced wrapper design for arbitrary digital hardware circuit designs such that they can be enhanced with the capability for dynamic swapping controlled by software. A hardware design with either of the proposed wrappers can thus be swapped out of the partially reconfigurable logic at runtime in some intermediate state of computation and then swapped in when required to continue from that state. The context data is saved to a buffer in the wrapper at interruptible states, and then the wrapper takes care of saving the hardware context to communication memory through a peripheral bus, and later restoring the hardware context after the design is swapped in. The overheads of the hardware standardization and the wrapper in terms of additional reconfigurable logic resources and the time for context switching are small and generally acceptable. With the capability for dynamic swapping, high priority hardware tasks can interrupt low-priority tasks in real-time embedded systems so that the utilization of hardware space per unit time is increased.

  18. System 80+trademark Standard Design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80+trademark Standard Design. This Volume 16 details the application of Human Factors Engineering in the design process

  19. Modular system design and evaluation

    CERN Document Server

    Levin, Mark Sh

    2015-01-01

    This book examines seven key combinatorial engineering frameworks (composite schemes consisting of algorithms and/or interactive procedures) for hierarchical modular (composite) systems. These frameworks are based on combinatorial optimization problems (e.g., knapsack problem, multiple choice problem, assignment problem, morphological clique problem), with the author’s version of morphological design approach – Hierarchical Morphological Multicritieria Design (HMMD) – providing a conceptual lens with which to elucidate the examples discussed. This approach is based on ordinal estimates of design alternatives for systems parts/components, however, the book also puts forward an original version of HMMD that is based on new interval multiset estimates for the design alternatives with special attention paid to the aggregation of modular solutions (system versions). The second part of ‘Modular System Design and Evaluation’ provides ten information technology case studies that enriches understanding of th...

  20. United States position paper on sodium fires, design and testing

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Johnson, R.P.

    1983-01-01

    The first Specialists' Meeting on sodium fire technology sponsored by the International Working Group on Fast Reactors (IWGFR) was held in Richland, Washington in 1972. The group concluded that the state-of-technology at that time was inadequate to support the growing LMFBR industry. During the second IWGFR Specialists' Meeting on sodium fires, held in Cadarache, France in 1978, a large quantity of technical information was exchanged and areas were identified where additional work was needed. Advances in several important areas of sodium fire technology have been made in the United States since that time, including improved computer codes, design of a sodium fire protection system for the CRBRP, measurement of water release from heated concrete, and testing and modeling of the sodium-concrete reaction. Research in the U.S. related to sodium fire technology is performed chiefly at the Energy Systems Group of Rockwell International (including Atomics International), the Hanford Engineering Development Laboratory (HEDL), and the Sandia National Laboratories (SNL). The work at the first two laboratories is sponsored by the U.S. Department of Energy, while that at the latter is sponsored by the U.S. Nuclear Regulatory Commission. Various aspects of sodium fire related work is also performed at several other laboratories. The current status of sodium fire technology in the U.S. is summarized in this report

  1. Preliminary System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  2. Solvent extraction technology of 90Mo-sup(99m)Tc system: design and operational considerations

    International Nuclear Information System (INIS)

    Noronha, O.P.D.; Sewatkar, A.B.

    1983-01-01

    The design features of 99 Mo-sup(99m)Tc solvent extraction system have been reviewed. An improved semi-automated system has been improvised using the basic equipment of an indigenous unit along with other accessories, and with an added element of radiation protection to handle daily about 300-600 millicurie amounts of reactor-produced very low specific activity 99 Mo. The system has been used routinely for obtaining sup(99m)TcO 4 - - required for diagnostic purposes in nuclear medicine for the last twelve years. The performance characteristics of this unit with respect to yield and purity of 99 TcO 4 - - consistency of the process, the radiation dose to personnel and related health physics aspects have been evaluated. (author)

  3. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  4. Designing Sustainable Urban Social Housing in the United Arab Emirates

    Directory of Open Access Journals (Sweden)

    Khaled Galal Ahmed

    2017-08-01

    Full Text Available The United Arab Emirates is experiencing a challenging turn towards sustainable social housing. Conventional neighborhood planning and design principles are being replaced by those leading to more sustainable urban forms. To trace this challenging move, the research has investigated the degree of consideration of sustainable urban design principles in two social housing neighborhoods in Al Ain City in Abu Dhabi Emirate, UAE. The first represents a conventional urban form based on the neighborhood theory; the other represents the new sustainable design. The ultimate aim is to define the obstacles hindering the full achievement of a sustainable urban form in this housing type. To undertake research investigations, a matrix of the design principles of sustainable urban forms has been initiated in order to facilitate the assessment of the urban forms of the two selected urban communities. Some qualitatively measurable design elements have been defined for each of these principles. The results of the analysis of the shift from ‘conventional’ to ‘sustainable’ case studies have revealed some aspects that would prevent the attainment of fully sustainable urban forms in newly designed social housing neighborhoods. Finally, the research concludes by recommending some fundamental actions to help meet these challenges in future design.

  5. An innovative design of small low head hydropower units for low cost decentralized production

    International Nuclear Information System (INIS)

    Holmen, E.; Dennehy, T.

    1991-01-01

    Design allowing turbine operation at heads as low as 1m and operating at a rotational speed of 500 RPM at a flow of 2.6m 3 /s and a runner diameter of 700 mm. This eliminates the need for a gear box and helps in achieving efficiency of 60% in the case of a 21 kW installation at a 1m head site and 85% with a 69 kW 3.2m head site. Present turbine designs for such low head sites are very expensive to produce and have a low efficiency. The design uses an all plastic waterway, guide vane assembly and reinforced plastic runner blades. There will be a short pay-back period, for example 4.5 years in the case of a 21 kW unit and 2.0 years in case of the 69 kW unit. These payback periods assume a cost per kW of 0.00 ECU. Design is attractive for decentralized production. 3 figs

  6. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  7. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  8. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-01-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, open-quotes what to protect against whom.close quotes The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given

  9. Process of system design and analysis

    International Nuclear Information System (INIS)

    Gardner, B.

    1995-01-01

    The design of an effective physical protection system includes the determination of the physical protection system objectives, the initial design of a physical protection system, the evaluation of the design, and, probably, a redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operations and conditions, such as a comprehensive description of the facility, operating states, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: Class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not nuclear materials are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the materiaL The designer now knows the objectives of the physical protection system, that is, ''What to protect against whom.'' The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors, procedures, communication devices, and protective force personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to assure protection rather than regarding each feature separately. Due to the complexity of protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted

  10. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  11. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    Science.gov (United States)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  12. Design of an Integrated Sensor Platform for Vital Sign Monitoring of Newborn Infants at Neonatal Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2010-01-01

    Full Text Available Continuous health status monitoring and advances in medical treatments have resulted in a significant increase of survival rate in critically ill infants admitted into Neonatal Intensive Care Units (NICUs. The quality of life and long-term health prospects of the neonates depend increasingly on the reliability and comfort of the monitoring systems. In this paper, we present the design work of a smart jacket for vital sign monitoring of neonates at a NICU. The design represents a unique integration of sensor technology, user focus and design aspects. Textile sensors, a reflectance pulse oximeter and a wearable temperature sensor were proposed to be embedded into the smart jacket. Location of the sensor, materials and appearance were designed to optimize the functionality, patient comfort and the possibilities for aesthetic features. Prototypes were built for demonstrating the design concept and experimental results were obtained from tests on premature babies at the NICU of M�xima Medical Centre (MMC in Veldhoven, the Netherlands.

  13. Pre-design safety analyses of cesium ion-exchange compact processing unit

    International Nuclear Information System (INIS)

    Richmond, W.G.; Ballinger, M.Y.

    1993-11-01

    This report describes an innovative radioactive waste pretreatment concept. This cost-effective, highly flexible processing approach is based on the use of Compact Processing Units (CPUs) to treat highly radioactive tank wastes in proximity to the tanks themselves. The units will be designed to treat tank wastes at rates from 8 to 20 liters per minute and have the capacity to remove cesium, and ultimately other radionuclides, from 4,000 cubic meters of waste per year. This new concept is being integrated into waste per year. This new concept is being integrated into Hanford's tank farm management plans by a team of PNL and Westinghouse Hanford Company scientists and engineers. The first CPU to be designed and deployed will be used to remove cesium from Hanford double-shell tank (DST) supernatant waste. Separating Cs from the waste would be a major step toward lowering the radioactivity in the bulk of the waste, allowing it to be disposed of as a low-level solid waste form (e.g.,grout), while concentrating the more highly radioactive material for processing as high-level solid waste

  14. Per unit representation of electrical magnitudes in batteries: A tool for comparison and design

    International Nuclear Information System (INIS)

    Gauchia, Lucia; Sanz, Javier

    2009-01-01

    When a comparison between the performance of batteries with different characteristics, or sizing of a particular battery system in a power system (electrical grid, etc.) is carried out, the usual expression of electrical variables in terms of absolute magnitudes (Volts, etc.) has some important disadvantages derived from the wide range of values these variables can assume, as they are dependant on the 'size' of the system, defined by its rated capacity, voltage or current. This makes impossible any direct comparison between different alternatives. Furthermore, it collides with the usual way power engineers use to represent and analyze the electrical power system. This paper proposes the application of a per unit system to batteries to overcome these problems. In this per unit system, all magnitudes are represented as non-dimensional values, with reference to a set of base magnitudes. Therefore, absolute values are converted into relative ones, which allow a direct comparison between different batteries. To apply a per unit system, a set of base magnitudes is studied and defined taking into account the special characteristics of a battery. The conclusion is that with a per unit system the information extracted is more accessible, direct and representative than using absolute magnitudes

  15. Advanced Colorimetry of Display Systems: Tetra-Chroma3 Display Unit

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2005-06-01

    Full Text Available High-fidelity color image reproduction is one of the key issues invisual telecommunication systems, for electronic commerce,telemedicine, digital museum and so on. All colorimetric standards ofdisplay systems are up to the present day trichromatic. But, from theshape of a horseshoe-area of all existing colors in the CIE xychromaticity diagram it follows that with three real reproductivelights, the stated area in the CIE xy chromaticity diagram cannot beoverlaid. The expansion of the color gamut of a display device ispossible in a few ways. In this paper, the way of increasing the numberof primaries is studied. The fourth cyan primary is added to threeconventional ones to enlarge the color gamut of reproduction towardscyans and yellow-oranges. The original method of color management forthis new display unit is introduced. In addition, the color gamut ofthe designed additive-based display is successfully compared with thecolor gamut of a modern subtractive-based system. A display with morethan three primary colors is called a multiprimary color display. Thevery advantageous property of such display is the possibility todisplay metameric colors.

  16. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  17. The effects of loading on the preload and dimensions of the abutment screw for a 3-unit cantilever-fixed prosthesis design.

    Science.gov (United States)

    Setia, Gaurav; Yousef, Hoda; Ehrenberg, David; Luke, Allyn; Weiner, Saul

    2013-08-01

    The purpose of this study was to use an in vitro model system to compare the effects on the screw torque and screw dimensions within 2 commercially available implant systems from occlusal loading on a cantilevered-fixed partial denture. Cantilevered implant-supported 3-unit prostheses with 2 premolar abutments and 1 premolar pontic (7.3 mm in length) were made on resin casts containing 2 implant analogs for 2 implant systems: BioLok Silhouette Tapered Implant System (Birmingham, AL) and Zimmer Tapered Screw-Vent Implant System (Carlsbad, CA) with 10 samples in each group. Each sample was loaded with either of 2 protocols: (1) a load of 50 N on the cantilevered pontic unit and (2) a loading of 150 N on all 3 units. The outcome measures were (1) changes in residual torque of the abutment screws and (2) changes in screw dimension. The BioLok Silhouette Tapered Implant group demonstrated slight but statistically significant torque loss 18.8% to 28.5% in both abutment screws for both protocols, P ≤ 0.05, without any changes in screw dimension. In the Zimmer Tapered Screw-Vent Implant group, there was a significant elongation of the abutment screws and a markedly significant 44.4%, (P ≤ 0.01) loss in torque in the mesial screw and a 28.5%, (P ≤ 0.05) loss in torque in the distal screw when the cantilever alone was loaded. Differences in screw design influence the maintenance of preload and distortion of the shank. The influence of the interface design, namely an internal hex of 1 mm versus an external hex did not influence the preload. Cantilevered prostheses can cause loss of torque and dimensional changes in abutment screws.

  18. TAU: a design for a thousand astronomical unit voyage

    International Nuclear Information System (INIS)

    Eubanks, D.; Alvis, J.; Bechler, E.; Lyon, W. III; McFarlane, D.; Palmrose, D.; Schmitz, P.

    1987-01-01

    The Jet Propulsion Lab. (JPL) has proposed a deep-space probe to travel to a distance of one thousand astronomical units -25 times further from the Sun than Pluto. In order to achieve this goal within the lifetime of the investigators, the mission time is set at a maximum of 50 yr. The JPL proposal postulates a design in which the probe is under powered thrust for the first 10 yr of the mission and coasts for the next 40 yr. A continuous high specific impulse, Isp (the ratio of thrust to propellant mass flow rate), low thrust propulsion system (either magnetoplasmadynamic (MPD) or ion thrusters) is required in order to achieve this goal. This in turn necessitates electrical power in the megawatt range. The only power source that is practical for this situation is a nuclear reactor. It was a this point that the Nuclear Engineering Dept. at Texas A and M Univ. began its ongoing work, looking into several areas of the proposal in which a more detailed description was needed. These areas of interest were power, propulsion, heavy lift launch capabilities, and trajectory analysis. In addition to all of the boundaries previously outlined, the technology level is assumed to be that of 1995, 8 yr from now

  19. Preliminary design review: Brayton Isotope Power System

    International Nuclear Information System (INIS)

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS

  20. HERE'S HOW TO DESIGN A SCHOOL CAFETERIA.

    Science.gov (United States)

    POWERS, ALICE

    A DISCUSSION IS PRESENTED OF THE FACTORS INVOLVED IN DESIGNING A SYSTEM OF "UNIT KITCHENS." REASONS FOR CHOICE OF A UNIT SYSTEM OVER A CENTRAL KITCHEN ARE GIVEN, AND A DETAILED ANALYSIS OF THE FACTORS INVOLVED IN DESIGNING AND EQUIPPING SUCH FACILITIES IS PRESENTED. THIS ARTICLE APPEARED IN THE NOVEMBER-DECEMBER 1964 ISSUE OF THE SCHOOL LUNCH…

  1. An Investigation into the Cost of Unit Testing on an Embedded System

    OpenAIRE

    Qiu, Wensi

    2011-01-01

    The quality of embedded software is important, especially for life-critical and mission-critical embedded systems. And software testing is a key activity to ensure the quality of embedded software. Both system testing and unit testing are vital to test embedded software. Unit testing is probably more important to ensure there are no latent faults. System testing is almost invariably done on a target system, but unit testing is normally done on a host system, as standard test frame...

  2. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  3. Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata

    Science.gov (United States)

    Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam

    Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.

  4. Design loads, loading combinations and structural acceptance criteria for BWR containments in the United States

    International Nuclear Information System (INIS)

    Edwards, N.W.

    1979-01-01

    The definition of loads, loading combinations, and structural acceptance criteria used for the design and evaluation of BWR containments in the Unites States has become much more comprehensive over the past decade. The Mark I pressure suppression containment vessels were designed for a static design pressure, a design temperature, dead load and static equivalent earthquake. The current Mark III containments are being designed to accommodate many more loads such as safety relief valve discharge loads, and suppression pool hydrodynamic loadings associated with the steam condensation phenomena as well as pressure and temperature transients for a range of pipe break sizes. Consistent with the more comprehensive definition of loads and loading combinations, the ASME Code presently establishes structural acceptance criteria with different margins of safety by the definition of Service Level Assignments A, B, C and D. Acting in a responsible manner, United States utilities are currently evaluating and modifying existing containment vessels to account for the more detailed load definition and structural acceptance criteria. (orig.)

  5. System 80+trademark Standard Design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80+trademark Standard Design. This Volume 18 provides Appendix B, Probabilistic Risk Assessment

  6. System 80+trademark Standard Design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80 + trademark Standard Design. This volume 8 provides a description of instrumentation and controls

  7. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  8. Initial startup and operations of Yonggwang Units 3 and 4

    International Nuclear Information System (INIS)

    Collier, T.J.; Chari, D.R.; Kiraly, F.

    1996-01-01

    A significant milestone in the nuclear power industry was achieved in 1995, when Yonggwang (YGN) Units 3 and 4 were accepted into in commercial operation by Korea Electric Power Corporation (KEPCO). YGN Unit 3 was accepted into commercial operation on March 31, 1995, the original date established during project initiation. YGN Unit 4 was accepted into operation on January 1, 1996, 3 months ahead of schedule. Each YGN unit produces approximately 1,050 Mwe and supplies approximately ten percent of the total electric power demand in the Republic of Korea (ROK). The overall plant efficiency is approximately 37% which is at least 1% higher than most nuclear units. Since achieving commercial operation, YGN Unit 3 has operated at essentially full power which has resulted in an annual performance rate in excess of 85%. YGN Unit 3 is the first of six pressurized water reactors which are currently under design and construction in the ROK and serves as the reference design for the Korean Standard Nuclear Power Plant program. Both YGN Units 3 and 4 include a System 800 Nuclear Steam Supply System (NSSS). The NSSS is rated at 2,815 Mwth and is the ABB-CE standard design. The design includes numerous advanced design features which enhance plant safety, performance and operability. A well executed startup test program was successfully completed on both units prior to commercial operation. A summary of the YGN NSSS design features, the startup test program and selected test results demonstrating the performance of those features are presented in this paper

  9. Design of improved detection instrumentation for the annulus gas system for wolsong 2

    International Nuclear Information System (INIS)

    Kim, Seog Nam; Koo, Jun Mo; Chang, Ik Ho; Jung, Ho Chang; Han, Sang Joon

    1996-01-01

    The improved and advanced Annulus Gas System (AGS) has been developed for Wolsong 2 to satisfy the requirements of the regulatory body. The Atomic Energy Control Board (AECB) required a shorter detection time following a small leak from a pressure tube and/or calandria tube. This paper describes licensing requirements, functional requirements and detail design description for the AGS. The Wolsong unit No. 1 AGS was designed to operate as a stagnant system normally requiring only pressure regulation and having provisions for purging. The improved AGS involves the adoption of gas recirculation in AGS, duplication of dew point indicators with additional instrumentation and sampling provisions to prompt operator action. The improved system operates in the recirculation mode with continuous dew point measurement for leak detection. An AGS with improved detection instrumentation is provided. 8 refs., 3 figs. (author)

  10. Development and validation of natural circulation based systems for new WWER designs

    International Nuclear Information System (INIS)

    Kurakov, Y.A.; Dragunov, Y.G.; Podshibiakin, A.K.; Fil, N.S.; Logvinov, S.A.; Sitnik, Y.K.; Berkovich, V.M.; Taranov, G.S.

    2002-01-01

    Elaboration and introduction of NPP designs with improved technical and economic parameters are defined as an important element of the National Program of nuclear power development approved by the Russian Federation Government in 1998. This Program considers the designs of WWER-1000/V-392 and WWER-640/ V-407 power units as the priority projects of the new generation NPPs with increased safety. A number of passive systems based on natural circulation phenomena are used in V-392 and V-407 designs to prevent or mitigate severe accidents. Design basis, configuration and effect of some naturally driven systems of V-392 design sited at Novovoronezh are mainly reflected in the present paper. One of the most important mean for severe accident prevention in V-392 design is so called SPOT - passive heat removal system designed to remove core decay heat in case of station blackout (including failure of all diesel generators). This system extracts the steam from the steam generator, condenses it and returns water to steam generator by natural circulation. The SPOT heat exchangers are cooled by atmospheric air coming by natural circulation through a special direct action control gates which operate passively as well. Extensive experimental investigation of the different aspects of this system operation has been carried out to validate its functioning under real plant conditions. In particular, full-scale section of air heat exchanger-condenser has been tested with natural circulation steam, condensate and air paths modeled. The environment air temperature and steam pressure condensing were varied in the wide range, and the relevant experimental results are being discussed in this paper. The effect of wind velocity and direction to the containment is also checked by the experiments. (author)

  11. Design Process-System and Methodology of Design Research

    Science.gov (United States)

    Bashier, Fathi

    2017-10-01

    Studies have recognized the failure of the traditional design approach both in practice and in the studio. They showed that design problems today are too complex for the traditional approach to cope with and reflected a new interest in a better quality design services in order to meet the challenges of our time. In the mid-1970s and early 1980s, there has been a significant shift in focus within the field of design research towards the aim of creating a ‘design discipline’. The problem, as will be discussed, is the lack of an integrated theory of design knowledge that can explicitly describe the design process in a coherent way. As a consequence, the traditional approach fails to operate systematically, in a disciplinary manner. Addressing this problem is the primary goal of the research study in the design process currently being conducted in the research-based master studio at Wollega University, Ethiopia. The research study seeks to make a contribution towards a disciplinary approach, through proper understanding the mechanism of knowledge development within design process systems. This is the task of the ‘theory of design knowledge’. In this article the research project is introduced, and a model of the design process-system is developed in the studio as a research plan and a tool of design research at the same time. Based on data drawn from students’ research projects, the theory of design knowledge is developed and empirically verified through the research project.

  12. System 80+trademark standard design: CESSAR design certification

    International Nuclear Information System (INIS)

    1990-01-01

    This report has been prepared in support of the industry effort to standardize nuclear plant designs. The documents in this series describe the Combustion Engineering, Inc. System 80+ TM Standard Design

  13. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  14. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  15. System analysis and design

    International Nuclear Information System (INIS)

    Son, Seung Hui

    2004-02-01

    This book deals with information technology and business process, information system architecture, methods of system development, plan on system development like problem analysis and feasibility analysis, cases for system development, comprehension of analysis of users demands, analysis of users demands using traditional analysis, users demands analysis using integrated information system architecture, system design using integrated information system architecture, system implementation, and system maintenance.

  16. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  17. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    Science.gov (United States)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the

  18. The design of KRT digital system in Ling'ao Ⅱ

    International Nuclear Information System (INIS)

    Sun Yuanjun; Zhang Renyan; Zhao Weijun

    2013-01-01

    In the design of KRT system in Ling Ao Ⅱ, it requires the hardware composition shall be similar to that of Ling Ao Ⅰ. At the same time, the KRT system should be digitized and centralized. In order to realize the goal, the KRT system will be divided into the lower and upper parts. The local sensor at the lower part will transform the analog signal to digital signal in the local display unit; then the digital signals are sent to the upper part (cabinet) by RS-485; the cabinet collects the signals, saves and displays them in the server or operation workstation. or sends them to the DCS. On the other hand, the digital signals will be treated into analog or on/off signals in cabinet and transmitted to other systems. (authors)

  19. On the hazard rate process for imperfectly monitored multi-unit systems

    International Nuclear Information System (INIS)

    Barros, A.; Berenguer, C.; Grall, A.

    2005-01-01

    The aim of this paper is to present a stochastic model to characterize the failure distribution of multi-unit systems when the current units state is imperfectly monitored. The definition of the hazard rate process existing with perfect monitoring is extended to the realistic case where the units failure time are not always detected (non-detection events). The so defined observed hazard rate process gives a better representation of the system behavior than the classical failure rate calculated without any information on the units state and than the hazard rate process based on perfect monitoring information. The quality of this representation is, however, conditioned by the monotony property of the process. This problem is mainly discussed and illustrated on a practical example (two parallel units). The results obtained motivate the use of the observed hazard rate process to characterize the stochastic behavior of the multi-unit systems and to optimize for example preventive maintenance policies

  20. On the hazard rate process for imperfectly monitored multi-unit systems

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France)]. E-mail: anne.barros@utt.fr; Berenguer, C. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France); Grall, A. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France)

    2005-12-01

    The aim of this paper is to present a stochastic model to characterize the failure distribution of multi-unit systems when the current units state is imperfectly monitored. The definition of the hazard rate process existing with perfect monitoring is extended to the realistic case where the units failure time are not always detected (non-detection events). The so defined observed hazard rate process gives a better representation of the system behavior than the classical failure rate calculated without any information on the units state and than the hazard rate process based on perfect monitoring information. The quality of this representation is, however, conditioned by the monotony property of the process. This problem is mainly discussed and illustrated on a practical example (two parallel units). The results obtained motivate the use of the observed hazard rate process to characterize the stochastic behavior of the multi-unit systems and to optimize for example preventive maintenance policies.