WorldWideScience

Sample records for units include waste

  1. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  2. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  3. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  4. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  5. Waste management regroups units into Rust International

    International Nuclear Information System (INIS)

    Kirschner, E.

    1992-01-01

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees

  6. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  7. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  8. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  9. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  10. The 1986 United Kingdom radioactive waste inventory

    International Nuclear Information System (INIS)

    Shepherd, J.; Harrison, J.; McNicholas, P.

    1987-11-01

    This report gives information on the radioactive wastes which arise in the United Kingdom, updated to 1 January 1986. It has been compiled from information provided by the principal producers of the wastes, Amersham International plc, British Nuclear Fuels plc, the Central Electricity Generating Board, the South of Scotland Electricity Board, and the United Kingdom Atomic Energy Authority. The report lists the waste types, or streams, which these organisations produce, or will produce, as part of their normal operations or from decommissioning of their plant. For each stream is given the volume (or in a few cases mass) of existing stocks, estimated arisings to the year 2030 (2080 in the case of some decommissioning wastes), specific activity, and conditioning factor (volume change from ''raw'' waste volume to volume conditioned for disposal). Details of the radionuclide compositions of individual waste streams are separately listed. Waste streams are allocated to one of the three categories High, Intermediate or Low-Level, although this does not necessarily imply any commitment to a particular disposal route. The report includes tables summarising the data, arranged in a hierarchical manner to enable totals to be readily extracted as required. Summary tables of both ''raw'' and ''conditioned'' waste volumes are given. Also included are a commentary on the data and important changes from the 1985 inventory, and information on scenarios on which estimates of future arisings are based. (author)

  11. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  12. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  13. United Kingdom government policy towards radioactive waste

    International Nuclear Information System (INIS)

    Pritchard, G.

    1986-01-01

    There are three areas of radioactive waste management which exemplify, beyond any reasonable doubt, that the United Kingdom has in the past (and intends in the future), to pursue a policy of dispersal and disposal of radioactive wastes: These are: (I) dumping of low-level waste in the deep ocean and, on a parallel, seabed emplacement of highly active waste; (II) the liquid discharges from Windscale into the Irish Sea; and (III) land dumping of low- and intermediate-level waste

  14. The 1987 United Kingdom radioactive waste inventory

    International Nuclear Information System (INIS)

    1988-10-01

    This report describes the stocks of radioactive wastes in the United Kingdom, together with projections of future arisings. Operational and decommissioning wastes are considered for both committed and prospective plant. Arisings are from power reactors, commercial reprocessing, fuel manufacture, medical and industrial sources and research and development. Data are presented for the wastes in their raw form and as conditioned for disposal. The data which refer to the situation on 1.1.87 are shown by producer and globally, in summary tables. The information presented for each producer includes a description of the activities that generate the wastes and a discussion of how stocks and arisings may have changed from earlier predictions. This is supplemented by a stream by stream tabulation showing the waste type, volume, density, conditioning factor and gross alpha and beta activity. The global projections are presented in tabular and graphical manner, and the changes from earlier projections are discussed. The scenarios which underly the projections are also presented. (author)

  15. Management of radioactive waste from reprocessing including disposal aspects

    International Nuclear Information System (INIS)

    Malherbe, J.

    1991-01-01

    Based on a hypothetical scenario including a reactor park of 20 GWe consisting of Pressurised-Water-Reactors with a resulting annual production of 600 tonnes of heavy metal of spent fuel, all aspects of management of resulting wastes are studied. Waste streams from reprocessing include gaseous and liquid effluents, and a number of solid conditioned waste types. Disposal of waste is supposed to be performed either in a near-surface engineered repository, as long as the content of alpha-emitting radionuclides is low enough, and in a deep geological granite formation. After having estimated quantities, cost and radiological consequences, the sensitivity of results to modification in reactor park size, burn-up and the introduction of mixed-oxide fuel (MOX) is evaluated

  16. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  17. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  18. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  19. United States steps up waste isolation programme

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H W [Department of Energy, Germantown, MD (USA). Office of Waste Isolation; Carbiener, W A [Battelle Columbus Labs., OH (USA)

    1982-11-01

    A description is given of the United States' waste isolation programme which now involves tests of specific sites. The US Department of Energy plans to build a system of mined geological repositories for the disposal of commercially generated high-level and transuranic radioactive waste. It is hoped that the first repository will be available by 1998. Studies of the geology and hydrology of the proposed sites, the waste packaging and the repository design are reported.

  20. Radioactive waste management in the United Kingdom

    International Nuclear Information System (INIS)

    Hill, J.

    1976-01-01

    The principles to be followed in the processing and disposal of radioactive wastes are summarized and the procedures practiced in the United Kingdom for different types of wastes are reviewed to illustrate how these principles are being observed. The objectives for the future in modification of current practices are discussed

  1. The 1985 United Kingdom radioactive waste inventory

    International Nuclear Information System (INIS)

    Fletcher, A.M.; Wear, F.J.; Haselden, H.; Shepherd, J.; Tymons, B.J.

    1986-07-01

    This report provides a compilation of stocks of radioactive wastes in the UK by volume, as at 1 January 1985, and estimates of future arisings to the year 2030. It includes radionuclide contents as available, together with specific activities, notional conditioning factors and disposal routes. In the main the stock volumes are given as unconditioned waste. However for clarity and precision some of the data relates to treated wastes (ie compacted wastes, incinerator ash, etc). These are clearly marked in the Tables. (author)

  2. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  3. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  4. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  5. The management of household hazardous waste in the United Kingdom.

    Science.gov (United States)

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.

  6. Radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Smiley, J.L.

    1985-01-01

    In the United States, efforts to dispose of the nation's high- and low-level radioactive wastes are based on somewhat different approaches.The individual States are responsible for disposing of low-level wastes with the Federal Government providing technical and financial support to help the States in the early phases of their efforts. The Federal Government has responsibility for developing facilities for the disposal of high-level waste. However, both efforts show a common need to meet national objectives while satisfying the concerns of the public. (author)

  7. Dictionary of scientific units including dimensionless numbers and scales

    National Research Council Canada - National Science Library

    Jerrard, H.G; McNeill, D.B

    1992-01-01

    .... The text includes the most recently accepted values of all units. Several disciplines, which have in the past employed few scientific principles and the dictionary has been extended to include examples of these.

  8. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  9. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  10. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  11. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  12. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. 40 CFR 60.3012 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ..., 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements.... The plan must identify any additional waste management measures and implement those measures the...

  14. 40 CFR 60.2901 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Analysis Waste Management Plan § 60.2901 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as... must identify any additional waste management measures and implement those measures the source...

  15. Unit costs of waste management operations

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

    1994-04-01

    This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ''cradle to grave'') cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics

  16. Radiological emergency response in a medical waste treatment unit

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  17. Radiological emergency response in a medical waste treatment unit

    International Nuclear Information System (INIS)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L.

    2000-01-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  18. 40 CFR 62.14590 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14590 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or... use of recyclable materials. The plan must identify any additional waste management measures, and the...

  19. 40 CFR 60.2630 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2630 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation... of recyclable materials. The plan must identify any additional waste management measures, and the...

  20. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit at your plant. Include supporting calculations. (b) Records of low carbon feed... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...

  1. 40 CFR 60.2065 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Management Plan § 60.2065 What should I include in my waste management plan? A waste management plan must... additional waste management measures and implement those measures the source considers practical and feasible, considering the effectiveness of waste management measures already in place, the costs of additional measures...

  2. 40 CFR 62.14431 - What must my waste management plan include?

    Science.gov (United States)

    2010-07-01

    ... components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions... the facility and need not include new waste management goals for every waste stream. When you develop... American Hospital Association (AHA) Service, Inc., Post Office Box 92683, Chicago, Illinois 60675-2683. ...

  3. Why is the NORM Waste Included in to the Croatian RadWaste Strategy

    International Nuclear Information System (INIS)

    Prlic, I.; Suric Mihic, M.; Hajdinjak, M.

    2016-01-01

    Croatian RADWASTE Strategy uses modern approach according to EC Directive 2013/59/EURATOM and Croatian Act on Radiological and Nuclear Safety (Official Gazette 141/13, 39/15) linking the entire field of, till modern times non regulated industrial NORM wastes to properly regulated RADWastes. This approach has brought some obscurities to a professional radiation protection community because the fact that NORM will be treated together with the 'heavy' concept of nuclear and radioactive waste was not acceptable due to a historical division of those two fields of radioactivity. As NORM is still regarded as a slightly technologically blended radioactivity which is of no concern to be a risk for the population and RADWASTE is a 'murder' of any population in its vicinity, the need for terminology harmonization and scientifically correct public education was recognized. It is barely known that during the recent past some Croatian professionals did included the NORM sites into the state documents and reports to international regulatory bodies as pure RADWASTE sites. This fact produces immense regulatory difficulties even today. The one and only legal way to solve both, regulatory issues providing real radiation protection procedures during existing NORM waste site sanation and exempting sites to be reused for a legal public purpose (industrial or any other) was to incorporate the existing Croatian NORM sites into the RADWASTE Strategy and to solve all legal radioactivity burden issues during the governmental acceptance process. This approach is a new one in Croatian regulatory acquits and first responses from the stake holders and public involved are promising. The experience from the field and first responses to a concept of harmonizing the reuse approach of existing NORM waste sites from stake holders and partly from general public will be discussed.(author).

  4. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  5. A summary of radiological waste disposal practices in the United States and the United Kingdom - 16379

    International Nuclear Information System (INIS)

    Maranville, Victoria M.; McGrath, Richard

    2009-01-01

    A systematic review of near-surface repositories for radioactive waste in the United States (US) was conducted. The main focus of the review consisted of a literature search of available documents and other published sources on low level radioactive waste (LLRW) disposal practices, remediation of LLRW sites in the US, and public participation for remediation efforts of near-surface radiological waste disposal sites in the US. This review was undertaken to provide background information in support of work by the United Kingdom's (UK) Low Level Waste Repository (LLWR) and to aid in optimizing the future management of this site. The review contained a summary of the US and UK radiological waste classification requirements including a discussion of the waste types, disposal requirements, and the differences between US and UK disposal practices. A regulatory overview and evolution of regulatory requirements in the US is presented. The UK regulatory environment is also discussed and contrasted to the US process. The public participation, as part of the US regulatory process, is provided and the mechanism for stakeholder identification and involvement is detailed. To demonstrate how remediation of radiologically impacted sites is implemented in the US, existing US case studies, in which remediation activities were carried out, were reviewed. The following information was compiled: type of wastes disposed of to US shallow ground facilities [with comparison with UK classifications], facility designs (with special emphasis on those directly comparable to the subsurface conditions in the UK), and deficiencies identified in operation or in demonstrating safe post closure; and processes and difficulties in remedial actions encountered at the selected sites. Stakeholder involvement is discussed within the case studies. Publicly available information related to radiological waste management and disposal practices were reviewed. Two sites are presented in this publication for

  6. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  7. Evaluating pharmaceutical waste disposal in pediatric units.

    Science.gov (United States)

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  8. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC

  9. Transuranic waste transportation issues in the United States

    International Nuclear Information System (INIS)

    Channell, J.K.; Rodgers, J.C.; Neill, R.H.

    1988-01-01

    The United States Department of Energy (DOE) expects to begin disposal of defence transuranic wastes at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico before the end of 1988. Approximately 25,000 truck shipments involving 35 million vehicle kilometers will be required to transport about 175,000 m 3 of contact-handled transuranic waste. Up to 5,000 shipments of remote-handled transuranic waste (RH-TRU) will also be shipped to WIPP in shielded casks. This paper addresses the shipment of CH-TRU wastes

  10. Plutonium Finishing Plant (PFP) Treatment and Storage Unit Waste Analysis Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  11. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  12. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  13. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  14. Overview of the United States' nuclear waste repository programme

    International Nuclear Information System (INIS)

    Surles, T.G.

    2002-01-01

    Regardless of the future of civilian or defense-based nuclear materials, the United States will be responsible for a vast array of these materials for generations to come. The cornerstone programme for the disposal of waste materials is the Yucca Mountain Programme. Based on the Nuclear Waste Policy Act of 1982, as amended in 1987, it has been the United States' policy to develop a geological repository for the permanent disposal of radioactive waste materials. This presentation will discuss the process and strategy leading to the present and will include the scientific and management activities required to support the recent Viability Assessment. Also to be discussed are the timeline and milestones leading to the opening of the repository. The focus will be on the scientific and engineering studies required for a successful Site Recommendation, and then for a similarly successful License Application. Both of these activities will require considerable management efforts in addressing legal and regulatory issues. Finally, the presentation will discuss projections for the future operation of the facility, including emplacement projections, coupled with the required locations of nuclear materials. Additional scientific research and engineering studies will also be conducted to determine the longer-term viability of the facility, which is designed, by policy, for permanent storage. Retrievability is currently not an option, although access to the facility will be maintained for several decades. The focus of the discussion will be on the scientific and engineering advances made on understanding the natural systems for preventing migration of radionuclides, coupled with new developments in engineered systems in areas such as cask cladding, drip shields, and related materials engineering developments. The coupling of engineered and natural systems is designed to offer safety factors that are several orders of magnitude greater than what is estimated to be necessary

  15. Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Ozaki, Calvin B.; Kerr, Thomas A.; Williams, R. Eric

    1991-01-01

    Two national systems comprise the low-level radioactive waste management system in the United States of America. The U.S. Nuclear Regulatory Commission regulates low-level radioactive waste produced in the public sector (commercial waste), and the U.S. Department of Energy manages low-level radioactive waste produced by government-sponsored programs. The primary distinction between the two national systems is the source of regulatory control. This paper discusses two issues critical to the success of each system: the site selection process used by the commercial low-level waste disposal system, and the evaluation process used to determine configuration of the DOE waste management system. The two national systems take different approaches to reach the same goals, which are increased social responsibility, protection of public health and safety, and protection of the environment

  16. 40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Petitions To Include... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260..., and specific management standards proposed or referenced by the petitioner (e.g., waste management...

  17. Performance of cement solidification with barium for high activity liquid waste including sulphate

    International Nuclear Information System (INIS)

    Waki, Toshikazu; Yamada, Motoyuki; Horikawa, Yoshihiko; Kaneko, Masaaki; Saso, Michitaka; Haruguchi, Yoshiko; Yamashita, Yu; Sakai, Hitoshi

    2009-01-01

    The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)

  18. Country Waste Profile Report for United Kingdom. Reporting Year: 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA Country Waste Profile Reports include data on: • Waste in Storage and Disposal (including historical disposal no longer practiced); • Treatment & Conditioning Capabilities; • Major milestones in programme and facility development; • Regulatory Authorities; • Policies, Laws & Regulations; • Disused Radioactive Sources (for some Member States)

  19. Country Waste Profile Report for United Kingdom. Reporting Year: 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA Country Waste Profile Reports include data on: • Waste in Storage and Disposal (including historical disposal no longer practiced); • Treatment & Conditioning Capabilities; • Major milestones in programme and facility development; • Regulatory Authorities; • Policies, Laws & Regulations; • Disused Radioactive Sources (for some Member States)

  20. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  1. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1979-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in-situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  2. Integrated Waste Treatment Unit GFSI Risk Management Plan

    International Nuclear Information System (INIS)

    W. A. Owca

    2007-01-01

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP)

  3. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  4. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  5. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Science.gov (United States)

    2010-07-01

    ... waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the...

  6. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    Science.gov (United States)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  7. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... of using ORC units for maritime applications, and the relevance of this technology for new-building projects. Firstly, an evaluation of the waste heat resources available on board Mærsk containers fleet, and an estimation of the potential energy recovery by means of the ORC technology was performed...

  8. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper briefly discusses the reactor types being considered in the United States for the purpose of actinide waste recycling. The reactor types include thermal reactors operating on the 3.3% 235 U- 238 U and the 233 U- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors and fusion reactors. This paper also discusses cross section measurements in progress or planned toward providing basic data for testing the recycle concept. (author)

  9. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1975-01-01

    Reactor types being considered in the United States for the purpose of actinide waste recycling are discussed briefly. The reactor types include thermal reactors operating on the 3.3 percent 235 U-- 238 U and the 233 U-- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors, and fusion reactors. Cross section measurements in progress or planned toward providing basic data for testing the recycle concept are also discussed

  10. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  11. Healthcare waste management: a case study from the National Health Service in Cornwall, United Kingdom

    International Nuclear Information System (INIS)

    Tudor, T.L.; Noonan, C.L.; Jenkin, L.E.T.

    2005-01-01

    This paper looks at steps taken towards the development of a 10-year strategy for the management of healthcare waste from the National Health Service (NHS) in Cornwall, United Kingdom. The major issues and challenges that affect the management of waste by the NHS, including its organisational structure and collection infrastructure, are outlined. The waste flows of the main acute medical site are detailed, using waste audits of domestic and clinical bags, redundant equipment, bulky waste, and special waste. Some of the common barriers to change, such as staff habits and public perceptions, are also identified. Recommendations are made with respect to improvements in the overall organisational infrastructure and increased localised control. The recommendations also centre around the formation of strategic partnerships, within the site, between sites and at the broader level between the NHS and its surrounding community. An important challenge to be overcome is the need to progress from the concept of 'waste management', to one of sustainable decision making regarding resource use, including methods of waste minimisation at the source and recycling. Staff training and awareness underpin several of the short and medium/long term solutions suggested to reduce the waste at the source and recover value from that produced. These measures could potentially reduce disposal quantities by as much as 20-30% (wt.) and costs by around 25-35%

  12. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  13. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  14. Summary report on the 1985 United Kingdom radioactive waste inventory

    International Nuclear Information System (INIS)

    Fletcher, A.M.; Wear, F.J.; Haselden, H.; Shepherd, J.; Tymons, B.J.

    1986-04-01

    Stocks of radioactive waste in the United Kingdom which have arisen, or are projected to arise, from commercial nuclear power reactors and fuel cycle facilities, research, medical and industrial uses of radioactive nuclides are given in the form of summary tables. Projected future arisings from operation and decommissioning of facilities and notional nuclear power generation programmes to 2030 are also given. (author)

  15. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  16. Radioactive-waste classification in the United States: history and current predicaments

    International Nuclear Information System (INIS)

    Lowenthal, M. D.

    1997-01-01

    repository thus far. It is not yet clear whether this is a simple or a difficult problem to resolve. We have now in the United States a unique opportunity to restructure the waste-classification system. The above discussion indicates that there is a strong linkage between actual disposal facilities and officially established waste classes. Only three commercial low-level waste disposal facilities are currently operating and the nation has not yet opened for operations disposal facilities for any other kind of waste (tailings and byproduct wastes excepted). Thus we have an opportunity to redefine waste classes, to base them more on the factors that are important for waste management, before directions are set and inertia is established. But this opportunity is a window that will not stay open for long. Several more commercial LLW disposal facilities are hoped to begin operations in the next decade. WIPP is scheduled to begin accepting waste in the year 1998. Plans for cleanup of the DOE complex have been put onto a fast track, a ten-year plan announced in 1996 by DOE's head of Environmental Management. Any new system of classification needs to include considerations that drive both the top-down systems and the bottom-up systems: they exist for good reason. But our current system does not do a good job of matching the waste to its destination. When the disposal is not properly suited to the waste or the waste is not suited for the disposal, it is possible to spend more for less protection. Thus, the cost of keeping our current disorderly classes and not integrating the interests of generators and disposers into a systematic scheme may be higher risks, higher expenditures, or both

  17. The United States: breakthroughs and waste.

    Science.gov (United States)

    Reinhardt, U E

    1992-01-01

    The health system of the United States is in a paradoxical position. At its best, the system is a magnet for those seeking the latest technical breakthroughs. It can offer that excellence because there have never been effective financial constraints on the imagination; the system has become a major economic frontier, at which professional and other entrepreneurs successfully seek their fortune. At the same time, the system is leaving increasing numbers of Americans frustrated and disillusioned. It is beset by excess capacity in many areas, is needlessly expensive, and often bestows unnecessary health services. Yet only the experts are aware of these flaws; most Americans still express high satisfaction with the quality of the services they receive from their doctors and hospitals. The public's major misgivings arise over the awkward and inequitable way in which American health care is financed. The typical private health insurance policy, for example, is tied to a particular job. If the job is lost, so is the health insurance. Furthermore, these policies are priced on actuarially "fair" principles, so sick individuals are forced to pay higher insurance premiums than relatively healthy ones and chronically ill persons often cannot obtain health insurance coverage at any price. Although there are public programs to catch many persons not privately insured, the coverage tends to be insufficiently extensive and deep. Some 35 million Americans, mostly poor, have no health insurance whatsoever. Unfortunately, at this time there is no political force in the United States strong enough to reform the American health system toward greater social equity and economic efficiency, whereas there are numerous groups powerful enough to block whatever reform might harm their own narrow economic interests. Other nations can learn from America's clinical and organizational innovations in health care delivery. They can also learn what not to do by studying the unseemly way in which

  18. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-01-01

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within

  19. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  20. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  1. Commercial and Industrial Solid Waste Incineration Units (CISWI): New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Existing Sources

    Science.gov (United States)

    Learn about the New Source Performance Standards (NSPS) for commercial and industrial solid waste incineration (CISWI) units including emission guidelines and compliance times for the rule. Read the rule history and summary, and find supporting documents

  2. Development and status of the AL Mixed Waste Treatment Plan or I love that mobile unit of mine

    International Nuclear Information System (INIS)

    Bounini, L.; Williams, M.; Zygmunt, S.

    1995-01-01

    Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for much of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites

  3. Development of waste unit for use in shallow land burial

    International Nuclear Information System (INIS)

    Brodersen, K.

    1986-01-01

    A hexagonal waste unit has been developed for use in shallow land burial of low- and medium-level radioactive waste. The waste units used as overpack on empty standard 210 1 drums have been tested for tightness and mechanical resistance. Experimental burial of 21 empty full-size units has demonstrated the emplacement of the containers and the sealing of the crevises between them with molten bitumen. The development of the experimental burial with time is being followed. Three different conceptual designs for advanced burial systems using the hexagonal standard units are described. The outer barrier is a thick concrete structure covered by 2, 10 or 20 m soil, respectively. The waste units were cast from a normal high-quality concrete as well as from Densit, a new, very strong and impermeable type of concrete prepared by the combined use of silica-fume (microsilica) and a superplastizicer as additives. The migration of Cl - , Cs + and tritiated water was found to be much slower in Densit than in normal concrete. In combination with leaching measurements for Cs + from the same materials the results are used to present some theoretical considerations concerning transport through solution-filled pore systems as dependent on pore-size distribution, tortuosity, etc. A method based on neutron-activated cement cast in form of thin plates has been developed and used to study the dissolution chemistry of concrete. A preliminary model is presented. Indications for precipitation mechanisms were obtained. Densit was demonstrated to ensure a high degree of corrosion protection for steel reinforcement. The reason is mainly the high electrical resistivity combined with low diffusive transport in the material. The pozzolanic reaction results in somewhat lower pH in the pore water than in normal concrete, but the effect is not so pronounced that the passivation of steel reinforcement is endangered

  4. Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer

    International Nuclear Information System (INIS)

    Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang

    2013-01-01

    In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.

  5. Assessment of microwave-based clinical waste decontamination unit.

    Science.gov (United States)

    Hoffman, P N; Hanley, M J

    1994-12-01

    A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.

  6. Deep underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Mathieson, J.

    1995-01-01

    The UK Government's radioactive waste disposal policy is for intermediate-level waste, and low-level waste as necessary, to be buried in a deep underground repository, and Nirex is the company, owned by the nuclear industry, charged with developing that deep facility. The Company's current focus is on surface-based geological investigations to determine the suitability of a potential repository site near Sellafield, Cumbria, in north-west England. Nirex's next step is to construct a deep underground laboratory (rock characterization facility, or RCF). Subject to a successful outcome from these investigations, Nirex will submit a planning application for the 650m deep repository at the end of this decade; this will be the subject of a further public inquiry. The timetable for the project assumes that a deep repository, capable of taking 400,000m 3 of waste, will be available by about 2010. In 1994, the UK Government began reviewing the future of the nuclear power industry and, as a separate exercise, radioactive waste management and disposal policy. Both reviews involved widespread consultations. The radwaste review has concentrated on three aspects: general policies; legal aspects of disposal (including safety requirements); and the principles of site selection and the protection of human health. Preliminary conclusions of the main radwaste review were published in August 1994. These confirmed that government continued to favor disposal rather than extended surface storage of waste. The final outcome of the review, including institutional aspects, is expected in the Spring of 1995

  7. Unit operations used to treat process and/or waste streams at nuclear power plants

    International Nuclear Information System (INIS)

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01

    Estimates are given of the annual amounts of each generic type of LLW [i.e., Government and commerical (fuel cycle and non-fuel cycle)] that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials [liquids (e.g., oils or solvents) and/or solids], could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends

  8. Resource Conservation and Recovery Act closure plan for the Intermediate-Level Transuranic Storage Facility mixed waste container storage units

    International Nuclear Information System (INIS)

    Nolte, E.P.; Spry, M.J.; Stanisich, S.N.

    1992-11-01

    This document describes the proposed plan for clean closure of the Intermediate-Level Transuranic Storage Facility mixed waste container storage units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. Descriptions of the location, size, capacity, history, and current status of the units are included. The units will be closed by removing waste containers in storage, and decontamination structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  9. Radioactive waste management and decommissioning in The United States

    International Nuclear Information System (INIS)

    Raymont, J.M.

    2005-01-01

    With their missions and access to disposal sites changing over the last decade, radioactive waste management and decommissioning practice in the U.S. commercial and federal nuclear markets has evolved to keep pace. This paper reviews the changes that have occurred and the differing waste management practices that have resulted depending on whether a nuclear facility is situated on federally owned or privately owned property in the United States, confirming that the cost of disposal generally dictates waste management and decommissioning practices. Of the 123 utility-owned licensed commercial reactors in U.S., 19 are undergoing decomissioning, with the balance of 104 reactors focusing on plant life extension, power upgrades, and power generation. As a result, almost all of the approximately dollar 400 million in annual expenditures on waste processing and disposal comes from waste generated from operations. In contrast, the U.S. Department of Energy (DOE), under its Environmental Management (EM) program, is focused on decommissioning the facilities, tanks, and ground contamination resulting from 50-years of Cold War activities and spending about dollar 7 billion a year on these activities. Other than spent fuel, U.S. federal law precludes disposal of commercial nuclear power plant radioactive wastes at DOE disposal sites. In contrast to the commercial disposal market, which must go through extensive public hearings and decision-making, the DOE has a much freer hand in siting new disposal capacity on federal land. As a result, the DOE has ample disposal capacity, 'routinely' opens new disposal sites, and enjoys disposal pricing well below the commercial market. Waste composition, volume, and activity levels drive disposal costs, which is the key life cycle parameter in determining radioactive waste management practice. Differences in these parameters drive the differences in how radioactive waste management practice is performed in the commercial and DOE markets

  10. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  11. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  12. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  13. Geophysical investigation of the 116-H-1 liquid waste disposal trench, 100-HR-1 operable unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.

    1996-04-01

    A geophysical investigation and data integration were conducted for the 116-H-1 Liquid Waste Disposal Trench, which is located in the 100-HR-1 Operable Unit. The 116-H-1 Liquid Waste Disposal Trench is also known as the 107-H Liquid Waste Disposal Trench, the 107-H Rupture Effluent Trench, and the 107-H Trench (Deford and Einan 1995). The trench was primarily used to hold effluent from the 107-H Retention Basin that had become radioactive from contact with ruptured fuel elements. The effluent may include debris from the ruptured fuel elements (Koop 1964). The 116-H-1 Liquid Waste Disposal Trench was also used to hold water and sludge from the 107-H Retention Basin during the basin's deactivation in 1965

  14. Plutonium Finishing Plant Treatment and Storage Unit Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    2000-01-01

    The training program for personnel performing waste management duties pertaining to the Plutonium Finishing Plant (PFP) Treatment and Storage Unit is governed by the general requirements established in the Plutonium Finishing Plant Dangerous Waste Training Plan (PFP DWTP). The PFP Treatment and Storage Unit DWTP presented below incorporates all of the components of the PFP DWTP by reference. The discussion presented in this document identifies aspects of the training program specific to the PFP Treatment and Storage Unit. The training program includes specifications for personnel instruction through both classroom and on-the-job training. Training is developed specific to waste management duties. Hanford Facility personnel directly involved with the PFP Treatment and Storage Unit will receive training to container management practices, spill response, and emergency response. These will include, for example, training in the cementation process and training pertaining to applicable elements of WAC 173-303-330(1)(d). Applicable elements from WAC 173-303-330(1)(d) for the PFP Treatment and Storage Unit include: procedures for inspecting, repairing, and replacing facility emergency and monitoring equipment; communications and alarm systems; response to fires or explosions; and shutdown of operations

  15. Record of Decision for the Ford Building Waste Unit (643-11G) Operable Unit; FINAL

    International Nuclear Information System (INIS)

    Fraley, S.

    2002-01-01

    This decision document presents the selected remedial for the Ford Building Waste Unit (FBWU), in Aiken, South Carolina, which was chosen in accordance with CERCLA, as amended by SARA, and, to the extent practical, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision is based on the Administrative Record File for this specific RCRA/CERCLA site

  16. 76 FR 34271 - Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including...

    Science.gov (United States)

    2011-06-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,671] Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including Teleworkers Reporting to... Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston...

  17. Development of solid radionuclide waste forms in the United States

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1979-01-01

    New ways of reworking the wastes require a new classification in terms of the final waste forms. This paper surveys the candidate forms: encapsulation binders, in-place solidification waste forms, glass and ceramic waste forms, mineral waste forms, matrix waste forms, gaseous waste forms (fixation), and canisters and engineered barriers. Participants in the US-high-level waste form development program are listed. Requirements and selection of waste forms are also discussed. 26 references

  18. Planning for closures of hazardous waste land disposal units at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; DeLozier, M.F.P.; Manrod, W.E.

    1988-01-01

    Eight hazardous waste land disposal units at the Oak Ridge Y-12 Plant are being closed in accordance with the Resource Conservation and Recovery Act (RCRA) under an integrated multi-year program. The units, some of which date back to the early 1950s and include five surface impoundments, two landfills and a land treatment unit, have been used for the management of a variety of types of hazardous wastes. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. The units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. Closure of all eight units must be initiated by November 8, 1988. Funding for the eight closures is being provided by a new Department of Energy budget category, the environmental Restoration Budget Category (ERBC), which is intended to allow for a more rapid response to environmental problems and regulatory requirements. A major project, Closure and Post-Closure Activities (CAPCA) has been identified for ERBC funding to close the land disposal units in accordance with RCRA requirements. Establishing the project scope has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA project include risk assessments and the preparation of an integrated project schedule

  19. Public responses to radioactive wastes in the United States

    International Nuclear Information System (INIS)

    Kasperson, R.E.

    1993-01-01

    Whatever the actual public health and environmental risks posed by nuclear power and the disposal of radioactive wastes, they pale in comparison with what the public believes they are. There can be little doubt that members of the public perceive substantial dangers from such facilities and are intensely concerned about them. Intense concern is apparent in the controversy that has erupted not only in the United States but in many societies where search activities have been conducted for a radioactive or other hazardous waste disposal facility. It is also apparent in the findings from a significant accumulation of polls, surveys, attitude studies, and psychometric research as well as in direct experience in diverse countries in Europe, North America, and Asia. (author). 10 refs

  20. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  1. Microwave technology for waste management applications including disposition of electronic circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.; Folz, D.C.

    1995-01-01

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse

  2. Feasibility study and concepts for use of compact process units to treat Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.D.; Bond, W.D.; Campbell, D.O.; Harrington, F.E.; Malkemus, D.W.; Peishel, F.L.; Yarbro, O.O.

    1994-06-01

    A team of experienced radiochemical design engineers and chemists was assembled at Oak Ridge National Laboratory (ORNL) at the request of the Underground Storage Tank Integrated Demonstration (USTID) Program to evaluate the feasibility and perform a conceptual study of options for the use of compact processing units (CPUs), located at the Hanford, Washington, waste tank sites, to accomplish extensive pretreatment of the tank wastes using the clean-option concept. The scope of the ORNL study included an evaluation of the constraints of the various chemical process operations that may be employed and the constraints of necessary supporting operations. The latter include equipment maintenance and replacement, process control methods, product and by-product storage, and waste disposal.

  3. Feasibility study and concepts for use of compact process units to treat Hanford tank wastes

    International Nuclear Information System (INIS)

    Collins, E.D.; Bond, W.D.; Campbell, D.O.; Harrington, F.E.; Malkemus, D.W.; Peishel, F.L.; Yarbro, O.O.

    1994-06-01

    A team of experienced radiochemical design engineers and chemists was assembled at Oak Ridge National Laboratory (ORNL) at the request of the Underground Storage Tank Integrated Demonstration (USTID) Program to evaluate the feasibility and perform a conceptual study of options for the use of compact processing units (CPUs), located at the Hanford, Washington, waste tank sites, to accomplish extensive pretreatment of the tank wastes using the clean-option concept. The scope of the ORNL study included an evaluation of the constraints of the various chemical process operations that may be employed and the constraints of necessary supporting operations. The latter include equipment maintenance and replacement, process control methods, product and by-product storage, and waste disposal

  4. 78 FR 66779 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased...

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,862] United States Enrichment..., applicable to workers of United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, including on... were engaged in the production of low enrichment uranium. The company reports that workers leased from...

  5. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Science.gov (United States)

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...

  6. Exposure rates from concrete covered cylindrical units containing radioactive waste

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1983-03-01

    Exposure rates from cylindrical waste units containing the nuclides 60 Co, 134 Cs and 137 Cs homogeneously mixed in a solidification product have been calculated. Analyses have been made for single drums and for two disposal geometries, one with the units placed below ground near the surface in a circular geometry, and one with the units placed on the ground in a pile behind a concrete wall. Due to self-shielding of the units, the exposure rate from the two geometries will be a factor of only 10 - 20 higher than from a single unit, even without soil or wall shielding. With one meter of soil above the circular pile below ground, a reduction factor of 5.10 3 to 5.10 4 can be achieved, depending on the nuclide considered. Placing a one-meter concrete wall in front of the drum pile on the ground gives rise to a reduction factor in the range of 5.10 5 to 2.10 7 . (author)

  7. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The waste characterization for each treatment unit or process is based on treatment records from LLNL's computerized Hazardous Waste Management Inventory System (HWMIS). In 1990, these data were compiled into a single database comprising both hazardous waste and mixed waste data. Even though these data originate from the same source used in the previous HRA, the database was modified to set quantities and concentrations to a consistent set of units. This allowed an analysis of waste types by Hazardous Waste Management unit that was more accurate and did not rely upon many of the conservative assumptions used in the Phase II HRA waste characterization. Finally, the current waste characterizations are considered more representative of potential long-term wastes because they were developed by combining all wastes that could be treated in each unit, as opposed to the wastes treated only during 1988 to 1989. This final step more appropriately accounts for the variability in waste types likely to be seen by the Hazardous Waste Management Division. The quantities of each waste listed in the characterization tables represent the sum of all chemical quantities belonging to hazardous and mixed waste types potentially handled by each area

  8. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  9. A review of the disposal of miscellaneous radioactive wastes in the United Kingdom

    International Nuclear Information System (INIS)

    Hookway, B.

    1980-01-01

    Current practices in the United Kingdom for waste disposal from ''minor users'' of radioactive materials are reviewed. The regulation of the disposal of solid, liquid and airborne wastes is discussed. (H.K.)

  10. Regulatory aspects of underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Hookway, B.R.

    1980-01-01

    Government policy towards radioactive waste management in the United Kingdom of Great Britain and Northern Ireland is based on the system of dose limitations laid down by ICRP as interpreted by the National Radiological Protection Board for use in the United Kingdom. The paper describes the legislative and administrative arrangements by which this policy is enforced, including the work of the principal inspectorates, the Nuclear Installations Inspectorate and the Radiochemical Inspectorate together with the latter's equivalents in Scotland and Northern Ireland. It is concluded that the present legislation, including that relating to planning and the setting up of public inquiries, is sufficiently all-embracing to ensure both strict control of the disposal of all the radioactive waste currently arising or which will arise in the future and a high degree of public involvement in the necessary decisions. (author)

  11. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  12. Status of United States civilian waste management program

    International Nuclear Information System (INIS)

    Lawrence, M.J.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 confirms the Federal responsibility for nuclear waste management and provides for unprecedented involvement by States, Indian tribes and the public. The Act provides a comprehensive framework for disposing of spent nuclear fuel and high-level radioactive wastes of domestic origin generated by civilian nuclear power reactors. It establishes detailed schedules and procedures for selecting and developing geologic repositories; provides a mechanism for financing the cost of disposal; and sets forth other provisions relating to nuclear waste disposal. The other provisions of the Act include provision for a user-financed federal interim storage facility with time and quantity limitations, as well as strict Nuclear Regulatory Commission-prescribed eligibility criteria; a proposal for a Federally-owned and operated monitored retrievable storage (MRS) facility for the interim period prior to operation of a permanent repository; and provision for a Test and Evaluation Facility (TEF). This paper centers on the schedule and current status and siting of the first two geologic repositories

  13. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, John Cameron.; Prichard, Clark. W.

    1987-01-01

    This chapter deals with the institutional issues associated with the disposal of nuclear waste in the United States of America. These include socio-economic, financial, land use and especially, political factors. Institutional issues must, however, be resolved, as well as the technological problems of engineering and geology. The general issues are first examined, then the organisation and financing, land use, community acceptance, transport problems and finally, local economic impacts. (UK)

  14. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States

  15. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The Lawrence Livermore National Laboratory (LLNL) operates three Hazardous Waste Management Facilities with 24 associated waste management units for the treatment and storage of hazardous and mixed wastes. These wastes are generated by research programs and support operations. The storage and treatment units are presently operated under interim status in accordance with the requirements of the US Envirorunental Protection Agency (US EPA) and the Department of Toxic Substances Control (DTSC), a division of the California Envirorunental Protection Agency (Cal/EPA). As required by the California Hazardous Waste Control Act and the Resource Conservation and Recovery Act (RCRA), LLNL ha s applied for a Part B permit to continue operating the storage and waste treatment facilities. As part of this permitting process, LLNL is required to conduct a health risk assessment (HRA) to examine the potential health impacts to the surrounding community from continued storage and treatment of hazardous and mixed wastes. analysis document presents the results of this risk assessment. An analysis of maximum credible chemical accidents is also included in Section 7.0. This HRA was prepared in accordance with procedures set forth by the California Air Pollution Control Officers Association (CAPCOA) ''Air Toxics Assessment Manual,'' CAPCOA guidelines for preparing risk assessments under the Air Toxic ''Hot Spots'' Act (AB 2588) and requirements of the US EPA. By following these procedures, this risk assessment presents a conservative analysis of a hypothetical Maximally Exposed Individual (MEI) using many worst-case assumptions that will not apply to an actual individual. As such, the risk estimates presented should be regarded as a worst-case estimate of any actual risk that may be present

  16. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  17. Technological study about a disposal measures of low-level radioactive waste including uranium and long-half-life radionuclides

    International Nuclear Information System (INIS)

    Sugaya, Toshikatsu; Nakatani, Takayoshi; Sakai, Akihiro; Sakamoto, Yoshiaki; Sasaki, Toshihisa; Nakamura, Yasuo

    2017-02-01

    Japan Atomic Energy Agency (JAEA) performed the technical studies contributed for the disposal measures of uranium-bearing waste with low concentration and intermediate depth disposal-based waste occurring from the process of the nuclear fuel cycle. (1) Study of the trench disposal of uranium-bearing waste. As a part of the study of disposal measures of the uranium-bearing waste, we carried out the safety assessment (exposure dose assessment) and derived the upper limit of radioactivity concentration of uranium which was allowed to be included in radioactive waste for trench disposal. (2) Preliminary study for the expansion of material applied to clearance in uranium-bearing waste. Currently, the clearance level of uranium handling facilities was derived from the radioactivity concentration of uranium corresponding to dose criterion about the exposure pathways of the reuse and recycle of metal. Therefore, we preliminarily evaluated whether metal and concrete were able to be applied to clearance by the method of the undergrounding disposal. (3) Study of the concentration limitation scenarios for the intermediate depth disposal-based waste. We carried out dose assessment of intermediate depth disposal of radioactive waste generated from JAEA about radioactive concentration limitation scenarios of which the concept was shown by the study team in Nuclear Regulation Authority. Based on the results, we discussed whether the waste was applied to radioactive waste conforming to concept of intermediate depth disposal. (author)

  18. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  19. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  20. Development of a unit cell model for interim performance assessment of vitrified low level waste disposal

    International Nuclear Information System (INIS)

    Kline, N.W.

    1995-09-01

    The unit cell modeling approach has been developed and used in analysis of some design options for a vitrified low level waste disposal facility. The unit cell modeling approach is likely to be useful in interim performance assessment for the facility. The present unit cell model will probably need to be refitted in terms of some model parameters for the latter purpose. Two present disposal facility concepts differ in the length of a capillary barrier proposed to limit effective recharge through the top of the facility. Results of the study summarized herein suggest design of a capillary barrier which can reduce a recharge rate of 0.1 cm/yr by one or two orders of magnitude seems feasible for both concepts. A benchmark comparison of the unit cell model against a full facility model shows comparable predictive accuracy in less than one percent of the computer time. Results suggest that model parameters include capillary barrier performance, inter-canister spacing, rate of moisture withdrawal due to glass corrosion, contaminant inventory, and the well interceptor factor. It is also important that variations of waste form hydraulic parameters suggest that transport through the waste form is dominated by diffusion

  1. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  2. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  3. The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States.

    Science.gov (United States)

    Lee, Seungtaek; Kim, Jonghoon; Chong, Wai K O

    2016-10-01

    The United States generated approximately 730kg of waste per capita in 2013, which is the highest amount of waste among OECD countries. The waste has adverse effects to human health and the environment. One of the most serious adverse effects is greenhouse gas emissions, especially methane (CH4), which causes global warming. However, the United States' amount of waste generation is not decreasing, and the recycling rate is only 26%, which is lower than other OECD countries. In order to decrease waste generation and greenhouse gas emissions, identifying the causality of the waste generation and greenhouse gas emissions from waste sector should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling of waste influences carbon dioxide emissions from the waste sector. Based on the results, critical insight and suggestions were offered to policymakers, which is the potential way to lower the solid waste and greenhouse gas emissions from the waste sector. This research used annually based U.S. data from 1990 to 2012, and these data were collected from various data sources. To verify the causal relationship, the Granger causality test was applied. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generate significantly increasing and decreasing greenhouse gas emissions from the waste sector, respectively. This implies that waste generation will not decrease even if GDP increases. And, if waste generation decreases or the recycling rate increases, greenhouse gas emission will decrease. Based on these results, increasing the recycling rate is first suggested. The second suggestion is to break the causal relationship between MSW and greenhouse gas emission from the waste sector. The third is that the U.S. government should benchmark a

  4. 40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?

    Science.gov (United States)

    2010-07-01

    ... qualifies for the exemption. (d) Municipal waste combustion units that combust only tires. Units are exempt... single-item waste stream of tires and no other municipal waste (the unit can co-fire coal, fuel oil.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The...

  5. 40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ...) Municipal waste combustion units that combust only tires. Your unit is exempt from this subpart if three requirements are met: (1) Your municipal waste combustion unit combusts a single-item waste stream of tires and...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1...

  6. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  7. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  8. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  9. Sorption-reagent treatment of brines produced by reverse osmosis unit for liquid radioactive waste management

    International Nuclear Information System (INIS)

    Avramenko, V. A.; Zheleznov, V. V.; Sergienko, V. I.; Chizhevsky, I. Yu

    2003-01-01

    The results of the pilot plant tests (2002-2003) of the sorption-reagent decontamination of high salinity radioactive waste (brines) remaining after the low-salinity liquid radioactive waste (LRW) treatment in the reverse-osmosis unit from long-lived radionuclides are presented. The sorption-reagent materials used in this work were developed in the Institute of Chemistry FEDRAS. They enable one to decontaminate brines with total salt content up to 50 g/l from long-lived radionuclides of Cs, Sr and Co. At joint application of the reverse-osmosis and sorption-reagent technologies total volume of solid radioactive waste (SRW) decreases up to 100-fold as compared to the technology of cementation of reverse osmosis brines. In this case total cost of LRW treatment and SRW disposal decreases more than 10-fold. Brines decontaminated from radionuclides are then diluted down to the ecologically safe total salts content in water to be disposed of. Tests were performed to compare the efficiency of technologies including evaporation of brines remaining after reverse osmosis process and their decontamination by means of the sorption-reagent method. It was shown that, as compared to evaporation, the sorption-reagent technology provides substantial advantages as in regard to radioactive waste total volume reduction as in view of total cost of the waste management

  10. Planet Patrol. An Environmental Unit on Solid Waste Solutions for Grades 4-6.

    Science.gov (United States)

    Procter and Gamble Educational Services, Cincinnati, OH.

    This classroom unit was developed for use in grades 4-6 to help teach the concept of solid waste management. The teacher's guide provides an overview of the issue of solid waste disposal, a description of government, industry, and consumer roles in resolving the solid waste issue, and four lessons involving sanitary landfills, the reduction of…

  11. 40 CFR 264.101 - Corrective action for solid waste management units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste management units. 264.101 Section 264.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Soli...

  12. The problem of nuclear wastes. A possible point of conflict between Mexico and the United States

    International Nuclear Information System (INIS)

    Rosas Poblano, A.

    1993-01-01

    The objectives of this research were: a) To analyse the problem of nuclear wastes, and the importance of their safe handling; b) To investigate the best and safest technologies for the treatment of radioactive wastes and two relevant international laws or regulations; c) To study whether the wastes produced in the United States represent an environmental problem for Mexico

  13. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Science.gov (United States)

    2013-02-07

    ... impacts? 2. What are the water and solid waste impacts? 3. What are the energy impacts? 4. What are the.... Pulp and Paper Sludge 4. Rulemaking Petition Process for Other Categorical Non-Waste Determinations (40... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

  14. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  15. The reality of waste management in primary health care units in Brazil.

    Science.gov (United States)

    Alves, Sergiane B; e Souza, Adenícia C S; Tipple, Anaclara F V; Rezende, Keyti C A D; de Resende, Fabiana R; Rodrigues, Érika G; Pereira, Milca S

    2014-09-01

    A large number of users are serviced in primary health care units in Brazil, both in health facilities and in households. These services generate waste that must be managed safely, but there is no legislation that regulates this type of waste management in Brazil. The objective of this study was to analyse the production and management of waste in primary health care. A direct observation was performed of the stages in the handling and weighing of waste generated in primary health care units in the municipality of Goiânia (Brazil). The units generated infectious, chemical, and common waste, as well as sharp objects. The generation of waste ranged between 0.027 and 0.075 kg user-day. The generated waste was classified mostly as common and recyclable. Flaws were observed in the management of all types of waste. The critical point is segregation. Only 34.1% of the waste disposed of as infectious actually belonged to this group, the rest was ordinary waste. Flaws at this stage increase the volume of infectious waste, the occupational and environmental risks, and associated costs. Intervention to change this reality is needed and it requires the careful preparation of a waste management plan, corroborating structural changes to the implementation of this plan, and professional training and public policies to guide waste management in primary care, especially those generated in households. © The Author(s) 2014.

  16. Current researches on safety assessment of radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Tasaka, Hiroshi; Kiyose, Ryohei

    1980-01-01

    Recently, the problem of safe disposal of radioactive waste generated from nuclear fuel cycle becomes more important in Japan. On the other hand, many researches on shallow land burial of low-level wastes and geologic isolation of high-level wastes have been carried out in the United States of America. In this report, the researches on the safety assessment of radioactive waste disposal in the United States of America were briefly introduced with emphasis on the studies on behavior and migration of radionuclide from disposed waste in geosphere. (author)

  17. Evaluation of a TRU fundamental criterion and reference TRU waste units

    International Nuclear Information System (INIS)

    Klett, R.

    1993-01-01

    The comparison of two options for regulating transuranic (TRU) waste disposal is explained in this paper. The two options are (1) fundamental and derived standards developed specifically for the TRU waste and (2) a family of procedures that use a reference to the TRU waste unit with procedures that use a reference to the TRU waste unit with commercial high-level waste (HLW) criteria. Background information pertaining to both options is covered. A section on criteria specifically for TRUE waste suggests a methodology for developing or adapting fundamental and derived criteria that are consistent with all other aspects of the standards. The section on references TRU waste units covers all the parameter variations that have been suggested for this option. The technical bases of each approach is reviewed, implementation is discussed and their relative attributes and deficiencies are evaluated

  18. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2003-01-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP

  19. Thermodynamic investigation of waste heat driven desalination unit based on humidification dehumidification (HDH) processes

    International Nuclear Information System (INIS)

    He, W.F.; Xu, L.N.; Han, D.; Gao, L.; Yue, C.; Pu, W.H.

    2016-01-01

    Highlights: • HDH desalination system powered by waste heat is proposed. • Performance of the desalination unit and the relevant heat recovery effect is calculated. • Sensitive analysis of the performance for the HDH desalination system is investigated. • Mathematical model based on the first and second laws of thermodynamics is established. - Abstract: Humidification dehumidification (HDH) technology is an effective pattern to separate freshwater from seawater or brackish water. In this paper, a closed-air open-water (CAOW) desalination unit coupled with plate heat exchangers (PHEs) is applied to recover the waste heat from the gas exhaust. Sensitivity analysis for the HDH desalination unit as well as the PHEs from the key parameters including the top and initial temperature of the seawater, operation pressure, and the terminal temperature difference (TTD) of the PHEs are accomplished, and the corresponding performance of the whole HDH desalination system is calculated and presented. The simulation results show that the balance condition of the dehumidifier is allowed by the basic thermodynamic laws, followed by a peak value of gained-output-ratio (GOR) and a bottom value of total specific entropy generation. It is concluded that excellent results including the system performance, heat recovery effect and investment of the PHEs can be simultaneously obtained with a low top temperature, while the obtained desalination performance and the heat recovery effect from other measures are always conflicting. Different from other parameters of the desalination unit, the terminal temperature difference of the PHEs has little influences on the final value of GOR.

  20. Achieving compliance with healthcare waste management regulations : empirical evidence from small European healthcare units

    OpenAIRE

    Botelho, Anabela

    2011-01-01

    Healthcare units generate substantial amounts of hazardous or potentially hazardous wastes as by-products of their medical services. The inappropriate management of these wastes poses significant risks to people and the environment. In Portugal, as in other EU countries, the collection, storage, treatment and disposal of healthcare waste is regulated by law. Although legal provisions covering the safe management of healthcare waste date back to the 1990s, little is known about the compliance ...

  1. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  2. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  3. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  4. Canonical correlation of waste glass compositions and durability, including pH

    International Nuclear Information System (INIS)

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses

  5. Nuclear waste glass melter design including the power and control systems

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1982-01-01

    An energy balance of a joule-heated nuclear waste glass melter is used to discuss the problems in the design of the melter geometry and in the specifications of the power and control systems. The relationships between geometry, electrode current density, production rate, load voltage, and load power are presented graphically. The influence of liquid feeding on the surface of the glass and the variability of nuclear waste glass on the design and control during operation is discussed. 10 refs

  6. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  7. Handling and treatment of low-level radioactive wastes from gaseous diffusion plants in the United States of America

    International Nuclear Information System (INIS)

    Wing, J.F.; Behrend, J.E.

    1984-01-01

    Gaseous diffusion plants in the United States of America currently generate very small quantities of low-level radioactive wastes. These wastes consist primarily of airborne effluent solid trapping media and liquid scrubber solutions, liquid effluent treatment sludges, waste oils and solvents, scrap metals and conventional combustible wastes such as floor sweepings, cleaning rags and shoe covers. In addition to waste emanating from current operations, large quantities of scrap metal generated during the Cascade Improvement Program are stored above ground at each of the diffusion plants. The radionuclides of primary concern are uranium and 99 Tc. Current radioactive waste treatment consists of uranium dissolution in weak acids followed by chemical precipitation and/or solvent extraction for uranium recovery. Current disposal operations consist of above ground storage of scrap metals, shallow land burial of inorganic solids and incineration of combustible wastes. With increased emphasis on reducing the potential for off-site radiological dose, several new treatment and disposal options are being studied and new projects are being planned. One project of particular interest involves the installation of a high temperature incinerator to thermally degrade hazardous organic wastes contaminated with low-level radioactive wastes. Other technologies being studied include fixation of uranium-bearing sludges in concrete before burial, decontamination of scrap metals by smelting and use of specially engineered centralized burial grounds. (author)

  8. Use of LiDAR to Assist in Delineating Waters of the United States, Including Wetlands

    Science.gov (United States)

    2014-03-01

    components: a mounting platform, a laser and scanning mirror, an inertial measurement unit (IMU), a global positioning system (GPS) antenna and...including but not limited to TIFF, ASC , IMG, and KML files or compressed as a KMZ file. These files are quickly imported and viewed using GIS such as...sediment transport processes and hydraulics. Sedimentology 56:2024–2043. Hogg, A., and J. Holland. 2008. An evaluation of DEMs derived from LiDAR

  9. Review of radioactive waste management programs in the United Kingdom

    International Nuclear Information System (INIS)

    Keen, N.J.; Duncan, A.G.

    1982-01-01

    The paper reports progress by the Department of Environment and the nuclear industry in developing and implementing a strategy for the management of radioactive waste in the UK. It outlines the range of possible disposal facilities required to deal with all classes of waste arising from nuclear power generation. The present practices for waste management and the main lines of development by the main waste producers of the plant needed in future are outlined, together with a summary of some of the more generic R and D devoted to treatment, packaging and transport of wastes

  10. Record of Technical Change No.2 for ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada''

    International Nuclear Information System (INIS)

    1999-01-01

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada.''

  11. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    Science.gov (United States)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  12. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  13. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  14. IDENTIFICATION AND CLASSIFICATION OF INDUSTRIAL SOLID WASTES IN AMMONIA UNIT OF RAZI PETROCHEMICAL COMPLEX AND FEASIBILITY OF WASTE MINIMIZATION

    Directory of Open Access Journals (Sweden)

    F. Fakheri Raouf, R. Nabizadeh and N. Jafarzadeh

    2005-10-01

    Full Text Available Petrochemical industries are considered as strategic and important sectors in economic development of Iran. Razi petrochemical factory is one of complex in Iran, established in 1970 with 100 hectare. In this research, the possibility of waste minimization in the ammonia unit of Razi petrochemical complex with about 1000 tons per year was studied for a period of 18 months from September 2003 to April 2005. More than 20 site visits were conducted and the required information was collected. Factors such as industrial solid wastes quality and quantity, sources of generation, production period and the present management practice, were studied. Petrochemical solid wastes were classified based on the recommended method of the United Nations and appropriate policies were suggested for waste minimization. The collected results of this study show production of 185 tons of industrial solid wastes from 45 sources which contained 68.5% catalysts, 10.25% metal barrels, 18.61% aluminum ball, 2.62% plastic barrels and 0.02% paper. 93.3% of these wastes were generated as the result of catalysts change, 3.3% as the result of using chemicals and oils, 1.7% as the result of methanol solution amid application, and 1.1% because of aluminum ball changes. Based on the UNEP methods, the ammonia unit wastes classified as 19/7%hazadrous and 87,12% non hazardous. At present 87.12% of these wastes are being dumped in the area and 12.88% are sold. Proposed procedures for waste minimization contain 68.5% reuse and recycling and 31.5% recycling.

  15. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  16. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  17. Economic analysis of including an MRS facility in the waste management system

    International Nuclear Information System (INIS)

    Williams, J.W.; Conner, C.; Leiter, A.J.; Ching, E.

    1992-01-01

    The MRS System Study Summary Report (System Study) in June 1989 concluded that an MRS facility would provide early spent fuel acceptance as well as flexibility for the waste management system. However, these advantages would be offset by an increase in the total system cost (i.e., total cost to the ratepayer) ranging from $1.3 billion to about $2.8 billion depending on the configuration of the waste management system. This paper discusses this new investigation which will show that, in addition to the advantages of an MRS facility described above, a basic (i.e., store-only) MRS facility may result in a cost savings to the total system, primarily due to the inclusion in the analysis of additional at-reactor operating costs for maintaining shutdown reactor sites

  18. Composting of Municipal Solid Wastes in the United States.

    Science.gov (United States)

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  19. The effects of unit pricing system upon household solid waste management: The Korean experience

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.

    1999-09-01

    Initial effects of adoption of a unit pricing system paired with aggressive recycling programs appear to be substantial. This paper explores the impact of price incentives under the unit pricing system on household solid waste generation and recycling in Korea. The author employs a simultaneous equation model considering the feedback effects between total waste generation and recycling. Estimation results using 3017 Korean household survey data indicate that a rise in waste collection fee induces households to recycle more wastes. However, this effect is partially offset by decreases in source-reduction efforts due to the feedback effects, resulting in relatively lower price elasticity of demand for solid waste collection services. This implies that household demand for solid waste collection services will not decrease much with additional increases in the collection fee, unless further recycling incentives such as more frequent recyclable pickup services are accompanied.

  20. Evaluation of the vitreous matrices to include high-level radioactive wastes

    International Nuclear Information System (INIS)

    Varani, J.L.; Petraitis, E.J.; Pasquali, R.C.

    1987-01-01

    The Argentine Nuclear Programme considers a fuel cycle with Pu recycle. This will generate high-level liquid wastes, that should be safely eliminated. With this purpose, primary glasses utilizing three prototipe compositions were prepared. Simulated wastes oxides in the rate of about 10% were added to the vitreous matrices. The mixture was melted in ceramic melting pots in a muffle furnace at 1 100 deg C during 8 hours. Resistance leaching tests were made following an adaptation of the DIN 12 111 standard. Quantitative analysis of the leaching solutions were made to evaluate the solubility of the different elements. Glasses were observed with optical microscopy scanning before and after leaching. In the first, glasses, bubbles and crystalline-phase appear; in the second ones, puncture and embrittlement were detected. By means of differential thermoanalysis, endo and exothermal peaks were identified in glasses supporting gradual heating. X ray diffraction analysis were made in samples with and without wastes. The degree of crystallization of samples was evaluated by photographic and diffractometric techniques. Leaching studies showed the existance of a direct relation between leaching and glass alkaline content. (M.E.L.) [es

  1. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    Science.gov (United States)

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These

  2. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  3. Cost savings of unit-based pricing of household waste; the case of the Netherlands

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); R.H.J.M. Gradus (Raymond)

    2003-01-01

    textabstractUsing a panel data set for Dutch municipalities we estimate effects for weight-based, bag-based, frequency-based and volume-based pricing of household waste collection. Unit-based pricing shows to be effective in reducing solid and compostable and increasing recyclable waste. Pricing has

  4. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1986. 4 figs., 7 tabs

  5. Efficiency Effects of Unit-based Pricing Systems and Institutional Choices of Waste Collection

    NARCIS (Netherlands)

    Dijkgraaf, E.; Gradus, R.H.J.M.

    2015-01-01

    Municipal residential waste costs are rising. Therefore, it is important to introduce measures that lower waste collection and disposal costs. Based on a large panel data set for the Netherlands we show that unit-based pricing systems are more important from a cost-minimizing point of view than the

  6. Review of best available techniques for the control of pollution from the combustion of fuels manufactured from or including waste

    International Nuclear Information System (INIS)

    1995-01-01

    This report is a technical review of the techniques available for controlling pollution from combustion processes burning fuels (over 3 MW thermal input) manufactured from or including the following: Waste and recovered oil; Refuse derived fuel; Rubber tyres and other rubber waste; Poultry litter; Wood and straw. This review forms the basis for the revision of the Chief Inspector's Guidance Notes referring to the prescribed processes listed with special emphasis on recommending achievable releases to all environmental media. In formulating achievable releases account is taken of technologies in operation in the UK and overseas. (UK)

  7. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    Science.gov (United States)

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  8. Plate waste of adults in the United States measured in free-living conditions.

    Directory of Open Access Journals (Sweden)

    Brian E Roe

    Full Text Available We analyze food-item level data collected from 50 adults from the United States using the Remote Food Photography Method® to provide the first estimates of plate waste gathered from adults across multiple consecutive meals and days in free-living conditions, and during laboratory-based meals with fixed food items and quantities. We find average plate waste in free-living conditions is 5.6 grams (7.7 kcals per item and that 3.3% of all food selected is returned as plate waste, where the percent waste figure is substantially lower than previously published plate waste estimates gathered primarily from dine-out settings in the United States such as buffets and institutional settings with limited-choice meals (e.g., school cafeterias. Plate waste from the same participants during the laboratory-based meals is significantly higher with an average of 203.2 grams of solid plate waste per meal (531.3 kcals or 39.1% of the food provided, which is similar to the plate waste percentages found reported in some school cafeteria settings. The amount of plate waste generated in free-living conditions is significantly positively associated with portion size selected for an item. In a multivariate analysis that controls for macronutrient profile, items selected from the vegetables, fats/oils/dressings, and grains categories are associated with significantly greater amounts of plate waste per item. We find no significant associations between free-living plate waste and gender, age, race or body mass index but find that women leave more plate waste in the lab meal where portion sizes are pre-determined by the researcher and similar for all respondents. We discuss possible implications of these findings for programs focused on reducing plate waste and food waste among consumers.

  9. Plate waste of adults in the United States measured in free-living conditions

    Science.gov (United States)

    Allen, H. Raymond

    2018-01-01

    We analyze food-item level data collected from 50 adults from the United States using the Remote Food Photography Method® to provide the first estimates of plate waste gathered from adults across multiple consecutive meals and days in free-living conditions, and during laboratory-based meals with fixed food items and quantities. We find average plate waste in free-living conditions is 5.6 grams (7.7 kcals) per item and that 3.3% of all food selected is returned as plate waste, where the percent waste figure is substantially lower than previously published plate waste estimates gathered primarily from dine-out settings in the United States such as buffets and institutional settings with limited-choice meals (e.g., school cafeterias). Plate waste from the same participants during the laboratory-based meals is significantly higher with an average of 203.2 grams of solid plate waste per meal (531.3 kcals) or 39.1% of the food provided, which is similar to the plate waste percentages found reported in some school cafeteria settings. The amount of plate waste generated in free-living conditions is significantly positively associated with portion size selected for an item. In a multivariate analysis that controls for macronutrient profile, items selected from the vegetables, fats/oils/dressings, and grains categories are associated with significantly greater amounts of plate waste per item. We find no significant associations between free-living plate waste and gender, age, race or body mass index but find that women leave more plate waste in the lab meal where portion sizes are pre-determined by the researcher and similar for all respondents. We discuss possible implications of these findings for programs focused on reducing plate waste and food waste among consumers. PMID:29444094

  10. Design of Biochemical Oxidation Process Engineering Unit for Treatment of Organic Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty; Tarigan, Cerdas

    2010-01-01

    Organic radioactive liquid waste from nuclear industry consist of detergent waste from nuclear laundry, 30% TBP-kerosene solvent waste from purification or recovery of uranium from process failure of nuclear fuel fabrication, and solvent waste containing D 2 EHPA, TOPO, and kerosene from purification of phosphoric acid. The waste is dangerous and toxic matter having low pH, high COD and BOD, and also low radioactivity. Biochemical oxidation process is the effective method for detoxification of organic waste and decontamination of radionuclide by bio sorption. The result process are sludges and non radioactive supernatant. The existing treatment facilities radioactive waste in Serpong can not use for treatment of that’s organics waste. Dio chemical oxidation process engineering unit for continuous treatment of organic radioactive liquid waste on the capacity of 1.6 L/h has been designed and constructed the equipment of process unit consist of storage tank of 100 L capacity for nutrition solution, 2 storage tanks of 100 L capacity per each for liquid waste, reactor oxidation of 120 L, settling tank of 50 L capacity storage tank of 55 L capacity for sludge, storage tank of 50 capacity for supernatant. Solution on the reactor R-01 are added by bacteria, nutrition and aeration using two difference aerators until biochemical oxidation occurs. The sludge from reactor of R-01 are recirculated to the settling tank of R-02 and on the its reverse operation biological sludge will be settled, and supernatant will be overflow. (author)

  11. A literature review of methods of analysis of organic analytes in radioactive wastes with an emphasis on sources from the United Kingdom

    International Nuclear Information System (INIS)

    Clauss, S.A.; Bean, R.M.

    1993-09-01

    This report, compiled by Pacific Northwest Laboratory (PNL), examines literature originating through the United Kingdom (UK) nuclear industry relating to the analyses of organic constituents of radioactive waste. Additionally, secondary references from the UK and other counties, including the United States, have been reviewed. The purpose of this literature review was to find analytical methods that would apply to the mixed-waste matrices found at Hanford

  12. PROFILE OF PLASTIC WATER BOTTLES WASTES PROCESSING BUSINESS UNIT FOR WASTE PICKERS

    Directory of Open Access Journals (Sweden)

    Herijanto P.

    2017-09-01

    Full Text Available Used plastic water bottles waste pickers can be categorized as one of the informal sector’s component. They work for themselves by picking up used water bottles and selling them to the waste collectors. The problem to be solved in this research is How the Most Appropriate Used Plastic Water Bottles Business Model for Waste Pickers Is that enables them to be categorized as formal sector. From the result of the interview with 120 waste pickers, 96 results were qualified to be analyzed. The interview was located in several waste collectors, which were visited by waste pickers at certain hours. The data were analyzed descriptively based on six business aspects. Specifically for production facilities, Quality Function Deployment (QFD and Value Engineering (VE analysis were performed. The results of the analysis indicate that the business is practicable for waste pickers and has the potential to enable them run a formal business sector.

  13. Technology and place: A geography of waste-to-energy in the United States

    Science.gov (United States)

    Howell, Jordan Patterson

    The adoption of technologies differs across space, for reasons attributed to economics, politics, and culture, but also due to limitations imposed by both the physical environment and the technology itself. This dissertation considers the case of waste-to-energy (WTE) incinerators in the United States, and asks why this technology is used in some places but rejected in others. The answer to this simple question is remarkably complex, as understandings and arguments about technology and the environment are mobilized differently by various actors to champion, oppose, or in some cases remain ambivalent about the installation and operation of WTE facilities. In this dissertation I explore the geography of WTE incineration in the United States since the 19th century. Informed by the insights of actor-network theory and the social construction of technology school, I employ the tools of discourse analysis to examine published and unpublished statements, papers, project studies, policy briefs, and archival materials generated alongside the development of WTE facilities in the United States, considering the specific case studies discussed below but also WTE technology in general. I look at federal, state, and local environmental agency documents as well as the papers of consulting firms, environmental and industry advocacy groups, and private companies. I also devote significant attention to the analysis of news media outlets in communities where WTE facilities are located or have been considered. In addition to these literal texts, I examine non-written and visual materials associated with WTE facilities, including films, websites, signage and logos, advertising campaigns, facility architecture, and artwork, as well as more abstract `texts' such as industry conferences, trade-show handouts, promotional materials, and academic and industry research programs. I build on this textual analysis with observations of WTE facilities in action. After an introductory chapter, I

  14. Status of activities: Low-level radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Ozaki, C.B.; Shilkett, R.C.; Kirkpatrick, T.D.

    1989-01-01

    A primary objective of low-level radioactive waste management in the United States is to protect the health and safety of the public and the quality of the environment. In support of this objective is the development of waste treatment and disposal technologies designed to provide stabilization and long-term institutional control of low-level radioactive wastes. Presented herein is a technical review of specific low-level radioactive waste management activities in the United States. Waste treatment and disposal technologies are discussed along with the performance objectives of the technologies aimed at protecting the health and safety of the public and the quality of the environment. 13 refs., 4 figs

  15. Broadening GHG accounting with LCA: application to a waste management business unit.

    Science.gov (United States)

    Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle

    2009-11-01

    In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.

  16. Demonstration Testing of a Thermal Desorption Unit to Receive and Treat Waste with Unlimited Concentration of PCBs - 13437

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Timothy L. [EnergySolutions, 423 West 300 South, Salt Lake City, UT 84101 (United States); Palmer, Carl R. [TD.X Associates LP, 148 South Dowlen Road, PMB 700, Beaumont, TX 77707 (United States)

    2013-07-01

    For the last nine years, EnergySolutions and TD*X Associates LP have teamed up to provide the most comprehensive organic removal treatment process in the radioactive waste industry. The high performance thermal desorption unit (HP-TDU) located at the EnergySolutions Clive facility in Utah has successfully processed over 1,850 tons of organically contaminated radioactive mixed waste. Products from the HP-TDU system include a radioactively contaminated dry solid material that can be disposed in the on-site landfill and an organic condensate with high thermal energy content that is generally below background radiation and capable of free-release to a non-radioactive incinerator. Over the years, Permits and approvals have been obtained through the state of Utah, United States Environmental Protection Agency (USEPA) Region 8, and USEPA headquarters that enable the treatment of several waste categories including volatile and semi-volatile organic compounds, combustion-coded (CMBST) compounds, volatile metals, and polychlorinated biphenyls (PCBs). The unit has recently successfully completed Demonstration Testing for PCB concentrations up to 660,000 ppm (parts per million). Solid processed material from this Demonstration Testing was less than two ppm PCBs in three separate treatment runs; reprocessing or additional treatment was not needed to meet this limit. Through post-demonstration permitting, the system is unlimited in scope as approval has been given to receive and solidify up to pure PCBs down to this processing limit concentration to complete treatment of mixed waste. (authors)

  17. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  18. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  19. A historical context of municipal solid waste management in the United States.

    Science.gov (United States)

    Louis, Garrick E

    2004-08-01

    Municipal solid waste management (MSWM) in the United States is a system comprised of regulatory, administrative, market, technology, and social subcomponents, and can only be understood in the context of its historical evolution. American cities lacked organized public works for street cleaning, refuse collection, water treatment, and human waste removal until the early 1800s. Recurrent epidemics forced efforts to improve public health and the environment. The belief in anticontagionism led to the construction of water treatment and sewerage works during the nineteenth century, by sanitary engineers working for regional public health authorities. This infrastructure was capital intensive and required regional institutions to finance and administer it. By the time attention turned to solid waste management in the 1880s, funding was not available for a regional infrastructure. Thus, solid waste management was established as a local responsibility, centred on nearby municipal dumps. George Waring of New York City organized solid waste management around engineering unit operations; including street sweeping, refuse collection, transportation, resource recovery and disposal. This approach was adopted nationwide, and was managed by City Departments of Sanitation. Innovations such as the introduction of trucks, motorized street sweepers, incineration, and sanitary landfill were developed in the following decades. The Resource Conservation and Recovery Act of 1976 (RCRA), is the defining legislation for MSWM practice in America today. It forced the closure of open dumps nationwide, and required regional planning for MSWM. The closure of municipal dumps caused a 'garbage crisis' in the late 1980s and early 1990s. Private companies assumed an expanded role in MSWM through regional facilities that required the transportation of MSW across state lines. These transboundary movements of MSW created the issue of flow control, in which the US Supreme Court affirmed the protection

  20. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  1. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  2. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  3. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1994-01-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries

  4. Development of the Computer Code to Determine an Individual Radionuclides in the Rad-wastes Container for Ulchin Units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.W.; Chi, J.H.; Goh, E.O. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    A computer program, RASSAY was developed to evaluate accurately the activities of various nuclides in the rad-waste container for Ulchin units 3 and 4. This is the final report of the project, {sup D}evelopment of the Computer Code to Determine an Individual Radionuclides in the Rad-wastes Container for Ulchin Units 3 and 4 and includes the followings; 1) Structure of the computer code, RASSAY 2) An example of surface dose calculation by computer simulation using MCNP code 3) Methods of sampling and activity measurement of various Rad-wastes. (author). 21 refs., 35 figs., 6 tabs.

  5. 40 CFR Table 1 to Subpart Aaaa of... - Emission Limits for New Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...

  6. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  7. Economics of defense high level waste management in the United States

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1987-01-01

    Life-cycle costs of defense waste disposal, as presented in the foregoing sections, are summarized. Expressed as incremental costs per canister of waste deposited in a Federal geologic repository and per gallon of decontaminated salt solution immobilized in onsite concrete vaults, the tabulated values provide a measure of waste management costs relatively independent of the inventories of waste processed. Total values are about $350,000 per glass waste canister processed and $4.68 per gallon of decontaminated salt immobilized. These costs do not generally include contributions of fixed charges, such as capital costs, except in the case of transport and repository charges for which the quantities of waste handled determine allocation of fixed costs included in the fee assessments. 14 refs., 2 figs., 3 tabs

  8. United States regulations for institutional controls at high-level waste repositories

    International Nuclear Information System (INIS)

    Piccone, Josephine

    2015-01-01

    The United States regulations for disposal of spent nuclear fuel and high-level radioactive waste are found at Title 10 of the Code of Federal Regulations (10 CFR) Parts 60 and 63, which cover deep geologic disposal at a generic site and at Yucca Mountain, Nevada, respectively. As an independent regulator, the US Nuclear Regulatory Commission (NRC) is responsible for licensing and oversight of a high-level waste repository in the United States. The licensing approach for disposal has discreet decisions, made by the NRC, that include approval of construction authorisation, approval to receive and possess high-level radioactive waste, and approval for permanent closure. For construction authorisation approval, the applicant must provide a description of the programme to be used to maintain the records. The NRC will have an active oversight role during the construction and operation period, which can be on the order of 100 years for the facility before permanent closure. The oversight activities are part of the active institutional controls, and serve as a means of conveying knowledge for that initial period, given that this will likely involve multiple generations of workers for both the implementer and the regulator. Additionally, the NRC provides requirements for the physical protection of stored spent nuclear fuel and high-level radioactive waste at 10 CFR Chap. 73.51. For permanent closure approval, the applicant must provide a detailed description of the measures to be employed-such as land use controls, construction of monuments, and preservation of records. The NRC's regulatory role in any licensing action is to apply the applicable regulations and guidance, and to review applications for proposed actions to determine if compliance with regulations has been achieved. The burden of proof is on the applicant or licensee to show that the proposed action is safe, to demonstrate that regulations are met, and to ensure continued compliance with the regulations

  9. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1986-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1985. This report differs from previous issues in that the data cutoff date is December 31, 1985, rather than the fiscal year end. Another difference from previous issues is that data for the TRU categories 1 and 6 have been omitted

  10. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-07-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  11. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling. Revision 1

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-08-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  12. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  13. Characterisation of radioactive waste at Cernavoda NPP Unit 1 during normal operation

    International Nuclear Information System (INIS)

    Iordache, M.; Bujoreanu, L.; Popescu, I. V.

    2008-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste results that have a very large diversity. At Cernavoda NPP the important waste categories are non-radioactive wastes and radioactive wastes, which are manipulated completely different from which other. For a CANDU type reactor, the production of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products of materials which form part of the technological systems; - activated products of process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination activities. The most important types of solid wastes that are obtained and then handled, processed (if required) and temporarily stored are: solid low level radioactive wastes (classified as compact and non-compact), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, decontamination and maintenance operations. Radioactive gas wastes occur subsequent to the fission process inside the fuel elements as well as due to the process fluids neutron activation in the reactor systems. As result of the plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed to the ventilation stack in a controlled manner so that an exceeding of the maximum permissible concentrations of radioactive material to the environment should not occur. (authors)

  14. Design parameters for waste effluent treatment unit from beverages production

    OpenAIRE

    Mona A. Abdel-Fatah; H.O. Sherif; S.I. Hawash

    2017-01-01

    Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been con...

  15. Special Report: E-Waste Management in the United States and Public Health Implications.

    Science.gov (United States)

    Seeberger, Jessica; Grandhi, Radhika; Kim, Stephani S; Mase, William A; Reponen, Tiina; Ho, Shuk-mei; Chen, Aimin

    2016-10-01

    Electronic waste (e-waste) generation is increasing worldwide, and its management becomes a significant challenge because of the many toxicants present in electronic devices. The U.S. is a major producer of e-waste, although its management practice and policy regulation are not sufficient to meet the challenge. We reviewed e-waste generation, current management practices and trends, policy challenges, potential health impact, and toxicant exposure prevention in the U.S. A large amount of toxic metals, flame retardants, and other persistent organic pollutants exist in e-waste or can be released from the disposal of e-waste (e.g., landfill, incineration, recycling). Landfill is still a major method used to dispose of obsolete electronic devices, and only about half of the states have initiated a landfill ban for e-waste. Recycling of e-waste is an increasing trend in the past few years. There is potential, however, for workers to be exposed to a mixture of toxicants in e-waste and these exposures should be curtailed. Perspectives and recommendations are provided regarding managing e-waste in the U.S. to protect public health, including enacting federal legislation, discontinuing landfill disposal, protecting workers in recycling facilities from toxicant exposure, reducing toxicant release into the environment, and raising awareness of this growing environmental health issue among the public.

  16. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  17. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  18. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  19. Chemicals, metals, and pesticide pits waste unit low induction number electromagnetic survey

    Energy Technology Data Exchange (ETDEWEB)

    Cumbest, R.J.; Mohon, D.

    1995-06-01

    An electromagnetic survey was conducted at the Chemicals, Metals, and Pesticide Waste Unit to identify any buried metallic objects that may be present in the materials used to fill and cover the pits after removal of pit debris. The survey was conducted with a Geonics EM-31 Terrain Conductivity Meter along north - south oriented traverses with 5-ft station intervals to produce a 5-ft by 5-ft square grid node pattern. Both conductivity and in-phase components were measured at each station for vertical dipole orientation with the common axis of the dipoles in the north - south and east - west orientations. The conductivity data clearly show elevated conductivities (2.1 to 7.0 mS/m) associated with the material over the pits, as compared with the surrounding area that is characterized by lower conductivities (1 to 2 mS/m). This is probably the result of the higher clay content of the fill material relative to the surrounding area, which has a higher sand to clay ratio and the presence of a plastic cover beneath the fill that has probably trapped water. Many metal objects are present in the survey area including manhole covers, monitoring well heads, metal, signs, drain culverts, abandoned wells, and BP waste unit marker balls. AU of these exhibit associated conductivity and in-phase anomalies of various magnitude. In addition to these anomalies that can be definitely associated with surface sources, conductivity and in-phase anomalies are also present with no obvious surface source. These anomalies are probably indicative of subsurface buried metallic objects. A high concentration of these objects appears to be present in the southwest corner of the survey area.

  20. Photoflash unit having optical system including aspheric lens to enhance light output

    International Nuclear Information System (INIS)

    English, G.J.

    1984-01-01

    A photoflash unit employing an optical system or apparatus with improved center beam candle power seconds and zonal lumen seconds from the flash lamp therein, said unit also employing a minimized utilization ratio of lamp-to-package cross-sectional area. Each individual lamp capsule comprises a reflective element, a refractive element (lens), and at least one photoflash lamp (light source). The lens provides for lamp shred magnification so as to fill the cell (capsule) width to thus provide maximum transfer of light to the subject on axis. One embodiment has the light source fused (glued) to the reflector and lens while a second embodiment has an air interface between the source and the optical elements. In both embodiments, the lens is aspheric and substantially covers both the reflector and source

  1. On the Determination of Concrete Armour Unit Stress including Specific Results related to Dolosse

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Howell, G.L.; Liu, Z.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structu......Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams...... and scale effects. Moreover, some results from the Crescent City Prototype Dolosse study are presented and related to results from small-de model tests. A preliminary design diagram for Dolosse ir presented as well....

  2. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan

    2014-09-01

    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  3. On the Determination of Concrete Armour Unit Stress including Specific Results related to Dolosse

    OpenAIRE

    Burcharth, H. F.; Howell, G.L.; Liu, Z.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structural integrity. The paper presents a general discussion of the problems related to stress etermination and describes the results and the analyses of model tests with 200 kg and 200 g load-cell instrume...

  4. The ''waste unit'' of the opencast uranium mine of Bellezane

    International Nuclear Information System (INIS)

    Sirot, P.

    1986-01-01

    Cogema works at Bellezane by an opencast method a deposit of uraniferous ore which will have to extract a tonnage of 15 Mt gross for a uranium metal content of 800 t. The waste of the overburden is mined in steps of 15 m height. The ore itself is mined in slices of 3 to 5 m height to improve the selectivity. Heavy equipment is used; it comprises in particular for the overburden a large Liebherr 914 power shovel with a bucket of 11m 3 which operates in two shifts per day, loading three Caterpillar trucks of 77 t. The results are impressive, i.e. 750 t per man and shift for the overburden and 400 t per man and shift for the ore. The author gives also a breakdown for the extraction costs of the two sectors [fr

  5. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do to address corrective action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A...

  6. MethodS of radioactive waste processing and disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Tolstykh, V.D.

    1983-01-01

    The results of investigations into radioactive waste processing and disposal in the United Kingdom are discussed. Methods for solidification of metal and graphite radioactive wastes and radioactive slime of the Magnox reactors are described. Specifications of different installations used for radioactive waste disposal are given. Climatic and geological conditions in the United Kingdom are such that any deep storages of wastes will be lower than the underground water level. That is why dissolution and transport by underground waters will inevitably result in radionuclide mobility. In this connection an extended program of investigations into the main three aspects of disposal problem namely radionucleide release in storages, underground water transport and radionuclide migration is realized. The program is divided in two parts. The first part deals with retrival of hydrological and geochemical data on geological formations, development of specialized methods of investigations which are necessary for identification of places for waste final disposal. The second part represents theoretical and laboratory investigations into provesses of radionuclide transport in the system of ''sttorage-geological formation''. It is concluded that vitrification on the base of borosilicate glass is the most advanced method of radioactive waste solidification

  7. Selective cesium and strontium removal for TRU-liquid waste including fission products and concentrated nitric acids

    International Nuclear Information System (INIS)

    Mimori, T.; Miyajima, K.; Kozeki, M.; Kubota, T.; Tusa, E.; Keskinen, A.

    1996-01-01

    A nuclide removal system was designed for treatment of liquid radioactive waste at the Japan Atomic Energy Research Institute (JAERI) Tokai site. Total system will include removal of plutonium, cesium and strontium. Removal of plutonium will be carried out by a method developed by JAERI. Removal of cesium and strontium will be carried out by the methods developed in Finland. The whole project will be implemented for JAERI in cooperation between Mitsui Engineering and Shipbuilding and IVO International. This project has been carried out under the Science and Technology Agency (STA) of Japan. The liquid to be treated includes 7.4x10 9 Bq/L of cesium and 7.4x10 9 Bq/L of strontium. The amount of alpha nuclides is 3.7x10 6 Bq/L. Nitric acid concentration is 1.74 mol/L. The volume of 11,000 liters had to be treated in 200 batches of operation. Removal of cesium and strontium is based on the use of new ion exchange materials developed in Finland. These inorganic ion exchange materials have extremely good properties to separate cesium and strontium from even very difficult liquids. Ion exchange material will be used in columns, where there are materials both for cesium and strontium. According to column tests with simulated waste, one 2 liter column will effectively reach the required DF during 10 batches of operation. Purified liquid can be led to further liquid treatment at the site. After treatment of liquids, both used particle filters and used ion exchange columns will be drained and stored to wait for final treatment and disposal. The designed treatment system has a special beneficial feature as it does not produce secondary waste. Final waste is in the form of particle filters or ion exchange columns with material. Used ion exchange columns and filters will be replaced with new ones by means of remote handling. Construction of the treatment system will be scheduled to commence in FY1995 and assemblying at the site in FY1996. (J.P.N.)

  8. Option managing for radioactive metallic waste from the decommissioning of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chagn Lak [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of)

    2017-06-15

    The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

  9. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  10. Disposal of radioactive wastes arising in the United Kingdom from the peaceful uses of atomic energy

    CERN Document Server

    Bryant, P M

    1971-01-01

    This paper describes United Kingdom policy in relation to radioactive waste and summarises the relevant legislation ad methods of control. Data are given on the amounts of radioactivity discharged as waste from establishments of the United Kingdom Atomic Energy Authority, the nuclear power stations operated by the Electricity Generating Boards and other users of radioactive materials. Studies of the behaviour of radioactivity in the environment are reported with particular reference to food chains and other potential sources of irradiation of the public. The results of environmental monitoring are presented and estimates are made of radiation doses received by individual members of the public and larger population groups as a result of waste disposal. It is concluded that the doses received are all within the appropriate limits recommended by the International Commission on Radiological Protection, and in most cases are trivial.

  11. Evaluation on radioactive waste disposal amount of Kori Unit 1 reactor vessel considering cutting and packaging methods

    International Nuclear Information System (INIS)

    Choi, Yu Jong; Lee, Seong Cheol; Kim, Chang Lak

    2016-01-01

    Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation

  12. Anaerobic digestion of waste from an intensive pig unit. [NON

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1973-03-01

    Use was made of heated (35/sup 0/C), stirred, and daily fed laboratory digesters. It was found that digestion of undiluted feces-urine was impossible, but balanced digestion could be obtained in digesters originally seeded from a working domestic anaerobic digester or in digesters filled with water into which small amounts of waste were regularly added. The results from running two digesters for over 80 weeks at loading rates of 0.5 to 3.2 g VS/l/day at detention times of 37.5 to 14 days are given. Above a loading rate of about 2.6 g VS/l/day, at a detention time of 14 days, performance in terms of percentage reduction in solids, BOD and COD began to fall. Maximum BOD reduction of 80 to 90% was found at that loading rate. Volatile acids and ammonia remained below inhibitory levels. It was postulated that there was an upper limit of total solids of about 4.5% above which satisfactory performance cannot be expected.

  13. Litter Control, Waste Management, and Recycling Resource Unit, K-6. Bulletin 1722.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge.

    This unit provides elementary teachers with ideas for assisting their students in developing an understanding and appreciation of sound resource use. It contains projects and activities that focus on both the litter problem and on waste management solutions. These materials can be adapted and modified to accommodate different grade levels and…

  14. Woody residues and solid waste wood available for recovery in the United States, 2002

    Science.gov (United States)

    David B. McKeever; Robert H. Falk

    2004-01-01

    Large amounts of woody residues and solid wood waste are generated annually in the United States from the extraction of timber from forests, from forestry cultural operations, in the conversion of forest land to nonforest uses, in the initial processing of roundwood timber into usable products, in the construction and demolition of buildings and structures, and in the...

  15. Inventories of woody residues and solid wood waste in the United States, 2002

    Science.gov (United States)

    David B. McKeever

    2004-01-01

    Large amounts of woody residues and wood waste are generated annually in the United States. In 2002, an estimated 240 million metric tons was generated during the extraction of timber from the Nation’s forests, from forestry cultural operations, in the conversion of forest land to nonforest uses, in the initial processing of roundwood timber into usable products, in...

  16. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW)...

  17. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    Science.gov (United States)

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these

  18. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Wastewater-Inspection and Monitoring Requirements for Waste Management Units 11 Table 11 to Subpart G of Part 63 Protection of Environment... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring...

  19. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Wastewater-Inspection and Monitoring Requirements for Waste Management Units 7 Table 7 to Subpart GGG of Part 63 Protection of Environment... for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection...

  20. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  1. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  2. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  3. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  4. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake

    International Nuclear Information System (INIS)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save tax dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity

  5. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  6. Vultures of the seas: hyperacidic stomachs in wandering albatrosses as an adaptation to dispersed food resources, including fishery wastes.

    Directory of Open Access Journals (Sweden)

    David Grémillet

    Full Text Available Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13, markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

  7. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    International Nuclear Information System (INIS)

    Pinson, P.A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs

  8. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the United States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts

  9. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  10. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  11. Impact of a standardized nurse observation protocol including MEWS after Intensive Care Unit discharge.

    Science.gov (United States)

    De Meester, K; Das, T; Hellemans, K; Verbrugghe, W; Jorens, P G; Verpooten, G A; Van Bogaert, P

    2013-02-01

    Analysis of in-hospital mortality after serious adverse events (SAE's) in our hospital showed the need for more frequent observation in medical and surgical wards. We hypothesized that the incidence of SAE's could be decreased by introducing a standard nurse observation protocol. To investigate the effect of a standard nurse observation protocol implementing the Modified Early Warning Score (MEWS) and a color graphic observation chart. Pre- and post-intervention study by analysis of patients records for a 5-day period after Intensive Care Unit (ICU) discharge to 14 medical and surgical wards before (n=530) and after (n=509) the intervention. For the total study population the mean Patient Observation Frequency Per Nursing Shift (POFPNS) during the 5-day period after ICU discharge increased from .9993 (95% C.I. .9637-1.0350) in the pre-intervention period to 1.0732 (95% C.I. 1.0362-1.1101) (p=.005) in the post-intervention period. There was an increased risk of a SAE in patients with MEWS 4 or higher in the present nursing shift (HR 8.25; 95% C.I. 2.88-23.62) and the previous nursing shift (HR 12.83;95% C.I. 4.45-36.99). There was an absolute risk reduction for SAE's within 120h after ICU discharge of 2.2% (95% C.I. -0.4-4.67%) from 5.7% to 3.5%. The intervention had a positive impact on the observation frequency. MEWS had a predictive value for SAE's in patients after ICU discharge. The drop in SAE's was substantial but did not reach statistical significance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. New York vs. United States: Federalism and the disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Weiner, R.D.

    1994-01-01

    Although 97 percent of LLRW is so slightly radioactive that it requires little or no shielding to protect the public, the remaining 3 percent consists of materials that must be shielded for periods ranging from 300 to several thousand years. Some of the material classified as LLRW contains open-quotes open-quote hot spots close-quote, where concentrations of radioactivity may be quite high.close quotes Even aside from such hot spots, LLRW poses a threat to human health. While nuclear power plants generate the bulk of LLRW, a significant quantity of LLRW is generated by industry, and academic and medical institutions. States are allowed to regulate LLRW that is generated by the private sector, as long as the regulations are compatible with, and at least as restrictive as, those of the NRC. However, states may not regulate LLRW generated by NRC-licensed nuclear power plants. The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLR-WPAA, or the Act) attempted to solve the problem of insufficient LLRW disposal capacity in the United States by further shifting responsibility for LLRW disposal to the states. The Act required each state to provide an approved disposal site that could be located either within that state or within a region formed by a compact including that state. In June, 1992, the United States Supreme Court struck down a key provision of the Act that would have forced a state to take title to all LLRW generated within its borders if that state failed to meet a 1996 deadline for providing such a disposal site. This note will examine the constitutional basis for, and the consequences of, that decision. In addition, this note will suggest that the Court's new criterion for determining when a federal statute violates principles of federalism be replaced by a more coherent and workable test resting on a theory of political accountability and on the Guarantee Clause of the United States Constitution

  13. Fort Calhoun Station, Unit 1. Annual operation report: January-December 1977 (including environmental report)

    International Nuclear Information System (INIS)

    1978-02-01

    Net electrical energy generated in 1977 was 2,922,683.7 MWH with the generator on line 6,959.8 hours. Information is presented concerning operations, power generation, shutdowns, maintenance, changes, tests, experiments, occupational personnel radiation exposures, and primary coolant chemistry. Data on radioactive effluent releases, meteorology, environmental monitoring, and potential radiation doses to individuals for July 7, 1977 to December 31, 1977 are also included

  14. Cost and benefit including value of life, health and environmental damage measured in time units

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Friis-Hansen, Peter

    2009-01-01

    Key elements of the authors' work on money equivalent time allocation to costs and benefits in risk analysis are put together as an entity. This includes the data supported dimensionless analysis of an equilibrium relation between total population work time and gross domestic product leading...... of this societal value over the actual costs, used by the owner for economically optimizing an activity, motivates a simple risk accept criterion suited to be imposed on the owner by the public. An illustration is given concerning allocation of economical means for mitigation of loss of life and health on a ferry...

  15. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the Unites States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third, the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts. This paper briefly outlines some of the liabilities surrounding environmental contracting and ways to minimize risks

  16. Unit cell modeling in support of interim performance assessment for low level tank waste disposal

    International Nuclear Information System (INIS)

    Kline, N.W.

    1996-01-01

    A unit cell model is used to simulate the base analysis case and related sensitivity cases for the interim performance assessment of low level tank waste disposal. Simulation case results are summarized in terms of fractional contaminant release rates to the vadose zone and to the water table at the unconfined aquifer. Results suggest that the crushed glass water conditioning layer at the top of the facility and the chemical retardation pad at the bottom of the facility can be important components of the facility. Results also suggest that the release rates to the water table are dominated by the release rate from the waste form

  17. Corrective action investigation plan for Corrective Action Unit Number 427: Area 3 septic waste system numbers 2 and 6, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Compound, specifically Corrective Action Unit (CAU) Number 427, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Corrective Action Unit Work Plan, Tonopah Test Range, Nevada divides investigative activities at TTR into Source Groups. The Septic Tanks and Lagoons Group consists of seven CAUs. Corrective Action Unit Number 427 is one of three septic waste system CAUs in TTR Area 3. Corrective Action Unit Numbers 405 and 428 will be investigated at a future data. Corrective Action Unit Number 427 is comprised of Septic Waste Systems Number 2 and 6 with respective CAS Numbers 03-05-002-SW02 and 03-05-002-SW06

  18. Element partitioning in combustion- and gasification-based waste-to-energy units

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-01-01

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal

  19. Food waste disposal units in UK households: The need for policy intervention

    International Nuclear Information System (INIS)

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-01-01

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. - Highlights: ► FWDs can be a less conventional way for diverting food waste from landfill. ► We compared water industry costs to savings from MSW collection and treatment. ► A large-scale uptake of FWDs would outweigh the costs to the water industry. ► At a low uptake, MSW collection savings are not enough to cover these costs. ► Findings highlight the need for policy intervention, regulating the use of FWDs.

  20. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  1. The status of radioactive waste repository development in the United States - December 2011

    International Nuclear Information System (INIS)

    Hill, David R.

    2012-01-01

    The current state of affairs concerning development in the United States of a permanent repository for disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) is, in a word, uncertain. The President of the United States has asserted that he believes licensing and development of the Yucca Mountain repository should be abandoned, while other important parties believe licensing and development should continue. And not surprisingly, there is a disagreement as to what the law requires and whether the licensing process for the Yucca Mountain repository can be terminated at this point, even if the President would like for that to happen. The future of Yucca Mountain, and the future of radioactive waste disposal in the United States generally, currently are pending before the US Court of Appeals for the District of Columbia Circuit, and eventually the Supreme Court of the United States may decide some of the important legal issues concerning Yucca Mountain's future. The November 2012 US elections also likely will have a significant impact on future radioactive waste repository development

  2. United Kingdom nationwide study of avascular necrosis of the jaws including bisphosphonate-related necrosis.

    Science.gov (United States)

    Rogers, S N; Palmer, N O A; Lowe, D; Randall, C

    2015-02-01

    We aimed to record all new patients who presented to departments of oral surgery, oral medicine, and oral and maxillofacial surgery, and to dental hospitals in the UK, with avascular necrosis of the jaws including bisphosphonate-related necrosis (BRONJ) over a 2-year period (1 June 2009-31 May 2011). They were eligible irrespective of age, cause, or coexisting conditions. Data on incidence, clinical characteristics, risk factors, and coexisting conditions were collected. A total of 383 cases were registered: 369 were described as BRONJ, 5 as avascular necrosis, and 9 were unknown. Bisphosphonates had been given orally in 207 (56%), intravenously in 125 (34%), both orally and intravenously in 27 (7%), and was unknown in 9 (2%); one had been given denosumab. The main risk factor was dental extraction, and the mandible was commonly affected. The median duration of administration until onset of BRONJ was 3 years in those treated intravenously and 4 years in those treated orally. Levels of engagement with the study varied between regions, and extrapolation from the 2 most involved (Merseyside and Northern Ireland) found around 8.2-12.8 cases/million/year, which is 508-793 patients/year across the UK. To our knowledge this is one of the first studies to estimate national rates of BRONJ. It confirms that the risk and incidence are low. With changes in trends for antiresorptive bone medication, and increasing numbers of elderly people, it would be useful to repeat the registration in the future. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  4. High-level radioactive waste management in the United States. Background and status: 1996

    International Nuclear Information System (INIS)

    Dyer, J.R.

    1996-01-01

    The US high-level radioactive waste disposal program is investigating a site at Yucca Mountain, Nevada, to determine whether or not it is a suitable location for the development of a deep mined geologic repository. At this time, the US program is investigating a single site, although in the past, the program involved successive screening and comparison of alternate locations. The United States civilian reactor programs do not reprocess spent fuel; the high-level waste repository will be designed for the emplacement or spent fuel and a limited amount of vitrified high-level wastes from previous reprocessing in the US. The legislation enabling the US program also contains provisions for a Monitored Retrievable Storage facility, which could provide temporary storage of spent fuel accepted for disposal, and improve the flexibility of the repository development schedule

  5. Calculations of the radiological impact of disposal of unit activity of selected radionuclides for use in waste management system studies

    International Nuclear Information System (INIS)

    Smith, G.M.

    1985-03-01

    The purpose of the work described is to provide estimates of the radiological impact following disposal of unit activity via each of several options, including shallow burial, engineered trench disposal, disposal in a geologic repository and disposal on the deep ocean bed. Results are presented for a range of important representative radionuclides. No single option is clearly the best from the radiological point of view. However, in conjunction with waste inventory data the results may be used to provide a preliminary view of the relative radiological merits of the various disposal options. (author)

  6. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  7. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  8. Experience in the United States with a secondary resource curriculum on ''Science, society and America's nuclear waste''

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    The nuclear power and nuclear waste situation in the Usa, is first reviewed. In order to enhance information concerning these topics among pupils and teachers, a resource curriculum, 'Science, society, and America's Nuclear Waste', was developed by teachers for teachers; it consists of four units: nuclear waste, ionizing radiation, the nuclear waste policy act, and the waste management system. It has been well received by teachers. Within nine months after its national introduction, 350000 teacher and student curriculum documents were requested by teachers from all 50 states. Requests have been also received from 250 foreign colleges and universities

  9. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  10. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...

  11. Review of potential host rocks for radioactive waste disposal in the southeastern United States. Executive summary

    International Nuclear Information System (INIS)

    Bledsoe, H.W. Jr.; Marine, I.W.

    1980-10-01

    The geology of the southeastern United States was studied to recommend areas that should be considered for field exploration in order to select a site for a radioactive waste repository. The region studied included the Piedmont Province, the Triassic Basins, and the Atlantic Coastal Plain in Maryland, Virginia, North Carolina, South Carolina, and Georgia. This study was entirely a review of literature and existing knowledge from a geotechnical point of view and was performed by subcontractors whose individual reports are listed in the bibliography. No field work was involved. The entire study was geotechnical in nature, and no consideration was given to socioeconomic or demographic factors. These factors need to be addressed in a separate study. For all areas, field study is needed before any area is further considered. A total of 29 areas are recommended for further consideration in the Piedmont Province subregion: one area in Maryland, 8 areas in Virginia, 4 areas in North Carolina, 6 areas in South Carolina, and 10 areas in Georgia. Of the 14 exposed and 5 buried or hypothesized basins identified in the Triassic basin subregion, 6 are recommended for further study: one basin in Virginia, 3 basins in North Carolina, and 2 basins in South Carolina. Four potential candidate areas are identified within the Atlantic Coastal Plain subregion: one in Maryland, one in North Carolina, and 2 in Georgia

  12. A study of concrete for the tumulus disposal units in low-level radioactive waste management

    International Nuclear Information System (INIS)

    Lee, J.H.; Roy, D.M.; Licastro, P.H.; Scheetz, B.E.

    1991-01-01

    The tumulus disposal concept can provide a major means for the disposal of low-level radioactive waste (LLRW) provided the concrete structures of the tumulus disposal units are designed and fabricated for long term durability. As an initial phase of the study, a detailed characterization and testing of the component materials for the tumulus concrete have been evaluated. Key properties of hardened concrete that are important in assuring and predicting the long term durability, which have been evaluated, or are being evaluated, include: water permeability; chloride permeability; sulfate resistance; porosity and pore structure; freeze-thaw resistance; leaching and dissolution; alkali-aggregate reaction; and strength. Those properties were evaluated on samples from field concrete cylinders provided by Martin Marietta Energy Systems (MMES), or samples prepared in the laboratory, or both. The proposed concrete mix design showed an excellent resistance to repeated freeze-thaw cycles, and a very low permeability to chloride. An accelerated test method was used to evaluate alkali-aggregate reactivity in concrete for samples containing representative coarse and fine aggregates proposed for the tumulus concrete, and also conducted for samples cored from the field concrete cylinders

  13. Food waste disposal units in UK households: the need for policy intervention.

    Science.gov (United States)

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Mobile calcination and cementation unit for solidification of concentrated radioactive wastes

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Skaba, V.; Skvarenina, R.; Ditl, P.

    1985-01-01

    Mobile experimental unit MESA-1 was developed and manufactured for processing radioactive concentrates by direct cementation. The unit is mainly designed for processing low-level liquid wastes from nuclear power plants and other nuclear installations, in which the level of radioactivity does not exceed 10 10 Bq/m 3 , the salt content of liquid solutions does not exceed 500 kg/m 3 and the maximum amount of boric acid is 130 kg/m 3 . The equipment is built into three modules which may be assembled and dismantled in a short time and transported separately. The unit without the calciner module was tested in non-radioactive mode and in operation with actual radioactive wastes from the V-1 nuclear power plant. The course and results of the tests are described in detail. All project design values were achieved, a total of 18 dm 3 model solutions were processed and 1 m 3 of actual wastes with a salt content of 450 kg/m 3 . The test showed that with regard to the radiation level reached it will be necessary in the process of calcination to increase the shielding of certain exposed points. The calciner module is being assembled for completion. (Z.M.)

  15. Design of chemical treatment unit for radioactive liquid wastes in Serpong nuclear facilities

    International Nuclear Information System (INIS)

    Salimin, Z.; Walman, E.; Santoso, P.; Purnomo, S.; Sugito; Suwardiyono; Wintono

    1996-01-01

    The chemical treatment unit for radioactive liquid wastes arising from nuclear fuel fabrication, radioisotopes production and radiometallurgy facility has been designed. The design of chemical processing unit is based on the characteristics of liquid wastes containing fluors from uranium fluoride conversion process to ammonium uranyl carbonate on the fuel fabrication. The chemical treatment has the following process steps: coagulation-precipitation of fluoride ion by calcium hydroxide coagulant, separation of supernatant solution from sludge, coagulation of remaining fluoride on the supernatant solution by alum, separation of supernatant from sludge, and than precipitation of fluors on the supernatant by polymer resin WWS 116. The processing unit is composed of 3 storage tanks for raw liquid wastes (capacity 1 m 3 per tank), 5 storage tanks for chemicals (capacity 0.5 m 3 per tank), 2 mixing reactors (capacity 0.5 m 3 per reactor), 1 storage tank for supernatant solution (capacity 1 m 3 ), and 1 storage tank for sludge (capacity 1 m 3 )

  16. Corrective Action Investigation Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada (December 2002, Revision No.: 0), Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO

    2002-12-12

    The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations

  17. Assessment of emerging contaminants including organophosphate esters and pyrethroids during DISCOVER-AQ in Houston, Texas, United States.

    Science.gov (United States)

    Usenko, Sascha; Clark, Addie; Sheesley, Rebecca

    2015-04-01

    DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) is a NASA-funded air quality research program that focused on Houston, Texas, United States in September 2013. In conjunction with DISCOVER-AQ, particulate matter was collected for the month of September from four ground-based sampling sites across the Houston metropolitan area. The Houston metropolitan area is one of the most populous cities in the United States. Sampling sites included an upwind and downwind site as well as an urban (i.e. downtown) and industrial/port areas (i.e. Houston Ship Channel). Particulate matter samples were collected to examine both spatial and temporal trends (including day versus night). Particulate matter was collected on quartz fiber filters, which were analyzed for emerging classes of concern including organophosphate esters (OPEs; including flame retardants) and pyrethroids. OPEs have in recent years increased in both use and production as they replaced polybrominated diphenyl ethers flame retardants. Permethrin is one of the most commonly used mosquito adulticides in the United States.

  18. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  19. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2000-01-01

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  20. Restoration of pyritic colliery waste with sewage sludge in the Midlands coalfield, England, United Kingdom

    International Nuclear Information System (INIS)

    Humphries, R.N.; McQuire, G.E.; Sly, M.

    1994-01-01

    A trial was set up in 1990 in the Midlands coalfield in the United Kingdom (UK) to evaluate the use of sewage sludge to revegetate colliery waste tips containing 1--2% sulfur as iron pyrites. The rate of sewage sludge application is currently restricted by legislation and codes of practice to maximum concentrations of potentially toxic elements (copper, nickel, zinc, etc.) in the soil or waste after application. Following this guidance, an application rate of 250 mt/ha dry solids was applied at the trial site. At this rate, the colliery waste became extremely acidic pH <4.0. From experience elsewhere, much higher levels have been found to be necessary to control acidification in the absence of other measures or treatments. In view of the restriction on the amount of sewage sludge that can be applied, it is recommended that the current practice of covering fresh colliery wastes with soil or low sulfur spoil to a minimum depth of 0.45m is continued in the UK. Where this is not possible, the sludge must always be applied with sufficient neutralizing agent to control the potential acidity. If the acidity cannot be maintained above pH 5.0, the guidelines do not permit the application of sewage sludge

  1. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-05-23

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  2. Development of the geologic waste disposal programme in the United States of America

    International Nuclear Information System (INIS)

    Coffman, F.E.; Ballard, W.W.; Carbiener, W.A.

    1983-01-01

    Although alternative concepts are being studied as future options, over at least the next few decades the United States of America is committed to the disposal of commercially generated high-level and transuranic nuclear waste (HLW and TRU) in mined geologic repositories. A 10,000-year minimum isolation period is sought. Responsibility for the management and disposal of United States nuclear waste, in accordance with standards and regulations established, respectively, by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), resides with the Department of Energy (DOE). The DOE National Waste Terminal Storage (NWTS) Program has been implemented to provide the facilities and develop the requisite technology for the disposal of HLW and TRU. The NWTS Program is highly structured, adequately funded, and realistically scheduled. The timely realization of its objectives is basic to the furtherance of the new national energy policy being defined by President Reagan and the United States Congress. The first NWTS repository is scheduled to be operational as early as 1998. The host-rock formation, selected on the basis of the results of at-depth investigations via exploratory shafts to be sunk in 1983-1985 at three potential sites previously extensively characterized by surface techniques, will be either basalt, volcanic tuff, or domed or bedded salt. Selection of one site in these formations will not necessarily disqualify others. Also, screening studies of granitic formations in the United States for the siting of later, regionally located repositories are currently being conducted. Each NWTS repository will be licensed by the NRC. The first application for a construction authorization will probably be submitted in 1988. The application will be submitted for a site to be selected in 1987

  3. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.

    Science.gov (United States)

    Shaaban, A F

    2007-06-25

    Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.

  4. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gustafason, D.L.

    2001-01-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential

  5. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    International Nuclear Information System (INIS)

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, W.; Weir, J.E. Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000 to 50,000 ft or 9,140 to 15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000 to 20,000 ft or 305 to 6,100 m), (3) a mined chamber (1,000 to 10,000 ft or 305 to 3,050 m), (4) a cavity with separate manmade structures (1,000 to 10,000 ft or 305 to 3,050 m), and (5) an exploded cavity (2,000 to 20,000 ft or 610 to 6,100 m). Areas considered to be unsuitable for waste disposal are those where seismic risk is high, where possible sea-level rise would inundate potential sites, where high topographic relief coincides with high frequency of faults, where there are unfavorable ground-water conditions, and where no suitable rocks are known to be present to depths of 20,000 feet (6,100 m) or more, and where these strata either contain large volumes of ground water or have high oil and gas potential

  6. Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the united states

    International Nuclear Information System (INIS)

    Lemeshewsky, W.; Macaluso, C.; Smith, P.; Teer, B.

    1998-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) in the United States Department of Energy (DOE) has the responsibility under the Nuclear Waste Policy Act of 1982 (the Act) for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. The Act requires the use of private industry to the 'fullest extent possible' in the transportation of spent fuels. An OCRWM goal is to develop a safe, efficient and effective transportation system while meeting the mandate of the Act. OCRWM has then develop a strategy for a market driven approach for the acquisition of transportation services and equipment. To implement this strategy, OCRWM is planning to issue a Request for Proposal (RPF) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. Two draft RPFs have been issued with the second draft incorporating comments on the first draft from potential contractors and other interested parties. The overall strategy as outlined in the draft RPF relies on private industry to use the innovative powers of the marketplace to help DOE accomplish its mission objectives. DOE intends to pursue this procurement strategy whether or not the OCRWM program includes interim storage. The concept described in the draft RPF provides for DOE to purchase services and equipment from a contractor-operated waste acceptance and transportation organization. The contractor is expected to provide initial financing for the project including that necessary for initial acquisition of operational equipment, establish the necessary management organization, and mobilize the necessary resources and capabilities to provide the SNF delivery services at a fixed rate. DOE will retain final approval on all routes and maintain primary responsibility to the States, tribes, and local units of government for assuring appropriate interaction and consideration of their input on

  7. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  8. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  9. Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2007-05-09

    This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

  10. A preliminary investigation of vertical crustal movements in the United Kingdom in the context of subsurface nuclear waste isolation

    International Nuclear Information System (INIS)

    1981-03-01

    Two types of change will influence the environment of a subsurface nuclear waste isolation facility: natural geological changes and changes caused by the construction of the waste repository and introduction of the waste. This report is concerned with vertical crustal movements, which are an expression of natural geological changes. Vertical crustal movements observed outside the United Kingdom are reviewed, and vertical movements in a test region of the UK investigated by comparison of geodetic levellings. The implications of vertical crustal movement to waste isolation facilities and some potentially valuable lines of research are discussed. (author)

  11. Geohydrologic problems at low-level radioactive waste disposal sites in the United States of America

    International Nuclear Information System (INIS)

    Fischer, J.N.; Robertson, J.B.

    1984-01-01

    Several commercial and US Department of Energy low-level radioactive waste disposal sites in the USA have not adequately contained the waste products. Studies of these sites indicate a number of causes for the problems, including water accumulation in filled trenches, breaches of trench cap integrity, erosion, high water table, hydrogeological complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in groundwater. These problems can be avoided through the application of practical, comprehensive, and common sense earth-science guidelines discussed in this paper. (author)

  12. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1997-12-31

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this `national` resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs.

  13. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.

    2004-01-01

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas

  14. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    International Nuclear Information System (INIS)

    Fearnley, I. G.

    1997-01-01

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this 'national' resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs

  15. Focused feasibility study of engineered barriers for waste management units in the 200 areas

    International Nuclear Information System (INIS)

    1996-08-01

    This Focused Feasibility Study (FFS) evaluates a total of four conceptual barrier designs for different types of waste sites. The Hanford Barrier, the Modified RCRA Subtitle C Barrier, and the Modified RCRA Subtitle D Barrier are being considered as the baseline design for the purpose of the FFS evaluation. A fourth barrier design, the Standard RCRA Subtitle C Barrier, is also evaluated in this FFS; it is commonly applied at other waste sites across the country. These four designs provide a range of cover options to minimize health and environmental risks associated with a site and specific waste categories for active design life periods of 30, 100, 500, and 1,000 years. Design criteria for the 500 and 1,000-year design life barriers include design performance to extend beyond active institutional control and monitoring periods

  16. United States high-level radioactive waste management program: Current status and plans

    International Nuclear Information System (INIS)

    Williams, J.

    1992-01-01

    The inventory of spent fuel in storage at reactor sites in the United States is approximately 20,000 metric tons heavy metal (MTHM). It is increasing at a rate of 1700 to 2100 MTHM per year. According to current projections, by the time the last license for the current generation of nuclear reactors expires, there will be an estimated total of 84,000 MTHm. No commercial reprocessing capacity exists or is planned in the US. Therefore, the continued storage of spent fuel is required. The majority of spent fuel remains in the spent fuel pools of the utilities that generated it. Three utilities are presently supplementing pool capacity with on-site dry storage technologies, and four others are planning dry storage. Commercial utilities are responsible for managing their spent fuel until the Federal waste management system, now under development, accepts spent fuel for storage and disposal. Federal legislation charges the Office of Civilian Radioactive Waste Management (OCRWM) within the US Department of Energy (DOE) with responsibility for developing a system to permanently dispose of spent fuel and high level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. We are developing a waste management system consisting for three components: a mined geologic repository, with a projected start date of 2010; a monitored retrievable storage facility (MRS), scheduled to begin waste acceptance in 1998; and a transportation system to support MRS and repository operations. This paper discusses the background and framework for the program, as well as the current status and plans for management of spent nuclear fuel at commercial utilities; the OCRWM's development of a permanent geologic repository, an MRS, and a transportation system; the OCRWM's safety approach; the OCRWM's program management initiatives; and the OCRWM's external relations activities

  17. Current Status of the United Kingdom Programme for Long-Term Radioactive Waste Management

    International Nuclear Information System (INIS)

    Murray, C. H.; Hooper, A. J.; Mathieson, J.

    2002-01-01

    In 1997, the UK programme for the deep disposal of radioactive waste was ''stopped dead in its tracks'' with the refusal by the Secretary of State for the Environment to allow Nirex to go ahead with its plans for an underground Rock Characterisation Facility at Sellafield in north-west England. Since that time a House of Lords' Select Committee has held an inquiry into what went wrong and what the way ahead should be. In addition, Nirex and the nuclear industry players have also been analyzing the past with a view to learning from the experience in taking things forward. In Nirex's view this is essentially an ethical issue; the waste exists and we should deal with it in this generation. Three areas need to be better addressed if a successful program of management of the nation's radioactive waste is to be achieved: the process of how policy development and implementation can be achieved; the structure of the nuclear industry and its relationship to the waste management organization; and the behavior of the players in their interaction with stakeholders. All three are underpinned by the need for transparency. In recognition that developing a policy for managing radioactive waste has to be achieved with the support of all stakeholders, the Government instigated a consultation exercise in September 2001. The initial phase of this initiative is essentially a consultation about consultation and is intended to decide on how the next stages of a six year policy development program should be addressed. In addition to this exercise, the Government is undertaking a fundamental review of the structuring of the United Kingdom Atomic Energy Authority (UKAEA) and British Nuclear Fuels plc (BNFL). They are both shareholders in Nirex and in November 2001 the Government announced the setting up of a Liabilities Management Authority (LMA) to manage the long-term nuclear liabilities that are publicly owned, particularly through those organizations. The future of Nirex will be

  18. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    Science.gov (United States)

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Science.gov (United States)

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  20. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Science.gov (United States)

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  1. Corrrective action decision document for the Cactus Spring Waste Trenches (Corrective Action Unit No. 426). Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Corrective Action Decision Document (CADD) for the Cactus Spring Waste Trenches (Corrective Action Unit [CAU] No. 426) has been prepared for the US Department of Energy`s (DOE) Nevada Environmental Restoration Project. This CADD has been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996, stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Cactus Spring Waste Trenches Corrective Action Site (CAS) No. RG-08-001-RG-CS is included in CAU No. 426 (also referred to as the {open_quotes}trenches{close_quotes}); it has been identified as one of three potential locations for buried, radioactively contaminated materials from the Double Tracks Test. The trenches are located on the east flank of the Cactus Range in the eastern portion of the Cactus Spring Ranch at the Tonopah Test Range (TTR) in Nye County, Nevada, on the northern portion of Nellis Air Force Range. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The trenches were dug for the purpose of receiving waste generated during Operation Roller Coaster, primarily the Double Tracks Test. This test, conducted in 1963, involved the use of live animals to assess the biological hazards associated with non-nuclear detonation of plutonium-bearing devices (i.e., inhalation uptake of plutonium aerosol). The CAS consists of four trenches that received solid waste and had an overall impacted area of approximately 36 meters (m) (120 feet [ft]) long x 24 m (80 ft) wide x 3 to 4.5 m (10 to 15 ft) deep. The average depressions at the trenches are approximately 0.3 m (1 ft) below land surface.

  2. Use of a tangential filtration unit for processing liquid waste from nuclear laundries

    International Nuclear Information System (INIS)

    Augustin, X.; Buzonniere, A. de; Barnier, H.

    1993-01-01

    Nuclear laundries produce large quantities of weakly contaminated effluents charged with insoluble and soluble products. In collaboration with CEA, TECHNICATOME has developed an ultrafiltration process for liquid waste from nuclear laundries, associated with prior in-solubilization of the radiochemical activity. This process 'seeded ultrafiltration' is based on the use of decloggable mineral filter media and combines very high separation efficiency with long membrane life. The efficiency of the tangential filtration unit which has been processing effluents from the Cadarache Nuclear Research Center (CEA-France) nuclear laundry since mid-1988, has been confirmed on several sites

  3. Economic impacts of the total nuclear waste management program envisioned for the United States

    International Nuclear Information System (INIS)

    Busch, L.; Zielen, A.J.; Parry, S.J.S.

    1978-01-01

    This paper presents information on the costs of nuclear waste management and on the impacts of those costs on the price of power and on the capital and labor markets. It is assumed that the LWR would be the sole commercial reactor used through the year 2000. Two fuel cycle options are considered: the throwaway mode (spent fuel is waste), and the full recycle for comparison. Total costs are calculated for all facilities needed to store, package, and reposit all the spent fuel through the lifetime of 380 GW capacity installed by 2000 and operating for 30 y. The economic impact is: the price of power produced by the reactors would be increased by 1.4%; the capital for nuclear plants would apply to waste management; the average annual labor effort needed over the next 50 to 75 years is 3000 to 5000 man years; and the unit cost of spent fuel disposal is $129/kg ($119/kg for full recycle). 7 tables

  4. Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dave Madsen

    1998-08-01

    This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

  5. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

    Science.gov (United States)

    Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend

    2011-10-11

    In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.

  6. Technology transfer and radioactive waste management at TMI-2 [Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Saunders, J.R.

    1988-01-01

    The accident that occurred on March 28, 1979, at the Three Mile Island Unit 2 (TMI-2) nuclear generating station caused extensive damage to the reactor core and created high radiation contamination levels throughout the facility. The electric power industry, regulators, and government agencies were faced with one of the most technically challenging recovery situations ever encountered in this country. But it was also realized that this adversity presented opportunities for the advancement of state-of-the-art technologies as well as the potential to produce information that could enhance nuclear power plant safety and reliability. Perhaps one of the more significant aspects of the TMI-2 recovery has been the advancement of radioactive waste management technology. The high levels and unusual nature of the TMI-2 radioactive waste necessitated the development of innovative techniques for processing, packaging, shipping, and disposal. The investment in research was rewarded with large volume reductions and associated cost savings. It is anticipated that the TMI-2 radioactive waste management technology will make major contributions to the design of new systems to meet this growing need. The following areas appear particularly suited for this purpose: volume reduction, high-integrity containers, and selective isotope removal

  7. X/Qs and unit dose calculations for Central Waste Complex interim safety basis effort

    International Nuclear Information System (INIS)

    Huang, C.H.

    1996-01-01

    The objective for this problem is to calculate the ground-level release dispersion factors (X/Q) and unit doses for onsite facility and offsite receptors at the site boundary and at Highway 240 for plume meander, building wake effect, plume rise, and the combined effect. The release location is at Central Waste Complex Building P4 in the 200 West Area. The onsite facility is located at Building P7. Acute ground level release 99.5 percentile dispersion factors (X/Q) were generated using the GXQ. The unit doses were calculated using the GENII code. The dimensions of Building P4 are 15 m in W x 24 m in L x 6 m in H

  8. A State-of-the-Art Report on Technologies of Volume Reduction and Self-Disposal for Large Metal Wastes including the Steam Generator of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Kune Woo; Choi, W. K.; Kim, G. Y.

    2009-06-01

    This report focuses on technologies of volume reduction and self-disposal for large metal wastes including the steam generator of nuclear power plants. This report consists of the cases of treatments and foreign and domestic technologies for steam generator replacement

  9. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2001-01-01

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  10. Siting the high level radioactive waste repository in the United States

    International Nuclear Information System (INIS)

    Tourtellotte, J.

    1992-01-01

    For more than twenty-five years after the National Academy of Science issued its 1957 report recommending a Mined Geologic Disposal System (''MGDS'') for high level radioactive waste, no substantial progress was made in selecting and siting a repository. The United States Congress attempted to give substantive and procedural direction to the program in the Nuclear Waste Policy Act of 1982. Seeing that very little had been accomplished some five years later, Congress gave further direction and tentatively selected a single site, Yucca Mountain in Nevada, in the Nuclear Waste Policy Act Amendments of 1987. Selection of the Yucca Mountain site created a political conflict between federal and state authorities. Until recently, that conflict stalled the site characterization and evaluation program. Standards development under a polycentric regulatory regime has also been slow and has created a number of technical, legal and policy controversies. The Environmental Protection Agency (EPA), charged with setting radiation protection rules, may be developing regulatory standards which are technically unachievable and, therefore, legally unprovable in a licensing proceeding. The Nuclear Regulatory Commission (NRC), having the responsibility for licensing and setting performance objectives, may be taking an overly conservative approach. This approach could seriously impact the cost and may preclude the ability to reach an affirmative finding on license issuance. The Department of Energy (DOE) has responsibility for siting, construction and operation of the repository. In so doing, DOE must apply both EPA and NRC standards. To the extent that EPA and NRC standards are untimely, poorly defined, unrealistic, inconsistent, and technically or legally unsound, DOE may be forestalled from fulfilling its responsibilities. The US must rethink its approach to siting the high level radioactive waste repository and take realistic, timely action to preserve the nuclear option. (Author)

  11. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  12. SRS Public Involvement in Waste Management Has Resulted in Effective Decisions Supported by the Public Including Disposal Changes and Top-to-Bottom Review Initiative Consensus

    International Nuclear Information System (INIS)

    Goldston, W. T.; Villasor, H. P.

    2003-01-01

    In the Savannah River Site's (SRS') Solid Waste Management Program, a key to success is the Public Involvement Program. The Solid Waste Division at SRS manages the site's transuranic, low-level, mixed, and hazardous wastes. All decisions associated with management of this waste are of interest to the public and successful program implementation would be impossible without a vigorous public involvement program. The SRS Solid Waste Division (SWD) and its Department of Energy (DOE) customer developed, implemented, and maintain a comprehensive public participation and communications program. It is staffed by public participation and technical specialists to ensure information is presented in a manner that is technically accurate while being tailored for understanding by people without a technical background. The program provides the public with accurate, complete, timely information and early meaningful participation opportunities. It also fulfills the public participation activities required by laws, regulations, DOE Orders, and negotiated agreements. The primary goal of the SWD Public Participation Program is to fulfill the objectives of the SWD and SRS Strategic Plans to ''build trust and communicate openly, honestly, and responsibly with employees, customers, stakeholders, and regulators,'' and to ''work to extend the support of external stakeholders for the pursuit of SRS and DOE Complex business goals.'' This paper focuses on the public participation program goals, the implementation through formal plans and objectives, targeted waste management programs and specific audiences, and specific effects of the program on waste management activities. A discussion of the DOE and contractor teaming along with how plans are carried out is also included

  13. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  14. Assessment of Collective Production of Biomethane from Livestock Waste for Urban Transportation Mobility in Brazil and the United States

    Directory of Open Access Journals (Sweden)

    Janaina Camile Pasqual

    2018-04-01

    Full Text Available Water, energy, and food are essential elements for human life, but face constant pressure resulting from economic development, climate change, and other global processes. Predictions of rapid economic growth, increasing population, and urbanization in the coming decades point to rapidly increasing demand for all three. In this context, improved management of the interactions among water, energy, and food requires an integrated “nexus” approach. This paper focuses on a specific nexus case: biogas generated from organic waste, a renewable source of energy created in livestock production, which can have water-quality impacts if waste enters water bodies. An innovative model is presented to make biogas and biomethane systems feasible, termed “biogas condominiums” (based on collective action given that small- and medium-scale farms on their own cannot afford the necessary investments. Based on the “farm to fuel” concept, animal waste and manure are converted into electrical and thermal energy, biofuel for transportation, and high-quality biofertilizer. This nexus approach provides multiple economic, environmental, and social benefits in both rural and urban areas, including reduction of ground and surface water pollution, decrease of fossil fuels dependence, and mitigation of greenhouse gases emissions, among others. The research finds that biogas condominiums create benefits for the whole biogas supply chain, which includes farmers, agroindustry, input providers, and local communities. The study estimated that biomethane potential in Brazil could substitute the country’s entire diesel and gasoline imports as well as 44% of the total diesel demand. In the United States, biomethane potential can meet 16% of diesel demand and significantly diversify the energy matrix.

  15. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  16. Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste

    International Nuclear Information System (INIS)

    Dakroury, A. M.

    2007-01-01

    This paper discussed the mechanical and chemical properties of polyvinyl alcohol - modified cement mortar with silica fume to assess the safety for disposal of radioactive waste. The modified cement mortars containing polyvinyl alcohol (PVA) in the presence of 10 % silica fume (SF) .The chemical reaction between polymer and cement - hydrated product were investigated by the Infrared Spectral Technology, Differential Thermal Analysis and X-ray diffraction. The leaching of 137Cs from a waste composite into a surrounding fluid has been studied .The results shown that PVA increases the strength and decreases the porosity. The increase in strength duo to the interaction of PVA with cement , may be forming some new compound that fill the pores or improve the bond between the cement . The pozzolanic reaction of the SF increases the calcium silicate hydrates in the hardening matrix composites. There is distinct change in the refinement of the pore structure in cement composites giving fewer capillary pores and more of the finer gel pores

  17. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, David M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Guenther, Chris P. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shekhawat, Dushyant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); VanEssendelft, Dirk T. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Means, Nicholas C. [AECOM Technology Corp., Oak Ridge, TN (United States)

    2015-04-23

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processing simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion

  18. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  19. Processes for CO2 capture. Context of thermal waste treatment units. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Lopez, A.; Roizard, D.; Favre, E.; Dufour, A.

    2013-01-01

    For most of industrial sectors, Greenhouse Gases (GHG) such as carbon dioxide (CO 2 ) are considered as serious pollutants and have to be controlled and treated. The thermal waste treatment units are part of industrial CO 2 emitters, even if they represent a small part of emissions (2,5 % of GHG emissions in France) compared to power plants (13 % of GHG emissions in France, one third of worldwide GHG emissions) or shaper industries (20 % of GHG emissions in France). Carbon Capture and Storage (CCS) can be a solution to reduce CO 2 emissions from industries (power plants, steel and cement industries...). The issues of CCS applied to thermal waste treatment units are quite similar to those related to power plants (CO 2 flow, flue gas temperature and pressure conditions). The problem is to know if the CO 2 produced by waste treatment plants can be captured thanks to the processes already available on the market or that should be available by 2020. It seems technically possible to adapt CCS post-combustion methods to the waste treatment sector. But on the whole, CCS is complex and costly for a waste treatment unit offering small economies of scale. However, regulations concerning impurities for CO 2 transport and storage are not clearly defined at the moment. Consequently, specific studies must be achieved in order to check the technical feasibility of CCS in waste treatment context and clearly define its cost. (authors)

  20. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  1. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    International Nuclear Information System (INIS)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards

  2. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  3. Nuclear waste transportation package testing: A review of selected programs in the United States and abroad

    International Nuclear Information System (INIS)

    Snedeker, D.F.

    1990-12-01

    This report provides an overview of some recent nuclear waste transportation package development programs. This information is intended to aid the State of Nevada in its review of US Department of Energy (DOE) nuclear waste transportation programs. This report addresses cask testing programs in the United Kingdom and selected 1/4 and full scale testing in the US. Facilities that can provide cask testing services, both in the US and to a limited extent abroad, are identified. The costs for different type test programs are identified as a means to estimate costs for future test programs. Not addressed is the public impact such testing might have in providing an increased sense of safety or confidence. The British test program was apparently quite successful in demonstrating safety to the public at the time. There is no US test effort that is similar in scope for direct comparison. Also addressed are lessons learned from testing programs and areas that may merit possible future integrated examination. Areas that may require further examination are both technical and institutional. This report provides information which, when combined with other sources of information will enable the State of Nevada to assess the following areas: feasibility of full scale testing; costs of full scale tests; potential benefits of testing; limits that full scale testing impose; and disadvantages of emphasis on testing vs analytical solutions. This assessment will then allow the state to comment on DOE Office of Civilian Radioactive Waste Management (OCRWM) plans for the development and licensing of new shipping cask designs. These plans currently expect contractors to perform engineering testing for materials development, quarter scale model testing to validate analytical assessments and full scale prototype testing of operational features. DOE currently plans no full scale or extra-regulatory destructive testing to aid in cask licensing. 1 tab

  4. 36 CFR 6.7 - Mining wastes.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mining wastes. 6.7 Section 6... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining includes but is not limited to mining overburden, mining byproducts, solid waste from the extraction...

  5. Control of water infiltration into near surface LLW [low-level radioactive waste] disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.O.

    1990-12-01

    Three kinds of waste disposal unit covers a barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70ft x 45ft x 10ft each) lysimeters at Beltsville, Maryland. 6 refs., 20 figs.,

  6. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision No.:0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium

  7. Analysis of alternative transportation methods for radioactive materials shipments including the use of special trains for spent fuel and wastes

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.

    1978-01-01

    Two studies were completed which evaluate the environmental impact of radioactive material transport. The first was a generic study which evaluated all radioactive materials and all transportation modes; the second addressed spent fuel and fuel-cycle wastes shipped by truck, rail and barge. A portion of each of those studies dealing with the change in impact resulting from alternative shipping methods is presented in this paper. Alternatives evaluated in each study were mode shifts, operational constraints, and, in generic case, changes in material properties and package capabilities. Data for the analyses were obtained from a shipper survey and from projections of shipments that would occur in an equilibrium fuel cycle supporting one hundred 1000-MW(e) reactors. Population exposures were deduced from point source radiation formulae using separation distances derived for scenarios appropriate to each shipping mode and to each exposed population group. Fourteen alternatives were investigated for the generic impact case. All showed relatively minor changes in the overall radiological impact. Since the radioactive material transport is estimated to be fewer than 3 latent cancer fatalities (LCF) for each shipment year (compared to some 300,000 yearly cancer fatalities or 5000 LCF's calculated for background radiation using the same radiological effects model), a 15% decrease caused by shifting from passenger air to cargo air is a relatively small effect. Eleven alternatives were considered for the fuel cycle/special train study, but only one produced a reduction in total special train baseline LCF's (.047) that was larger than 5%

  8. An overview of radioactive waste management in the United States of America

    International Nuclear Information System (INIS)

    Luik, A.E. van

    1991-01-01

    The U.S. radioactive waste management program is implemented by the U.S. Department of Energy (U.S. DOE) for high-level radioactive wastes and spent nuclear fuel; defense-related transuranic wastes; and U.S. DOE-generated low-level and mixed wastes. The various states are responsible for the disposal of civilian low-level wastes. Selected radioactive waste management and disposal topics will be overviewed, followed by a more detailed discussion of the high-level and low-level waste disposal regulatory framework and some issues involved in showing compliance with the applicable regulations. (author)

  9. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    OpenAIRE

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  10. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2002-01-01

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  11. Assessment of municipal solid waste for energy production in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  12. Managing of radioactive wastes including various contaminated materials from application of radionuclides in medicine, industry and research in the Czech Republic

    International Nuclear Information System (INIS)

    Janu, M.; Holub, J.

    1998-01-01

    ARAO company is responsible for the collection of institutional radioactive wastes in the Czech Republic. The conditioning and transport of radioactive wastes are highlighted, and the 3 radioactive waste repositories, viz. Hostim, Richard, and Bratrstvi, are characterized. (P.A.)

  13. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    International Nuclear Information System (INIS)

    Puglisi, C.V.; Vold, E.L.

    1995-01-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  14. Mobile unit for enclosing hot solid waste in a metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.E.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    After termination of their service life, the sources of ionizing radiation are transported to special burial points of radioactive waste in pitlike repositories near the surface. The repositories are cylindrical 200-litter cavities of stainless steel and are situated at a depth of 6 m in a concrete pit. The pit is concrete enveloped. The spent sources enter the cavity via a curve loading a tube. Water was observed in repositories of this type; in a powerful radiation field (with up to 10 4 R/sec), water accelerates the corrosion of the shells of the sources and liberates radiolytic hydrogen. In order to obtain reliable isolation of the sources, a new technique of enclosing the sources in a metal matrix of low-melting metals (layer-by-layer and directly in the repository) has been used since 1986 in the Moscow Scientific Planning Department 'Radon'. This makes it possible to preserve the traditional burial of spent sources and, in addition, to use the radiation shielding of the repository proper. Investigations have shown that this technique is very reliable: There are no radiolytic gases, the radiation field and the temperature field in the repository are substantially reduced, and therefore the volume of the repositories is increased by a factor of 5-6. The total activity of the spent sources enclosed in a metal matrix in accordance with this technique amounted to about 500,000 Ci in test units and semi-industrial units

  15. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit

  16. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  17. Hazardous-waste landfill research, US EPA (United States Environmental Protection Agency) program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1988-08-01

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid- and hazardous-waste management with respect to land disposal of wastes. To fulfill the responsibility, the LPCD is developing concepts and is documenting the environmental effects of various waste-disposal practices; and is collecting data necessary to support implementation of disposal guidelines mandated by the Hazardous and Solid Waste Amendments of 1984 (HSWA). This paper presents an overview of the land-disposal research associated with the LPCD hazardous waste program plan and will report the current status of work in the following categorical areas: Hazardous-waste facilities - landfills and surface impoundments; Non-Hazardous waste facilities; and Technology transfer.

  18. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  19. Seismic‐hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-01-01

    The U.S. Geological Survey (USGS) has produced a one‐year (2016) probabilistic seismic‐hazard assessment for the central and eastern United States (CEUS) that includes contributions from both induced and natural earthquakes that are constructed with probabilistic methods using alternative data and inputs. This hazard assessment builds on our 2016 final model (Petersen et al., 2016) by adding sensitivity studies, illustrating hazard in new ways, incorporating new population data, and discussing potential improvements. The model considers short‐term seismic activity rates (primarily 2014–2015) and assumes that the activity rates will remain stationary over short time intervals. The final model considers different ways of categorizing induced and natural earthquakes by incorporating two equally weighted earthquake rate submodels that are composed of alternative earthquake inputs for catalog duration, smoothing parameters, maximum magnitudes, and ground‐motion models. These alternatives represent uncertainties on how we calculate earthquake occurrence and the diversity of opinion within the science community. In this article, we also test sensitivity to the minimum moment magnitude between M 4 and M 4.7 and the choice of applying a declustered catalog with b=1.0 rather than the full catalog with b=1.3. We incorporate two earthquake rate submodels: in the informed submodel we classify earthquakes as induced or natural, and in the adaptive submodel we do not differentiate. The alternative submodel hazard maps both depict high hazard and these are combined in the final model. Results depict several ground‐shaking measures as well as intensity and include maps showing a high‐hazard level (1% probability of exceedance in 1 year or greater). Ground motions reach 0.6g horizontal peak ground acceleration (PGA) in north‐central Oklahoma and southern Kansas, and about 0.2g PGA in the Raton basin of Colorado and New Mexico, in central Arkansas, and in

  20. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  1. Development of a high integrity container for storage, transportation, and disposal of radioactive wastes from Three Mile Island unit II

    International Nuclear Information System (INIS)

    Holzworth, R.E.; Chapman, R.L.; Burton, H.M.; Bixby, W.W.

    1981-01-01

    The EPICOR II ion exchange system used to decontaminate approximately 1900 m 3 of contaminated water in the Auxiliary and Fuel Handling Building (AFHB) generated 50 highly loaded and 22 lesser loaded organic resin liners. The 22 lesser loaded resins were shipped to a commercial disposal site, but the highly loaded liners have been stored on the island since their generation. One highly loaded liner, or prefilter, was shipped to Battelle Columbus Laboratories (BCL) in May, 1981 as part of the United States Department of Energy (DOE) Three Mile Island Information and Examination Program. The prefilter is being characterized to determine the behavior of the waste form with respect to time and the internal environment and to provide an information base for use in management and regulatory decisions relative to the storage, processing, and disposal of these wastes. Due to the unique characteristics of these wastes, the US DOE is sponsoring programs, such as the BCL Sorbent Experiments Program, to evaluate their characteristics and to provide a High Integrity Container (HIC) Development Program which would improve waste suitability for disposal at a land burial facility. This paper addresses regulatory considerations, establishment of design criteria, proposed design concepts, system demonstration, and status of the HIC Development Program for storage, transportation, and disposal of high specific activity, low level radioactive wastes from Three Mile Island Unit II as typified by EPICOR II ion exchange media and liners

  2. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  3. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  4. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  5. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues

  6. Assessment of the Impact of Radioactive Disposals and Discharges from the United Kingdom Low Level Waste Repository on the Ecosystem

    International Nuclear Information System (INIS)

    Barber, N.

    2009-01-01

    This paper describes an assessment of the impacts to ecosystems and wildlife species from radioactive discharges and disposals at the United Kingdom's low level waste disposal facility in West Cumbria. The assessment was undertaken in response to a requirement in the site's current authorisation and comprised a detailed desk based review along with an exercise to screen relevant monitoring data from the site against generic assessment criteria and undertake a numerical risk assessment. Much of the site is vegetated, comprising a variety of habitats including grassland, relict dune heath and surface water bodies. Furthermore, the site is located adjacent to a coastal/estuarine area which is protected as it provides a habitat of high ecological value and species of animals and plants are present that are rare, endangered or vulnerable. However, the current impact of aerial and liquid radioactive discharges from the low level waste repository on ecosystems and wildlife species is considered to be low. Site monitoring data also indicate that there has been a reduction of radionuclide activities in ground and surface water and leachates over time, a result of measures initiated to minimise rainwater infiltration and improve leachate management associated with the disposal area. A quantitative assessment was undertaken to assess future impacts to relevant terrestrial, fresh water and marine ecosystems. This showed that modelled peak radionuclide concentrations in the first 4,000 years after site closure were not sufficiently high to cause potential impact to any of these ecosystems or associated wildlife. This cut-off date was chosen as it is considered probable that, due to the effects of future climate and landscape change and, unless actions are taken to defend the coastline, the site is likely to be disrupted by coastal erosion in the next 4,000 years. (authors)

  7. Corrective Action Decision Document for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-02-08

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminary action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.

  8. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    Science.gov (United States)

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  9. SRNL Phase 1 Assessment Of The WAC/DQO And Unit Operations For The WTP Waste Qualification Program

    International Nuclear Information System (INIS)

    Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

    2012-01-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification

  10. SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

    2012-05-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap

  11. United Kingdom. Development plan for the eventual closure of the UK Drigg nuclear surface low level waste disposal facility

    International Nuclear Information System (INIS)

    2001-01-01

    The Drigg site, owned and operated by BNFL, is the UK's principal site for the disposal of low level radioactive waste. The site has operated since 1959 and receives wastes from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. The standardised wasteform consists of high force compacted (or non-compactable) waste immobilised within 20 m 3 steel overpack containers by the addition of cementitious grout. Larger items of wastes are grouted directly, in situ in the vault. The disposal trenches have been completed with an interim cap, as will the vaults when filled. It is currently estimated that sufficient capacity remains at Drigg for disposals to continue until at least 2050. Post-operations it is planned that the site will enter a phase including shut down of operational facilities, emplacement of long term site closure features including a final closure cap and then to an institutional management phase. Planning has therefore been carried out as to the strategy for eventual closure of the site. This closure strategy is also underpinned by an engineering evaluation studies programme to develop and evaluate appropriate closure measures including assessment of the long term performance of such measures. This appendix summarizes some of this work

  12. Waste management plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Plant Landfill V, and restore the affected floodplain. The waste management plan addresses management and disposition of all wastes generated during the LEFPC remedial action. Most of the solid wastes will be sanitary or construction/demolition wastes and will be disposed of at existing Y- 12 facilities. Some small amounts of hazardous waste are anticipated, along with possible low-level or mixed wastes (> 35 pCi/g). Liquid wastes will be generated which will be sanitary and capable of being disposed of at the Oak Ridge Sewage Treatment Plant, except sanitary sewage.

  13. Waste management plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Plant Landfill V, and restore the affected floodplain. The waste management plan addresses management and disposition of all wastes generated during the LEFPC remedial action. Most of the solid wastes will be sanitary or construction/demolition wastes and will be disposed of at existing Y- 12 facilities. Some small amounts of hazardous waste are anticipated, along with possible low-level or mixed wastes (> 35 pCi/g). Liquid wastes will be generated which will be sanitary and capable of being disposed of at the Oak Ridge Sewage Treatment Plant, except sanitary sewage

  14. Waste management policy and its implementation in the United States of America

    International Nuclear Information System (INIS)

    Coffman, F.E.

    1984-01-01

    Following the passage of the Nuclear Waste Policy Act of 1982, on 7 January 1983, the Department of Energy's Commercial Nuclear Waste Program has been restructured to facilitate compliance with that Act. The responsibility for carrying out the functions of the Secretary of the DOE under the Act have been assigned to the Project Director of the newly created Nuclear Waste Policy Act Project Office. That Office will be operational until the mandated Office of Civilian Waste Management is activated. Those commercial waste management programmes - Remedial Action Program, West Valley Demonstration Project, Commercial Low-Level Waste and Waste Treatment and the Three Mile Island Program - which do not fall within the purview of the Act are the responsibility of the author. These programmes are described in the paper, which references those laws from which the Federal policy evolves. (author)

  15. 45 CFR 400.209 - Claims involving family units which include refugees who have been in the United States more than...

    Science.gov (United States)

    2010-10-01

    ... refugees who have been in the United States more than 36 months. 400.209 Section 400.209 Public Welfare Regulations Relating to Public Welfare OFFICE OF REFUGEE RESETTLEMENT, ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES REFUGEE RESETTLEMENT PROGRAM Federal Funding Federal...

  16. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  17. The development of an operations system for the transort of spent nuclear fuel in the United States civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Peterson, R.W.; Joy, D.S.; Pope, R.B.; Ratledge, J.E.; Shappert, L.B.; Wankerl, M.W.; Klimas, M.J.; Darrough, M.E.

    1990-01-01

    In order to support the development of a Transportation Operations System for the Federal Waste Management System (FWMS) by the Office of Civilian Radioactive Waste Management (OCRWM), the United States Department of Energy (DOE) formed the Transportation Project Office (TPO) at its field office in Chicago. Planning and development activities are being performed in a number of areas including a major effort in operations support, providing the planning and assessment necessary for developing the future transportation operations capability needed by the FWMS. The purpose of this paper is to review significant planning and development accomplishments, and outline expected future efforts for the continued development, acquisition, test, and startup of the transportation operations component of the FWMS

  18. The development of an operations system for the transport of spent nuclear fuel in the United States Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Peterson, R.W.; Joy, D.S.; Pope, R.B.; Ratledge, J.E.; Shappert, L.B.; Wankerl, M.W.; Klimas, M.J.; Darrough, M.E.

    1990-01-01

    In order to support the development of a Transportation Operations System for the Federal Waste Management System (FWMS) by the Office of Civilian Radioactive Waste Management, the United States Department of Energy formed the Transportation Project Office at its field office in Chicago. Planning and development activities are being performed in a number of areas including a major effort in operations support, providing the planning and assessment necessary for developing the future transportation operations capability needed by the FWMS. The purpose of this paper is to review significant planning and development accomplishments, and outline expected future efforts for the continued development, acquisition, test, and startup of the transportation operations component of the FWMS. 2 refs

  19. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2000-08-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the

  20. The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste

    International Nuclear Information System (INIS)

    Cash, R.J.

    1995-01-01

    To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition

  1. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed

  2. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  3. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    International Nuclear Information System (INIS)

    RECHARD, ROBERT P.

    2000-01-01

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed

  4. Policy and practices in the United States of America for DOE-generated nuclear wastes

    International Nuclear Information System (INIS)

    Gilbert, F.C.

    1984-01-01

    Throughout the history of attempts to utilize atomic power in the USA, health and safety have been primary considerations in programme policy formulation. A brief historical review of the US nuclear waste management policy formulation over the years aids understanding of our current management strategy for government-generated (primarily defence-related) nuclear wastes. Scientists involved in the Manhattan project during World War II were aware of the dangers of radioactive wastes. The first reaction to this concern was the establishment of a health physics programme to monitor radioactive hazards in Manhattan District Laboratories. The Atomic Energy Act of 1946, which established the Atomic Energy Commission, called for protection of the health and safety of the public as well as atomic workers. That concept has been continued and strengthened, throughout the history of nuclear waste management in the USA. Passage of the Atomic Energy Act of 1954 required consideration of radioactive wastes generated by private industry as well as those produced by the Manhattan projects. Commercial waste management policy was based on the already established policy for management of government-generated wastes and is the subject of a separate paper at this symposium. Current US policy is to maintain separate but complementary programmes for nuclear wastes generated by government activities and those from commercial sources. US policy and practices for management of government-generated radioactive waste are summarized. Key organizational structure relating to waste management responsibility is presented. (author)

  5. Commercial waste treatment R and D needs in the United States

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1982-05-01

    The mission of the commercial waste treatment program is to establish treatment technology for safe and efficient management of high-level and transuranic wastes from reprocessing and fuel fabrication and special wastes from other fuel cycle activities. The four functional objectives that must be achieved to fulfill the mission are: (1) define waste product and treatment process performance requirements; (2) specify adequately safe waste products and verify their performance; (3) specify adequately efficient treatment processes and equipment and verify their performance; (4) solve existing waste treatment problems using verified products and processes. Although commercial waste treatment technology is in many respects highly advanced, there remains a number of areas where significant research and development is needed. These are: (1) technically-based performance requirements for both waste products and treatment processes; (2) pilot-scale radioactive demonstration of liquid-fed ceramic melting process and equipment for borosilicate glass; (3) non-glass TRU waste product and treatment process development; (4) waste product performance testing and predictive modeling; (5) quality verification for treatment processes

  6. Prolixe-prototype reprocessing unit for irradiating wastes contamined with alpha emitters

    International Nuclear Information System (INIS)

    Madic, C.; Sontag, R.

    1987-01-01

    A large number of hot cells are employed for research on nuclear fuel reprocessing and the production of isotope of transuranium elements. These activities generate solid wastes highly contaminated with alpha, beta, gamma emitters. The Prolixe hot cell was built in order to: 1/ reprocess the solid wastes contaminated with alpha, beta, gamma emitters produced in the Radiochemistry building: 2/ produce package wastes storable in shallow-ground disposal sites: 3/ develop a process sufficiently flexible to make it applicable to waste produced in other installations. The process is based on waste leaching after grinding. Depending on the type of wastes the leaching reactant will have a different composition 1/ nitric acid solution for cellulose waste: 2/ nitric solutions containing Ag(II) for other material. The complete process should achieve: 1/ a high waste volume reduction factor: 2/ the production of immobilized waste packages storage in shallow-ground disposal sites: 3/ the recycling of transuranium elements: 4/ the generation of a minimal volume of effluents. This process can be considered as an alternative process to incineration for the reprocessing of solid wastes highly contaminated with alpha, beta, gamma emitters

  7. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    ITLV

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation

  8. Current Status of Spent Fast Reactor Fuel Reprocessing and Waste Treatment in Various Countries: United States of America

    International Nuclear Information System (INIS)

    2011-01-01

    Due to the previous strategic US decision on treating SNF as waste and not pursuing the reprocessing option, development work for the FR fuel cycle was only performed in a few laboratories, although interest is now increasing again. ORNL together with ANL have been influential in promoting the wider use of centrifugal contactors (favoured due to the high fissile content and decay power of FR fuel materials), associated remote handling systems and hardware prototypes for most unit operations in the reprocessing conceptual designs in the context of their development of the Consolidated Fuel Reprocessing Program. There is limited experience with reprocessing tests on the Fast Flux Text Facility (FFTF) MOX fuel. ORNL has undertaken small tests on laboratory scale dissolution and solvent extraction of MOX fuel irradiated to 220 GW/t HM burnup at around 2 kg batch scale [180-186]. The initiative called the breeder reprocessing engineering test (BRET) was started in the 1980s with a focus on the developmental activity of the US DOE to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the FFTF. The process was supposed to be installed at the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site, Richland, Washington. The major objectives of BRET were to: - Develop and demonstrate reprocessing technology and systems for breeder fuel; - Close the fuel cycle for the FFTF; - Provide an integrated test of breeder reactor fuel cycle technology - reprocessing, safeguards and waste management. The quest for pyrochemical alternatives to aqueous reprocessing has been under way in the USA since the late 1950s. Approaches examined at various levels of development and for a variety of fuels include alloy melting, FP volatilization and adsorption, fluoride and chloride volatility methods, redox solvent extractions between liquid salt and metal phases, precipitation and fractional crystallization, and electrowinning and electro

  9. Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1997-09-01

    This study''s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management

  10. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophonoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  11. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104. Revision 1

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophenoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  12. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  13. Design and operational experience of low level radioactive waste disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Grimwood, P. D.

    1997-01-01

    Low level radioactive wastes have been disposed of at the Drigg near-surface disposal site for over 30 years. These are carried out under a disposal authorization granted by the UK Environment Agency. This is augmented by a three tier comprehensive system of waste controls developed by BNFL involving wasteform specification, consignor and waste stream qualification and waste consignment verification. Until 1988 wastes were disposed of into trench facilities. However, based on a series of integrated optioneering studies, new arrangements have since been brought into operation. Central to these is a wasteform specification based principally on high force compaction of wastes, grouting within 20 m 3 steel overpack containers to essentially eliminate associated voidage and subsequent disposal in concrete lined vaults. These arrangements ensure efficient utilisation of the Drigg site capacity and a cost-effective disposal concept which meets both national and international standards. (author). 7 figs

  14. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  15. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  16. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Directory of Open Access Journals (Sweden)

    Llano-Diez Monica

    2011-12-01

    Full Text Available Abstract Background Acute quadriplegic myopathy (AQM or critical illness myopathy (CIM is frequently observed in intensive care unit (ICU patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days, intermediate (5-8 days and long (9-14 days durations. A striking early and maintained up-regulation (6 h-14d of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1 was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d. Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C, regulatory (troponin, tropomyosin, developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel

  17. Environmental performance evaluation of waste management system of Uranium Concentrated Unit in Caetite city, Bahia State - Brazil

    International Nuclear Information System (INIS)

    Araujo, Valeska P.; Fernandes, Horst M.; Gomiero, Luis Alberto

    2005-01-01

    The mining/milling activities have the potential to cause risks to the human health and to the environment. In uranium mining, besides inherent damages due to any mining activities there are radiological risks, that may be incurred even in short as in long terms. The large volumes of low activity mining/milling residues produced, are the great challenge in the waste management. Nowadays, the whole Brazilian uranium production come from Uranium Concentrated Unit (URA), a facility operated by Brazilian Nuclear Industry and located at a semi-arid region, in the Caetite city, Bahia state. This Unit is composed by a open pit mine and a milling facility. The present work assess the URA waste management system, the procedures adopted, focused on its environmental performance. It was observed that the waste management system is efficient in the control of the environmental impacts, however improvement chances are detected and a better performance may be reached. Concerning the liquids wastes, it was observed that the storage systems were not projected adequately. The storage capacity was not enough to support a intense rainfall period causing a overflow to the environment. In URA activities there is no radiological risk to the public, but its necessary to improve long term actions, constraints for the post-closure phase, e.g., appropriate institutional controls, restrictions on land use. Finally, it is advisable to introduce a Environmental Management System (EMS) for the whole facility. (author)

  18. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    International Nuclear Information System (INIS)

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP

  19. Use of web services for computerized medical decision support, including infection control and antibiotic management, in the intensive care unit.

    Science.gov (United States)

    Steurbaut, Kristof; Van Hoecke, Sofie; Colpaert, Kirsten; Lamont, Kristof; Taveirne, Kristof; Depuydt, Pieter; Benoit, Dominique; Decruyenaere, Johan; De Turck, Filip

    2010-01-01

    The increasing complexity of procedures in the intensive care unit (ICU) requires complex software services, to reduce improper use of antibiotics and inappropriate therapies, and to offer earlier and more accurate detection of infections and antibiotic resistance. We investigated whether web-based software can facilitate the computerization of complex medical processes in the ICU. The COSARA application contains the following modules: Infection overview, Thorax, Microbiology, Antibiotic therapy overview, Admission cause with comorbidity and admission diagnosis, Infection linking and registration, and Feedback. After the implementation and test phase, the COSARA software was installed on a physician's office PC and then on the bedside PCs of the patients. Initial evaluation indicated that the services had been integrated easily into the daily clinical workflow of the medical staff. The use of a service oriented architecture with web service technology for the development of advanced decision support in the ICU offers several advantages over classical software design approaches.

  20. Aggregate resource availability in the conterminous United States, including suggestions for addressing shortages, quality, and environmental concerns

    Science.gov (United States)

    Langer, William H.

    2011-01-01

    One-third of America's major roads are in poor or mediocre condition, and over one-quarter of the bridges are either structurally deficient or functionally obsolete. A 70-percent increase in annual aggregate production may be required to upgrade the transportation infrastructure. Natural aggregate is widespread throughout the conterminous United States, but the location of aggregate is determined by geology and is non-negotiable. Natural aggregate is in short supply in the Coastal Plain and Mississippi embayment, Colorado Plateau and Wyoming Basin, glaciated Midwest, High Plains, and the non-glaciated Northern Plains. A variety of techniques have been used to overcome local shortages, such as the use of substitute materials, recycling, and importing high-quality aggregates from more distant locations.

  1. Factors driving the development of healthcare waste management in the United Kingdom over the past 60 years.

    Science.gov (United States)

    Townend, William K; Cheeseman, Christopher; Edgar, Jen; Tudor, Terry

    2009-06-01

    Since the creation of the National Health Service (NHS) in the United Kingdom in 1948 there have been significant changes in the way waste materials produced by healthcare facilities have been managed due to a number of environmental, legal and social drivers. This paper reviews the key changes in legislation and healthcare waste management that have occurred in the UK between 1948 and the present time. It investigates reasons for the changes and how the problems associated with healthcare wastes have been addressed. The reaction of the public to offensive disposal practices taking place locally required political action by the UK government and subsequently by the European legislature. The relatively new UK industry of hazardous healthcare waste management has developed rapidly over the past 25 years in response to significant changes in healthcare practices. The growth in knowledge and appreciation of environmental issues has also been fundamental to the development of this industry. Legislation emanating from Europe is now responsible for driving change to UK healthcare waste management. This paper examines the drivers that have caused the healthcare waste management to move forward in the 60 years since the NHS was formed. It demonstrates that the situation has moved from a position where there was no overall strategy to the current situation where there is a strong regulatory framework but still no national strategy. The reasons for this situation are examined and based upon the experience gained; suggestions are made for the benefit of countries with systems for healthcare waste management still in the early stages of development or without any provisions at all.

  2. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  3. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  4. Radioactive waste evacuation of the sources of a low dose rate brachytherapy unit

    International Nuclear Information System (INIS)

    Serrada, A.; Huerga, C.; Santa Olalla, I.; Vicedo, A.; Corredoira, E.; Plaza, R.; Vidal, J.; Tellez, M.

    2006-01-01

    Introduction The second class Radioactive Installation start -up authorization makes responsible for its security to the installation exploiter and supervisor. The specifications established in the authorization, which are mandatory, point out several actions, some of these actions are the hermeticity tests of radioactive sources an radiologic controls of environment dosimetry. It is necessary to optimize the time spent in each activity, managing them as reasonably as possible. An important matter to take into account is to keep and control only those radioactive or radiological equipment which, even if are in work, have an appropriate performance for the patient treatment Material And Method a Paz hospital has an intracavity brachytherapy (L.D.R.), Curietron model. The Radioprotection Department proposed to remove from service the unit due to its age, this was carried out by the Commission of Guarantee and Quality Control. There were different solutions taken into account to decommission the unit, finally the option chosen as the most convenient for the installation was to manage directly the withdrawal of the radioactive material which consisted of seven Cs-137 probes model CsM1 and total nominal certificated activity of 7770 MBq ( 210 mCi ) dated in May 2005. It also has to be considered as a radioactive waste the inner storage elements of the Curietron and the transport and storage curie stock, built with depleted uranium. To accomplish this aim an evacuation container was designed consisting of an alloy of low-melting point (M.C.P.96), which fulfills the transport conditions imposed by E.N.R.E.S.A. ( Empresa Nacional de Residuos Radiactivos, S.A). A theoretical calculation was performed to estimate the thickness of the shield which adequate to the rate of dose in contact demanded. Accuracy of these calculations has been verified using T.L. dosimetry. Results The radiation levels during the extraction intervention of the radioactive probes and its transfer to

  5. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  6. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada: Revision 0, Including Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-01

    This Corrective Action Decision Document identifies the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's corrective action alternative recommendation for each of the corrective action sites (CASs) within Corrective Action Unit (CAU) 204: Storage Bunkers, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. An evaluation of analytical data from the corrective action investigation, review of current and future operations at each CAS, and a detailed comparative analysis of potential corrective action alternatives were used to determine the appropriate corrective action for each CAS. There are six CASs in CAU 204, which are all located between Areas 1, 2, 3, and 5 on the NTS. The No Further Action alternative was recommended for CASs 01-34-01, 02-34-01, 03-34-01, and 05-99-02; and a Closure in Place with Administrative Controls recommendation was the preferred corrective action for CASs 05-18-02 and 05-33-01. These alternatives were judged to meet all requirements for the technical components evaluated as well as applicable state and federal regulations for closure of the sites and will eliminate potential future exposure pathways to the contaminated media at CAU 204.

  7. Effectiveness of unit-based pricing of waste in the Netherlands: Applying a general equilibrium model

    NARCIS (Netherlands)

    van Beukering, P.J.H.; Bartelings, H.; Linderhof, V.G.M.; Oosterhuis, F.H.

    2009-01-01

    Differential and variable rates (DVR) in waste collection charging give a price incentive to households to reduce their waste and increase recycling. International empirical evidence confirms the effectiveness of DVR schemes, with limited unwanted side effects. In the Netherlands, currently some 20%

  8. Effectiveness of unit-based pricing of waste in the Netherlands: applying a general equilibrium model

    NARCIS (Netherlands)

    Beukering, van P.J.H.; Bartelings, H.; Linderhof, V.G.M.; Oosterhuis, F.H.

    2009-01-01

    Differential and variable rates (DVR) in waste collection charging give a price incentive to households to reduce their waste and increase recycling. International empirical evidence confirms the effectiveness of DVR schemes, with limited unwanted side effects. In the Netherlands, currently some 20%

  9. Attitudes and behaviour towards convenience food and food waste in the United Kingdom.

    Science.gov (United States)

    Mallinson, Lucy J; Russell, Jean M; Barker, Margo E

    2016-08-01

    Households in the UK discard much food. A reduction in such waste to mitigate environmental impact is part of UK government policy. This study investigated whether household food waste is linked to a lifestyle reliant on convenience food in younger consumers. A survey of 928 UK residents aged 18-40 years and responsible for the household food shopping (male n = 278; female n = 650) completed an online questionnaire designed to measure attitudes to convenience food and to quantify household food waste. Cluster analysis of 24 food-related lifestyle factors identified 5 consumer groups. General linear modelling techniques were used to test relationships between the purchase frequency of convenience food and household food waste. From the cluster analysis, five distinct convenience profiles emerged comprising: 'epicures' (n = 135), 'traditional consumers' (n = 255), 'casual consumers' (n = 246), 'food detached consumers' (n = 151) and 'kitchen evaders' (n = 141). Casual consumers and kitchen evaders were the most reliant on convenience food and notably were the most wasteful. The demographic profile of kitchen evaders matched the population groups currently targeted by UK food waste policy. Casual consumers represent a new and distinct group characterised by "buy a lot and waste a lot" behaviour. Household size, packaging format, price-awareness and marketing all appear to influence levels of food waste. However, it seems that subtle behavioural and sociocultural factors also have impact. Further research is needed to elucidate the factors that mediate the positive association between the purchase of convenience food and reported food waste in order to inform food waste policy and initiatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Patient-related factors and circumstances surrounding decisions to forego life-sustaining treatment, including intensive care unit admission refusal.

    Science.gov (United States)

    Reignier, Jean; Dumont, Romain; Katsahian, Sandrine; Martin-Lefevre, Laurent; Renard, Benoit; Fiancette, Maud; Lebert, Christine; Clementi, Eva; Bontemps, Frederic

    2008-07-01

    To assess decisions to forego life-sustaining treatment (LST) in patients too sick for intensive care unit (ICU) admission, comparatively to patients admitted to the ICU. Prospective observational cohort study. A medical-surgical ICU. Consecutive patients referred to the ICU during a one-yr period. None. Of 898 triaged patients, 147 were deemed too well to benefit from ICU admission. Decisions to forego LST were made in 148 of 666 (22.2%) admitted patients and in all 85 patients deemed too sick for ICU admission. Independent predictors of decisions to forego LST at ICU refusal rather than after ICU admission were: age; underlying disease; living in an institution; preexisting cognitive impairment; admission for medical reasons; and acute cardiac failure, acute central neurologic illness, or sepsis. Hospital mortality after decisions to forego LST was not significantly different in refused and admitted patients (77.5% vs. 86.5%; p = .1). Decisions to forego LST were made via telephone in 58.8% of refused patients and none of the admitted patients. Nurses caring for the patient had no direct contact with the ICU physicians for 62.3% of the decisions in refused patients, whereas meetings between nurses and physicians occurred in 70.3% of decisions to forego LST in the ICU. Patients or relatives were involved in 28.2% of decisions to forego LST at ICU refusal compared with 78.4% of decisions to forego LST in ICU patients (p refused patients (vs. none of admitted patients) and were associated with less involvement of nurses and relatives compared with decisions in admitted patients. Further work is needed to improve decisions to forego LST made under the distinctive circumstances of triage.

  11. Control of water infiltration into near-surface, low-level waste-disposal units in humid regions

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    This study's objective is to assess means for controlling water infiltration through waste-disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste-disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  12. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  13. Pilot-Plant for Energy Recovery from Tropical Waste Food Materials ...

    African Journals Online (AJOL)

    An experimental unit for obtaining gaseous methane from waste food materials is discussed and results are presented for experimental tests with animal wastes and tropical waste food materials. The tropical waste food considered include garri, boiled beans and plantains. As expected, the animal wastes produced higher ...

  14. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  15. United States Department Of Energy Office Of Environmental Management Waste Processing Annual Technology Development Report 2008

    International Nuclear Information System (INIS)

    Bush, S.

    2009-01-01

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  16. Analysis of the waste selective collection at drop-off systems: Case study including the income level and the seasonal variation.

    Science.gov (United States)

    Gallardo, A; Carlos, M; Colomer, F J; Edo-Alcón, N

    2018-01-01

    There are several factors which have an influence in the selective collection of the municipal waste. To define a selective collection system, the waste generation pattern should be firstly determined and these factors should be analyzed in depth. This paper tries to analyze the economic income level and the seasonal variation on the collection and the purity of light-packaging waste to determine actions to improve the waste management plan of a town. In the first stage of the work, waste samples of the light-packaging containers were collected in two zones of the town with different economic characteristics in different seasons during one year. In the second stage, the samples were characterized to analyze the composition and purity of the waste. They were firstly separated into four fractions: metals; plastic; beverage cartons; and misplaced materials. The misplaced fraction was in its turn separated into cardboard, rubber and leather, inert waste, organic matter, paper, hazardous waste, clothes and shoes, glass and others. The plastic fraction was separated into five types of plastics and the metal fraction into three. In the third stage, the data have been analyzed and conclusions have been extracted. The main result is that the quality of the light-packaging fraction collected in these zones during both seasons were similar. This methodology can be extrapolated to towns with similar characteristics. It will be useful when implementing a system to collect the waste selectively and to develop actions to achieve a good participation in the selective collection of the waste.

  17. Adult vaccination strategies for the control of pertussis in the United States: an economic evaluation including the dynamic population effects.

    Directory of Open Access Journals (Sweden)

    Laurent Coudeville

    Full Text Available BACKGROUND: Prior economic evaluations of adult and adolescent vaccination strategies against pertussis have reached disparate conclusions. Using static approaches only, previous studies failed to analytically include the indirect benefits derived from herd immunity as well as the impact of vaccination on the evolution of disease incidence over time. METHODS: We assessed the impact of different pertussis vaccination strategies using a dynamic compartmental model able to consider pertussis transmission. We then combined the results with economic data to estimate the relative cost-effectiveness of pertussis immunization strategies for adolescents and adults in the US. The analysis compares combinations of programs targeting adolescents, parents of newborns (i.e. cocoon strategy, or adults of various ages. RESULTS: In the absence of adolescent or adult vaccination, pertussis incidence among adults is predicted to more than double in 20 years. Implementing an adult program in addition to childhood and adolescent vaccination either based on 1 a cocoon strategy and a single booster dose or 2 a decennial routine vaccination would maintain a low level of pertussis incidence in the long run for all age groups (respectively 30 and 20 cases per 100,000 person years. These strategies would also result in significant reductions of pertussis costs (between -77% and -80% including additional vaccination costs. The cocoon strategy complemented by a single booster dose is the most cost-effective one, whereas the decennial adult vaccination is slightly more effective in the long run. CONCLUSIONS: By providing a high level of disease control, the implementation of an adult vaccination program against pertussis appears to be highly cost-effective and often cost-saving.

  18. Exposure Scenarios and Unit Dose Factors for the Hanford Immobilized Low Activity Tank Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    RITTMANN, P.D.

    1999-12-29

    Exposure scenarios are defined to identify potential pathways and combinations of pathways that could lead to radiation exposure from immobilized tank waste. Appropriate data and models are selected to permit calculation of dose factors for each exposure

  19. Status of the United States' high-level nuclear waste disposal program

    International Nuclear Information System (INIS)

    Rusche, B.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 is a remarkable piece of legislation in that there is general agreement on its key provisions. Nevertheless, this is a program intended to span more than a century, with some choices by Congress, states, Indian tribes and the nuclear power industry yet to be made. The crafters of the Act clearly recognized this. And further, the crafters recognized ''. . .that. . .state, Indian tribe and public participation in the planning and development of repositories is essential in order to promote public confidence in the safety of disposal of such waste and spent fuel . . . High-level radioactive waste and spent nuclear fuel have become major subjects of public concern, and appropriate precautions must be taken to ensure that such waste and spent fuel do not adversely affect the public health and safety and the environment for this or future generations

  20. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  1. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives

    Science.gov (United States)

    2012-01-01

    Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989

  2. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  3. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  4. Out of sight, out of mind: The politics of nuclear waste in the United Kingdom

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.

    1987-01-01

    This paper examines the proposition that waste disposal strategy in the UK is a political rather than a 'rational' or 'scientific' process. It shows how strategy has evolved in response to the changing political environment, leading to the proposals for land burial of radioactive wastes. It explores the political controversy over this policy, with specific reference to the case of one of the proposed sites. The future implications of the contemporary conflict are discussed in the concluding sections

  5. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  6. Regulatory aspects of underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    It is a basic principle of radioactive waste management in the U.K. to comply with the system of dose limitations laid down by the International Commission on Radiological Protection. The Radioactive Substances Act, 1960, prohibits the disposal of radioactive waste on or from all premises (except those belonging to the Crown) unless authorised by the appropriate authority. Consultation, as necessary, with local and public authorities is provided for. Under the Nuclear Installations Act, 1965, nuclear installations, with some exceptions, require to be licensed by the Health and safety executive. Installations for the disposal of radioactive waste are not, as such, prescribed as nuclear installations under the Nuclear Installations Act, 1965 (and thereby governed by the licensing procedure under the Act), but they may be, if they involve the storage of bulk quantities of radioactive waste. The Secretary of State for the Environment, together with the Secretaries of State for Scotland and Wales are responsible for the development of a nuclear waste management policy, helped in this task by the newly-formed Radioactive Waste Management Advisory Committee. (NEA) [fr

  7. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  8. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  9. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  10. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  11. Recycling Monoethylene Glycol (MEG from the Recirculating Waste of an Ethylene Oxide Unit

    Directory of Open Access Journals (Sweden)

    Moayed Mohsen

    2017-06-01

    Full Text Available In the ethylene glycol generation unit of petrochemical plants, first a reaction of ethylene oxide takes place which is then followed by other side reactions. These reactions include water absorption with ethylene oxide, which leads to the generation of formaldehyde and acetaldehyde. Over the lifetime of the alpha-alumina-based silver catalyst there is an increase in side reactions, increasing the amount of the formaldehyde and acetaldehyde generated by the ethylene oxide reactor which leads to reduced MEG product purity. Given the need of a petrochemical complex to further strip the aldehyde (formaldehyde and acetaldehyde to increase the quality of the MEG and increase the lifetime of the alpha-alumina-based silver catalyst, resin beds are designed and their surface absorption capacity is investigated to optimize aldehyde (formaldehyde and acetaldehyde removal in the recirculating water flow of the ethylene oxide unit. Experiments show that the ion exchange system based on strong anionic resin pre-treated with a sodium bisulfite solution can reduce the aldehyde level from about 300ppm to less than 5ppm. After the resin is saturated with aldehyde, the resin can be recycled using the sodium bisulfite solution which is a cheap chemical substance.

  12. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2006-07-01

    occurred during Phase II. The activities included: a. Dismantlement of the building structure surrounding the hot cells and then finally dismantlement of the hot cell block b. Soil remediation c. Handling and disposal of decommissioning wastes d. Confirmatory surveys 3. Final site release occurred during Phase III. 4. The final activity which occurred substantially after Phases II and III were complete was the shipment of the IFM to a DOE facility. The HCF and HM structures are approximately the same size on a volumetric basis. The volume of the HM hot cells is about 12 percent greater than at HCF but the HCF had 27 percent more surface area due to the existence of three separate cells. Of potential importance is that the contamination levels on the hot cell surfaces were not equal. The HCF facility was highly contaminated from such activities as band-sawing irradiated high temperature gas cooled reactor fuel. On these grounds it might be expected that the HCF actual costs would be higher than HM estimates. However, a factor of almost nine times higher seems to be exceptional. The very large difference in fact stems from a number of special circumstances at HCF that need to be backed-out of a cost comparison in order to make it meaningful. One special requirement was the removal and safe management of irradiated fuel material, including high enriched uranium. Another cost related to maintenance of the building before decommissioning could commence. The costs of waste disposal also vary substantially, in terms of unit costs and the proportion of dismantling waste that needs to be sentenced to a radioactive waste repository. The available information for HM has been evaluated and compared, to the extent possible, with the HCF decommissioning costs and other selected NAC derived decommissioning cost benchmarks. In summary the main conclusions for the HM decommissioning cost estimate are as follows: Theoretical estimates of planning and other support activities can have a

  13. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    Dismantlement occurred during Phase II. The activities included: a. Dismantlement of the building structure surrounding the hot cells and then finally dismantlement of the hot cell block b. Soil remediation c. Handling and disposal of decommissioning wastes d. Confirmatory surveys 3. Final site release occurred during Phase III. 4. The final activity which occurred substantially after Phases II and III were complete was the shipment of the IFM to a DOE facility. The HCF and HM structures are approximately the same size on a volumetric basis. The volume of the HM hot cells is about 12 percent greater than at HCF but the HCF had 27 percent more surface area due to the existence of three separate cells. Of potential importance is that the contamination levels on the hot cell surfaces were not equal. The HCF facility was highly contaminated from such activities as band-sawing irradiated high temperature gas cooled reactor fuel. On these grounds it might be expected that the HCF actual costs would be higher than HM estimates. However, a factor of almost nine times higher seems to be exceptional. The very large difference in fact stems from a number of special circumstances at HCF that need to be backed-out of a cost comparison in order to make it meaningful. One special requirement was the removal and safe management of irradiated fuel material, including high enriched uranium. Another cost related to maintenance of the building before decommissioning could commence. The costs of waste disposal also vary substantially, in terms of unit costs and the proportion of dismantling waste that needs to be sentenced to a radioactive waste repository. The available information for HM has been evaluated and compared, to the extent possible, with the HCF decommissioning costs and other selected NAC derived decommissioning cost benchmarks. In summary the main conclusions for the HM decommissioning cost estimate are as follows: Theoretical estimates of planning and other support activities can

  14. Large Item Disposal At The Drigg Low Level Waste Repository, United Kingdom

    International Nuclear Information System (INIS)

    Griffiths, Steve

    2012-01-01

    Currently the UK operates only one repository for low level radioactive waste, the LLWR near Drigg in Cumbria. It is located on the West Cumbrian coast near the village of Drigg. LLWR is designed for the management of solid LLW and has operated as the principal national disposal facility for LLW since 1959. LLWR is managed and operated on behalf of the Nuclear Decommissioning Authority (NDA) by UK Nuclear Waste Management Ltd. (UKNWM), parent body of LLW Repository Ltd. UKNWM is a consortium led by URS, Studsvik and AREVA. Waste is accepted at LLWR based on conditions for acceptance (1). Although there is some history of disposal of non-containerised 'large items' at the Drigg site these are anecdotally described as 'not quite fitting into an ISO container (2)' and enquiries indicate that their disposal was restricted to the legacy times when items were tumble-tipped into open trenches at the site, a practise now long ceased. The feasibility of true single large item disposal at the LLWR presents complex problems arising from the poor suitability of both rail and road infrastructure in UK. LLWR is serviced both by road and rail links. The static weight of large items being taken nominally as up to ∼300 metric tons would not necessarily preclude transportation by rail but the practicalities of this route are limited. The ageing rail infrastructure includes numerous tunnels, bridges and sections of line with overhead electrification. All these would require either careful justification or significant work to ensure the safe transit of large loads. Nuclear facilities in UK are by design in remote locations, not all of which are serviced by rail connections and the rail network itself has evolved to service inter-city transportation rather than heavy freight and as such tends to route through town centres, exacerbating the tunnel, bridge and pantograph concerns already identified. Within only a few miles of the LLWR itself there are requirements to pass both over and

  15. Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit[CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C

  16. Effectiveness of unit-based pricing of waste in the Netherlands: applying a general equilibrium model.

    Science.gov (United States)

    van Beukering, Pieter J H; Bartelings, Heleen; Linderhof, Vincent G M; Oosterhuis, Frans H

    2009-11-01

    Differential and variable rates (DVR) in waste collection charging give a price incentive to households to reduce their waste and increase recycling. International empirical evidence confirms the effectiveness of DVR schemes, with limited unwanted side effects. In the Netherlands, currently some 20% of the population is charged at DVR. This is less than in several other countries. Taking into account differences between types of households and dwellings, this study analyses various scenarios for extended use of DVR in the Netherlands. The analysis shows that further penetration of DVR is a cost-effective instrument for waste reduction and more recycling. Moreover, DVR can itself be seen as a necessary condition for the successful implementation of other economic instruments, such as waste taxes. It is therefore recommended to stimulate municipalities to adopt DVR schemes in the Netherlands, accompanied by the provision of adequate facilities for waste separation by households. Before introducing DVR in 'very strongly urbanized' municipalities (i.e. the 12 largest cities in the Netherlands) a pilot experiment in one of them might be useful to test the behavioral response in this category.

  17. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  18. Management of commercial high-level nuclear waste in the United States

    International Nuclear Information System (INIS)

    Mann, S.A.

    1981-01-01

    The Nuclear Waste Policy Act of 1982 (Act), enacted by the 97th Congress in December and signed into law on Jan 7, 1983, by President Reagan, brings a whole new perspective to the nation's nuclear waste management effort. An elaborate set of near-term requirements and actions have to be accomplished within the first 180 days of this Act. As an initial step, Secretary of Energy Donald P. Hodel has established a Nuclear Waste Policy Act (NWPA) project office. The director of the NWPA project office, Robert L. Morgan, is responsible for the department's initial activities to implement the Act until the Office of Civilian Radioactive Waste Management, established by Section 304 of the Act, is activated. The Act requires major efforts in two primary areas: disposal and storage of spent fuel and high-level waste. Efforts in the former area are to be financed by fees collected from utilities and placed into a Nuclear Waste Fund for disposal services. The Act provides for federal storage of up to 1900 tons of spent fuel for those utilities that the Nuclear Regulatory Commission (NRC) determines cannot reasonably provide sufficient additional on-site storage. This federal storage is to be financed through utility-user fees that are placed into an Interim Storage Fund. The Act also provides for cooperative research, development, and demonstration activities at utility sites and federal sites. These activities are to be jointly funded by the utilities and the federal government. Lastly, there are generic research and development (RandD) activities in the spent fuel area that are funded from general appropriations. Mandated milestones have been established by the Act in the areas of gologic repository, fund management, monitored retrievable storage, and spent fuel storage

  19. Political life and half-life: the future formulation of nuclear waste public policy in the United States.

    Science.gov (United States)

    Leroy, David

    2006-11-01

    The United States continues to need forward-thinking and revised public policy to assure safe nuclear waste disposal. Both the high- and low-level disposal plans enacted by Congress in the 1980's have been frustrated by practical and political interventions. In the interim, ad hoc solutions and temporary fixes have emerged as de facto policy. Future statutory, regulatory, and administrative guidance will likely be less bold, more narrowly focused, and adopted at lower levels of government, more informally, in contrast to the top-down, statutory policies of the 1980's.

  20. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  1. Waste is a Terrible Thing to Mind: Perspectives on the Cleanup of the United States Nuclear Weapons Complex

    Science.gov (United States)

    Bodde, David

    1997-03-01

    For the 50 years of the Cold War, the United States nuclear arsenal was the cornerstone of our national security. These weapons were designed, manufactured, and armed with fissionable materials in an industrial complex that, at its peak, included about 16 major facilities and vast tracts of land in Nevada, Idaho, Washington, and South Carolina. Included among these are such well-known sites as the Savannah River Plant, the Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The Cold War, that "long twilight struggle" in the evocative phrase of John Kennedy, left little time and few resources for understanding and managing the environmental consequences of nuclear weapons production. At the same time, perceptions of the special nature of the atom led to a concentration of governance in the Atomic Energy Commission and the Joint Committee on Atomic Energy. Thus, external feedback for the managers of the complex was heavily filtered. But the imperatives of the Cold War have waned, and our understanding of the implications for the environment and the health and safety of workers has grown. By 1995 the Department of Energy (DoE) had spent about 23 billion in identifying and characterizing its waste, managing it, and assessing the actions needed to clean up the 120 sites in 36 states. Yet the majority of the task appeared ahead. Estimates made in 1995 suggested a total cost ranging from 200-350 billion and a time to complete of 75 years. If these were true, the cleanup of the weapons complex would become the largest civil works project in the history of humankind. Over the past year or so, the DoE program has shifted its focus from studies to actual cleanup. A strategic plan has been proposed that would accomplish most of the needed work over ten years at a cost of about $85 billion. At the same time, the Department is proposing to transfer oversight to the Nuclear Regulatory Commission, the Environmental Protection Agency, and the states. This Invited

  2. Possibilities of Mercury Removal in the Dry Flue Gas Cleaning Lines of Solid Waste Incineration Units

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-01

    Roč. 166, JAN 15 (2016), s. 499-511 ISSN 0301-4797 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : waste incineration * mercury removal * flue gas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.010, year: 2016

  3. Viability study for the implantation of an incineration unit for low level radioactive wastes

    International Nuclear Information System (INIS)

    Andrade, Andre Wagner Oliani

    1995-01-01

    Incineration have been a world-wide accepted volume reduction technique for combustible materials due to its high efficiency and excellent results. This technique is used since the last century as an alternative to reduce cities garbage and during the last four decades for the hazardous wastes. The nuclear industry is also involved in this technique development related to the low level radioactive waste management. There are different types of incineration installations and the definition of the right system is based on a criterious survey of its main characteristics, related to the rad wastes as well technical, economical and burocratic parameters. After the autonomous Brazilian nuclear programme development and the onlook of the future intensive nuclear energy uses, a radwaste generation increase is expected. One of the installations where these radwastes volumes are awaited to be high is the Experimental Center of ARAMAR (CEA). Nuclear reactors for propulsion and power generation have been developed in CEA beyond other nuclear combustible cycle activities. In this panorama it is important to evaluate the incineration role in CEA installations, as a volume reduction technique for an appropriate radioactive wastes management implementation. In this work main aspects related to the low level radwaste incineration systems were up rised. This information are important to a coherent viability study and also to give a clear and impartial about a topic that is still non discussed in the national scenery. (author)

  4. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  5. Solid Waste Processing. A State-of-the-Art Report on Unit Operations and Processes.

    Science.gov (United States)

    Engdahl, Richard B.

    The importance and intricacy of the solid wastes disposal problem and the need to deal with it effectively and economically led to the state-of-the-art survey covered by this report. The material presented here was compiled to be used by those in government and private industry who must make or implement decisions concerning the processing of…

  6. The long-term management of information and records on radioactive waste packages in the United Kingdom

    International Nuclear Information System (INIS)

    Upshall, I.R.; Wisbey, S.J.

    2002-01-01

    It is generally accepted that information associated with the creation, conditioning and packaging of radioactive waste must be maintained for a considerable period of time. During the retention period not only must the storage media be preserved, but the data must remain accessible and in a form that can be interpreted with minimum 'processing'. This will ensure, as far as practicable, that the information accurately represents the nature of the waste and its packaging, that the media employed is suitable for long-term storage and that the storage conditions provide a stable environment. Careful consideration must be given to the type and form of the retained information and the threats to its continued integrity. United Kingdom Nirex Limited (Nirex), in association with experts in records media and management, has undertaken a programme of work to consider the range of media currently available, the threats to media integrity and the implications of a general move towards 'electronic' records. The results of this study are being used to develop an information management system strategy, capable of retaining data for all future phases of radioactive waste management. (author)

  7. The road to Yucca Mountain—Evolution of nuclear waste disposal in the United States

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2016-01-01

    The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008.

  8. Modular design of processing and storage facilities for small volumes of low and intermediate level radioactive waste including disused sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and to install and eventually operate those modules.

  9. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2004-01-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement

  10. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste

  11. Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site

    International Nuclear Information System (INIS)

    B. G. Meagher

    2007-01-01

    This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public's information needs are met and that the Agencies can use the public's input for decisions regarding remediation activities

  12. Contaminant migration at two low-level radioactive waste sites in arid western United States - a review

    International Nuclear Information System (INIS)

    Wilshire, H.G.; Friedman, I.

    1999-01-01

    Contamination of the unsaturated zone and ground water at the Beatty, Nevada and Richland, Washington low-level radioactive waste sites shows that pathways exist for rapid lateral and vertical migration of contaminants through unconsolidated clastic sediments that comprise the 100 m-thick unsaturated zones of those arid disposal sites. Disposal of liquid wastes at the Beatty site until 1975 may have contributed to rapid migration of contaminants, but negligible amounts of liquid wastes reportedly were disposed at the Richland LLRW site and similar problems of contaminant migration exist. Pathways for vertical migration in the unsaturated zone include fractures and, at Richland, clastic dikes; lateral migration pathways likely are facies-controlled. Disturbance of the disposal sites contributed to increased infiltration of the unlined waste trenches after closure; simulations that used Beatty sample data show dramatic increases in recharge with disturbances necessary to develop the site. Because neither and arid climate nor presence of a thick unsaturated zone offer effective barriers to ground-water contamination, reliance on those factors at proposed sites such as Ward Valley, California and elsewhere is unwarranted. (orig.)

  13. The radionuclide content of radioactive wastes

    International Nuclear Information System (INIS)

    1988-06-01

    This report presents the radionuclide content of stocks and arisings of radioactive wastes in the United Kingdom. Operational and decommissioning wastes are considered for both committed and prospective plant. Arisings are from power reactors, commercial reprocessing, fuel manufacture, medical and industrial sources and research and development. Data is included from Amersham International, British Nuclear Fuels, Central Electricity Generating Board, South of Scotland Electricity Board, United Kingdom Atomic Energy Authority and minor waste producers. (author)

  14. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  15. H.R. 2580: This Act may be cited as the Waste Export and Import Prohibition Act, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 6, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Proposals to export solid waste from the United States to foreign countries are increasing. In numerous instances exported waste has contaminated the environment, adversely affected public health, and contributed to foreign policy liabilities for the United States. Imports of waste from foreign countries strain diminishing domestic waste disposal capacity, threaten public health, and contaminate the environment. This bill was introduced into the US House of Representatives on June 6, 1991 to amend the Solid Waste Disposal Act to prohibit the international export and import of certain solid waste. Solid waste includes the following: low-level radioactive waste; hazardous waste; or a mixture of hazardous waste and low-level radioactive waste

  16. Establishing deep geological repositories for radioactive waste in the United States of America

    International Nuclear Information System (INIS)

    Bennett, J.W.; Ballard, W.W. Jr.; Cooley, C.R.

    1984-01-01

    The paper describes, in broad terms, the interrelationship of the several regulations and recent legislation governing the National Waste Terminal Storage programme. The schedules of the first and second repositories are detailed, as are the interactions between the federal, state, and local governments. Limited portions of the Nuclear Regulatory Commission's regulations and the Environmental Protection Agency's standard are discussed to the extent that they affect the development schedules. (author)

  17. AIR PERMIT COMPLIANCE FOR WASTE RETRIEVAL OEPRATIONS INVOLVING MULTI-UNIT EMISSIONS

    International Nuclear Information System (INIS)

    SIMMONS FM

    2007-01-01

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and .contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits

  18. Overview of commercial low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    Disposal of commercial low-level radioactive waste (LLW) is a critical part of the national infrastructure needed to maintain the health of American businesses, universities, and hospitals. Currently only 19 States (located in the Northwest and Southeast) have access to operating disposal facilities; all other States are storing their LLW until they open new disposal facilities on their own or in concert with other States through regional compact agreements. In response to recommendations from the National Governors Association, Congress assigned the burden for LLW disposal to all States, first in 1980 through Public Law 96-573, the open-quotes Low-level Radioactive Waste Policy Actclose quotes, and again in 1986 through Public Law 99-240, the open-quotes Low-Level Radioactive Waste Policy Amendments Act of 1985close quotes. As directed by Congress, the Department of Energy provides technical assistance to States and compact regions with this task. After almost 14 years, nine compact regions have been ratified by Congress; California, Texas, North Carolina, and Nebraska have submitted license applications; California has issued an operating license; and the number of operating disposal facilities has decreased from three to two

  19. The siting dilemma: Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    English, M.R.

    1991-01-01

    The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities

  20. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  1. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    This document outlines the environmental, safety, and health (ES ampersand H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES ampersand H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing)

  2. Final hazard classification and auditable safety analysis for the 300-FF-1 Operable Unit liquid waste sites, landfills, and Burial Ground 618-4

    International Nuclear Information System (INIS)

    Adam, W.J.; Larson, A.R.

    1996-12-01

    This document provides the hazard categorizations and classifications for the activities associated with the 300-FF-1 Operable Unit (OU) remediation. Categories and classifications presented are applicable only to the 300-FF-1 OU waste sites specifically listed in the inventory. The purpose of this remedial action is to remove contaminated soil, debris, and solid waste from liquid waste sites, landfills, and Burial Ground 618-4 within the 300-FF-1 OU. Resulting waste from this project will be sent to the Environmental Restoration Disposal Facility (ERDF) in the 200 West Area. The 300-FF-1 OU is part of the 300 Area of the Hanford Site and is next to the Columbia River. The objective of this remedial action is to reduce contamination at these waste sites to levels that are acceptable for industrial purposes. Specific remedial objectives (cleanup goals) for each contaminant of concern (COC) are provided in a table, along with the maximum soil concentration detected

  3. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2016-01-01

    ) plastic from used product containers is the largest waste fraction also comprising a large variety of ENMs, though possibly in very small masses. Also, we showed that the local waste management system can influence the distribution of ENMs. It is recommended that future research focus on recycling......, and especially the knowledge of ENM behaviour and potential effects at the end-of-life stage of the products is scarce. To gain a better understanding of the end-of-life waste treatment of nano-enabled consumer product, we provide an overview of the ENMs flowing into and throughout waste systems in Europe......, Denmark and the United Kingdom. Using a nanoproduct inventory (nanodb.dk), we performed a four-step analysis to estimate the most abundant ENMs and in which waste fractions they are present. We found that in terms of number of products: (i) nano silver is the most used ENM in consumer products, and (ii...

  4. Comparison the effect of two ways of tube feeding including bolus and continuous infusion on gastric residual volume and diarrhea in patients hospitalized in Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Shahriari M

    2015-05-01

    Full Text Available Background and Objective: Proper nutritional support is one of the important caring aspects in patients who were hospitalized in Intensive Care Unit. Although the several studies have been done concerning the selection of proper nutrition method for patients, but there is no agreement on this issue. The aim of current study was the compare the effect of two ways of tube feeding including bolus and continuous infusion on gastric residual volume and diarrhea in patients hospitalized in Intensive Care Unit.  Materials and Method: The current clinical trial was conducted on patients who were hospitalized in intensive care unit in Alzahra hospital in Isfahan, 2013. Fifty patients were selected through convenient sampling and were randomly assigned into two groups of 25 people of intervention and control. Nutrition was done through infusion pump in intervention group and by bolus in control group. Gastric residual volume and diarrhea was assessed each four hours for four days. Data were gathered through checklist and were analyzed by SPSS18 using descriptive and inferential statistics including independent T-test, Fisher's exact test and repeated measures ANOVA.  Results: The results showed that the mean of gastric residual volume in control group was more than the intervention group on the third day (p=0.04. Also, the mean of gastric residual volume did not show significant difference at different times in intervention group, but the mean of gastric residual volume was significantly increased in control group at different times (p=0.04. Fisher's exact test showed no significant difference between two groups concerning the diarrhea frequency.  Conclusion: In nutritional support with continuous infusion method, gastric residual volume was not increased and gastric emptying rate was not diminished. Therefore, this method can be used as an appropriate nutritional support in intensive care unit.

  5. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  6. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  7. Waste-to-energy in the United States: Socioeconomic factors and the decision-making process

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Schexnayder, S.M.; Vogt, D.P.; Wolfe, A.K.; Kelsay, M.P.; Feldman, D.L. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    Municipal solid waste (MSW) combustion with energy recovery, commonly called waste-to-energy (WTE), was adopted by many US communities during the 1980s to manage their growing quantities of MSW. Although less than one percent of all US MSW was burned to retrieve its heat energy in 1970, WTE grew to account for 16 percent of MSW in 1990, and many experts forecasted that WTE would be used to manage as much as half of all garbage by the turn of the century. However, the growth of WTE has been reduced in recent years by project cancellations. This study takes an in-depth look at the socioeconomic factors that have played a role in the decisions of communities that have considered WTE as a component of their solid waste management strategies. More specifically, a three-pronged approach is adopted to investigate (1) the relationships between a municipality`s decision to consider and accept/reject WTE and key socioeconomic parameters, (2) the potential impacts of recent changes in financial markets on the viability of WTE, and (3) the WTE decision-making process and the socioeconomic parameters that are most important in the municipality`s decision. The first two objectives are met by the collection and analysis of aggregate data on all US WTE initiatives during the 1982 to 1990 time frame. The latter objective is met by way of four in-depth case studies -- two directed at communities that have accepted WTE and two that have cancelled WTE projects.

  8. City of New York v. United States Dep't of Transportation: urban radioactive waste transportation gets another green light

    International Nuclear Information System (INIS)

    Rainey, K.C.

    1986-01-01

    The author examines the background of this suit, which invalidated a municipal law prohibiting the transportation of large quantities of radioactive waste through city streets. The analysis focuses on two major issues: (1) whether the Hazardous Materials Transportation Act gives the Department of Transportation (DOT) the rulemaking power to preempt local law, and (2) whether DOT should have prepared an environmental impact statement before rulemaking. It concludes that DOT's action was arbitrary, and suggests some intermediate actions that would aid DOT in making a more informed decision. This could include a verification of DOT environmental assessment data and a more complete analysis of human error. The case illustrates the need for a lesser degree of judicial deference to federal agency action with respect to the volatile and unpredictable area of hazardous waste transportation

  9. Economics of defense high-level waste management in the United States

    International Nuclear Information System (INIS)

    Slate, S.C.; McDonell, W.R.

    1987-01-01

    The Department of Energy (DOE) is responsible for managing defense high-level wastes (DHLW) from U.S. defense activities using environmentally safe and cost-effective methods. In parallel with its technical programs, the DOE is performing economic studies to ensure that costs are minimized. To illustrate the cost estimating techniques and to provide a sense of cost magnitude, the DHLW costs for the Savannah River Plant (SRP) are calculated. Since operations at SRP must be optimized within relatively fixed management practices, the estimation of incremental costs is emphasized. Treatment and disposal costs are shown to equally contribute to the incremental cost of almost $400,000/canister

  10. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    Science.gov (United States)

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    Domestic oil and gas production and clean water are critical for economic growth, public health, and national security of the United States. As domestic oil and gas production increases in new areas and old fields are enhanced, there is increasing public concern about the effects of energy production on surface-water and groundwater quality. To a great extent, this concern arises from the improved hydraulic fracturing techniques being used today, including horizontal drilling, for producing unconventional oil and gas in low-permeability formations.

  11. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  12. Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ball, T.S.; Nickle, E.B.

    1994-10-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU

  13. Pacoma: Performance assessment of the confinement of medium-active and alpha-bearing wastes. Assessment of disposal in a clay formation in the United Kingdom

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Klos, R.A.; Martin, J.S.; Laurens, J.M.; Winters, K.H.

    1991-01-01

    This report describes the PACOMA assessment of the radiological impact of disposal of intermediate level and alpha-bearing wastes in a hypothetical repository situated in the clay formations below the Harwell site in the United Kingdom. The assessment includes: best estimate calculations, uncertainty analyses, sensitivity analyses and model comparisons. Results of the radiological impact calculations are in the form of doses and risks to individuals and time-integrated doses to populations, for a normal evolution scenario and a number of altered evolution scenarios. The calculated risks to individuals are well below the limit recommended by the ICRP, and the calculated collective dose over the first 10,000 years after disposal is zero. Thus the radiological impact of the disposal intermediate level and alpha-bearing wastes in a clay formation is predicted to be small. The uncertainty analyses showed that, for the normal evolution scenario, the range of predicted risks to individuals is very wide. However, these results must be treated with caution because a formal methodology for eliciting judgments about model parameter values was only applied in the case of geosphere data. The sensitivity analyses and model comparisons indicated the need for improved models and data for water and radionuclide movement in the near-surface environment

  14. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  15. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  16. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.

    Science.gov (United States)

    Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain

    2012-05-14

    A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.

  17. An assessment of individual foodprints attributed to diets and food waste in the United States

    Science.gov (United States)

    Birney, Catherine I.; Franklin, Katy F.; Davidson, F. Todd; Webber, Michael E.

    2017-10-01

    This paper assesses the environmental impacts of the average American’s diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult’s food habits, as well as the environmental impact associated with shifting diets to meet the US Department of Agriculture (USDA) dietary guideline recommendations. In 2010, FLW accounted for 35% of energy use, 34% of blue water use, 34% of GHG emissions, 31% of land use, and 35% of fertilizer use related to an individual’s food-related resource consumption, i.e. their foodprint. A shift in consumption towards a healthier diet, combined with meeting the USDA and Environmental Protection Agency’s 2030 food loss and waste reduction goal could increase per capita food related energy use 12%, decrease blue water consumption 4%, decrease green water use 23%, decrease GHG emissions from food production 11%, decrease GHG emissions from landfills 20%, decrease land use 32%, and increase fertilizer use 12%.

  18. Carbon abatement via treating the solid waste from the Australian olive industry in mobile pyrolysis units: LCA with uncertainty analysis.

    Science.gov (United States)

    El Hanandeh, Ali

    2013-04-01

    The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO2-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO2-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar.

  19. Solid Waste Management Units And Areas Of Concern Annual Long-Term Monitoring & Maintenance Report For Calendar Year 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, Patrick Wells [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Long-term controls were maintained at 21 Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) in accordance with the requirements of the “Long-Term Monitoring and Maintenance Plan for SWMUs and AOCs Granted Corrective Action Complete with Controls” in Attachment M of the Resource Conservation and Recovery Act Facility Operating Permit, which took effect February 26, 2015. Maintenance and controls at these SWMUs and AOCs are described and documented in this report. Conditions requiring maintenance or repair activities were not identified for any of the inspected SWMUs or AOCs. Based upon the inspections performed and site conditions observed, the administrative and physical institutional controls in place at the SWMUs and AOCs are effectively providing continued protection of human health and the environment. This report does not present monitoring and maintenance activities for SWMU 76, the Mixed Waste Landfill; those activities adhere to the approved MWL LTMM Plan, Section 4.8.1 requiring a separate annual report which will be submitted to the NMED by June 30, 2017.

  20. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  1. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  2. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.

  3. Hazardous waste landfill research: U. S. E. P. A. (United States Environmental Protection Agency) Program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1984-06-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical areas of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full-scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the RCRA Guidance Documents. These documents will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of the work.

  4. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.; Izabel, C.

    1990-01-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  5. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  6. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    Energy Technology Data Exchange (ETDEWEB)

    Escalier des Orres, P; Devillers, C; Cernes, A; Izabel, C [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA (France)

    1990-07-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  7. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  8. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  9. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  10. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  11. Guidelines for the management of common hazardous wastes in developing countries

    International Nuclear Information System (INIS)

    Smith, J.E. Jr; Helmick, J.; Ozolins, G.

    1991-01-01

    Several United Nations organizations, including the World Health Organization (WHO), World Bank (WB), and United Nations Environment Programme (UNEP), are cooperating in the development and implementation of a technology transfer and training program for management of hazardous wastes. A number of other organizations, including the International Solid Waste and Public Cleansing Association (ISWA) and the U.S. Environmental Protection Agency (EPA), are assisting in this effort. Waste-specific guidelines are being written for administrators and technical staff in developing countries who are responsible for waste management and for public health and environmental protection in general. Guidance documents are being developed for wastes based on requests from personnel in developing countries, including: metal finishing (e.g., electroplating) wastes, pesticides, chlorinated solvents (including PCBs), petrochemicals, waste oils, tannery/fellmongering/slaughterhouse wastes, clinical wastes, lead acid batteries, asbestos, and textile industry wastes. (au)

  12. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail

  13. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  14. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  15. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  16. Review of potential host rocks for radioactive waste disposal in the southeast United States: Southeastern Coastal Plain Subregion

    International Nuclear Information System (INIS)

    1980-10-01

    A literature review was made of the geological characteristics of the Southeastern Coastal Plain physiograhic province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose of this study was to identify candidate exploration areas for the possible location of a mined repository for the storage of radioactive waste in the argillaceous sedimentary rocks of the Coastal Plain. Candidate areas were selected on the basis of geological characteristics, available subsurface data, and generally accepted requirements for waste isolation developed by previous studies. Factors considered in the evaluation include the stratigraphy and lithology, geologic history, structure, seismicity, hydrogeology, and natural resources of the candidate area. Unlike other potential regions, the Southeastern Coastal Plain is not composed of competent rock, but consists primarily of unconsolidated and water-saturated sediments overlying a basement of crystalline and metavolcanic rocks. Thus, construction of both shafts and tunnels to depths of approx. 1000 meters may encounter difficulties. Socio-economic and construction considerations have not been addressed in the evaluation. Based on the applied criteria, four areas were selected as being most favorable for future field investigation. These include one in Maryland, one in North Carolina, and two in Georgia

  17. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available

  18. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  19. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    International Nuclear Information System (INIS)

    2005-12-01

    verify the models in time prior to a licence application. Furthermore, the authorities assume that more long-term biosphere issues are being taken into account in SKB's new plan of action. - In its biosphere research, SKB should take into account the possibility of using radionuclide concentrations and flows as complementary safety indicators. - SKB should more clearly explain how it will ensure that studied climate scenarios will shed light on the most important climate-related stresses on the barrier function. - It is justifiable for the research conducted by SKB and Sweden in the area of PandT to maintain its current level so that international developments can be followed and to maintain and develop scientific and technical expertise in areas of importance for nuclear safety. - A clarification of the account of deep boreholes prior to the ultimate choice of a method and prior to licensing under the Environmental Code is needed. A comparison should be made with the KBS-3 method which utilizes safety assessment methodology including simple calculations. - SKB needs to intensify the work on decommissioning issues and in order to present detailed plans and considerations in RDandD Programme 2007. - SKB should investigate the shortest time required for the start of a licensing process for the disposal of decommissioning waste. - In the next RDandD programme, SKB should provide a more detailed description of the programme for long-lived low and intermediate-level waste. - SKB should take into account the viewpoint that long-term interim storage of waste while waiting for the construction of a repository should, as far as possible, be avoided and take this into consideration in its planning. - It is positive that SKB has incorporated social science research into its programme, since the findings from the research should be useful for the stakeholders to apply the research findings in ongoing and future consultation processes for an encapsulation plant and repository

  20. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    verify the models in time prior to a licence application. Furthermore, the authorities assume that more long-term biosphere issues are being taken into account in SKB's new plan of action. - In its biosphere research, SKB should take into account the possibility of using radionuclide concentrations and flows as complementary safety indicators. - SKB should more clearly explain how it will ensure that studied climate scenarios will shed light on the most important climate-related stresses on the barrier function. - It is justifiable for the research conducted by SKB and Sweden in the area of PandT to maintain its current level so that international developments can be followed and to maintain and develop scientific and technical expertise in areas of importance for nuclear safety. - A clarification of the account of deep boreholes prior to the ultimate choice of a method and prior to licensing under the Environmental Code is needed. A comparison should be made with the KBS-3 method which utilizes safety assessment methodology including simple calculations. - SKB needs to intensify the work on decommissioning issues and in order to present detailed plans and considerations in RDandD Programme 2007. - SKB should investigate the shortest time required for the start of a licensing process for the disposal of decommissioning waste. - In the next RDandD programme, SKB should provide a more detailed description of the programme for long-lived low and intermediate-level waste. - SKB should take into account the viewpoint that long-term interim storage of waste while waiting for the construction of a repository should, as far as possible, be avoided and take this into consideration in its planning. - It is positive that SKB has incorporated social science research into its programme, since the findings from the research should be useful for the stakeholders to apply the research findings in ongoing and future consultation processes for an encapsulation plant and repository.

  1. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  2. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    Science.gov (United States)

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  3. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    International Nuclear Information System (INIS)

    Garg, A.; Smith, R.; Hill, D.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.J.

    2009-01-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly (∼2500 g CO 2 eqvt./kg DS SRF in co-fired cement kilns and ∼1500 g CO 2 eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  4. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    Science.gov (United States)

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  5. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  6. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 (as amended March 2010)). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  7. Draft postclosure permit application for Bear Creek Hydrogeologic Regime at the Oak Ridge Y-12 Plant Oil Landform Hazardous Waste Disposal Unit

    International Nuclear Information System (INIS)

    1991-08-01

    The Oil Landfarm Hazardous-Waste Disposal Unit (HWDU) is located approximately one and one-half miles west of the Department of Energy's (DOE) Y-12 Plant in Oak Ridge, Tennessee. The Oil Landfarm HWDU consists of three disposal plots and along with the Bear Creek Burial Grounds and the S-3 Site comprise the Bear Creek Valley Waste Disposal Area (BCVWDA). The facility was used for the biological degradation of waste oil and machine coolants via landfarming, a process involving the application of waste oils and coolants to nutrient-adjusted soil during the dry months of the year (April to October). The Oil Landfarm HWDU has been closed as a hazardous-waste disposal unit and therefore will be subject to post-closure care. The closure plan for the Oil Landfarm HWDU is provided in Appendix A.1. A post-closure plan for the Oil Landfarm HWDU is presented in Appendix A.2. The purpose of this plan is to identify and describe the activities that will be performed during the post-closure care period. This plan will be implemented and will continue throughout the post-closure care period

  8. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Science.gov (United States)

    2010-05-05

    ... rubble and debris are generated that require shipment for disposal in offsite low-level radioactive waste... decommissioning Fermi-1 and radioactive waste shipments from the site are ongoing and expected to increase over... to the volume of radioactive waste; licensees have encountered an increase in the number of routine...

  9. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  10. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another

  11. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    International Nuclear Information System (INIS)

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  12. Scuttle Flies (Diptera: Phoridae) Inhabiting Rabbit Carcasses Confined to Plastic Waste Bins in Malaysia Include New Records and an Undescribed Species.

    Science.gov (United States)

    Zuha, Raja M; Huong-Wen, See; Disney, R Henry L; Omar, Baharudin

    2017-01-01

    Scuttle flies (Diptera: Phoridae) are small-sized insects of forensic importance. They are well known for diversified species and habitats, but in the context of forensic entomology, scuttle flies' inhabitance of corpses remains inadequately explored. With recent reports indicating the existence of more scuttle fly species possibly inhabiting these environments, a decomposition study using animal carcasses in enclosed environments was conducted. The aim was to record the occurrence of scuttle flies on rabbit carcasses placed in sealed plastic waste bins for a 40-day period. The study was conducted as two replicates in Bangi, Selangor. Sampling was carried out at different time intervals inside a modified mosquito net as a trap. Inside the trap, adult scuttle flies were aspirated and preserved in 70% ethanol. The fly larvae and pupae were reared until their adult stage to facilitate identification. From this study, six scuttle fly species were collected, i.e., Dahliphora sigmoides (Schmitz) ♂, Gymnoptera simplex (Brues) ♀ , Megaselia scalaris (Loew) ♂♀ , Puliciphora borinquenensis (Wheeler) ♂, Puliciphora obtecta Meijere ♀ and Spiniphora sp. ♀ . Both D. sigmoides and P. obtecta were newly recorded in Malaysia, whilst the Spiniphora sp. was considered an unknown species until it was linked to its male counterpart. The sealed waste bins were found to be accessible for the scuttle flies with delayed arrival (day 4-5). Megaselia scalaris was the primary scuttle fly species attracted to the carcass, and its occurrence could be observed between days 4-7 (replicate 1) and days 5-33 (replicate 2). This study also revealed Sarcophaga spp. (Diptera: Sarcophagidae) as the earliest species to colonize the remains and the longest to inhabit them (days 2-40). The larvae of Hermetia illucens (Linneaus) (Diptera: Stratiomyidae) and Fannia sp . (Diptera: Fanniidae) were found on the carcasses during the mid-advanced decay period. These findings expand the knowledge on

  13. Scuttle Flies (Diptera: Phoridae) Inhabiting Rabbit Carcasses Confined to Plastic Waste Bins in Malaysia Include New Records and an Undescribed Species

    Science.gov (United States)

    Zuha, Raja M.; Huong-Wen, See; Disney, R. Henry L.; Omar, Baharudin

    2017-01-01

    Scuttle flies (Diptera: Phoridae) are small-sized insects of forensic importance. They are well known for diversified species and habitats, but in the context of forensic entomology, scuttle flies’ inhabitance of corpses remains inadequately explored. With recent reports indicating the existence of more scuttle fly species possibly inhabiting these environments, a decomposition study using animal carcasses in enclosed environments was conducted. The aim was to record the occurrence of scuttle flies on rabbit carcasses placed in sealed plastic waste bins for a 40-day period. The study was conducted as two replicates in Bangi, Selangor. Sampling was carried out at different time intervals inside a modified mosquito net as a trap. Inside the trap, adult scuttle flies were aspirated and preserved in 70% ethanol. The fly larvae and pupae were reared until their adult stage to facilitate identification. From this study, six scuttle fly species were collected, i.e., Dahliphora sigmoides (Schmitz) ♂, Gymnoptera simplex (Brues) ♀, Megaselia scalaris (Loew) ♂♀, Puliciphora borinquenensis (Wheeler) ♂, Puliciphora obtecta Meijere ♀ and Spiniphora sp. ♀. Both D. sigmoides and P. obtecta were newly recorded in Malaysia, whilst the Spiniphora sp. was considered an unknown species until it was linked to its male counterpart. The sealed waste bins were found to be accessible for the scuttle flies with delayed arrival (day 4–5). Megaselia scalaris was the primary scuttle fly species attracted to the carcass, and its occurrence could be observed between days 4–7 (replicate 1) and days 5–33 (replicate 2). This study also revealed Sarcophaga spp. (Diptera: Sarcophagidae) as the earliest species to colonize the remains and the longest to inhabit them (days 2–40). The larvae of Hermetia illucens (Linneaus) (Diptera: Stratiomyidae) and Fannia sp. (Diptera: Fanniidae) were found on the carcasses during the mid-advanced decay period. These findings expand the

  14. Two Paradigmatic Waves of Public Discourse on Nuclear Waste in the United States, 1945-2009: Understanding a Magnitudinal and Longitudinal Phenomenon in Anthropological Terms.

    Science.gov (United States)

    Pajo, Judi

    2016-01-01

    This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study's value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence.

  15. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  16. Inventory and characteristics of current and projected low-level radioactive materials and waste in the United States

    International Nuclear Information System (INIS)

    Bisaria, A.; Bugos, R.G.; Pope, R.B.; Salmon, R.; Storch, S.N.; Lester, P.B.

    1994-01-01

    The Integrated Data Base (IDB), under US Department of Energy (DOE) funding and guidance, provides an annual update of compiled data on current and projected inventories and characteristics of DOE and commercially owned radioactive wastes. The data base addresses also the inventories of DOE and commercial spent fuel. These data are derived from reliable information from government sources, open literature, technical reports, and direct contacts. The radioactive materials considered are spent nuclear fuel, high-level waste (HLW), transuranic (TRU) waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, and mixed-LLW. This paper primarily focuses on LLW inventory and characterization

  17. Konrad transport study: Safety analysis of the transportation of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-05-01

    For the purpose of the study the anticipated waste transport volume and the waste properties were analysed in detail. This included information on the transport containers, waste product properties, activity inventories and local dose rates of the waste packages being transported. The envisaged practical implementation, i.e. the transport arrangements including shunting operations at the Braunschweig marshalling yard and the Beddingen interchange station, were also included. The two shipping scenarios 100% transportation by rail and 80% transportation by rail, 20% by road, which could be considered to bound the real conditions, were analysed. The relevant transport regulations contain the requirements to be met by the transport of shipping units carrying radioactive waste. In addition, the ''Konrad preliminary waste acceptance criteria'' contain activity limits for waste packages being disposed of in conjunction with further requirements relating to the properties of waste products and waste containers. (orig./DG)

  18. Comparing Complementary and Alternative Medicine Use with or without Including Prayer as a Modality in a Local and Diverse United States Jurisdiction.

    Science.gov (United States)

    Robles, Brenda; Upchurch, Dawn M; Kuo, Tony

    2017-01-01

    Few studies to date have examined the utilization of complementary and alternative medicine (CAM) in a local, ethnically diverse population in the United States (U.S.). Fewer have addressed the differences in their use based on inclusion or exclusion of prayer as a modality. Variable definitions of CAM are known to affect public health surveillance (i.e., continuous, systematic data collection, analysis, and interpretation) or benchmarking (i.e., identifying and comparing key indicators of health to inform community planning) related to this non-mainstream collection of health and wellness therapies. The present study sought to better understand how including or excluding prayer could affect reporting of CAM use among residents of a large, urban U.S. jurisdiction. Using population-weighted data from a cross-sectional Internet panel survey collected as part of a larger countywide population health survey, the study compared use of CAM based on whether prayer or no prayer was included in its definition. Patterns of CAM use by socio-demographic characteristics were described for the two operationalized definitions. Multivariable binomial regression analyses were performed to control for gender, age, race/ethnicity, education, employment, income, and health insurance status. One of the analyses explored the associations between CAM use and racial/ethnic characteristics in the study sample. Los Angeles County, California. A socio-demographically diverse sample of Los Angeles County residents. CAM use (with prayer) and CAM use (excluding prayer). Blacks were among the highest users of CAM when compared to Whites, especially when prayer was included as a CAM modality. Regardless of prayer inclusion, being a woman predicted higher use of CAM. How CAM is defined matters in gauging the utilization of this non-mainstream collection of therapies. Given that surveillance and/or benchmarking data are often used to inform resource allocation and planning decisions, results from

  19. Mining wastes

    International Nuclear Information System (INIS)

    Pradel, J.

    1981-01-01

    In this article mining wastes means wastes obtained during extraction and processing of uranium ores including production of uraniferous concentrates. The hazards for the population are irradiation, ingestion, dust or radon inhalation. The different wastes produced are reviewed. Management of liquid effluents, water treatment, contamined materials, gaseous wastes and tailings are examined. Environmental impact of wastes during and after exploitation is discussed. Monitoring and measurements are made to verify that ICRP recommendations are met. Studies in progress to improve mining waste management are given [fr

  20. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead

  1. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    International Nuclear Information System (INIS)

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia

  2. Mitigation action plan for liquid waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 units

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1996-05-01

    A Record of Decision (ROD) was issued for remediation of waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 Operable Units in the 100 Area of the Hanford Site. This Mitigation Action Plan (MAP) explains how mitigation measures for these remedial activities will be planned and implemented. The new activities planned in the ROD are not anticipated to result in releases of hazardous substances and will minimize disturbance of currently undisturbed areas. However, certain actions required by the ROD may result in the redisturbance of areas of recovering vegetation. This MAP presents a strategy for limiting disturbances and identifies an opportunity for revegetating a previously disturbed site; the knowledge gained from this demonstration project can be applied to final revegetation of the rest of the remediated sites and sites disturbed during cleanup when remediation of an area is completed. This work will be conducted in coordination with the Natural Resource Trustees Council and Native American Tribes to help minimize impacts to natural resources and cultural resources from project activities and to restore the remediated sites to an appropriate level of habitat

  3. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A Final Programmatic Environmental Impact Statement (PEIS) related to the decontamination and disposal of radioactive wastes resulting from the March 28, 1979, accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission in response to a directive issued by the Commission on November 21, 1979. This statement is an overall study of the activities necessary for decontamination of the facility, defueling, and disposition of the radioactive wastes. The available alternatives considered ranged from implementation of full cleanup to no action other than continuing to maintain the reactor in a safe shutdown condition. Also included are comments of governmental agencies, other organizations, and the general public on the Draft PEIS on this project, and staff responses to these comments. (author)

  4. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2000-01-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1[SWS 1]), and 03-05-002-SW05 (Septic Waste System 5[SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ((micro)g/kg). The benzo(a)pyrene was found in the soil under the discharge

  5. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  6. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  8. A General Discussion of Problems Related to the Determination of Concrete Armour Unit Stresses Including Specific Results related to Static and Dynamic Stresses in Dolosse

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1989-01-01

    Recent breakwater failures revealed the shortcomings of the traditional design procedures for concrete armour units. This paper deals with one of them, which can be expressed as the "lack of balance between the hydraulic stability of the armour layer and the mechanical strength or integrity...... of the units". This problem is related mainly to the slender types of armour units. The paper discusses the various types of loads, and the practical determination of the wave and gravity induced loads and stresses, especially the model test technique and its restrictions. Examples related to Dolosse...

  9. An exploratory randomised controlled trial of a premises-level intervention to reduce alcohol-related harm including violence in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Moore Simon C

    2012-06-01

    Full Text Available Abstract Background To assess the feasibility of a randomised controlled trial of a licensed premises intervention to reduce severe intoxication and disorder; to establish effect sizes and identify appropriate approaches to the development and maintenance of a rigorous research design and intervention implementation. Methods An exploratory two-armed parallel randomised controlled trial with a nested process evaluation. An audit of risk factors and a tailored action plan for high risk premises, with three month follow up audit and feedback. Thirty-two premises that had experienced at least one assault in the year prior to the intervention were recruited, match paired and randomly allocated to control or intervention group. Police violence data and data from a street survey of study premises’ customers, including measures of breath alcohol concentration and surveyor rated customer intoxication, were used to assess effect sizes for a future definitive trial. A nested process evaluation explored implementation barriers and the fidelity of the intervention with key stakeholders and senior staff in intervention premises using semi-structured interviews. Results The process evaluation indicated implementation barriers and low fidelity, with a reluctance to implement the intervention and to submit to a formal risk audit. Power calculations suggest the intervention effect on violence and subjective intoxication would be raised to significance with a study size of 517 premises. Conclusions It is methodologically feasible to conduct randomised controlled trials where licensed premises are the unit of allocation. However, lack of enthusiasm in senior premises staff indicates the need for intervention enforcement, rather than voluntary agreements, and on-going strategies to promote sustainability. Trial registration UKCRN 7090; ISRCTN: 80875696

  10. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Draft

    International Nuclear Information System (INIS)

    1986-12-01

    In accordance with the National Environmental Policy Act and the Commission's implementing regulations and its April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This draft supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the draft supplement includes a specific environmental evaluation of the licensee's recently submitted proposal for water disposition

  11. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  12. R2 & NE: NAVTEQ 2011 Q3 Interstate Highway Network for the United States, including Puerto Rico and the US Virgin Islands in SDC Format

    Data.gov (United States)

    U.S. Environmental Protection Agency — The INTERSTATES layer contains the Interstate Highway network, using NAVTEQ Functional Class=1 for United States and Canada. This 5 layer SDC dataset represents a...

  13. Focused feasibility study of engineered barriers for waste management units in the 200 areas

    International Nuclear Information System (INIS)

    1996-05-01

    The U.S. Department of Energy (DOE) at the Hanford Site in Washington State is organized into numerically designated operational areas consisting of the 100, 200, 300, 400, 600, and 1100 Areas. In November 1989, the U.S. Environmental Protection Agency (EPA) included the 200 Areas (as well as the 100, 300, and 1,100 Areas) of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiates the remedial investigation (RI) and feasibility study (FS) process to characterize the nature and extent of contamination, assess risks to human health and the environment, and select remedial actions. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) was developed and signed by representatives from the EPA, Washington State Department of Ecology (Ecology), and DOE in May 1989 to provide a framework to implement and integrate cleanup activities. The scope of the agreement covers CERCLA past-practice, Resource Conservation and Recovery Act of 1976 (RCRA) past-practice, and RCRA treatment, storage, and disposal (TSD) activities on the Hanford Site. The 1991 revision to the Tri-Party Agreement required that an aggregate area approach be implemented in the 200 Areas based on the Hanford Site Past-Practice Strategy (HPPS) and established a milestone (M-27-00) to complete 10 Aggregate Area Management Study (AAMS) Reports in 1992

  14. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  15. Summary of United States Geological Survey investigations of fluid-rock-waste reactions in evaporite environments under repository conditions

    International Nuclear Information System (INIS)

    Stewart, D.B.; Jones, B.F.; Roedder, E.; Potter, R.W. II

    1980-01-01

    The interstitial and inclusion fluids contained in rock salt and anhydrite, though present in amounts less than 1 weight per cent, are chemically aggressive and may react with canisters or wastes. The three basic types of fluids are: (1) bitterns residual from saline mineral precipitation including later recrystallization reactions; (2) brines containing residual solutes from the formation of evaporite that have been extensively modified by reactions with contiguous carbonate of clastic rocks; and (3) re-solution brines resulting from secondary dehydration of evaporite minerals or solution of saline minerals by undersaturated infiltrating waters. Fluid composition can indicate that meteoric flow systems have contacted evaporites or that fluids from evaporites have migrated into other formations. The movement of fluids trapped in fluid inclusions in salt from southeast New Mexico is most sensitive to ambient temperature and to inclusion size, although several other factors such as thermal gradient and vapour/liquid ratio are also important. There is no evidence of a threshold temperature for movement of inclusions. Empirical data are given for determining the amount of brine reaching the heat source if the temperature, approximate amount of total dissolved solids, and Ca:Mg ratio in the brine are known. SrCl 2 and CsCl can reach high concentrations in saturated NaCl solutions and greatly depress the liquidus. The possibility that such fluids, if generated, could migrate from a high-level waste repository must be minimized because the fluid would contain its own radiogenic energy source in the first decades after repository closure, thus changing the thermal evolution of the repository from designed values. (author)

  16. Corrective Action Plan for Corrective Action Unit 168: Area 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada, REV 1

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 168 is identified in the Federal Facility Agreement and Consent Order of 1996 as Area 25 and 26 Contaminated Materials and Waste Dumps. CAU 168 consists of twelve Corrective Action Sites (CASs) in Areas 25 and 26 of the Nevada Test Site, which is approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. The CASs contain surface and subsurface debris, impacted soil, and contaminated materials. Site characterization activities were conducted in 2002, and the results are presented in the Corrective Action Decision Document (CADD) for CAU 168 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). Site characterization results indicated that soil at several sites exceeded the clean-up criteria for total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), and radionuclides. The Nevada Division of Environmental Protection approved the proposed corrective actions specified in the CADD (NNSA/NSO, 2006). The approved corrective actions include no further action, clean closure, and closure in place with administrative controls

  17. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management.

    Science.gov (United States)

    Heggelund, Laura; Hansen, Steffen Foss; Astrup, Thomas Fruergaard; Boldrin, Alessio

    2016-10-01

    Many nano-enabled consumer products are known to be in the global market. At the same, little is known about the quantity, type, location etc. of the engineered nanomaterials (ENMs) inside the products. This limits the scientific investigations of potential environmental effects of these materials, and especially the knowledge of ENM behaviour and potential effects at the end-of-life stage of the products is scarce. To gain a better understanding of the end-of-life waste treatment of nano-enabled consumer product, we provide an overview of the ENMs flowing into and throughout waste systems in Europe, Denmark and the United Kingdom. Using a nanoproduct inventory (nanodb.dk), we performed a four-step analysis to estimate the most abundant ENMs and in which waste fractions they are present. We found that in terms of number of products: (i) nano silver is the most used ENM in consumer products, and (ii) plastic from used product containers is the largest waste fraction also comprising a large variety of ENMs, though possibly in very small masses. Also, we showed that the local waste management system can influence the distribution of ENMs. It is recommended that future research focus on recycling and landfilling of nano-enabled products since these compartments represent hot spots for end-of-life nanoproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A cooperative agreement for research on radioactive waste management between the United States Department of Energy and Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Levich, R.A.

    1994-01-01

    The United States Department of Energy (USDOE) and Atomic Energy of Canada Limited (AECL) have a history of more than ten years of bilateral cooperation in the management of high level radioactive waste. In 1982, the USDOE and AECL executed a five year information-exchange agreement, for open-quotes Cooperation in Radioactive Waste Managementclose quotes. Since that time, this bilateral umbrella agreement has been renewed twice and the third renewal is currently being processed. International cooperation in high level radioactive waste management is highly beneficial to all concerned. Each nation involved in high level waste disposal has a single coordinated program for developing, testing, and evaluating approaches, hardware, and techniques for high level waste disposal. Thus there is limited opportunity for researchers in each country to exchange views regarding disposal technology with experienced researchers external to their own program, and to share research and development activities. The international arena, however, provides a host of organizations who have similar responsibilities and therefore similar interests and needs

  19. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    International Nuclear Information System (INIS)

    1981-03-01

    The appendices included in this report include the following: Comments on the Draft Programmatic Environmental Impact Statement (A-1); Commission's Statement of Policy and Notice of Intent to Prepare a Programmatic Environmental Impact Statement (B-1); 'Final Environmental Assessment for Decontamination of the Three Mile Island Unit 2 Reactor Building Atmosphere, Final NRC Staff Report,' US Nuclear Regulatory Commission, NUREG-0662, May 1980 (C-1); 'Environmental Assessment for Use of EPICOR-Il at Three Mile Island Unit 2,' US Nuclear Regulatory Commission, NUREG-0591, October 3, 1979 (D-1); Fish and Fisheries of York Haven Pond and Conowingo Pond of the Susquehanna River and Upper Chesapeake Bay (E1); Reuse of Accident Water (F-1); Engineering Considerations for Treatment of TMI-2 Accident-Generated Liquid Waste G-1); Engineering Considerations Related to Immobilization of Radioactive Wastes (H-1); Justification for Radiation Fields Used in Section 6 I-1); Economic Cost Basis (K-1); Average Individual Quarterly Dose Limits Used in Determinations of Work Force Estimates (L-1); 'Long-Term E