Unitary transformation method for solving generalized Jaynes-Cummings models
Indian Academy of Sciences (India)
Sudha Singh
2006-03-01
Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.
Entanglement Continuous Unitary Transformations
Sahin, S; Orus, R
2016-01-01
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...
Entanglement continuous unitary transformations
Sahin, Serkan; Schmidt, Kai Phillip; Orús, Román
2017-01-01
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called “entanglement-CUT” or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-(1/2) 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.
Bang, Jeongho; Yoo, Seokwon
2014-01-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the ...
Unitary Transformation in Quantum Teleportation
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Chuan
2006-01-01
In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.
Right-unitary transformation theory and applications
Tang, Zhong
1996-01-01
We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two le...
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Energy Technology Data Exchange (ETDEWEB)
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
Bang, Jeongho; Yoo, Seokwon
2014-12-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Energy Technology Data Exchange (ETDEWEB)
Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)
2014-12-15
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Koelling, S; Krebs, H; Meißner, U -G
2009-01-01
We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
Optimal control theory for unitary transformations
Palao, J P; Palao, Jose P.
2003-01-01
The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the $X^1\\Sigma^+_g$ electronic state of Na$_2$. Raman-like transitions through the $A^1\\Sigma^+_u$ electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-...
Intercept Capacity: Unknown Unitary Transformation
Directory of Open Access Journals (Sweden)
Bill Moran
2008-11-01
Full Text Available We consider the problem of intercepting communications signals between Multiple-Input Multiple-Output (MIMO communication systems. To correctly detect a transmitted message it is necessary to know the gain matrix that represents the channel between the transmitter and the receiver. However, even if the receiver has knowledge of the message symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation (BSS techniques, such as Independent Component Analysis (ICA can go some way to extracting independent signals from individual transmission antennae but these may have been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where a communications interception system has prior knowledge of the message symbol set, the channel matrix between the transmission system and the interception system and is able to resolve the transmissionss from independent antennae. The question then becomes: what is the mutual information available to the interceptor when an unknown unitary transformation matrix is employed by the transmitter.
The method of unitary clothing transformations in the theory of nucleon–nucleon scattering
Directory of Open Access Journals (Sweden)
Shebeko A.
2010-04-01
Full Text Available The clothing procedure, put forward in quantum ﬁeld theory (QFT by Greenberg and Schweber, is applied for the description of nucleon–nucleon (N –N scattering. We consider pseudoscalar (π and η, vector (ρ and ω and scalar (δ and σ meson ﬁelds interacting with 1/2 spin (N and N fermion ones via the Yukawa–type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations (UCTs are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable properties, the so–called clothed particles. In this work, we are focused upon the Hermitian and energy–independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one–boson–exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N–N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR instead of the bare particle representation (BPR with its huge amount of virtual processes. We have derived the Lippmann–Schwinger(LS–type equation for the CPR elements of the T–matrix for a given collision energy in the two–nucleon sector of the Hilbert space H of hadronic states and elaborated a code for its numerical solution in momentum space.
Nakajima, Yuya; Seino, Junji; Nakai, Hiromi
2013-12-28
In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides, and coinage metal dimers, and 20 metal complexes, including the fourth-sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.
Right-unitary transformation theory and applications
Tang, Z
1996-01-01
We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two levels, three levels in Lambda, V and equiv configurations, and up to higher (>3) levels. These interactions have wide applications in atomic physics, quantum optics and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction of three-level atom with quantized radiation fields, where the atoms have Lambda-configuration energy levels, and the radiation fields are one-mode...
Energy Transfer Using Unitary Transformations
Directory of Open Access Journals (Sweden)
Winny O'Kelly de Galway
2013-11-01
Full Text Available We study the unitary time evolution of a simple quantum Hamiltonian describing two harmonic oscillators coupled via a three-level system. The latter acts as an engine transferring energy from one oscillator to the other and is driven in a cyclic manner by time-dependent external fields. The S-matrix (scattering matrix of the cycle is obtained in analytic form. The total number of quanta contained in the system is a conserved quantity. As a consequence, the spectrum of the S-matrix is purely discrete, and the evolution of the system is quasi-periodic. The explicit knowledge of the S-matrix makes it possible to do accurate numerical evaluations of the time-dependent wave function. They confirm the quasi-periodic behavior. In particular, the energy flows back and forth between the two oscillators in a quasi-periodic manner.
Directory of Open Access Journals (Sweden)
Sabitha Gauni
2014-03-01
Full Text Available In the field of Wireless Communication, there is always a demand for reliability, improved range and speed. Many wireless networks such as OFDM, CDMA2000, WCDMA etc., provide a solution to this problem when incorporated with Multiple input- multiple output (MIMO technology. Due to the complexity in signal processing, MIMO is highly expensive in terms of area consumption. In this paper, a method of MIMO receiver design is proposed to reduce the area consumed by the processing elements involved in complex signal processing. In this paper, a solution for area reduction in the Multiple input multiple output(MIMO Maximum Likelihood Receiver(MLE using Sorted QR Decomposition and Unitary transformation method is analyzed. It provides unified approach and also reduces ISI and provides better performance at low cost. The receiver pre-processor architecture based on Minimum Mean Square Error (MMSE is compared while using Iterative SQRD and Unitary transformation method for vectoring. Unitary transformations are transformations of the matrices which maintain the Hermitian nature of the matrix, and the multiplication and addition relationship between the operators. This helps to reduce the computational complexity significantly. The dynamic range of all variables is tightly bound and the algorithm is well suited for fixed point arithmetic.
Stable unitary integrators for the numerical implementation of continuous unitary transformations
Savitz, Samuel; Refael, Gil
2017-09-01
The technique of continuous unitary transformations has recently been used to provide physical insight into a diverse array of quantum mechanical systems. However, the question of how to best numerically implement the flow equations has received little attention. The most immediately apparent approach, using standard Runge-Kutta numerical integration algorithms, suffers from both severe inefficiency due to stiffness and the loss of unitarity. After reviewing the formalism of continuous unitary transformations and Wegner's original choice for the infinitesimal generator of the flow, we present a number of approaches to resolving these issues including a choice of generator which induces what we call the "uniform tangent decay flow" and three numerical integrators specifically designed to perform continuous unitary transformations efficiently while preserving the unitarity of flow. We conclude by applying one of the flow algorithms to a simple calculation that visually demonstrates the many-body localization transition.
Palao, J P; Palao, Jose P.; Kosloff, Ronnie
2002-01-01
A quantum gate is realized by specific unitary transformations operating on states representing qubits. Considering a quantum system employed as an element in a quantum computing scheme, the task is therefore to enforce the pre-specified unitary transformation. This task is carried out by an external time dependent field. Optimal control theory has been suggested as a method to compute the external field which alters the evolution of the system such that it performs the desire unitary transformation. This study compares two recent implementations of optimal control theory to find the field that induces a quantum gate. The first approach is based on the equation of motion of the unitary transformation. The second approach generalizes the state to state formulation of optimal control theory. This work highlight the formal relation between the two approaches.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; HU Shan
2006-01-01
We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.
Graphical description of unitary transformations on hypergraph states
Gachechiladze, Mariami; Tsimakuridze, Nikoloz; Gühne, Otfried
2017-05-01
Hypergraph states form a family of multiparticle quantum states that generalizes cluster states and graph states. We study the action and graphical representation of nonlocal unitary transformations between hypergraph states. This leads to a generalization of local complementation and graphical rules for various gates, such as the CNOT gate and the Toffoli gate. As an application, we show that already for five qubits local Pauli operations are not sufficient to check local equivalence of hypergraph states. Furthermore, we use our rules to construct entanglement witnesses for three-uniform hypergraph states.
Institute of Scientific and Technical Information of China (English)
WANG Shao-Kai; REN Ji-Gang; PENG Cheng-Zhi; JIANG Shuo; WANG Xiang-Bin
2007-01-01
We report a method to realize the arbitrary inverse unitary transformation imposed by a single-mode fibre on photon's polarization by the succession of two quarter-wave plates and a half-wave plate. The process of realization by polarization state vector. The method is meaningful in quantum communication experiment such as quantum teleportation, in which an unknown arbitrary quantum state should be kept to be unchanged in the case of using a single-mode fibre for time delay.
Husserlian phenomenology and nursing in a unitary-transformative paradigm
DEFF Research Database (Denmark)
Hall, Elisabeth
1996-01-01
The aim of this article is to discuss Husserlian phenomenology as philosophy and methodology, and its relevance for nursing research. The main content in Husserl's phenomenological world view is described and compared to the unitary-transformative paradigm as mentioned by Newman et al....... The phenomenological methodology according to Spiegelberg is described, and exemplified through the author's ongoing study. Different critiques of phenomenology and phenomenological reports are mentioned, and the phenomenological description is illustrated as the metaphor «using a handful of colors». The metaphor...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...
Nakajima, Yuya; Seino, Junji; Nakai, Hiromi
2016-05-10
An analytical energy gradient for the spin-dependent general Hartree-Fock method based on the infinite-order Douglas-Kroll-Hess (IODKH) method was developed. To treat realistic systems, the local unitary transformation (LUT) scheme was employed both in energy and energy gradient calculations. The present energy gradient method was numerically assessed to investigate the accuracy in several diatomic molecules containing fifth- and sixth-period elements and to examine the efficiency in one-, two-, and three-dimensional silver clusters. To arrive at a practical calculation, we also determined the geometrical parameters of fac-tris(2-phenylpyridine)iridium and investigated the efficiency. The numerical results confirmed that the present method describes a highly accurate relativistic effect with high efficiency. The present method can be a powerful scheme for determining geometries of large molecules, including heavy-element atoms.
Molecular Quantum Computing by an Optimal Control Algorithm for Unitary Transformations
Palao, J P; Palao, Jose P.; Kosloff, Ronnie
2002-01-01
Quantum computation is based on implementing selected unitary transformations which represent algorithms. A generalized optimal control theory is used to find the driving field that generates a prespecified unitary transformation. The approach is illustrated in the implementation of one and two qubits gates in model molecular systems.
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Potential Energy Surfaces Using Algebraic Methods Based on Unitary Groups
Directory of Open Access Journals (Sweden)
Renato Lemus
2011-01-01
Full Text Available This contribution reviews the recent advances to estimate the potential energy surfaces through algebraic methods based on the unitary groups used to describe the molecular vibrational degrees of freedom. The basic idea is to introduce the unitary group approach in the context of the traditional approach, where the Hamiltonian is expanded in terms of coordinates and momenta. In the presentation of this paper, several representative molecular systems that permit to illustrate both the different algebraic approaches as well as the usual problems encountered in the vibrational description in terms of internal coordinates are presented. Methods based on coherent states are also discussed.
Accurate and robust unitary transformation of a high-dimensional quantum system
Anderson, B E; Riofrío, C A; Deutsch, I H; Jessen, P S
2014-01-01
Quantum control in large dimensional Hilbert spaces is essential for realizing the power of quantum information processing. For closed quantum systems the relevant input/output maps are unitary transformations, and the fundamental challenge becomes how to implement these with high fidelity in the presence of experimental imperfections and decoherence. For two-level systems (qubits) most aspects of unitary control are well understood, but for systems with Hilbert space dimension d>2 (qudits), many questions remain regarding the optimal design of control Hamiltonians and the feasibility of robust implementation. Here we show that arbitrary, randomly chosen unitary transformations can be efficiently designed and implemented in a large dimensional Hilbert space (d=16) associated with the electronic ground state of atomic 133Cs, achieving fidelities above 0.98 as measured by randomized benchmarking. Generalizing the concepts of inhomogeneous control and dynamical decoupling to d>2 systems, we further demonstrate t...
Institute of Scientific and Technical Information of China (English)
YAN Feng-Li; GAO Ting; LI You-Cheng
2008-01-01
@@ We propose a scheme of quantum secret sharing between Alice's group and Bob's group with single photons and unitary transformations. In the protocol, one member in Alice's group prepares a sequence of single photons in one of four different states, while other members directly encode their information on the sequence of single photons via unitary operations; after that, the last member sends the sequence of single photons to Bob's group.Then Bob's, except for the last one, do work similarly. Finally the last member in Bob's group measures the qubits. If the security of the quantum channel is guaranteed by some tests, then the qubit states sent by the last member of Alice's group can be used as key bits for secret sharing. It is shown that this scheme is safe.
Cowling, W R
2001-06-01
Unitary appreciative inquiry is described as an orientation, process, and approach for illuminating the wholeness, uniqueness, and essence that are the pattern of human life. It was designed to bring the concepts, assumptions, and perspectives of the science of unitary human beings into reality as a mode of inquiry. Unitary appreciative inquiry provides a way of giving fullest attention to important facets of human life that often are not fully accounted for in current methods that have a heavier emphasis on diagnostic representations. The participatory, synoptic, and transformative qualities of the unitary appreciative process are explicated. The critical dimensions of nursing knowledge development expressed in dialectics of the general and the particular, action and theory, stories and numbers, sense and soul, aesthetics and empirics, and interpretation and emancipation are considered in the context of the unitary appreciative stance. Issues of legitimacy of knowledge and credibility of research are posed and examined in the context of four quality standards that are deemed important to evaluate the worthiness of unitary appreciative inquiry for the advancement of nursing science and practice.
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Ling; XUE Kang; GE Mo-Lin
2009-01-01
We show that all pure entangled states of two d-dimensional quantum systems (i.e.,two qudits) can be generated from an initial separable state via a universal Yang-Baxter matrix if one is assisted by local unitary transformations.
Energy Technology Data Exchange (ETDEWEB)
Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2009-12-15
Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)
Quantum Deformed Canonical Transformations, W_{\\infty}-algebras and Unitary Transformations
Gozzi, E.; Reuter, M.
2003-01-01
We investigate the algebraic properties of the quantum counterpart of the classical canonical transformations using the symbol-calculus approach to quantum mechanics. In this framework we construct a set of pseudo-differential operators which act on the symbols of operators, i.e., on functions defined over phase-space. They act as operatorial left- and right- multiplication and form a $W_{\\infty}\\times W_{\\infty}$- algebra which contracts to its diagonal subalgebra in the classical limit. We ...
Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki
2006-01-01
Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.
Quantum Deformed Canonical Transformations, W_{infty}-algebras and Unitary Transformations
Gozzi, E
1994-01-01
We investigate the algebraic properties of the quantum counterpart of the classical canonical transformations using the symbol-calculus approach to quantum mechanics. In this framework we construct a set of pseudo-differential operators which act on the symbols of operators, i.e., on functions defined over phase-space. They act as operatorial left- and right- multiplication and form a $W_{infty}times W_{infty}$- algebra which contracts to its diagonal subalgebra in the classical limit. We also describe the Gel'fand-Naimark-Segal (GNS) construction in this language and show that the GNS representation-space (a doubled Hilbert space) is closely related to the algebra of functions over phase-space equipped with the star-product of the symbol-calculus.
Janzing, D; Janzing, Dominik; Beth, Thomas
2001-01-01
Estimating the eigenvalues of a unitary transformation U by standard phase estimation requires the implementation of controlled-U-gates which are not available if U is only given as a black box. We show that a simple trick allows to measure eigenvalues of U\\otimes U^\\dagger even in this case. Running the algorithm several times allows therefore to estimate the autocorrelation function of the density of eigenstates of U. This can be applied to find periodicities in the energy spectrum of a quantum system with unknown Hamiltonian if it can be coupled to a quantum computer.
Institute of Scientific and Technical Information of China (English)
LIN Song; WEN Qiao-Yan; LIU Xiao-Fen
2009-01-01
In a recent paper[Yan F L et al.Chin.Phys.Lett.25(2008)1187],a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented.We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack.Finally,we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556
Bosonic And Graded Color-flavor Transformation For The Special Unitary Group
Wei, Y
2005-01-01
The color-flavor transformation is an integral identity which first appeared in the study of disordered systems in condensed matter physics. Since then it has been successfully applied to many fields of physics. In this thesis, we study its applications in lattice quantum chromodynamics (QCD), the fundamental theory to study the non-perturbative properties of strongly interacting particles. The advantage of this transformation is that it can simplify the numerical simulations as well as provide analytical insights into lattice gauge theory. We begin with an outline of the background and the motivation for this thesis. Then we briefly introduce a few general concepts of lattice gauge theory. Next we review the fermionic color-flavor transformation for SU( Nc), where Nc is the number of color degrees of freedom, and its applications in fermion- induced QCD. By studying the resulting baryon loop expansion, we recognize both the advantages of this transformation and the difficulties associated with fermion-induce...
Unitary lens semiconductor device
Lear, Kevin L.
1997-01-01
A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.
Group theoretic structures in the estimation of an unknown unitary transformation
Chiribella, G
2010-01-01
This paper presents a series of general results about the optimal estimation of physical transformations in a given symmetry group. In particular, it is shown how the different symmetries of the problem determine different properties of the optimal estimation strategy. The paper also contains a discussion about the role of entanglement between the representation and multiplicity spaces and about the optimality of square-root measurements.
Spatial Block Codes Based on Unitary Transformations Derived from Orthonormal Polynomial Sets
Directory of Open Access Journals (Sweden)
Mandyam Giridhar D
2002-01-01
Full Text Available Recent work in the development of diversity transformations for wireless systems has produced a theoretical framework for space-time block codes. Such codes are beneficial in that they may be easily concatenated with interleaved trellis codes and yet still may be decoded separately. In this paper, a theoretical framework is provided for the generation of spatial block codes of arbitrary dimensionality through the use of orthonormal polynomial sets. While these codes cannot maximize theoretical diversity performance for given dimensionality, they still provide performance improvements over the single-antenna case. In particular, their application to closed-loop transmit diversity systems is proposed, as the bandwidth necessary for feedback using these types of codes is fixed regardless of the number of antennas used. Simulation data is provided demonstrating these types of codes′ performance under this implementation as compared not only to the single-antenna case but also to the two-antenna code derived from the Radon-Hurwitz construction.
Energy Technology Data Exchange (ETDEWEB)
Sokolov, Alexander Yu., E-mail: asokolov@uga.edu; Schaefer, Henry F. [Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Kutzelnigg, Werner [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2014-08-21
A new approach to density cumulant functional theory is developed that derives density cumulant N-representability conditions from an approximate Fock space unitary transformation. We present explicit equations for the third- and fourth-order two-particle cumulant N-representability, as well as the second-order contributions that depend on the connected three-particle density cumulant. These conditions are used to formulate the ODC-13 method and the non-iterative (λ{sub 3}) correction that employ an incomplete description of the fourth-order two-particle cumulant N-representability and the second-order three-particle correlation effects, respectively. We perform an analysis of the ODC-13 N-representability description for the dissociation of H{sub 2} and apply the ODC-13 method and the (λ{sub 3}) correction to diatomic molecules with multiple bond character and the symmetry-breaking tetraoxygen cation (O{sub 4}{sup +}). For the O{sub 4}{sup +} molecule, the vibrational frequencies of the ODC-13(λ{sub 3}) method do not exhibit spatial symmetry breaking and are in a good agreement with the recent infrared photodissociation experiment. We report the O{sub 4}{sup +} equilibrium structure, harmonic frequencies, and dissociation energy computed using ODC-13(λ{sub 3}) with a diffuse, core-correlated aug-cc-pCVTZ basis set.
Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan
2013-04-01
The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p value for money of PFI as well as towards Malaysian economical growth.
Decomposition of Unitary Matrices for Finding Quantum Circuits
Daskin, Anmer
2010-01-01
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Here, we use the group leaders optimization algorithm, which is an effective and simple global optimization algorithm, to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. Using this procedure, we present new circuit designs for the simulation of the Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, the sender part of the quantum teleportation and the Hamiltonian for the Hydrogen molecule. In addition, we give two algorithmic methods for the construction of unitary matrices with respect to the different types of the quantum control gates. Our results indicate that the procedure is effective, general, and easy to implement.
Scalable Noise Estimation with Random Unitary Operators
Emerson, J; Zyczkowski, K; Emerson, Joseph; Alicki, Robert; Zyczkowski, Karol
2005-01-01
We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies a...
Scalable noise estimation with random unitary operators
Energy Technology Data Exchange (ETDEWEB)
Emerson, Joseph [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, PL 80-952 Gdansk (Poland); Zyczkowski, Karol [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2005-10-01
We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation, quantified by the trace of the superoperator describing the non-unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies, additional information about the noise can be determined.
Transformation method and wave control
Chang, Zheng; Hu, Jin; Hu, Geng-Kai
2010-12-01
Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.
Transformative Mixed Methods Research
Mertens, Donna M.
2010-01-01
Paradigms serve as metaphysical frameworks that guide researchers in the identification and clarification of their beliefs with regard to ethics, reality, knowledge, and methodology. The transformative paradigm is explained and illustrated as a framework for researchers who place a priority on social justice and the furtherance of human rights.…
Transformative Mixed Methods Research
Mertens, Donna M.
2010-01-01
Paradigms serve as metaphysical frameworks that guide researchers in the identification and clarification of their beliefs with regard to ethics, reality, knowledge, and methodology. The transformative paradigm is explained and illustrated as a framework for researchers who place a priority on social justice and the furtherance of human rights.…
Pancherz, H; Schäffer, C
1999-01-01
The aims of this individual-based study were 1. to assess the actual space requirements of the permanent canines and premolars, 2. to test the reliability of the Moyers method in predicting a space deficiency at the 75% confidence level and 3. to try to find a reliable unitary prediction value (= unitary value) as a possible substitute for the calculated Moyers values. Dental cast measurements were taken of the permanent dentition of 100 females and 100 males. The average sum of the widths of the maxillary and mandibular permanent canines and premolars was 20.8 mm (17.3 to 24.3 mm). The Moyers method could predict a maxillary space deficiency in 77.5% and a mandibular space deficiency in 65.5% of the subjects. The unitary value of 22.0 mm made it possible to predict a space deficiency in 83.5% of the subjects. The unitary value thus had a higher confidence level (83.5%) than the 75% level stated by Moyers and might thus substitute the calculated Moyers values. Furthermore, the unitary value is easy and quick to handle.
Direct dialling of Haar random unitary matrices
Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony
2017-03-01
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
Despair: a unitary appreciative inquiry.
Cowling, W Richard
2004-01-01
A unitary appreciative case study method was used to explicate unitary understandings of despair embedded in the unique personal life contexts of the participants. Fourteen women engaged in dialogical, appreciative interviews that led to the creation of profiles of the life pattern or course associated with despair for each woman. Three exemplar cases are detailed including the profiles that incorporate story, metaphor, music, and imagery. The voices of the women provide morphogenic knowledge of the contexts, nature, consequences, and contributions of despair as well as practical guidance for healthcare providers.
Composed ensembles of random unitary ensembles
Pozniak, M; Kus, M; Pozniak, Marcin; Zyczkowski, Karol; Kus, Marek
1997-01-01
Composed ensembles of random unitary matrices are defined via products of matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate statistical properties of spectra of some composed ensembles and demonstrate their physical relevance. We discuss also the methods of generating random matrices distributed according to invariant Haar measure on the orthogonal and unitary group.
DOA estimation for monostatic MIMO radar based on unitary root-MUSIC
Wang, Wei; Wang, Xianpeng; Li, Xin; Song, Hongru
2013-11-01
Direction of arrival (DOA) estimation is an important issue for monostatic MIMO radar. A DOA estimation method for monostatic MIMO radar based on unitary root-MUSIC is presented in this article. In the presented method, a reduced-dimension matrix is first utilised to transform the high dimension of received signal data into low dimension one. Then, a low-dimension real-value covariance matrix is obtained by forward-backward (FB) averaging and unitary transformation. The DOA of targets can be achieved by unitary root-MUSIC. Due to the FB averaging of received signal data and the eigendecomposition of the real-valued matrix covariance, the proposed method owns better angle estimation performance and lower computational complexity. The simulation results of the proposed method are presented and the performances are investigated and discussed.
Pseudo-random unitary operators for quantum information processing.
Emerson, Joseph; Weinstein, Yaakov S; Saraceno, Marcos; Lloyd, Seth; Cory, David G
2003-12-19
In close analogy to the fundamental role of random numbers in classical information theory, random operators are a basic component of quantum information theory. Unfortunately, the implementation of random unitary operators on a quantum processor is exponentially hard. Here we introduce a method for generating pseudo-random unitary operators that can reproduce those statistical properties of random unitary operators most relevant to quantum information tasks. This method requires exponentially fewer resources, and hence enables the practical application of random unitary operators in quantum communication and information processing protocols. Using a nuclear magnetic resonance quantum processor, we were able to realize pseudorandom unitary operators that reproduce the expected random distribution of matrix elements.
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Red'kov, V M; Tokarevskaya, N G
2007-01-01
Parametrization of 4x4 - matrices G of the complex linear group GL(4.C) in terms of four complex vector-parameters G=G(k,m,n,l) is investigated. Additional restrictions separating some sub-groups of GL(4.C) are given explicitly. In the given parametrization, the problem of inverting any 4 x 4 - matrix G is solved. Expression for determinant of any matrix G is found: detG =F(k,m,n,l). Unitarity conditions on the base of complex vector parametrization in the theory of the group GL(4.C) is investigated. Unitarity conditions have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Two simplest types of solutions have been constructed: 1-parametric Abelian subgroup G_{0} of 4 x 4 unitary matrices; three 2-parametric subgroups; one 4-parametric unitary sub-group. Curvilinear coordinates to cover these subgroups have been found.
Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng
2013-03-28
A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Chengpeng Hao
2013-03-01
Full Text Available A unitary transformation-based algorithm is proposed for two-dimensional (2-D direction-of-arrival (DOA estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.
Transform methods for solving partial differential equations
Duffy, Dean G
2004-01-01
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found analytically, numeric and asymptotic techniques now exist for their inversion, and because the problem retains some of its analytic aspect, one can gain greater physical insight than typically obtained from a purely numerical approach. Transform Methods for Solving Partial Differential Equations, Second Edition illustrates the use of Laplace, Fourier, and Hankel transforms to solve partial differential equations encountered in science and engineering. The author has expanded the second edition to provide a broader perspective on the applicability and use of transform methods and incorporated a number of significant refinements: New in the Second Edition: ·...
Endoscopic classification of representations of quasi-split unitary groups
Mok, Chung Pang
2015-01-01
In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.
Fourier Transform Methods. Chapter 4
Kaplan, Simon G.; Quijada, Manuel A.
2015-01-01
This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..
Entanglement quantification by local unitaries
Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F
2011-01-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...
Lifetime estimation methods in power transformer insulation
Directory of Open Access Journals (Sweden)
Mohammad Ali Taghikhani
2012-10-01
Full Text Available Mineral oil in the power transformer has an important role in the cooling, insulation aging and chemical reactions such as oxidation. Oil temperature increases will cause quality loss. The oil should be regularly control in necessary time. Studies have been done on power transformers oils that are used in different age in Iranian power grid to identify the true relationship between age and other characteristics of power transformer oil. In this paper the first method to estimate the life of power transformer insulation (oil is based on Arrhenius law. The Arrhenius law can provide loss of power transformer oil quality and estimates remaining life. The second method that is studies to estimate the life of power transformer is the paper insulation life prediction at temperature160 ° C.
Lifetime estimation methods in power transformer insulation
Mohammad Ali Taghikhani
2012-01-01
Mineral oil in the power transformer has an important role in the cooling, insulation aging and chemical reactions such as oxidation. Oil temperature increases will cause quality loss. The oil should be regularly control in necessary time. Studies have been done on power transformers oils that are used in different age in Iranian power grid to identify the true relationship between age and other characteristics of power transformer oil. In this paper the first method to estimate the life of p...
Uncertainty relations for general unitary operators
Bagchi, Shrobona; Pati, Arun Kumar
2016-10-01
We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of a Hilbert space. We show that our bounds are tighter in various cases than the ones existing in the current literature. Using the uncertainty relation for the unitary operators, we obtain the tight state-independent lower bound for the uncertainty of two Pauli observables and anticommuting observables in higher dimensions. With regard to the minimum-uncertainty states, we derive the minimum-uncertainty state equation by the analytic method and relate this to the ground-state problem of the Harper Hamiltonian. Furthermore, the higher-dimensional limit of the uncertainty relations and minimum-uncertainty states are explored. From an operational point of view, we show that the uncertainty in the unitary operator is directly related to the visibility of quantum interference in an interferometer where one arm of the interferometer is affected by a unitary operator. This shows a principle of preparation uncertainty, i.e., for any quantum system, the amount of visibility for two general noncommuting unitary operators is nontrivially upper bounded.
On unitary reconstruction of linear optical networks
Tillmann, Max; Walther, Philip
2015-01-01
Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.
DISCUSSION METHODS: MODIFICATION AND TRANSFORMATION
Directory of Open Access Journals (Sweden)
Abbasova, A.A.
2016-03-01
Full Text Available This article is about how to the importance of selecting the optimal methods of stimulation and motivation to learn. In modern conditions it is very important that the teacher gave the students ready knowledge, and pointed the way for the acquisition of knowledge, taught to acquire knowledge. This requires the selection of effective forms of language and literature work with texts of different types and styles of speech, listening, speaking. In this regard, special attention should be given lessons of speech development. There is a special group of methods to stimulate the development of communicative competence. Among them, and the method of discussion, which is increasingly being used in the classroom in the Russian language
Free Energies and Fluctuations for the Unitary Brownian Motion
Dahlqvist, Antoine
2016-12-01
We show that the Laplace transforms of traces of words in independent unitary Brownian motions converge towards an analytic function on a non trivial disc. These results allow one to study the asymptotic behavior of Wilson loops under the unitary Yang-Mills measure on the plane with a potential. The limiting objects obtained are shown to be characterized by equations analogue to Schwinger-Dyson's ones, named here after Makeenko and Migdal.
Digital Autofocusing Method Based on Contourlet Transform
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The autofocusing technique based on contourlet transform is discussed in this paper and an autofocusing method is proposed for images with much information in certain directions. The experimental results show that theproposed method can focus accurately and the sensitivity ratio is higher than that of the other autofocusing methods based on conventional image processing
Deformations of polyhedra and polygons by the unitary group
Livine, Etera R.
2013-12-01
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient {{C}}^{2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in {{C}}2 satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N-2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a
A dynamic transformation method for modal synthesis.
Kuhar, E. J.; Stahle, C. V.
1973-01-01
This paper presents a condensation method for large discrete parameter vibration analysis of complex structures that greatly reduces truncation errors and provides accurate definition of modes in a selected frequency range. A dynamic transformation is obtained from the partitioned equations of motion that relates modes not explicity in the condensed solution to the retained modes at a selected system frequency. The generalized mass and stiffness matrices, obtained with existing modal synthesis methods, are reduced using this transformation and solved. Revised solutions are then obtained using new transformations at the calculated eigenvalues and are also used to assess the accuracy of the results. If all the modes of interest have not been obtained, the results are used to select a new set of retained coordinates and a new transformation frequency, and the procedure is repeated for another group of modes.
Alpay, D.; Dijksma, A.; Langer, H.
2004-01-01
We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.
Physical methods for genetic plant transformation
Rivera, Ana Leonor; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2012-09-01
Production of transgenic plants is a routine process for many crop species. Transgenes are introduced into plants to confer novel traits such as improved nutritional qualities, tolerance to pollutants, resistance to pathogens and for studies of plant metabolism. Nowadays, it is possible to insert genes from plants evolutionary distant from the host plant, as well as from fungi, viruses, bacteria and even animals. Genetic transformation requires penetration of the transgene through the plant cell wall, facilitated by biological or physical methods. The objective of this article is to review the state of the art of the physical methods used for genetic plant transformation and to describe the basic physics behind them.
Canonical transformation method in classical electrodynamics
Pavlenko, Yu. G.
1983-08-01
The solutions of Maxwell's equations in the parabolic equation approximation is obtained on the basis of the canonical transformation method. The Hamiltonian form of the equations for the field in an anisotropic stratified medium is also examined. The perturbation theory for the calculation of the wave reflection and transmission coefficients is developed.
Directory of Open Access Journals (Sweden)
Hamed Faghanpour Ganji
2016-09-01
Full Text Available The present study further examines two recent semi-analytic methods, a reduced order of nonlinear differential transformation method (also called RDTM and differential transformation method along with Pade approximation to discuss Jaulent–Miodek and coupled Whitham–Broer–Kaup equations. The basic ideas of these methods are briefly introduced and performance of the proposed methods for above mentioned equations is evaluated via comparing with exact solution. The results illustrate that the so-called DTM method, unlike RDTM, due to the presence of secular terms (similar to perturbation method, cannot be found practical for nonlinear partial differential equations (particularly in Acoustic and Wave propagation problems even through utilizing Pade approximation; meanwhile, RDTM method, despite its simplicity and rapid convergence, assured a significant accuracy and great agreement, and thus it is fair to say that nonlinear problems together with Acoustic application which cannot be solved via Analytical methods, can be studied with reduced order of nonlinear differential transformation method.
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
Transition from Poisson to circular unitary ensemble
Indian Academy of Sciences (India)
Vinayak; Akhilesh Pandey
2009-09-01
Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓ CUE to CUE transition where CUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.
All maximally entangling unitary operators
Energy Technology Data Exchange (ETDEWEB)
Cohen, Scott M. [Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282 (United States); Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2011-11-15
We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.
Multiphase Transformer Modelling using Finite Element Method
Directory of Open Access Journals (Sweden)
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Parallel algorithms for the spectral transform method
Energy Technology Data Exchange (ETDEWEB)
Foster, I.T. [Argonne National Lab., IL (United States); Worley, P.H. [Oak Ridge National Lab., TN (United States)
1994-04-01
The spectral transform method is a standard numerical technique for solving partial differential equations on a sphere and is widely used in atmospheric circulation models. Recent research has identified several promising algorithms for implementing this method on massively parallel computers; however, no detailed comparison of the different algorithms has previously been attempted. In this paper, we describe these different parallel algorithms and report on computational experiments that we have conducted to evaluate their efficiency on parallel computers. The experiments used a testbed code that solves the nonlinear shallow water equations or a sphere; considerable care was taken to ensure that the experiments provide a fair comparison of the different algorithms and that the results are relevant to global models. We focus on hypercube- and mesh-connected multicomputers with cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon, and the nCUBE/2, but also indicate how the results extend to other parallel computer architectures. The results of this study are relevant not only to the spectral transform method but also to multidimensional FFTs and other parallel transforms.
Ensemble transform sensitivity method for adaptive observations
Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan
2016-01-01
The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.
Epelbaum, E; Meißner, Ulf G
2000-01-01
We employ the chiral nucleon-nucleon potential derived in [Nucl. Phys. A 637 (1998) 107] to study bound and scattering states in the two-nucleon system. At next-to-leading order, this potential is the sum of renormalized one-pion and two-pion exchange and contact interactions. At next-to-next-to-leading order, we have additional chiral two-pion exchange with low-energy constants determined from pion-nucleon scattering. Alternatively, we consider the DELTA(1232) as an explicit degree of freedom in the effective field theory. The nine parameters related to the contact interactions can be determined by a fit to the np S- and P-waves and the mixing parameter epsilon sub 1 for laboratory energies below 100 MeV. The predicted phase shifts and mixing parameters for higher energies and higher angular momenta are mostly well described for energies below 300 MeV. The S-waves are described as precisely as in modern phenomenological potentials. We find a good description of the deuteron properties.
The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle
Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz
2003-01-01
The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced
Beamspace Unitary ESPRIT Algorithm for Angle Estimation in Bistatic MIMO Radar
Directory of Open Access Journals (Sweden)
Dang Xiaofang
2015-01-01
Full Text Available The beamspace unitary ESPRIT (B-UESPRIT algorithm for estimating the joint direction of arrival (DOA and the direction of departure (DOD in bistatic multiple-input multiple-output (MIMO radar is proposed. The conjugate centrosymmetrized DFT matrix is utilized to retain the rotational invariance structure in the beamspace transformation for both the receiving array and the transmitting array. Then the real-valued unitary ESPRIT algorithm is used to estimate DODs and DOAs which have been paired automatically. The proposed algorithm does not require peak searching, presents low complexity, and provides a significant better performance compared to some existing methods, such as the element-space ESPRIT (E-ESPRIT algorithm and the beamspace ESPRIT (B-ESPRIT algorithm for bistatic MIMO radar. Simulation results are conducted to show these conclusions.
Exact and Approximate Unitary 2-Designs: Constructions and Applications
Dankert, C; Emerson, J; Livine, E; Dankert, Christoph; Cleve, Richard; Emerson, Joseph; Livine, Etera
2006-01-01
We consider an extension of the concept of spherical t-designs to the unitary group in order to develop a unified framework for analyzing the resource requirements of randomized quantum algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop a method for generating an epsilon-approximate unitary 2-design that requires only O(n log(1/epsilon)) gates, where n is the number of qubits and epsilon is an appropriate measure of precision. These results lead to a protocol with exponential resource savings over existing experimental methods for estimating the characteristic fidelities of physical quantum processes.
Virial theorem and universality in a unitary fermi gas.
Thomas, J E; Kinast, J; Turlapov, A
2005-09-16
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.
Unitary pattern: a review of theoretical literature.
Musker, Kathleen M
2012-07-01
It is the purpose of this article to illuminate the phenomenon of unitary pattern through a review of theoretical literature. Unitary pattern is a phenomenon of significance to the discipline of nursing because it is manifested in and informs all person-environment health experiences. Unitary pattern was illuminated by: addressing the barriers to understanding the phenomenon, presenting a definition of unitary pattern, and exploring Eastern and Western theoretical literature which address unitary pattern in a way that is congruent with the definition presented. This illumination of unitary pattern will expand nursing knowledge and contribute to the discipline of nursing.
Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization
Cariolaro, Gianfranco; Pierobon, Gianfranco
2016-12-01
The Bloch-Messiah (BM) reduction allows the decomposition of an arbitrarily complicated Gaussian unitary into a very simple scheme in which linear optical components are separated from nonlinear ones. The nonlinear part is due to the squeezing possibly present in the Gaussian unitary. The reduction is usually obtained by exploiting the singular value decomposition (SVD) of the matrices appearing in the Bogoliubov transformation of the given Gaussian unitary. This paper discusses a different approach, where the BM reduction is obtained in a straightforward way. It is based on the Takagi factorization of the (complex and symmetric) squeeze matrix and has the advantage of avoiding several matrix operations of the previous approach (polar decomposition, eigendecomposition, SVD, and Takagi factorization). The theory is illustrated with an application example in which the previous and present approaches are compared.
Participatory dreaming: a unitary appreciative inquiry into healing with women abused as children.
Repede, Elizabeth
2011-01-01
Unitary appreciative inquiry was used to explore healing in the lives of 11 women abused as children using a model of participatory dreaming. Aesthetics, imagery, and journaling were used in a participatory design aimed at the appreciation of healing in the lives of the participants as it related to the abuse. Using Cowling's theory of unitary healing, research and practice were combined within a unitary-transformative framework. Participatory dreaming was useful in illuminating the life patterning in the lives of the women and promoted the development of new knowledge and skills that led to change and transformation, both individually and collectively.
Unitary appreciative inquiry: evolution and refinement.
Cowling, W Richard; Repede, Elizabeth
2010-01-01
Unitary appreciative inquiry (UAI), developed over the past 20 years, provides an orientation and process for uncovering human wholeness and discovering life patterning in individuals and groups. Refinements and a description of studies using UAI are presented. Assumptions and conceptual underpinnings of the method distinguishing its contributions from other methods are reported. Data generation strategies that capture human wholeness and elucidate life patterning are proposed. Data synopsis as an alternative to analysis is clarified and explicated. Standards that suggest enhancing the legitimacy of knowledge and credibility of research are specified. Potential expansions of UAI offer possibilities for extending epistemologies, aesthetic integration, and theory development.
Teleportation of M-Qubit Unitary Operations
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 郭光灿
2002-01-01
We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.
NUMERICAL INVERSION OF MULTIDIMENSIONAL LAPLACE TRANSFORMS USING MOMENT METHODS
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hausdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.
Combined Method of Datum Transformation Between Different Coordinate Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method.
Unitary equivalence of quantum walks
Energy Technology Data Exchange (ETDEWEB)
Goyal, Sandeep K., E-mail: sandeep.goyal@ucalgary.ca [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); Konrad, Thomas [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); National Institute for Theoretical Physics (NITheP), KwaZulu-Natal (South Africa); Diósi, Lajos [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O.B. 49 (Hungary)
2015-01-23
Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator.
Transformative, Mixed Methods Checklist for Psychological Research with Mexican Americans
Canales, Genevieve
2013-01-01
This is a description of the creation of a research methods tool, the "Transformative, Mixed Methods Checklist for Psychological Research With Mexican Americans." For conducting literature reviews of and planning mixed methods studies with Mexican Americans, it contains evaluative criteria calling for transformative mixed methods, perspectives…
Transformative, Mixed Methods Checklist for Psychological Research with Mexican Americans
Canales, Genevieve
2013-01-01
This is a description of the creation of a research methods tool, the "Transformative, Mixed Methods Checklist for Psychological Research With Mexican Americans." For conducting literature reviews of and planning mixed methods studies with Mexican Americans, it contains evaluative criteria calling for transformative mixed methods, perspectives…
Methods for genetic transformation in Dendrobium.
da Silva, Jaime A Teixeira; Dobránszki, Judit; Cardoso, Jean Carlos; Chandler, Stephen F; Zeng, Songjun
2016-03-01
The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.
Unitary approach to the quantum forced harmonic oscillator
2014-01-01
In this paper we introduce an alternative approach to studying the evolution of a quantum harmonic oscillator subject to an arbitrary time dependent force. With the purpose of finding the evolution operator, certain unitary transformations are applied successively to Schr\\"odinger's equation reducing it to its simplest form. Therefore, instead of solving the original Schr\\"odinger's partial differential equation in time and space the problem is replaced by a system of ordinary differential eq...
Unitary Application of the Quantum Error Correction Codes
Institute of Scientific and Technical Information of China (English)
游波; 许可; 吴小华
2012-01-01
For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps： the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.
Non-unitary fusion categories and their doubles via endomorphisms
Evans, David E
2015-01-01
We realise non-unitary fusion categories using subfactor-like methods, and compute their quantum doubles and modular data. For concreteness we focus on generalising the Haagerup-Izumi family of Q-systems. For example, we construct endomorphism realisations of the (non-unitary) Yang-Lee model, and non-unitary analogues of one of the even subsystems of the Haagerup subfactor and of the Grossman-Snyder system. We supplement Izumi's equations for identifying the half-braidings, which were incomplete even in his Q-system setting. We conjecture a remarkably simple form for the modular S and T matrices of the doubles of these fusion categories. We would expect all of these doubles to be realised as the category of modules of a rational VOA and conformal net of factors. We expect our approach will also suffice to realise the non-semisimple tensor categories arising in logarithmic conformal field theories.
Truncations of random unitary matrices
Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen
1999-01-01
We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
YU Fei; TONG HongXi
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications,especially in multiantenna differential modulation.Recently,two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced.We propose a new construction method based on the constructions.In the present paper,fully diverse codes for systems of odd prime number antennas are obtained from this construction.Space-time codes from present construction are found to have better error performance than many best known ones.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.
Singular Value Decomposition for Unitary Symmetric Matrix
Institute of Scientific and Technical Information of China (English)
ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda
2003-01-01
A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.
Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization
2010-06-01
AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c
The Wilson loop in the Gaussian Unitary Ensemble
Gurau, Razvan
2016-01-01
Using the supersymmetric formalism we compute exactly at finite $N$ the expectation of the Wilson loop in the Gaussian Unitary Ensemble and derive an exact formula for the spectral density at finite $N$. We obtain the same result by a second method relying on enumerative combinatorics and show that it leads to a novel proof of the Harer-Zagier series formula.
Linear programming bounds for unitary space time codes
Creignou, Jean
2008-01-01
The linear programming method is applied to the space $\\U_n(\\C)$ of unitary matrices in order to obtain bounds for codes relative to the diversity sum and the diversity product. Theoretical and numerical results improving previously known bounds are derived.
Directory of Open Access Journals (Sweden)
Gray John C
2006-11-01
Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.
Unitary symmetry, combinatorics, and special functions
Energy Technology Data Exchange (ETDEWEB)
Louck, J.D.
1996-12-31
From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.
Spectral stability of unitary network models
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Complex positive maps and quaternionic unitary evolution
Energy Technology Data Exchange (ETDEWEB)
Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita di Lecce and INFN, Sezione di Lecce, I-73100 Lecce (Italy)
2006-08-04
The complex projection of any n-dimensional quaternionic unitary dynamics defines a one-parameter positive semigroup dynamics. We show that the converse is also true, i.e. that any one-parameter positive semigroup dynamics of complex density matrices with maximal rank can be obtained as the complex projection of suitable quaternionic unitary dynamics.
Tensor Products of Random Unitary Matrices
Tkocz, Tomasz; Kus, Marek; Zeitouni, Ofer; Zyczkowski, Karol
2012-01-01
Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M=2, N become large or M become large and N=2.
Universal unitary gate for single-photon spinorbit ququart states
Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Santamato, Enrico
2009-01-01
The recently demonstrated possibility of entangling opposite values of the orbital angular momentum (OAM) of a photon with its spin enables the realization of nontrivial one-photon spinorbit ququart states, i.e., four-dimensional photon states for quantum information purposes. Hitherto, however, an optical device able to perform arbitrary unitary transformations on such spinorbit photon states has not been proposed yet. In this work we show how to realize such a ``universal unitary gate'' device, based only on existing optical technology, and describe its operation. Besides the quantum information field, the proposed device may find applications wherever an efficient and convenient manipulation of the combined OAM and spin of light is required.
Unitary Noise and the Mermin-GHZ Game
Fialík, Ivan
2010-01-01
Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Unitary Noise and the Mermin-GHZ Game
Institute of Scientific and Technical Information of China (English)
Ivan Fialík
2011-01-01
Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Unitary Noise and the Mermin-GHZ Game
Directory of Open Access Journals (Sweden)
Ivan Fialík
2010-06-01
Full Text Available Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Derandomizing Quantum Circuits with Measurement-Based Unitary Designs
Turner, Peter S.; Markham, Damian
2016-05-01
Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.
Moment-Based Method to Estimate Image Affine Transform
Institute of Scientific and Technical Information of China (English)
FENG Guo-rui; JIANG Ling-ge
2005-01-01
The estimation of affine transform is a crucial problem in the image recognition field. This paper resorted to some invariant properties under translation, rotation and scaling, and proposed a simple method to estimate the affine transform kernel of the two-dimensional gray image. Maps, applying to the original, produce some correlative points that can accurately reflect the affine transform feature of the image. Furthermore, unknown variables existing in the kernel of the transform are calculated. The whole scheme only refers to one-order moment,therefore, it has very good stability.
Improved method for pulse sorting based on PRI transform
Ren, Chunhui; Cao, Junqing; Fu, Yusheng; Barner, Kenneth E.
2014-06-01
To solve the problem of pulse sorting in complex electromagnetic environment, we propose an improved method for pulse sorting through in-depth analysis of the PRI transform algorithm principle and the advantages and disadvantages in this paper. The method is based on the traditional PRI transform algorithm, using spectral analysis of PRI transform spectrum to estimate the PRI centre value of jitter signal. Simulation results indicate that, the improved sorting method overcome the shortcomings of the traditional PRI jitter separation algorithm which cannot effectively sort jitter pulse sequence, in addition to the advantages of simple and accurate.
Hough transform method for track finding in center drift chamber
Azmi, K. A. Mohammad Kamal; Wan Abdullah, W. A. T.; Ibrahim, Zainol Abidin
2016-01-01
Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.
Hough transform method for track finding in center drift chamber
Energy Technology Data Exchange (ETDEWEB)
Azmi, K. A. Mohammad Kamal, E-mail: khasmidatul@siswa.um.edu.my; Wan Abdullah, W. A. T., E-mail: wat@um.edu.my; Ibrahim, Zainol Abidin [National Centre for Particle Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2016-01-22
Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.
Graph-Analytical Method of Determining Impedance in Electrical Transformers
Directory of Open Access Journals (Sweden)
Zorica Bogicevic
2015-01-01
Full Text Available This paper presents a graph-analytical method for determining the electrical impedance of alternate energy sources, especially small power transformers and current transformers in electric networks. Unlike conventional short-circuit and idle tests, according to proposed method, in this paper, transformer parameters are determined in a new way, which is based on measurement of voltages and currents on the active and reactive load (inductive or capacitive. The effectiveness of the proposed model was verified using an adapted simulation in the software package MATLAB Simulink. The simulation was performed for three types of ABB transformers with a 100% load. Simulation results were obtained for power transformers: Sn1=1 [MVA], Sn2=2 [MVA], Sn3=3.15 [MVA]. If we compare measurement result values of RT, XT, which are contained in a brochure for ABB transformers and those obtained through simulation, different tolerances are obtained. For reactance results, deviations are up to 20% for all three tested transformers. For results of active resistance tolerances are up to 5% for all three tested transformers. This method can be used not only to determine the active and inductive AC power source parameters but also to determine and analyze the impendence of electrical sources with high frequencies.
Anisotropy minimization via least squares method for transformation optics.
Junqueira, Mateus A F C; Gabrielli, Lucas H; Spadoti, Danilo H
2014-07-28
In this work the least squares method is used to reduce anisotropy in transformation optics technique. To apply the least squares method a power series is added on the coordinate transformation functions. The series coefficients were calculated to reduce the deviations in Cauchy-Riemann equations, which, when satisfied, result in both conformal transformations and isotropic media. We also present a mathematical treatment for the special case of transformation optics to design waveguides. To demonstrate the proposed technique a waveguide with a 30° of bend and with a 50% of increase in its output width was designed. The results show that our technique is simultaneously straightforward to be implement and effective in reducing the anisotropy of the transformation for an extremely low value close to zero.
Direct Linear Transformation Method for Three-Dimensional Cinematography
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Extended Homogeneous Balance Method and Lax Pairs, Backlund Transformation
Institute of Scientific and Technical Information of China (English)
BAI ChengLin
2002-01-01
Using the extended homogeneous balance method, which is very concise and primary, Lax pairs and Backlund transformation for most nonlinear evolution equations, such as the compound KdV-Burgers equation and nonlinear diffusion equation are obtained.
Cell Phones Transform a Science Methods Course
Madden, Lauren
2012-01-01
A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…
Cell Phones Transform a Science Methods Course
Madden, Lauren
2012-01-01
A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…
Constructing Finite Automata with Invertibility by Transformation Method
Institute of Scientific and Technical Information of China (English)
TAO Renji; CHEN Shihua
2000-01-01
Ra, Pb transformations were successfully applied to establish invertibility theory for linear and quasi-linear finite automata over finite fields. In a previous paper, the authors generalized Ra, Rb transformations to deal with nonlinear memory finite automata, and gave sufficient conditions for weak inverse and for weakly invertible memory finite automata and inversion processes concerned;methods by transformation to generate a kind of nonlinear memory finite automata satisfying one of these sufficient conditions were also given.This paper extends the concepts, methods and results to general finite automata, in which states consist of finite input history, finite output history and finite "inner state" history.
Differential Transformation Method for Temperature Distribution in a Radiating Fin
DEFF Research Database (Denmark)
Rahimi, M.; Hosseini, M. J.; Barari, Amin
2011-01-01
Radiating extended surfaces are widely used to enhance heat transfer between a primary surface and the environment. In this paper, the differential transformation method (DTM) is proposed for solving nonlinear differential equation of temperature distribution in a heat radiating fin. The concept...... of differential transformation is briefly introduced, and then we employed it to derive solutions of two nonlinear equations. The results obtained by DTM are compared with those derived from the analytical solution to verify the accuracy of the proposed method....
A unitary test of the Ratios Conjecture
Goes, John; Miller, Steven J; Montague, David; Ninsuwan, Kesinee; Peckner, Ryan; Pham, Thuy
2009-01-01
The Ratios Conjecture of Conrey, Farmer and Zirnbauer predicts the answers to numerous questions in number theory, ranging from n-level densities and correlations to mollifiers to moments and vanishing at the central point. The conjecture gives a recipe to generate these answers, which are believed to be correct up to square-root cancelation. These predictions have been verified, for suitably restricted test functions, for the 1-level density of orthogonal and symplectic families of L-functions. In this paper we verify the conjecture's predictions for the unitary family of all Dirichlet $L$-functions with prime conductor; we show square-root agreement between prediction and number theory if the support of the Fourier transform of the test function is in (-1,1), and for support up to (-2,2) we show agreement up to a power savings in the family's cardinality. The interesting feature in this family (which has not surfaced in previous investigations) is determining what is and what is not a diagonal term in the R...
Quantum metrology with unitary parametrization processes.
Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang
2015-02-24
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.
A Secret Image Sharing Method Using Integer Wavelet Transform
Directory of Open Access Journals (Sweden)
Li Ching-Chung
2007-01-01
Full Text Available A new image sharing method, based on the reversible integer-to-integer (ITI wavelet transform and Shamir's threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into shadows, and allows recovery of the complete secret image by using any or more shadows . We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.
Extremal spacings of random unitary matrices
Smaczynski, Marek; Kus, Marek; Zyczkowski, Karol
2012-01-01
Extremal spacings between unimodular eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Probability distributions for the minimal spacing for various ensembles are derived for N=4. We show that for large matrices the average minimal spacing s_min of a random unitary matrix behaves as N^(-1/(1+B)) for B equal to 0,1 and 2 for circular Poisson, orthogonal and unitary ensembles, respectively. For these ensembles also asymptotic probability distributions P(s_min) are obtained and the statistics of the largest spacing s_max are investigated.
Transforming han: a correlational method for psychology and religion.
Oh, Whachul
2015-06-01
Han is a destructive feeling in Korea. Although Korea accomplished significant exterior growth, Korean society is still experiencing the dark aspects of transforming han as evidenced by having the highest suicide rate in Asia. Some reasons for this may be the fragmentation between North and South Korea. If we can transform han then it can become constructive. I was challenged to think of possibilities for transforming han internally; this brings me to the correlational method through psychological and religious interpretation. This study is to challenge and encourage many han-ridden people in Korean society. Through the psychological and religious understanding of han, people suffering can positively transform their han. They can relate to han more subjectively, and this means the han-ridden psyche has an innate sacredness of potential to transform.
A New Method of Improving Transformer Restricted Earth Fault Protection
Directory of Open Access Journals (Sweden)
KRSTIVOJEVIC, J. P.
2014-08-01
Full Text Available A new method of avoiding malfunctioning of the transformer restricted earth fault (REF protection is presented. Application of the proposed method would eliminate unnecessary operation of REF protection in the cases of faults outside protected zone of a transformer or a magnetizing inrush accompanied by current transformer (CT saturation. On the basis of laboratory measurements and simulations the paper presents a detailed performance assessment of the proposed method which is based on digital phase comparator. The obtained results show that the new method was stable and precise for all tested faults and that its application would allow making a clear and precise difference between an internal fault and: (i external fault or (ii magnetizing inrush. The proposed method would improve performance of REF protection and reduce probability of maloperation due to CT saturation. The new method is robust and characterized by high speed of operation and high reliability and security.
Transformation of Morinda citrifolia via simple mature seed imbibition method.
Lee, J J; Ahmad, S; Roslan, H A
2013-12-15
Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.
Institute of Scientific and Technical Information of China (English)
徐常伟; 朱峰; 刘丽娜; 牛大鹏
2013-01-01
基于H波入射,根据二维介质散射的边界条件,利用二维格林函数的展开式和消光定理,求得T矩阵方法构造方程式；在此基础上,对T矩阵方法的极限问题进行了系统的分析,即当散射体的边界趋于理想圆柱边界时,T矩阵方法实现了由数值解到经典解析解的极限过渡。%The unitary problem between numerical solutions and the analytic solutions is an important issue to value whether or not the physical nature and structure of a numerical method are reasonable in computational electromagnetics. This paper presents the structure functions of T-matrix method based on H-wave incident, boundary conditions of 2D dielectric scattering, and 2D Green’s function and extinction theorem. The full analysis of T-matrix’s limitation problem shows that when the boundary of a dielectric is limited to the cylindrical one, the limitation transition from the T-matrix solutions to classical ones is obtained.
Efficient Parametric Identification Method for High Voltage Pulse Transformers
Aguglia, D; Viarouge, P; Cros, J
2014-01-01
This paper presents a new identification method for a pulse transformer equivalent circuit. It is based on an analytical approximation of the frequency-domain impedance data derived from a no-load test with open-circuited secondary winding and only requires measurements of primary current and voltage without phase data. Compared with time consuming and complex methods based on off-line non-linear identification procedures, this simple method also gives an estimation of the error on the identified parameters. The method is validated on an existing pulse transformer.
Yan, Jingwen; Chen, Jiazhen
2007-03-01
A new hyperspectral image compression method of spectral feature classification vector quantization (SFCVQ) and embedded zero-tree of wavelet (EZW) based on Karhunen-Loeve transformation (KLT) and integer wavelet transformation is represented. In comparison with the other methods, this method not only keeps the characteristics of high compression ratio and easy real-time transmission, but also has the advantage of high computation speed. After lifting based integer wavelet and SFCVQ coding are introduced, a system of nearly lossless compression of hyperspectral images is designed. KLT is used to remove the correlation of spectral redundancy as one-dimensional (1D) linear transform, and SFCVQ coding is applied to enhance compression ratio. The two-dimensional (2D) integer wavelet transformation is adopted for the decorrelation of 2D spatial redundancy. EZW coding method is applied to compress data in wavelet domain. Experimental results show that in comparison with the method of wavelet SFCVQ (WSFCVQ), the method of improved BiBlock zero tree coding (IBBZTC) and the method of feature spectral vector quantization (FSVQ), the peak signal-to-noise ratio (PSNR) of this method can enhance over 9 dB, and the total compression performance is improved greatly.
Institute of Scientific and Technical Information of China (English)
Jingwen Yan; Jiazhen Chen
2007-01-01
A new hyperspectral image compression method of spectral feature classification vector quantization (SFCVQ) and embedded zero-tree of wavelet (EZW) based on Karhunen-Loeve transformation (KLT) and integer wavelet transformation is represented. In comparison with the other methods, this method not only keeps the characteristics of high compression ratio and easy real-time transmission, but also has the advantage of high computation speed. After lifting based integer wavelet and SFCVQ coding are introduced, a system of nearly lossless compression of hyperspectral images is designed. KLT is used to remove the correlation of spectral redundancy as one-dimensional (1D) linear transform, and SFCVQ coding is applied to enhance compression ratio. The two-dimensional (2D) integer wavelet transformation is adopted for the decorrelation of 2D spatial redundancy. EZW coding method is applied to compress data in wavelet domain. Experimental results show that in comparison with the method of wavelet SFCVQ (WSFCVQ),the method of improved BiBlock zero tree coding (IBBZTC) and the method of feature spectral vector quantization (FSVQ), the peak signal-to-noise ratio (PSNR) of this method can enhance over 9 dB, and the total compression performance is improved greatly.
Unitary Approximations in Fault Detection Filter Design
Directory of Open Access Journals (Sweden)
Dušan Krokavec
2016-01-01
Full Text Available The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.
Quantum unitary dynamics in cosmological spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)
2015-12-15
We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.
Asymptotic Evolution of Random Unitary Operations
Novotny, J; Jex, I
2009-01-01
We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
Solving SAT by Algorithm Transform of Wu‘s Method
Institute of Scientific and Technical Information of China (English)
贺思敏; 张钹
1999-01-01
Recently algorithms for solving propositional satisfiability problem, or SAT,have aroused great interest,and more attention has been paid to transformation problem solving.The commonly used transformation is representation transform,but since its intermediate computing procedure is a black box from the viewpoint of the original problem,this approach has many limitations.In this paper,a new approach called algorithm transform is proposed and applied to solving SAT by Wu's method,a general algorithm for solving polynomial equations.B y establishing the correspondence between the primitive operation in Wu's method and clause resolution is SAT,it is shown that Wu's method,when used for solving SAT,,is primarily a restricted clause resolution procedure.While Wu's method introduces entirely new concepts.e.g.characteristic set of clauses,to resolution procedure,the complexity result of resolution procedure suggests an exponential lower bound to Wu's method for solving general polynomial equations.Moreover,this algorithm transform can help achieve a more efficient implementation of Wu's method since it can avoid the complex manipulation of polynomials and can make the best use of domain specific knowledge.
Transformation optics simulation method for stimulated Brillouin scattering
Zecca, Roberto; Smith, David R; Larouche, Stéphane
2016-01-01
We develop a novel approach to enable the full-wave simulation of stimulated Brillouin scattering and related phenomena in a frequency-domain, finite-element environment. The method uses transformation optics techniques to implement a time-harmonic coordinate transform that reconciles the different frames of reference used by electromagnetic and mechanical finite-element solvers. We show how this strategy can be successfully applied to bulk and guided systems, comparing the results with the predictions of established theory.
A novel method for heterocyclic amide–thioamide transformations
Ali, Ibrahim A I; Pazdera, Pavel
2017-01-01
In this paper, we introduce a novel and convenient method for the transformation of heterocyclic amides into heteocyclic thioamides. A two-step approach was applied for this transformation: Firstly, we applied a chlorination of the heterocyclic amides to afford the corresponding chloroheterocycles. Secondly, the chloroherocycles and N-cyclohexyl dithiocarbamate cyclohexylammonium salt were heated in chloroform for 12 h at 61 °C to afford heteocyclic thioamides in excellent yields. PMID:28228858
An improved Talbot method for numerical Laplace transform inversion
Dingfelder, Benedict; J. A. C. Weideman
2013-01-01
The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the transform is analytic in the complex plane except for the negative real axis. First, by using a truncated Talbot contour rather than the classical contour that goes to infinity in the left half-plane, faster convergence is achieved. Second, a control mechanism for improving numerical stability is introduced. These two features are incorporated into a software code, whose perform...
Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality
Günaydin, M; Gunaydin, Murat; Takemae, Seiji
2000-01-01
We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...
Remarks on transformation laws in nonzero mass quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Beckers, J.; Jaspers, M.
1977-01-01
An explicit method is developed to establish the Lorentz (or Poincare) transformation laws for nonzero mass, arbitrary spin particle fields. It is explicitly shown how the nonunitary four-dimensional spinorial representation (in the Dirac case) is connected with the unitary representation of the associated little group.
Entanglement quantification by local unitary operations
Energy Technology Data Exchange (ETDEWEB)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2011-07-15
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Entanglement quantification by local unitary operations
Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.
2011-07-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Spindle extraction method for ISAR image based on Radon transform
Wei, Xia; Zheng, Sheng; Zeng, Xiangyun; Zhu, Daoyuan; Xu, Gaogui
2015-12-01
In this paper, a method of spindle extraction of target in inverse synthetic aperture radar (ISAR) image is proposed which depends on Radon Transform. Firstly, utilizing Radon Transform to detect all straight lines which are collinear with these line segments in image. Then, using Sobel operator to detect image contour. Finally, finding all intersections of each straight line and image contour, the two intersections which have maximum distance between them is the two ends of this line segment and the longest line segment of all line segments is spindle of target. According to the proposed spindle extraction method, one hundred simulated ISAR images which are respectively rotated 0 degrees, 10 degrees, 20 degrees, 30 degrees and 40 degrees in counterclockwise are used to do experiment and the proposed method and the detection results are more close to the real spindle of target than the method based on Hough Transform .
Application of extension method to fault diagnosis of transformer
Institute of Scientific and Technical Information of China (English)
DENG Hong-gui; CAO Jian; LUO An; XIA Xiang-yang
2007-01-01
A novel extension diagnosis method was proposed for enhancing the diagnosis ability of the conventional dissolved gas analysis. Based on the extension theory a matter-element model was established for qualitatively and quantitatively describing the fault diagnosis problem of power transformers. The degree of relation based on the dependent functions WaS employed to determine then ature and the grade of the faults in a transformer system.And the proposed method was verified with the experimental data.The results show that accuracy rate of the diagnosis method exceeds 90% and two kinds of faults call be detected at the same time.
Use of the Transformative Framework in Mixed Methods Studies
Sweetman, David; Badiee, Manijeh; Creswell, John W.
2010-01-01
A concern exists that mixed methods studies do not contain advocacy stances. Preliminary evidence suggests that this is not the case, but to address this issue in more depth the authors examined 13 mixed methods studies that contained an advocacy, transformative lens. Such a lens consisted of incorporating intent to advocate for an improvement in…
Use of the Transformative Framework in Mixed Methods Studies
Sweetman, David; Badiee, Manijeh; Creswell, John W.
2010-01-01
A concern exists that mixed methods studies do not contain advocacy stances. Preliminary evidence suggests that this is not the case, but to address this issue in more depth the authors examined 13 mixed methods studies that contained an advocacy, transformative lens. Such a lens consisted of incorporating intent to advocate for an improvement in…
Kitaev honeycomb tensor networks: exact unitary circuits and applications
Schmoll, Philipp
2016-01-01
The Kitaev honeycomb model is a paradigm of exactly-solvable models, showing non-trivial physical properties such as topological quantum order, abelian and non-abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely: Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear u...
Transforming Mean and Osculating Elements Using Numerical Methods
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
Directory of Open Access Journals (Sweden)
Sarunya Kanjanawattana
2017-07-01
Full Text Available Image classification plays a vital role in many areas of study, such as data mining and image processing; however, serious problems collectively referred to as the course of dimensionality have been encountered in previous studies as factors that reduce system performance. Furthermore, we also confront the problem of different graph characteristics even if graphs belong to same types. In this study, we propose a novel method of graph-type classification. Using our approach, we open up a new solution of high-dimensional images and address problems of different characteristics by converting graph images to one dimension with a discrete Fourier transformation and creating numeric datasets using wavelet and Hough transformations. Moreover, we introduce a new classifier, which is a combination between artificial neuron networks (ANNs and support vector machines (SVMs, which we call ANNSVM, to enhance accuracy. The objectives of our study are to propose an effective graph-type classification method that includes finding a new data representative used for classification instead of two-dimensional images and to investigate what features make our data separable. To evaluate the method of our study, we conducted five experiments with different methods and datasets. The input dataset we focused on was a numeric dataset containing wavelet coefficients and outputs of a Hough transformation. From our experimental results, we observed that the highest accuracy was provided using our method with Coiflet 1, which achieved a 0.91 accuracy.
Method for Calculation of Steam-Compression Heat Transformers
S. Zditovetckaya; Volodin, V
2012-01-01
The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper p...
Multifractional Fourier Transform Method and Its Applications to Image Encryption
Institute of Scientific and Technical Information of China (English)
RANQiwen; WANGQi; MAJing; TANLiying
2003-01-01
The multiplicity of the fractional Fourier transform(FRFT),which is intrinsic in any fractional operator,has been claimed by several authors,but never across-the-board developed.Particularly,the weight-type FRFT(WFRFT) has not been investigated.Starting with defining the multifractional Fourier transform (MFRFT),we gained the generalization permutation matrix group (GPMG)representation and multiplicity of the MFRFT,and the relationships among the MFRFT the standard WFRFT and the standard CFRFT.Finally,as a application,a novel image encryption method hased on the MFRFT is propounded.Similation results show that this method is safe,practicable and impactful.
Energy Technology Data Exchange (ETDEWEB)
Abou Khalil, B
2008-12-15
After a literature survey enabling the determination of the advantages and drawbacks of existing methods of assessment of the potential energy gains of an industrial site, this research report presents a newly developed method, named Energy and Exergy Analysis of Transformation Processes (or AEEP for Analyse energetique et exergetique des procedes de transformation), while dealing with actual industrial operations, in order to demonstrate the systematic character of this method. The different steps of the method are presented and detailed, one of them, the process analysis, being critical for the application of the developed method. This particular step is then applied to several industrial unitary operations in order to be a base for future energy audits in the concerned industry sectors, as well as to demonstrate its generic and systematic character. The method is the then applied in a global manner to a cheese manufacturing plant, all the different steps of the AEEP being applied. The author demonstrates that AEEP is a systematic method and can be applied to all energy audit levels, moreover to the lowest levels which have a relatively low cost.
Energy Technology Data Exchange (ETDEWEB)
Novitsky, Andrey [Department of Theoretical Physics, Belarusian State University, Nezavisimosti Avenue 4, 220050 Minsk (Belarus); Qiu, C-W [Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Zouhdi, Said [Laboratoire de Genie Electrique de Paris, SUPELEC, Plateau de Moulon 91192, Gif-sur-Yvette (France)], E-mail: eleqc@nus.edu.sg
2009-11-15
Based on the concept of the cloak generating function, we propose an implicit transformation-independent method for the required parameters of spherical cloaks without knowing the needed coordinate transformation beforehand. A non-ideal discrete model is used to calculate and optimize the total scattering cross-sections of different profiles of the generating function. A bell-shaped quadratic spherical cloak is found to be the best candidate, which is further optimized by controlling the design parameters involved. Such improved invisibility is steady even when the model is highly discretized.
Method for Calculation of Steam-Compression Heat Transformers
Directory of Open Access Journals (Sweden)
S. Zditovetckaya
2012-01-01
Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.
Curvelet Transform-Based Denoising Method for Doppler Frequency Extraction
Institute of Scientific and Technical Information of China (English)
HOU Shu-juan; WU Si-liang
2007-01-01
A novel image denoising method based on curvelet transform is proposed in order to improve the performance of Doppler frequency extraction in low signal-noise-ratio (SNR) environment. The echo can be represented as a gray image with spectral intensity as its gray values by time-frequency transform. And the curvelet coefficients of the image are computed. Then an adaptive soft-threshold scheme based on dual-median operation is implemented in curvelet domain. After that, the image is reconstructed by inverse curvelet transform and the Doppler curve is extracted by a curve detection scheme. Experimental results show the proposed method can improve the detection of Doppler frequency in low SNR environment.
Physical methods for genetic transformation of fungi and yeast
Rivera, Ana Leonor; Magaña-Ortíz, Denis; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2014-06-01
The production of transgenic fungi is a routine process. Currently, it is possible to insert genes from other fungi, viruses, bacteria and even animals, albeit with low efficiency, into the genomes of a number of fungal species. Genetic transformation requires the penetration of the transgene through the fungal cell wall, a process that can be facilitated by biological or physical methods. Novel methodologies for the efficient introduction of specific genes and stronger promoters are needed to increase production levels. A possible solution to this problem is the recently discovered shock-wave-mediated transformation. The objective of this article is to review the state of the art of the physical methods used for genetic fungi transformation and to describe some of the basic physics and molecular biology behind them.
Matsuyama, Eri; Tsai, Du-Yih; Lee, Yongbum; Takahashi, Noriyuki
2013-01-01
The purpose of this study was to evaluate the performance of a conventional discrete wavelet transform (DWT) method and a modified undecimated discrete wavelet transform (M-UDWT) method applied to mammographic image denoising. Mutual information, mean square error, and signal to noise ratio were used as image quality measures of images processed by the two methods. We examined the performance of the two methods with visual perceptual evaluation. A two-tailed F test was used to measure statistical significance. The difference between the M-UDWT processed images and the conventional DWT-method processed images was statistically significant (P<0.01). The authors confirmed the superiority and effectiveness of the M-UDWT method. The results of this study suggest the M-UDWT method may provide better image quality as compared to the conventional DWT.
Chiorescu, E.; Chiorescu, D.
2017-08-01
Agriculture brings a major contribution to the sustainable development of the economy, providing food to people. Because of the continuous growth of the population, there is an ever increasing need of food worldwide. For this reason, it is necessary to study the contact between the soil and the active tool of the cultivators, in relation to the type of soil and its parameters. The physical-mechanical characteristics of the soils are influenced by the moving velocity of the working part, as well as by the humidity of the soil. The humidity triggers the change of the friction coefficient at the soil-steel contact, being of significant importance for the decrease of the working resistance of the working tools and responsible for increasing exploitation costs. The model used for the soil has a non-linear plastic behavior of the Drucker Prager type, being different from the Mises model. The programming software Ansys was used for the simulation with the finite element method, allowing the study of the behavior of the active working part, the normal stress being analyzed in real conditions, at various depths and velocities for a soil with a clay-sandy texture.
J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting
Alpay, D.; Dijksma, A.; Langer, H.
2006-01-01
We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.
Fourier-transform and global contrast interferometer alignment methods
Goldberg, Kenneth A.
2001-01-01
Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.
Black holes, quantum information, and unitary evolution
Giddings, Steven B
2012-01-01
The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...
Comparison of Parameter Estimation Methods for Transformer Weibull Lifetime Modelling
Institute of Scientific and Technical Information of China (English)
ZHOU Dan; LI Chengrong; WANG Zhongdong
2013-01-01
Two-parameter Weibull distribution is the most widely adopted lifetime model for power transformers.An appropriate parameter estimation method is essential to guarantee the accuracy of a derived Weibull lifetime model.Six popular parameter estimation methods (i.e.the maximum likelihood estimation method,two median rank regression methods including the one regressing X on Y and the other one regressing Y on X,the Kaplan-Meier method,the method based on cumulative hazard plot,and the Li's method) are reviewed and compared in order to find the optimal one that suits transformer's Weibull lifetime modelling.The comparison took several different scenarios into consideration:10 000 sets of lifetime data,each of which had a sampling size of 40 ～ 1 000 and a censoring rate of 90％,were obtained by Monte-Carlo simulations for each scienario.Scale and shape parameters of Weibull distribution estimated by the six methods,as well as their mean value,median value and 90％ confidence band are obtained.The cross comparison of these results reveals that,among the six methods,the maximum likelihood method is the best one,since it could provide the most accurate Weibull parameters,i.e.parameters having the smallest bias in both mean and median values,as well as the shortest length of the 90％ confidence band.The maximum likelihood method is therefore recommended to be used over the other methods in transformer Weibull lifetime modelling.
Unitary fermions on the lattice I: in a harmonic trap
Endres, Michael G; Lee, Jong-Wan; Nicholson, Amy N
2011-01-01
We present a new lattice Monte Carlo approach developed for studying large numbers of strongly interacting nonrelativistic fermions, and apply it to a dilute gas of unitary fermions confined to a harmonic trap. Our lattice action is highly improved, with sources of discretization and finite volume errors systematically removed; we are able to demonstrate the expected volume scaling of energy levels of two and three untrapped fermions, and to reproduce the high precision calculations published previously for the ground state energies for N = 3 unitary fermions in a box (to within our 0.3% uncertainty), and for N = 3, . . ., 6 unitary fermions in a harmonic trap (to within our ~ 1% uncertainty). We use this action to determine the ground state energies of up to 70 unpolarized fermions trapped in a harmonic potential on a lattice as large as 64^3 x 72; our approach avoids the use of importance sampling or calculation of a fermion determinant and employs a novel statistical method for estimating observables, allo...
Solving systems of fractional differential equations using differential transform method
Erturk, Vedat Suat; Momani, Shaher
2008-05-01
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.
Method of Infrared Image Enhancement Based on Stationary Wavelet Transform
Institute of Scientific and Technical Information of China (English)
QI Fei; LI Yan-jun; ZHANG Ke
2008-01-01
Aiming at the problem, i.e. infrared images own the characters of bad contrast ratio and fuzzy edges, a method to enhance the contrast of infrared image is given, which is based on stationary wavelet transform. After making stationary wavelet transform to an infrared image, denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity. For the approximation coefficient matrix with low noisy intensity, enhancement is done by the proposed method based on histogram. The enhanced image can be got by wavelet coefficient reconstruction. Furthermore, an evaluation criterion of enhancement performance is introduced. The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively. At the same time, its amount of calculation is small and operation speed is fast.
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
Directory of Open Access Journals (Sweden)
Wensheng Gao
2015-01-01
Full Text Available In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.
Color Energy Of A Unitary Cayley Graph
Directory of Open Access Journals (Sweden)
Adiga Chandrashekar
2014-11-01
Full Text Available Let G be a vertex colored graph. The minimum number χ(G of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G and computed the color energy of few families of graphs with χ(G colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xnc and some gcd-graphs.
Image Watermarking Method Using Integer-to-Integer Wavelet Transforms
Institute of Scientific and Technical Information of China (English)
陈韬; 王京春
2002-01-01
Digital watermarking is an efficient method for copyright protection for text, image, audio, and video data. This paper presents a new image watermarking method based on integer-to-integer wavelet transforms. The watermark is embedded in the significant wavelet coefficients by a simple exclusive OR operation. The method avoids complicated computations and high computer memory requirements that are the main drawbacks of common frequency domain based watermarking algorithms. Simulation results show that the embedded watermark is perceptually invisible and robust to various operations, such as low quality joint picture expert group (JPEG) compression, random and Gaussian noises, and smoothing (mean filtering).
Model refinements of transformers via a subproblem finite element method
Dular, Patrick; Kuo-Peng, Patrick; Ferreira Da Luz, Mauricio,; Krähenbühl, Laurent
2015-01-01
International audience; A progressive modeling of transformers is performed via a subproblem finite element method. A complete problem is split into subproblems with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores and coils, with any coupling of these changes. The proposed unif...
Boundary Relations, Unitary Colligations, and Functional Models
Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk
2009-01-01
Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp
Developmental Dyspraxia: Is It a Unitary Function?
Ayres, A. Jean; And Others
1987-01-01
A group of 182 children (ages four through nine) with known or suspected sensory integrative dysfunction were assessed using tests and clinical observations to examine developmental dyspraxia. The study did not justify the existence of either a unitary function or different types of developmental dyspraxia. (Author/CH)
Dirac cohomology of unitary representations of equal rank exceptional groups
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
Parallel image registration method for snapshot Fourier transform imaging spectroscopy
Zhang, Yu; Zhu, Shuaishuai; Lin, Jie; Zhu, Feijia; Jin, Peng
2017-08-01
A fast and precise registration method for multi-image snapshot Fourier transform imaging spectroscopy is proposed. This method accomplishes registration of an image array using the positional relationship between homologous points in the subimages, which are obtained offline by preregistration. Through the preregistration process, the registration problem is converted to the problem of using a registration matrix to interpolate subimages. Therefore, the hardware interpolation of graphics processing unit (GPU) texture memory, which has speed advantages for its parallel computing, can be used to significantly enhance computational efficiency. Compared to a central processing unit, GPU performance showed ˜27 times acceleration in registration efficiency.
Multi-band Image Registration Method Based on Fourier Transform
Institute of Scientific and Technical Information of China (English)
庹红娅; 刘允才
2004-01-01
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.
Multiscale differential phase contrast analysis with a unitary detector
Lopatin, Sergei
2015-12-30
A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.
A method for decoding the neurophysiological spike-response transform.
Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir
2009-11-15
Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.
New Blocking Artifacts Reduction Method Based on Wavelet Transform
Institute of Scientific and Technical Information of China (English)
SHI Min; YI Qing-ming
2007-01-01
It is well known that a block discrete cosine transform compressed image exhibits visually annoying blocking artifacts at low-bit-rate. A new post-processing deblocking algorithm in wavelet domain is proposed. The algorithm exploits blocking-artifact features shown in wavelet domain. The energy of blocking artifacts is concentrated into some lines to form annoying visual effects after wavelet transform. The aim of reducing blocking artifacts is to capture excessive energy on the block boundary effectively and reduce it below the visual scope. Adaptive operators for different subbands are computed based on the wavelet coefficients. The operators are made adaptive to different images and characteristics of blocking artifacts. Experimental results show that the proposed method can significantly improve the visual quality and also increase the peak signal-noise-ratio(PSNR) in the output image.
Methods of theme presentation "The Fourier transform of impulse functions"
Directory of Open Access Journals (Sweden)
Faniya Ahmetova
2016-09-01
Full Text Available The paper considers the Fourier transform of impulse functions, which is the mathematical basis of the tasks associated with the theory of reception and signal conversion in optoelectronic system. The method of calculating of two functions convolution, its Fourier image and the image of the Fourier-Bessel axisymmetric functions are demonstrated in details. A table, which summarizes the analytical expression for the shifted impulse functions and records their Fourier transforms, is provided. A wide range of examples of solving tasks, containing the graphic illustration, is analyzed. A structured approach to the presentation of the material, which combines basic theoretical information and analysis of typical tasks, will help second-year students of optoelectronic specialty in their independent work and homework.
Kitaev honeycomb tensor networks: Exact unitary circuits and applications
Schmoll, Philipp; Orús, Román
2017-01-01
The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.
Unitary Representations of Gauge Groups
Huerfano, Ruth Stella
I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.
Identical Wells, Symmetry Breaking, and the Near-Unitary Limit
Harshman, N. L.
2017-03-01
Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.
External Source Method for Kubo-Transformed Quantum Correlation Functions
Horikoshi, Atsushi
2014-01-01
We revisit the external source method for Kubo-transformed quantum correlation functions recently proposed by Krishna and Voth. We derive an exact formula and show that the Krishna-Voth formula can be derived as an approximation of our formula. Some properties of this approximation are clarified through a model calculation of the position autocorrelation function for a one-dimensional harmonic oscillator. A key observation is that the Krishna-Voth correlation function has a term which behaves as the secular term in perturbation theory.
Computing a logarithm of a unitary matrix with general spectrum
Loring, Terry A
2012-01-01
In theory, a unitary matrix U has a skew-hermitian logarithm H. In a computing environment one expects only to know U^*U \\approx I and might wish to compute H with e^H \\approx U and H^*= -H. This is relatively easy to accomplish using the Schur decomposition. Reasonable error bounds are derived. In cases where the norm of U^*U-I is somewhat large we discuss the utility of pre-processing with Newton's method of approximating the polar decomposition. In the case of U being J-skew-symmetric, one can insist that H be J-skew-symmetric and skew-Hermitian.
On Sumudu Transform Method in Discrete Fractional Calculus
Directory of Open Access Journals (Sweden)
Fahd Jarad
2012-01-01
Full Text Available In this paper, starting from the definition of the Sumudu transform on a general time scale, we define the generalized discrete Sumudu transform and present some of its basic properties. We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional differences. We apply this transform to solve some fractional difference initial value problems.
Comparison of methods for physical determination of phase transformations temperatures
Directory of Open Access Journals (Sweden)
S. Rusz
2013-10-01
Full Text Available Various physical methods for the determination of phase transformation temperatures were compared using C-Mn and C-Mn-V-Nb steels. The measurement using temperature scanner, variously located thermocouples, dilatometer, different thermal analysis (DTA and anisothermal plastometric test were completed. The specimens were heated to 1 323 K and 1 473 K in the case of the C-Mn-V-Nb microalloyed steel. The aim of the different heat treatment were to obtain different levels of precipitates’ dissolution. It was found that the better particles’ distribution and precipitation due to the cooling lead to the enlargement of the two-phase region in the material. The good agreement of result gained by used methods was achieved. We found that all used methods can be used for common steels, but the temperature scanner seems not to be precious enough for microalloyed steels.
Ultrasonic partial discharge monitoring method on instrument transformers
Directory of Open Access Journals (Sweden)
Kartalović Nenad
2012-01-01
Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.
Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls
Osuga, Kento
2016-01-01
We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.
Complete Pick Positivity and Unitary Invariance
Bhattacharya, Angshuman
2009-01-01
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel $k_S(z,w) = (1 - z\\ow)^{-1}$ for $|z|, |w| < 1$, by means of $(1/k_S)(T,T^*) \\ge 0$, we consider an arbitrary open connected domain $\\Omega$ in $\\BC^n$, a complete Nevanilinna-Pick kernel $k$ on $\\Omega$ and a tuple $T = (T_1, ..., T_n)$ of commuting bounded operators on a complex separable Hilbert space $\\clh$ such that $(1/k)(T,T^*) \\ge 0$. For a complete Pick kernel the $1/k$ functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with $T$. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples $T$.
Quantum Mutual Information Along Unitary Orbits
Jevtic, Sania; Rudolph, Terry
2011-01-01
Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...
Unitary and room air-conditioners
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-09-01
The scope of this technology evaluation on room and unitary air conditioners covers the initial investment and performance characteristics needed for estimating the operating cost of air conditioners installed in an ICES community. Cooling capacities of commercially available room air conditioners range from 4000 Btu/h to 36,000 Btu/h; unitary air conditioners cover a range from 6000 Btu/h to 135,000 Btu/h. The information presented is in a form useful to both the computer programmer in the construction of a computer simulation of the packaged air-conditioner's performance and to the design engineer, interested in selecting a suitably sized and designed packaged air conditioner.
Generalized Unitaries and the Picard Group
Indian Academy of Sciences (India)
Michael Skeide
2006-11-01
After discussing some basic facts about generalized module maps, we use the representation theory of the algebra $\\mathscr{B}^a(E)$ of adjointable operators on a Hilbert $\\mathcal{B}$-module to show that the quotient of the group of generalized unitaries on and its normal subgroup of unitaries on is a subgroup of the group of automorphisms of the range ideal $\\mathcal{B}_E$ of in $\\mathcal{B}$. We determine the kernel of the canonical mapping into the Picard group of $\\mathcal{B}_E$ in terms of the group of quasi inner automorphisms of $\\mathcal{B}_E$. As a by-product we identify the group of bistrict automorphisms of the algebra of adjointable operators on modulo inner automorphisms as a subgroup of the (opposite of the) Picard group.
Recurrence for discrete time unitary evolutions
Grünbaum, F A; Werner, A H; Werner, R F
2012-01-01
We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \\phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \\phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.
Integral Compressor/Generator/Fan Unitary Structure
Dreiman, Nelik
2016-01-01
INTEGRAL COMPRESSOR / GENERATOR / FAN UNITARY STRUCTURE.*) Dr. Nelik Dreiman Consultant, P.O.Box 144, Tipton, MI E-mail: An extremely compact, therefore space saving single compressor/generator/cooling fan structure of short axial length and light weight has been developed to provide generation of electrical power with simultaneous operation of the compressor when power is unavailable or function as a regular AC compressor powered by a power line. The generators and ai...
Unitary representations and harmonic analysis an introduction
Sugiura, M
1990-01-01
The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou''s theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.
Directory of Open Access Journals (Sweden)
Mikulović Jovan Č.
2014-01-01
Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2015-01-01
Full Text Available This paper witnesses the coupling of an analytical series expansion method which is called reduced differential transform with fractional complex transform. The proposed technique is applied on three mathematical models, namely, fractional Kaup-Kupershmidt equation, generalized fractional Drinfeld-Sokolov equations, and system of coupled fractional Sine-Gordon equations subject to the appropriate initial conditions which arise frequently in mathematical physics. The derivatives are defined in Jumarie’s sense. The accuracy, efficiency, and convergence of the proposed technique are demonstrated through the numerical examples. It is observed that the presented coupling is an alternative approach to overcome the demerit of complex calculation of fractional differential equations. The proposed technique is independent of complexities arising in the calculation of Lagrange multipliers, Adomian’s polynomials, linearization, discretization, perturbation, and unrealistic assumptions and hence gives the solution in the form of convergent power series with elegantly computed components. All the examples show that the proposed combination is a powerful mathematical tool to solve other nonlinear equations also.
Method to transform algae, materials therefor, and products produced thereby
Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.
1997-01-01
Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.
Transformational Teaching: Theoretical Underpinnings, Basic Principles, and Core Methods.
Slavich, George M; Zimbardo, Philip G
2012-12-01
Approaches to classroom instruction have evolved considerably over the past 50 years. This progress has been spurred by the development of several learning principles and methods of instruction, including active learning, student-centered learning, collaborative learning, experiential learning, and problem-based learning. In the present paper, we suggest that these seemingly different strategies share important underlying characteristics and can be viewed as complimentary components of a broader approach to classroom instruction called transformational teaching. Transformational teaching involves creating dynamic relationships between teachers, students, and a shared body of knowledge to promote student learning and personal growth. From this perspective, instructors are intellectual coaches who create teams of students who collaborate with each other and with their teacher to master bodies of information. Teachers assume the traditional role of facilitating students' acquisition of key course concepts, but do so while enhancing students' personal development and attitudes toward learning. They accomplish these goals by establishing a shared vision for a course, providing modeling and mastery experiences, challenging and encouraging students, personalizing attention and feedback, creating experiential lessons that transcend the boundaries of the classroom, and promoting ample opportunities for preflection and reflection. We propose that these methods are synergistically related and, when used together, maximize students' potential for intellectual and personal growth.
Directory of Open Access Journals (Sweden)
Sumit Gupta
2015-09-01
Full Text Available The aim of this paper was to present a user friendly numerical algorithm based on homotopy perturbation transform method for solving various linear and nonlinear convection-diffusion problems arising in physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. The homotopy perturbation transform method is a combined form of the homotopy perturbation method and Laplace transform method. The nonlinear terms can be easily obtained by the use of He’s polynomials. The technique presents an accurate methodology to solve many types of partial differential equations The approximate solutions obtained by proposed scheme in a wide range of the problem’s domain were compared with those results obtained from the actual solutions. The comparison shows a precise agreement between the results.
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10(6)CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10(3)CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10(3)CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10(2)CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10(2)CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10(4), 4.5×10(2), 2×10(1), and 0.5×10(1)CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell.
Directory of Open Access Journals (Sweden)
Lina Yang
2014-01-01
Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.
Directory of Open Access Journals (Sweden)
M. Rasoulpoor
2013-09-01
Full Text Available This paper presents a new approach for power transformer differential protection. The Wavelet Transform is applied to discriminate between inrush currents and internal fault currents in power transformers. Discrete wavelet transform decomposes the current signal into sub-bands that give more information about the properties of the signals in different frequency bands. Also, this transform is used to investigate the energy distribution of the signal on the different time and frequency scales. Recognition method is based on the correlation factors between energy percentage vectors of the Wavelet coefficients. Discrete Wavelet transform is used for decomposing the current signals to different frequency coefficients. After that, by constituting the energy percentage vectors of wavelet transform coefficients and calculating the correlation factors between these vectors, it is possible to form a recognition criterion to distinguish between inrush and internal fault current in the proposed method. The proposed algorithm is tested for several conditions by simulated inrush and internal fault currents. Simulation of current signals is performed using electromagnetic transient program PSCAD/EMTDC software that is a powerful program for the investigation of transient signals. Simulation results show that the proposed scheme accurately identifies inrush and fault currents in the distance of the power transformer protection in less than quarter of power frequency cycle. Also, beside the sensitivity and high reliability, the proposed method has low computation content and unlike the common methods does not require to determine the threshold for each new power system.
Improved Fast Fourier Transform Based Method for Code Accuracy Quantification
Energy Technology Data Exchange (ETDEWEB)
Ha, Tae Wook; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The capability of the proposed method is discussed. In this study, the limitations of the FFTBM were analyzed. The FFTBM produces quantitatively different results due to its frequency dependence. Because the problem is intensified by including a lot of high frequency components, a new method using a reduced cut-off frequency was proposed. The results of the proposed method show that the shortcomings of FFTBM are considerably relieved. Among them, the fast Fourier transform based method (FFTBM) introduced in 1990 has been widely used to evaluate a code uncertainty or accuracy. Prosek et al., (2008) identified its drawbacks, the so-called 'edge effect'. To overcome the problems, an improved FFTBM by signal mirroring (FFTBM-SM) was proposed and it has been used up to now. In spite of the improvement, the FFTBM-SM yielded different accuracy depending on the frequency components of a parameter, such as pressure, temperature and mass flow rate. Therefore, it is necessary to reduce the frequency dependence of the FFTBMs. In this study, the deficiencies of the present FFTBMs are analyzed and a new method is proposed to mitigate its frequency dependence.
Optimal PMU placement using topology transformation method in power systems.
Rahman, Nadia H A; Zobaa, Ahmed F
2016-09-01
Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.
Novel fringe scanning/Fourier transform method of synthetic imaging
Energy Technology Data Exchange (ETDEWEB)
Crawford, T.M.; Albano, R.K.
1993-08-01
We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.
Back-transformation of treatment differences - an approximate method
DEFF Research Database (Denmark)
Laursen, Rikke Pilmann; Dalskov, Stine-Mathilde; Damsgaard, Camilla Trab
2014-01-01
Background/Objectives:Transformation of outcomes is frequently used in the analysis of studies in clinical nutrition. However, back-transformation of estimated treatment means and differences is complicated by the nonlinear nature of the transformations. It is not straightforward to obtain an est...... publication, 11 December 2013; doi:10.1038/ejcn.2013.259....
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Research on ghost imaging method based on wavelet transform
Li, Mengying; He, Ruiqing; Chen, Qian; Gu, Guohua; Zhang, Wenwen
2017-09-01
We present an algorithm of extracting the wavelet coefficients of object based on ghost imaging (GI) system. Through modification of the projected random patterns by using a series of templates, wavelet transform GI (WTGI) can directly measure the high frequency components of wavelet coefficients without needing the original image. In this study, we theoretically and experimentally perform the high frequency components of wavelet coefficients detection with an arrow and a letter A based on GI and WTGI. Comparing with the traditional method, the use of the algorithm proposed in this paper can significantly improve the quality of the image of wavelet coefficients in both cases. The special advantages of GI will make the wavelet coefficient detection based on WTGI very valuable in real applications.
Method and apparatus for calibrating a linear variable differential transformer
Pokrywka, Robert J.
2005-01-18
A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.
Energy Technology Data Exchange (ETDEWEB)
Abdel-Halim Hassan, I.H. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: ismhalim@hotmail.com
2008-04-15
In this paper, we will compare the differential transformation method DTM and Adomian decomposition method ADM to solve partial differential equations (PDEs). The definition and operations of differential transform method was introduced by Zhou [Zhou JK. Differential transformation and its application for electrical circuits. Wuuhahn, China: Huarjung University Press; 1986 [in Chinese
Energy Technology Data Exchange (ETDEWEB)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).
DEFF Research Database (Denmark)
Peters, Terri
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
DEFF Research Database (Denmark)
Peters, Terri
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
Boson-Faddeev in the Unitary Limit and Efimov States
K"\\ohler, H S
2010-01-01
A numerical study of the Faddeev equation for bosons is made with two-body interactions at or close to the Unitary limit. Separable interactions are obtained from phase-shifts defined by scattering length and effective range. In EFT-language this would correspond to NLO. Both ground and Efimov state energies are calculated. For effective ranges $r_0 > 0$ and rank-1 potentials the total energy $E_T$ is found to converge with momentum cut-off $\\Lambda$ for $\\Lambda > \\sim 10/r_0$ . In the Unitary limit ($1/a=r_0= 0$) the energy does however diverge. It is shown (analytically) that in this case $E_T=E_u\\Lambda^2$. Calculations give $E_u=-0.108$ for the ground state and $E_u=-1.\\times10^{-4}$ for the single Efimov state found. The cut-off divergence is remedied by modifying the off-shell t-matrix by replacing the rank-1 by a rank-2 phase-shift equivalent potential. This is somewhat similar to the counterterm method suggested by Bedaque et al. This investigation is exploratory and does not refer to any specific ph...
On unitary representability of topological groups
Galindo Pastor, Jorge
2006-01-01
We prove that the additive group $(E^\\ast,\\tau_k(E))$ of an $\\mathscr{L}_\\infty$-Banach space $E$, with the topology $\\tau_k(E)$ of uniform convergence on compact subsets of $E$, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is \\emph{unitarily representable}). This is the same as proving that the topological group $(E^\\ast,\\tau_k(E))$ is uniformly homeomorphic to a subset of $\\ell_2^\\kappa$ for some $\\kappa$. As an immediate consequence, preduals of com...
Quantum remote control Teleportation of unitary operations
Huelga, S F; Chefles, A; Plenio, M B
2001-01-01
We consider the implementation of an unknown arbitrary unitary operation U upon a distant quantum system. This teleportation of U can be viewed as a quantum remote control. We investigate the protocols which achieve this using local operations, classical communication and shared entanglement (LOCCSE). Lower bounds on the necessary entanglement and classical communication are determined using causality and the linearity of quantum mechanics. We examine in particular detail the resources required if the remote control is to be implemented as a classical black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for implementation by bidirectional state teleportation.
Unitary Gas Constraints on Nuclear Symmetry Energy
Kolomeitsev, Evgeni E; Ohnishi, Akira; Tews, Ingo
2016-01-01
We show the existence of a lower bound on the volume symmetry energy parameter $S_0$ from unitary gas considerations. We further demonstrate that values of $S_0$ above this minimum imply upper and lower bounds on the symmetry energy parameter $L$ describing its lowest-order density dependence. The bounds are found to be consistent with both recent calculations of the energies of pure neutron matter and constraints from nuclear experiments. These results are significant because many equations of state in active use for simulations of nuclear structure, heavy ion collisions, supernovae, neutron star mergers, and neutron star structure violate these constraints.
Shear Viscosity of a Unitary Fermi Gas
Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.
2012-01-01
We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...
Universal dynamics in a Unitary Bose Gas
Klauss, Catherine; Xie, Xin; D'Incao, Jose; Jin, Deborah; Cornell, Eric
2016-05-01
We investigate the dynamics of a unitary Bose gas with an 85 Rb BEC, specifically to determine whether the dynamics scale universally with density. We find that the initial density affects both the (i) projection of the strongly interacting many-body wave-function onto the Feshbach dimer state when the system is rapidly ramped to a weakly interacting value of the scattering length a and (ii) the overall decay rate to deeper bound states. We will present data on both measurements across two orders of magnitude in density, and will discuss how the data illustrate the competing roles of universality and Efimov physics.
Unitary Quantum Lattice Algorithms for Turbulence
2016-05-23
collision operator, based on the 3D relativistic Dirac particle dynamics theory of Yepez, ĈD = cosθ x( ) −i sinθ x( ) −i sinθ x( ) cosθ x... based algorithm it will result in a finite difference representation of the GP Eq. (24) provided the parameters are so chosen to yield diffusion-like...Fluid Dynamics, ed. H. W. Oh, ( InTech Publishers, Croatia, 2012) [20] “Unitary qubit lattice simulations of complex vortex structures
Unitary water-to-air heat pumps
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-10-01
Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.
Quantum mechanics with non-unitary symmetries
Bistrovic, B
2000-01-01
This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...
Study of optical techniques for the Ames unitary wind tunnel, part 7
Lee, George
1993-01-01
A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.
3-D surface profilometry based on modulation measurement by applying wavelet transform method
Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao
2017-01-01
A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.
Baker, W.R.
1959-08-25
Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.
Institute of Scientific and Technical Information of China (English)
ZENG Qing-hu; QIU Jing; LIU Guan-jun
2007-01-01
Noise is the biggest obstacle that makes the incipient fault diagnosis results of roller bearings uncorrected; a new method for diagnosing incipient fault of roller bearings based on the Wavelet Transform Correlation Filter and Hilbert Transform was proposed. First, the weak fault information features are picked up from the roller bearings fault vibration signals by use of a de-noising characteristic of the Wavelet Transform Correlation Filter as the preprocessing of the Hilbert Envelope Analysis. Then, in order to get fault features frequency, de-noised wavelet coefficients of high scales which represent high frequency signal were analyzed by Hilbert Envelope Spectrum Analysis. The simulation signals and diagnosing examples analysis results reveal that the proposed method is more effective than the method of direct wavelet coefficients-Hilbert Transform in de-noising and clarifying roller bearing incipient fault.
Integral Transform Methods: A Critical Review of Various Kernels
Orlandini, Giuseppina; Turro, Francesco
2017-03-01
Some general remarks about integral transform approaches to response functions are made. Their advantage for calculating cross sections at energies in the continuum is stressed. In particular we discuss the class of kernels that allow calculations of the transform by matrix diagonalization. A particular set of such kernels, namely the wavelets, is tested in a model study.
Integral transform methods: a critical review of various kernels
Orlandini, Giuseppina
2016-01-01
Some general remarks about integral transform approaches to response functions are made. Their advantage for calculating cross sections at energies in the continuum is stressed. In particular we discuss the class of kernels that allow calculations of the transform by matrix diagonalization. A particular set of such kernels, namely the wavelets, is tested in a model study.
AN ANOMALY INTRUSION DETECTION METHOD USING FOURIER TRANSFORM
Institute of Scientific and Technical Information of China (English)
Yue Bing; Zhao Yuexia; Xu Zhoujun; Fu Hongjuan; Ma Fengning
2004-01-01
A set of discrete points obtained from audit records on a behavior session is processed with Fourier transform. The criterion of selecting Fourier transform coefficients is introduced, and is used to find a unified value from the set of coefficients. This unified value is compared with a threshold to determine whether the session is abnormal. Finally simple test results are reported.
Category's analysis and operational project capacity method of transformation in design
Obednina, S. V.; Bystrova, T. Y.
2015-10-01
The method of transformation is attracting widespread interest in fields such contemporary design. However, in theory of design little attention has been paid to a categorical status of the term "transformation". This paper presents the conceptual analysis of transformation based on the theory of form employed in the influential essays by Aristotle and Thomas Aquinas. In the present work the transformation as a method of shaping design has been explored as well as potential application of this term in design has been demonstrated.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
Research of Transformer Intelligent Evaluation and Diagnosis Method Based on DGA
Directory of Open Access Journals (Sweden)
Wang Feng
2016-01-01
Full Text Available Oil chromatography analysis is the foundation of transformer fault diagnosis, In this paper, based on knowledge base of the oil chromatographic analysis, an extended research combining the improved three ratio method, BP neural network, and case-based reasoning method for the transformer fault diagnosis was proposed, in the purpose of building a transformer Intelligent Evaluation Diagnosis model, to improve the accuracy of the transformer fault diagnosis, which is of a great significance for practice.
Optimal image-fusion method based on nonsubsampled contourlet transform
Dou, Jianfang; Li, Jianxun
2012-10-01
The optimization of image fusion is researched. Based on the properties of nonsubsampled contourlet transform (NSCT), shift invariance, multiscale and multidirectional expansion, the fusion parameters of the multiscale decompostion scheme is optimized. In order to meet the requirement of feedback optimization, a new image fusion quality metric of image quality index normalized edge association (IQI-NEA) is built. A polynomial model is adopted to establish the relationship between the IQI_NEA metric and several decomposition levels. The optimal fusion includes four steps. First, the source images are decomposed in NSCT domain for several given levels. Second, principal component analysis is adopted to fuse the low frequency coefficients and the maximum fusion rule is utilized to fuse the high frequency coefficients to obtain the fused coefficients and the fused result is reconstructed from the obtained fused coefficients. Third, calculate the fusion quality metric IQI_NEA for the source images and fused images. Finally, the optimal fused image and optimal level are obtained through extremum properties of polynomials function. The visual and statistical results show that the proposed method has optimized the fusion performance compared to the existing fusion schemes, in terms of the visual effects and quantitative fusion evaluation indexes.
Three-dimensional beam propagation method based on the variable transformed Galerkin's method
Institute of Scientific and Technical Information of China (English)
XIAO Jinbiao; SUN Xiaohan; ZHANG Mingde
2004-01-01
A novel three-dimensional beam propagation method (BPM) based on the variable transformed Galerkin's method is introduced for simulating optical field propagation in three-dimensional dielectric structures. The infinite Cartesian x-y plane is mapped into a unit square by a tangent-type function transformation. Consequently, the infinite region problem is converted into the finite region problem. Thus, the boundary truncation is eliminated and the calculation accuracy is promoted. The three-dimensional BPM basic equation is reduced to a set of first-order ordinary differential equations through sinusoidal basis function, which fits arbitrary cladding optical waveguide, then direct solution of the resulting equations by means of the Runge-Kutta method. In addition,the calculation is efficient due to the small matrix derived from the present technique.Both z-invariant and z-variant examples are considered to test both the accuracy and utility of this approach.
Genetic transformation of Eucalyptus camaldulensis by agrobalistic method
Directory of Open Access Journals (Sweden)
Evânia Galvão Mendonça
2013-06-01
Full Text Available Eucalyptus stands in the setting of worldwide forestry due to its adaptability, rapid growth, production of high-quality and low cost of wood pulp fibers. The eucalyptus convetional breeding is impaired mainlly by the long life cycle making the genetic transformation systems an important tool for this purpose. However, this system requires in vitro eficient protocols for plant induction, regeneration and seletion, that allow to obtain transgenic plants from the transformed cell groups. The aim of this work was to evaluate the callus formation and to optimize the leaves and callus genetic transformation protocol by using the Agrobacterium tumefaciens system. Concerning callus formation, two different culture media were evaluated: MS medium supplemented with auxin, cytokinin (M1 and the MS medium with reduced nitrogen concentration and supplemented with auxin, cytokinin coconut water (M2. To establish the leave genetic transformation, those were exposed to agrobiolistics technique (gene gun, to tissue injury, and A. tumesfasciens EHA 105 contening the vetor pCambia 3301 (35S::GUS::NOS, for gene transference and to establish the callus transformation thoses were exposed only to A. tumefasciens. For both experiments, the influence of different infection periods was evaluated. The M2 medium provided the best values for callus sizea and fresh and dry weight. The leaves genetic transformation using the agrobiolistics technique was effective, the gus gene transient expression could be observed. No significant differences were obtained in the infection periods (4, 6 and 8 minutes. The callus genetic transformation with A. tumefaciens also promotend the gus gene transient expression on the callus co-cultiveted for 15 e 30 minutes. The transformed callus was transfered to a regeneration and selection medium and transformed plants were obtained.
About Shape Identification Methods of Objects Invariant to Projective Transformations
Directory of Open Access Journals (Sweden)
Gostev Ivan M.
2016-01-01
Full Text Available Diffculties concerning the choice of the invariants of the projective transformation groups used for the identification of the shapes of planar objects are illustrated and solutions allowing the derivation of robust identification criteria are discussed.
A highly efficient method for Agrobacterium mediated transformation ...
African Journals Online (AJOL)
ONOS
2010-08-23
Aug 23, 2010 ... order to introduce target DNA into the rice cell, of which,. Agrobacterium .... Histochemical assay of -glucuronidase and measurement of GUS activity by ..... Genetic transformation and hybridization: Genomic changes in ...
Perfect state transfer in unitary Cayley graphs over local rings
Directory of Open Access Journals (Sweden)
Yotsanan Meemark
2014-12-01
Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
Transformation Matrix for Time Discretization Based on Tustin’s Method
Directory of Open Access Journals (Sweden)
Yiming Jiang
2014-01-01
Full Text Available This paper studies rules in transformation of transfer function through time discretization. A method of using transformation matrix to realize bilinear transform (also known as Tustin’s method is presented. This method can be described as the conversion between the coefficients of transfer functions, which are expressed as transform by certain matrix. For a polynomial of degree n, the corresponding transformation matrix of order n exists and is unique. Furthermore, the transformation matrix can be decomposed into an upper triangular matrix multiplied with another lower triangular matrix. And both have obvious regularity. The proposed method can achieve rapid bilinear transform used in automatic design of digital filter. The result of numerical simulation verifies the correctness of the theoretical results. Moreover, it also can be extended to other similar problems. Example in the last throws light on this point.
Hydrodynamics of a unitary Bose gas
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-07-01
This technology evaluation covers commercially available unitary heat pumps ranging from nominal capacities of 1/sup 1///sub 2/ to 45 tons. The nominal COP of the heat pump models, selected as representative, vary from 2.4 to 2.9. Seasonal COPs for heat pump installations and single-family dwellings are reported to vary from 2.5 to 1.1, depending on climate. For cooling performance, the nominal EER's vary from 6.5 to 8.7. Representative part-load performance curves along with cost estimating and reliability data are provided to aid: (1) the systems design engineer to select suitably sized heat pumps based on life-cycle cost analyses, and (2) the computer programmer to develop a simulation code for heat pumps operating in an Integrated Community Energy System.
Biphoton transmission through non-unitary objects
Reichert, Matthew; Sun, Xiaohang; Fleischer, Jason W
2016-01-01
Losses should be accounted for in a complete description of quantum imaging systems, and yet they are often treated as undesirable and largely neglected. In conventional quantum imaging, images are built up by coincidence detection of spatially entangled photon pairs (biphotons) transmitted through an object. However, as real objects are non-unitary (absorptive), part of the transmitted state contains only a single photon, which is overlooked in traditional coincidence measurements. The single photon part has a drastically different spatial distribution than the two-photon part. It contains information both about the object, and, remarkably, the spatial entanglement properties of the incident biphotons. We image the one- and two-photon parts of the transmitted state using an electron multiplying CCD array both as a traditional camera and as a massively parallel coincidence counting apparatus, and demonstrate agreement with theoretical predictions. This work may prove useful for photon number imaging and lead ...
Unitary Quantum Relativity - (Work in Progress)
Finkelstein, David Ritz
2016-12-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
Unitary Quantum Relativity. (Work in Progress)
Finkelstein, David Ritz
2017-01-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
A new method for classification of Brachiopods based on the radon transformation
Directory of Open Access Journals (Sweden)
Youssef Ait khouya
2011-09-01
Full Text Available Brachiopods have a lateral outline which is quite important in systematic studies. It is often assessed by a qualitative evaluation and linear measurements, which are not clear enough and precise for describing the shape of the shell and its changes In this paper we propose a new method for classification of fossils based on the radon transform from their greyscale image. We take the case of brachiopods which has Complex shapes. We use an adaptation of Radon transform called R-transform which is invariant to common geometrical transformations. Each shape is described by R3D transform. We consider the grayscale image as a set of cuts obtained from successive binarization for each gray level in image, and for each segmentation we compute the R-transform then we obtained the R3D transform. The advantages of the proposed method are robustness to noise, and invariant to common geometrical transformations scale, translation and rotation.
Momentum Distribution in the Unitary Bose Gas from First Principles
Comparin, Tommaso; Krauth, Werner
2016-11-01
We consider a realistic bosonic N -particle model with unitary interactions relevant for Efimov physics. Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental data. Similar to the experiments with different atomic species, differentiated solely by a three-body length scale, our model only depends on a single parameter. We establish a weak influence of this parameter on physical observables. In current experiments, the thermodynamic instability of our model from the atomic gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Codoni, Joshua R.; Berry, Scott A.
2012-01-01
Recent experimental supersonic retropropulsion tests were conducted at the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 2 for a range of Mach numbers from 2.4 to 4.6. A 5-inch 70-degree sphere-cone forebody model with a 10-inch cylindrical aftbody experimental model was used which is capable of multiple retrorocket configurations. These configurations include a single central nozzle on the center point of the forebody, three nozzles at the forebody half-radius, and a combination of the first two configurations with no jets being plugged. A series of measurements were achieved through various instrumentation including forebody and aftbody pressure, internal pressures and temperatures, and high speed Schlieren visualization. Specifically, several high speed pressure transducers on the forebody and in the plenum were implemented to look at unsteady flow effects. The following work focuses on analyzing frequency traits due to the unsteady flow for a range of thrust coefficients for single, tri, and quad-nozzle test cases at freestream Mach 4.6 and angle of attack ranging from -8 degrees to +20 degrees. This analysis uses Matlab s fast Fourier transform, Welch's method (modified average of a periodogram), to create a power spectral density and analyze any high speed pressure transducer frequency traits due to the unsteady flow.
A SURVEY ON VARIOUS CANDIDATE GENERATOR METHODS FOR EFFICIENT STRING TRANSFORMATION
Directory of Open Access Journals (Sweden)
P. Malarvizhi
2015-11-01
Full Text Available String Transformation can be formalized such as given an input string; the system generates the k most likely output strings corresponding to the input string. The essential and important step for string transformation is to generate candidates to which the given string s is likely to be transformed. The different approaches and various candidate generator methods for efficient string transformation are discussed in this paper.
A Survey on Various Candidate Generator Methods for Efficient String Transformation
Directory of Open Access Journals (Sweden)
Mrs.P.Malarvizhi
2014-02-01
Full Text Available String Transformation can be formalized such as given an input string; the system generates the k most likely output strings corresponding to the input string. The essential and important step for string transformation is to generate candidates to which the given string s is likely to be transformed. The different approaches and various candidate generator methods for efficient string transformation are discussed in this paper.
A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants
Institute of Scientific and Technical Information of China (English)
SONG Li; ZHAO De-gang; WU Yong-jun; TIAN Xiao-e
2009-01-01
We report here a seed transformation of sonication-assisted,no-tissue culture to rapidly produce transgenic Brassica napus plants.This method comprises the steps of treating seeds by ultrasonic wave,inoculating Agrobacterium tumefaciens with a recombinant ChlFN-a gene and germinating directly of treatment seed on wet filter papers.The obtained transformants were verified by GUS histochemical assay and nested PCR amplification.It suggests that seed transformation has a potential use in genetic transformation of rape.
Directory of Open Access Journals (Sweden)
Murat Osmanoglu
2013-01-01
Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.
Fourier transformation methods in the field of gamma spectrometry
Indian Academy of Sciences (India)
A Abdel-Hafiez
2006-09-01
The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.
The Numerical Method of Inversion for the Interior Radon Transform
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The interior Radon transform arises from a limited data problem in computerized tomography.The corresponding operator R is investigated as a mapping between weightedL2- spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.
Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator
Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe
2016-10-01
We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.
Sequential scheme for locally discriminating bipartite unitary operations without inverses
Li, Lvzhou
2017-08-01
Local distinguishability of bipartite unitary operations has recently received much attention. A nontrivial and interesting question concerning this subject is whether there is a sequential scheme for locally discriminating between two bipartite unitary operations, because a sequential scheme usually represents the most economic strategy for discrimination. An affirmative answer to this question was given in the literature, however with two limitations: (i) the unitary operations to be discriminated were limited to act on d ⊗d , i.e., a two-qudit system, and (ii) the inverses of the unitary operations were assumed to be accessible, although this assumption may be unrealizable in experiment. In this paper, we improve the result by removing the two limitations. Specifically, we show that any two bipartite unitary operations acting on dA⊗dB can be locally discriminated by a sequential scheme, without using the inverses of the unitary operations. Therefore, this paper enhances the applicability and feasibility of the sequential scheme for locally discriminating unitary operations.
Irreversibility in a unitary finite-rate protocol: the concept of internal friction
Çakmak, Selçuk; Altintas, Ferdi; Müstecaplıoğlu, Özgür E.
2016-07-01
The concept of internal friction, a fully quantum mechanical phenomena, is investigated in a simple, experimentally accessible quantum system in which a spin-1/2 is driven by a transverse magnetic field in a quantum adiabatic process. The irreversible production of the waste energy due to the quantum friction is quantitatively analyzed in a forward-backward unitary transform of the system Hamiltonian by using the quantum relative entropy between the actual density matrix obtained in a parametric transformation and the one in a reversible adiabatic process. Analyzing the role of total transformation time and the different pulse control schemes on the internal friction reveal the non-monotone character of the internal friction as a function of the total protocol time and the possibility for almost frictionless solutions in finite-time transformations.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.
Transformation of Rhizobia with Broad-Host-Range Plasmids by Using a Freeze-Thaw Method
Vincze, Eva; Bowra, Steve
2006-01-01
Several species of rhizobia were successfully transformed with broad-host-range plasmids of different replicons by using a modified freeze-thaw method. A generic binary vector (pPZP211) was maintained in Mesorhizobium loti without selection and stably inherited during nodulation. The method could extend the potential of rhizobia as a vehicle for plant transformation.
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
Quantum Entanglement Growth Under Random Unitary Dynamics
Nahum, Adam; Vijay, Sagar; Haah, Jeongwan
2016-01-01
Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...
Unitary Evolution and Cosmological Fine-Tuning
Carroll, Sean M
2010-01-01
Inflationary cosmology attempts to provide a natural explanation for the flatness and homogeneity of the observable universe. In the context of reversible (unitary) evolution, this goal is difficult to satisfy, as Liouville's theorem implies that no dynamical process can evolve a large number of initial states into a small number of final states. We use the invariant measure on solutions to Einstein's equation to quantify the problems of cosmological fine-tuning. The most natural interpretation of the measure is the flatness problem does not exist; almost all Robertson-Walker cosmologies are spatially flat. The homogeneity of the early universe, however, does represent a substantial fine-tuning; the horizon problem is real. When perturbations are taken into account, inflation only occurs in a negligibly small fraction of cosmological histories, less than $10^{-6.6\\times 10^7}$. We argue that while inflation does not affect the number of initial conditions that evolve into a late universe like our own, it neve...
Directory of Open Access Journals (Sweden)
Lei Wang
2015-09-01
Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.
Interdisciplinary Approaches and Methods for Sustainable Transformation and Innovation
Directory of Open Access Journals (Sweden)
Sangkyun Kim
2015-04-01
Full Text Available To increase the likelihood of success and sustainability, organizations must fundamentally reposition themselves and try to change current processes or create new products and services. One of the most effective approaches to find a solution for transformation and innovation is to learn from other domains where a solution for similar problems is already available. This paper briefly introduces the definition of and approaches to convergence of academic disciplines and industries, and overviews several representative convergence cases focusing on gamification for sustainable education, environments, and business managements.
Canonical Transform Method for Treating Strongly Anisotropy Magnets
DEFF Research Database (Denmark)
Cooke, J. F.; Lindgård, Per-Anker
1977-01-01
An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...
Safari, M J; Afarideh, H; Jamili, S; Bayat, E
2016-01-01
A Discrete Fourier Transform Method (DFTM) for discrimination between the signal of neutrons and gamma rays in organic scintillation detectors is presented. The method is based on the transformation of signals into the frequency domain using the sine and cosine Fourier transforms in combination with the discrete Fourier transform. The method is largely benefited from considerable differences that usually is available between the zero-frequency components of sine and cosine and the norm of the amplitude of the DFT for neutrons and gamma-ray signals. Moreover, working in frequency domain naturally results in considerable suppression of the unwanted effects of various noise sources that is expected to be effective in time domain methods. The proposed method could also be assumed as a generalized nonlinear weighting method that could result in a new class of pulse shape discrimination methods, beyond definition of the DFT. A comparison to the traditional Charge Integration Method (CIM), as well as the Frequency G...
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Transitioning to Low-GWP Alternatives in Unitary Air Conditioning
This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.
Modeling Sampling in Tensor Products of Unitary Invariant Subspaces
Directory of Open Access Journals (Sweden)
Antonio G. García
2016-01-01
Full Text Available The use of unitary invariant subspaces of a Hilbert space H is nowadays a recognized fact in the treatment of sampling problems. Indeed, shift-invariant subspaces of L2(R and also periodic extensions of finite signals are remarkable examples where this occurs. As a consequence, the availability of an abstract unitary sampling theory becomes a useful tool to handle these problems. In this paper we derive a sampling theory for tensor products of unitary invariant subspaces. This allows merging the cases of finitely/infinitely generated unitary invariant subspaces formerly studied in the mathematical literature; it also allows introducing the several variables case. As the involved samples are identified as frame coefficients in suitable tensor product spaces, the relevant mathematical technique is that of frame theory, involving both finite/infinite dimensional cases.
Gökdoğan, Ahmet; Merdan, Mehmet; Yildirim, Ahmet
2012-01-01
The goal of this study is presented a reliable algorithm based on the standard differential transformation method (DTM), which is called the multi-stage differential transformation method (MsDTM) for solving Hantavirus infection model. The results obtanied by using MsDTM are compared to those obtained by using the Runge-Kutta method (R-K-method). The proposed technique is a hopeful tool to solving for a long time intervals in this kind of systems.
The Theory of Unitary Development of Chengdu and Chongqing
Institute of Scientific and Technical Information of China (English)
HuangQing
2005-01-01
Chengdu and Chongqing are two megalopolises with the synthesized economic strength and the strongest urban competitiveness in the entire western region, which have very important positions in the development of western China. Through horizontal contrast of social economic developing level of the two cities, the two cities' economic foundation of unitary development is analyzed from complementary and integrative relationship. Then the policies and measures of economic unitary development of two cities is put forward.
A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics
Directory of Open Access Journals (Sweden)
Saleh Alsuhaibani
2016-10-01
Full Text Available Power transformers play a critical role in electric power networks. Such transformers can suffer failures due to multiple stresses and aging. Thus, assessment of condition and diagnostic techniques are of great importance for improving power network reliability and service continuity. Several techniques are available to diagnose the faults within the power transformer. Frequency response analysis (FRA method is a powerful technique for diagnosing transformer winding deformation and several other types of problems that are caused during manufacture, transportation, installation and/or service life. This paper provides a comprehensive review on FRA methods and their applications in diagnostics and fault identification for power transformers. The paper discusses theory and applications of FRA methods as well as various issues and challenges faced in the application of this method.
Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method
Directory of Open Access Journals (Sweden)
Hassan A. Zedan
2012-01-01
Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.
Implementation of bipartite or remote unitary gates with repeater nodes
Yu, Li; Nemoto, Kae
2016-08-01
We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.
A Steganographic Method Based on Integer Wavelet Transform & Genatic Algorithm
Directory of Open Access Journals (Sweden)
Preeti Arora
2014-05-01
Full Text Available The proposed system presents a novel approach of building a secure data hiding technique of steganography using inverse wavelet transform along with Genetic algorithm. The prominent focus of the proposed work is to develop RS-analysis proof design with higest imperceptibility. Optimal Pixal Adjustment process is also adopted to minimize the difference error between the input cover image and the embedded-image and in order to maximize the hiding capacity with low distortions respectively. The analysis is done for mapping function, PSNR, image histogram, and parameter of RS analysis. The simulation results highlights that the proposed security measure basically gives better and optimal results in comparison to prior research work conducted using wavelets and genetic algorithm.
Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices
Goyeneche, Dardo; Latorre, José I; Riera, Arnau; Życzkowski, Karol
2015-01-01
Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity.
Baker-Campbell-Hausdorff relation for special unitary groups SU(N)
Weigert, S
1997-01-01
Multiplication of two elements of the special unitary group SU(N) determines uniquely a third group element. A BAker-Campbell-Hausdorff relation is derived which expresses the group parameters of the product (written as an exponential) in terms of the parameters of the exponential factors. This requires the eigen- values of three (N-by-N) matrices. Consequently, the relation can be stated analytically up to N=4, in principle. Similarity transformations encoding the time evolution of quantum mechanical observables, for example, can be worked out by the same means.
A Systematic Hardware Sharing Method for Unified Architecture Design of H.264 Transforms
Directory of Open Access Journals (Sweden)
Po-Hung Chen
2015-01-01
Full Text Available Multitransform techniques have been widely used in modern video coding and have better compression efficiency than the single transform technique that is used conventionally. However, every transform needs a corresponding hardware implementation, which results in a high hardware cost for multiple transforms. A novel method that includes a five-step operation sharing synthesis and architecture-unification techniques is proposed to systematically share the hardware and reduce the cost of multitransform coding. In order to demonstrate the effectiveness of the method, a unified architecture is designed using the method for all of the six transforms involved in the H.264 video codec: 2D 4 × 4 forward and inverse integer transforms, 2D 4 × 4 and 2 × 2 Hadamard transforms, and 1D 8 × 8 forward and inverse integer transforms. Firstly, the six H.264 transform architectures are designed at a low cost using the proposed five-step operation sharing synthesis technique. Secondly, the proposed architecture-unification technique further unifies these six transform architectures into a low cost hardware-unified architecture. The unified architecture requires only 28 adders, 16 subtractors, 40 shifters, and a proposed mux-based routing network, and the gate count is only 16308. The unified architecture processes 8 pixels/clock-cycle, up to 275 MHz, which is equal to 707 Full-HD 1080 p frames/second.
Quantum Implementation of Unitary Coupled Cluster for Simulating Molecular Electronic Structure
Shen, Yangchao; Zhang, Shuaining; Zhang, Jing-Ning; Yung, Man-Hong; Kim, Kihwan
2015-01-01
Quantum simulation represents an efficient solution to a certain classically intractable problem in various research area including quantum chemistry. The central problem of quantum chemistry is to determine the electronic structure and the ground-state energy of atoms and molecules. The exact classical calculation of the problem is demanding even for molecules with moderate size due to the "exponential catastrophe." To deal with such quantum chemistry problem, the coupled-cluster methods have been successfully developed, which are considered to be the current "gold standard" in classical computational chemistry. However, the coupled-cluster ansatz is built with non-unitary operation, which leads to drawbacks such as lacking variational bound of ground-state energy. The unitary version of the coupled-cluster methods would perfectly address the problem, whereas it is classically inefficient without proper truncation of the infinite series expansion. It has been a long-standing challenge to build an efficient c...
Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure
Shen, Yangchao; Zhang, Xiang; Zhang, Shuaining; Zhang, Jing-Ning; Yung, Man-Hong; Kim, Kihwan
2017-02-01
In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used ab initio methods, which is critically limited by its nonunitary nature. The unitary modification as an ideal solution to the problem is, however, extremely inefficient in classical conventional computation. Here, we provide experimental evidence that indeed the unitary version of the coupled-cluster ansatz can be reliably performed in a physical quantum system, a trapped-ion system. We perform a simulation on the electronic structure of a molecular ion (HeH+), where the ground-state energy surface curve is probed, the energies of the excited states are studied, and bond dissociation is simulated nonperturbatively. Our simulation takes advantages from quantum computation to overcome the intrinsic limitations in classical computation, and our experimental results indicate that the method is promising for preparing molecular ground states for quantum simulations.
Remote sensing image compression method based on lift scheme wavelet transform
Tao, Hongjiu; Tang, Xinjian; Liu, Jian; Tian, Jinwen
2003-06-01
Based on lifting scheme and the construction theorem of the integer Haar wavelet and biorthogonal wavelet, we propose a new integer wavelet transform construct method on the basis of lift scheme after introduciton of constructing specific-demand biorthogonal wavelet transform using Harr wavelet and Lazy wavelet. In this paper, we represent the method and algorithm of the lifting scheme, and we also give mathematical formulation on this method and experimental results as well.
Gao, Zhenrui; Li, Ying; Chen, Jinhua; Chen, Zhixing; Cui, Min-Long
2015-03-01
Transformation approach is a useful tool for the study of gene function, the mechanism of molecular regulation, and increase usefulness of components by reverse genetic approach in plants. In this study, we developed a stable and rapid method for Agrobacterium-mediated transformation of a medicinal plant Chelone glabra L. using leaf explants. Stable transformants were obtained using Agrobacterium tumefaciens strains GV2260 and GV3101 that harbored the binary vector pBI121 and contained the neomycin phosphotransferase gene (NPT II) as a selectable marker and a reporter gene β-glucuronidase (GUS). Putative transformants were identified by kanamycin selection and a histochemical assay. PCR and Southern blot analysis confirmed the integration of the GUS gene into transformed genomes as well as detected stable expression of the β-glucuronidase gene (GUS) by RT-PCR. Resulting transformed plants had morphologically normal phenotypes. This method requires two changes of medium and few leaf explants as well as the transformation efficiency of 2-8 % after 2-3 months of inoculation. This method can provide a quick and economical transformation method for reverse genetic approach to change the secondary metabolic pathway to increase useful components in C. glabra.
Design of piezoelectric transformer for DC/DC converter with stochastic optimization method
Vasic, Dejan; Vido, Lionel
2016-04-01
Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.
Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry.
Meade, A D; Clarke, C; Byrne, H J; Lyng, F M
2010-02-01
The scientific literature contains an ever-growing number of reports of applications of vibrational spectroscopy as a multivariate non-invasive tool for analysis of biological effects at the molecular level. Recently, Fourier transform infrared microspectroscopy (FTIRM) has been demonstrated to be sensitive to molecular events occurring in cells and tissue after exposure to ionizing radiation. In this work the application of FTIRM in the examination of dose-dependent molecular effects occurring in skin cells after exposure to ionizing radiation with the use of partial least-squares regression (PLSR) and generalized regression neural networks (GRNN) was studied. The methodology is shown to be sensitive to molecular events occurring with radiation dose and time after exposure. The variation in molecular species with dose and time after irradiation is shown to be non-linear by virtue of the higher modeling efficiency yielded from the non-linear algorithms. Dose prediction efficiencies of approximately +/-10 mGy were achieved at 96 h after irradiation, highlighting the potential applications of the methodology in radiobiological dosimetry.
Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery
Lee, George
1992-01-01
A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.
Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls
Aiello, Clarice D.; Allegra, Michele; Hemmerling, Boerge; Wang, Xiaoting; Cappellaro, Paola
2015-01-01
We present an algebraic framework to study the time-optimal synthesis of arbitrary unitaries in SU(2), when the control set is restricted to rotations around two non-parallel axes in the Bloch sphere. Our method bypasses commonly used control-theoretical techniques, and easily imposes necessary conditions on time-optimal sequences. In a straightforward fashion, we prove that time-optimal sequences are solely parametrized by three rotation angles and derive general bounds on those angles as a ...
Energy Technology Data Exchange (ETDEWEB)
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Commentary: Using Mixed Methods to Transform Special Education Research
Trainor, Audrey A.
2011-01-01
Klingner and Boardman (this issue) offer a cogent and compelling argument for opening the door for the acceptance and use of mixed methods in special education research. Self-identifying as pragmatists, they embody this paradigmatic view by focusing on the utility, efficacy, and accuracy of mixed methods, an argument that should appeal to the…
Krishnaveni, M; Subashini, P
2009-01-01
A new fangled method for ship wake detection in synthetic aperture radar (SAR) images is explored here. Most of the detection procedure applies the Radon transform as its properties outfit more than any other transformation for the detection purpose. But still it holds problems when the transform is applied to an image with a high level of noise. Here this paper articulates the combination between the radon transformation and the shrinkage methods which increase the mode of wake detection process. The latter shrinkage method with RT maximize the signal to noise ratio hence it leads to most optimal detection of lines in the SAR images. The originality mainly works on the denoising segment of the proposed algorithm. Experimental work outs are carried over both in simulated and real SAR images. The detection process is more adequate with the proposed method and improves better than the conventional methods.
Transforming student's discourse as a method of teaching science inquiry
Livingston, David
2005-07-01
A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
DEFF Research Database (Denmark)
Kragh, Knud Abildgaard; Thomsen, Jon Juel; Tcherniak, Dmitri
2010-01-01
exists. The present study suggests a framework for the detection of structural nonlinearities. Two methods for detection are compared, the homogeneity method and a Hilbert transform based method. Based on these two methods, a nonlinearity index is suggested. Through simulations and laboratory experiments...
A Remark on the Unitary Group of a Tensor Product of Finite-Dimensional Hilbert Spaces
Indian Academy of Sciences (India)
K R Parthasarathy
2003-02-01
Let $H_i, 1 ≤ i ≤ n$ be complex finite-dimensional Hilbert spaces of dimension $d_i, 1 ≤ i ≤ n$ respectively with $d_i ≥ 2$ for every . By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product $H = H_1 \\otimes H_2 \\otimes\\ldots \\otimes H_n$ can be expressed as a composition of a finite number of unitary operators living on pair products $H_i \\otimes H_j, 1 ≤ i, j ≤ n$. An estimate of the number of operators appearing in such a composition is obtained.
Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel
Corlett, W. A.
1982-01-01
The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.
DEFF Research Database (Denmark)
Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig
2015-01-01
This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...
Improved method of generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...
Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong
2014-01-01
Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species.
Two-dimensional cylindrical thermal cloak designed by implicit transformation method
Yuan, Xuebo; Lin, Guochang; Wang, Youshan
2016-07-01
As a new-type technology of heat management, thermal metamaterials have attracted more and more attentions recently and thermal cloak is a typical case. Thermal conductivity of thermal cloak designed by coordinate transformation method is usually featured by inhomogeneity, anisotropy and local singularity. Explicit transformation method, which is commonly used to design thermal cloak with the coordinate transformation known in advance, has insufficient flexibility, making it hard to proactively reduce the difficulty of device fabrication. In this work, we designed the thermal conductivity of two-dimensional (2D) cylindrical thermal cloak using the implicit transformation method without knowledge of the coordinate transformation in advance. With two classes of generation functions taken into consideration, this study adopted full-wave simulations to analyze the thermal cloaking performances of designed thermal cloaks. Material distributions and simulation results showed that the implicit transformation method has high flexibility. The form of coordinate transformation not only influences the homogeneity and anisotropy but also directly influences the thermal cloaking performance. An improved layered structure for 2D cylindrical thermal cloak was put forward based on the generation function g(r) = r15, which reduces the number of the kinds of constituent materials while guaranteeing good thermal cloaking performance. This work provides a beneficial guidance for reducing the fabrication difficulty of thermal cloak.
Transformational Teaching: Theoretical Underpinnings, Basic Principles, and Core Methods
Slavich, George M.; Zimbardo, Philip G.
2012-01-01
Approaches to classroom instruction have evolved considerably over the past 50 years. This progress has been spurred by the development of several learning principles and methods of instruction, including active learning, student-centered learning, collaborative learning, experiential learning, and problem-based learning. In the present paper, we…
Directory of Open Access Journals (Sweden)
Petr Orsag
2008-01-01
Full Text Available In this paper a new method of identification of both the magnetization characteristic and the instantaneous parameters G(t and K(t of a single-phase transformer under a sinusoidal supply voltage is proposed. The instantaneous conductance G(t and inverse inductance K(t of the transformer cross section are determined by the scalar product of time functions. The magnetization characteristic is derived by means of the inverse inductance K(t. The method is practically applied to an isolating transformer.
REDUCED-COMPLEXITY DECODING ALGORITHMS FOR UNITARY SPACE-TIME CODES
Institute of Scientific and Technical Information of China (English)
Su Xin; Yi Kechu; Tian Bin; Sun Yongjun
2007-01-01
Two reduced-complexity decoding algorithms for unitary space-time codes based on tree-structured constellation are presented. In this letter original unitary space-time constellation is divided into several groups. Each one is treated as the leaf nodes set of a subtree. Choosing the unitary signals that represent each group as the roots of these subtrees generates a tree-structured constellation.The proposed tree search decoder decides to which sub tree the receive signal belongs by searching in the set of subtree roots. The final decision is made after a local search in the leaf nodes set of the selected sub tree. The adjacent subtree joint decoder performs joint search in the selected sub tree and its "surrounding" subtrees, which improves the Bit Error Rate (BER) performance of purely tree search method. The exhaustively search in the whole constellation is avoided in our proposed decoding algorithms, a lower complexity is obtained compared to that of Maximum Likelihood (ML) decoding.Simulation results have also been provided to demonstrate the feasibility of these new methods.
Efficient unitary designs with nearly time-independent Hamiltonian dynamics
Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas
2016-01-01
We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-02-18
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
Directory of Open Access Journals (Sweden)
Bailing Liu
2016-02-01
Full Text Available Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
From Talk to Experience: Transforming the Preservice Physics Methods Course
Directory of Open Access Journals (Sweden)
Tom Russell
2010-07-01
Full Text Available This report of a collaborative self-study describes and interprets our pedagogical approach at the beginning of a preservice physics methods course and outlines the strategy that we used to create a context for productive learning. We focus on our attempt to engage teacher candidates in dialogue about learning physics and learning to teach physics by engaging them in brief teaching experiences in the first month of a preservice teacher education program, before the first practicum placement. Self-study methodologies are used to frame and reframe our perceptions of teaching and learning as we enacted a pedagogy of teacher education that was unfamiliar both to us and to our teacher candidates.Keywords: self-study of teacher education practices, lesson study, teacher education, physics, curriculum methods
Unitary fermions and Lüscher's formula on a crystal
Valiente, Manuel; Zinner, Nikolaj T.
2016-11-01
We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.
Institute of Scientific and Technical Information of China (English)
FAN En-Gui
2001-01-01
Two new applications of homogeneous balance (HB) method are presented.It is shown that HB methodcan be extended to search for the Backlund transformations and similarity reductions of nonlinear partial differentialequations.The close relations among the HB method,Weiss-Tabor-Carnevale method and Clarkson-Kruskal directreduction method are also found.KdV-MKdV equation is considered as an illustrative example,and its one kind of Backlund transformation,three kinds of similarity reductions and several kinds of travelling wave solutions are obtained by using extended HB method.
Experiments on Coordinate Transformation based on Least Squares and Total Least Squares Methods
Tunalioglu, Nursu; Mustafa Durdag, Utkan; Hasan Dogan, Ali; Erdogan, Bahattin; Ocalan, Taylan
2016-04-01
Coordinate transformation is an important problem in geodesy discipline. Variations in stochastic and functional models in transformation problem cause different estimation results. Least-squares (LS) method is generally implemented to solve this problem. LS method accepts only one epoch coordinate data group erroneous in stochastic model. However, all the data in transformation problem are erroneous. In contrast to the traditional LS method, the Total Least Squares (TLS) method takes into account the errors in all the variables in the transformation. It is so-called errors-invariables (EIV) model. In the last decades, TLS method has been implemented to solve transformation problem. In this context, it is important to determine which method is more accurate. In this study, LS and TLS methods have been implemented on different 2D and 3D geodetic networks with different simulation scenarios. The first results show that the translation parameters are affected more than rotation and scale parameters. Although TLS method considers the errors for two coordinate the estimated parameters for both methods are different from simulated values.
Methods for transforming and expression screening of filamentous fungal cells with a DNA library
Energy Technology Data Exchange (ETDEWEB)
Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie
2015-06-02
The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.
Adaptive Wavelet Transform Method to Identify Cracks in Gears
Directory of Open Access Journals (Sweden)
Ales Belsak
2010-01-01
Full Text Available Many damages and faults can cause problems in gear unit operation. A crack in the tooth root is probably the least desirable among them. It often leads to failure of gear unit operation. By monitoring vibrations, it is possible to determine the presence of a crack. Signals are, however, very noisy. This makes it difficult to define properties of individual components. Wavelet analysis is an effective tool for analysing signals and for defining properties. In this paper, a denoising method based on wavelet analysis, which takes prior information about impulse probability density into consideration, is used to identify transient information from vibration signals of a gear unit with a fatigue crack in the tooth root.
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo
2010-01-01
. In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...
DEFF Research Database (Denmark)
Ganji, S.; Barari, Amin; Ibsen, Lars Bo
2012-01-01
. In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...
Defect of a Kronecker product of unitary matrices
Tadej, Wojciech
2010-01-01
The defect d(U) of an NxN unitary matrix U with no zero entries is the dimension (called the generalized defect D(U)) of the real space of directions, moving into which from U we do not disturb the moduli |U_ij| as well as the Gram matrix U'*U in the first order, diminished by 2N-1. Calculation of d(U) involves calculating the dimension of the space in R^(N^2) spanned by a certain set of vectors associated with U. We split this space into a direct sum, assuming that U is a Kronecker product of unitary matrices, thus making it easier to perform calculations numerically. Basing on this, we give a lower bound on D(U) (equivalently d(U)), supposing it is achieved for most unitaries with a fixed Kronecker product structure. Also supermultiplicativity of D(U) with respect to Kronecker subproducts of U is shown.
Compressor-fan unitary structure for air conditioning system
Dreiman, N.
2015-08-01
An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.
Amending entanglement-breaking channels via intermediate unitary operations
Cuevas, Á.; De Pasquale, A.; Mari, A.; Orieux, A.; Duranti, S.; Massaro, M.; Di Carli, A.; Roccia, E.; Ferraz, J.; Sciarrino, F.; Mataloni, P.; Giovannetti, V.
2017-08-01
We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters.
Time reversal and exchange symmetries of unitary gate capacities
Harrow, A W; Harrow, Aram W.; Shor, Peter W.
2005-01-01
Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.
Directory of Open Access Journals (Sweden)
Akihito Soeda
2010-06-01
Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.
Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing
2017-06-01
Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.
A new Laplace transformation method for dynamic testing of solar collectors
DEFF Research Database (Denmark)
Kong, Weiqiang; Perers, Bengt; Fan, Jianhua;
2015-01-01
A new dynamic method for solar collector testing is developed. It is characterized by using the Laplace transformation technique to solve the differential governing equation. The new method was inspired by the so called New Dynamic Method (NDM) (Amer E. et al (1999) [1]) but totally different....... By integration of the Laplace transformation technique with the Quasi Dynamic Test (QDT) model (Fischer S. et al (2004) [2]), the Laplace – QDT (L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding method which needs to shield and un-shield solar collector continuously...... and the natural experimental method. The identified collector parameters are then compared and analyzed with those obtained by the steady state test method and the QDT test method. The results comparison shows that the L-QDT method and the natural experimental method are also valid. It can be concluded...
Pattern, participation, praxis, and power in unitary appreciative inquiry.
Cowling, W Richard
2004-01-01
This article is an explication and clarification of unitary appreciative inquiry based on several recent projects. Four central dimensions of the inquiry process are presented: pattern, participation, praxis, and power. Examples of inquiry projects demonstrate and illuminate the possibilities of unitary appreciative inquiry. The relationship of these central dimensions to experiential, presentational, propositional, and practical knowledge outcomes is articulated. A matrix framework integrating pattern, participation, praxis, and power demonstrates the potential for generating knowledge relevant to the lives of participants and creating an inquiry process worthy of human aspiration.
Tables of the principal unitary representations of Fedorov groups
Faddeyev, D K
1961-01-01
Tables of the Principal Unitary Representations of Fedorov Groups contains tables of all the principal representations of Fedorov groups from which all irreducible unitary representations can be obtained with the help of some standard operations. The work originated at a seminar on mathematical crystallography held in 1952-1953 at the Faculty of Mathematics and Mechanics of the Leningrad State University. The book is divided into two parts. The first part discusses the relation between the theory of representations and the generalized Fedorov groups in Shubnikov's sense. It shows that all un
Multistep epsilon-algorithm, Shanks' transformation, and Lotka-Volterra system by Hirota's method
Brezinski, Claude; Hu, Xing-Biao; Redivo-Zaglia, Michela; Sun, Jian-Qing
2010-01-01
In this paper, we give a multistep extension of the epsilon-algorithm of Wynn, and we show that it implements a multistep extension of the Shanks' sequence transformation which is defined by ratios of determinants. Reciprocally, the quantities defined in this transformation can be recursively computed by the multistep epsilon-algorithm. The multistep epsilon-algorithm and the multistep Shanks' transformation are related to an extended discrete Lotka-Volterra system. These results are obtained by using the Hirota's bilinear method, a procedure quite useful in the solution of nonlinear partial differential and difference equations.
A novel approach for solving fractional Fisher equation using differential transform method
Indian Academy of Sciences (India)
MIRZAZADEH M
2016-05-01
In the present paper, an analytic solution of nonlinear fractional Fisher equation is deduced with the help of the powerful differential transform method (DTM). To illustrate the method, two examples have been prepared. The method for this equation has led to an exact solution. The reliability, simplicity and cost-effectiveness of the method are confirmed by applying this method on different forms of functional equations.
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
Methods of compression of digital holograms, based on 1-level wavelet transform
Kurbatova, E. A.; Cheremkhin, P. A.; Evtikhiev, N. N.
2016-08-01
To reduce the size of memory required for storing information about 3D-scenes and to decrease the rate of hologram transmission, digital hologram compression can be used. Compression of digital holograms by wavelet transforms is among most powerful methods. In the paper the most popular wavelet transforms are considered and applied to the digital hologram compression. Obtained values of reconstruction quality and hologram's diffraction efficiencies are compared.
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
Directory of Open Access Journals (Sweden)
Ülker Bekir
2006-10-01
Full Text Available Abstract Background The Agrobacterium vacuum (Bechtold et al 1993 and floral-dip (Clough and Bent 1998 are very efficient methods for generating transgenic Arabidopsis plants. These methods allow plant transformation without the need for tissue culture. Large volumes of bacterial cultures grown in liquid media are necessary for both of these transformation methods. This limits the number of transformations that can be done at a given time due to the need for expensive large shakers and limited space on them. Additionally, the bacterial colonies derived from solid media necessary for starting these liquid cultures often fail to grow in such large volumes. Therefore the optimum stage of plant material for transformation is often missed and new plant material needs to be grown. Results To avoid problems associated with large bacterial liquid cultures, we investigated whether bacteria grown on plates are also suitable for plant transformation. We demonstrate here that bacteria grown on plates can be used with similar efficiency for transforming plants even after one week of storage at 4°C. This makes it much easier to synchronize Agrobacterium and plants for transformation. DNA gel blot analysis was carried out on the T1 plants surviving the herbicide selection and demonstrated that the surviving plants are indeed transgenic. Conclusion The simplified method works as efficiently as the previously reported protocols and significantly reduces the workload, cost and time. Additionally, the protocol reduces the risk of large scale contaminations involving GMOs. Most importantly, many more independent transformations per day can be performed using this modified protocol.
Directory of Open Access Journals (Sweden)
Mehrdad Moosazadeh Moghaddam
2013-01-01
Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.
2007-11-02
be approved in the near future. The main features of JPEG2000 are use of wavelet transform and ROI (Region of Interest) method. It is expected that... wavelet transform is more effective than Fourier transform for ultrasonic echo signal/image processing. Furthermore, ROI method seems to be appropriate...compression method of medical images. The purpose of this paper is to investigate the effectiveness of wavelet transform compared with DCT (JPEG) and
Directory of Open Access Journals (Sweden)
Sora Kim
Full Text Available Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH23]8Si8Mg6O12(OH4, for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×10(2 transformants/µg DNA, second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.
Multi-level denoising and enhancement method based on wavelet transform for mine monitoring
Institute of Scientific and Technical Information of China (English)
Yanqin Zhao
2013-01-01
Based on low illumination and a large number of mixed noises contained in coal mine,denoising with one method usually cannot achieve good results,So a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented.Firstly,we used directional median filter to effectively reduce impulse noise in the spatial domain,which is the main cause of noise in mine.Secondly,we used a Wiener filtration method to mainly reduce the Gaussian noise,and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain.This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits,and effectively reduce impulse noise and Gaussian noise in a coal mine,while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
MATHEMATICAL PROBLEMS IN THE INTEGRAL-TRANSFORMATION METHOD OF DYNAMIC CRACK
Institute of Scientific and Technical Information of China (English)
边文凤; 王彪; 贾宝贤
2004-01-01
In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied. After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral-transformation method of dynamic crack.
Directory of Open Access Journals (Sweden)
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
An Improved Singularity Computing Algorithm Based on Wavelet Transform Modulus Maxima Method
Institute of Scientific and Technical Information of China (English)
ZHAO Jian; XIE Duan; FAN Xun-li
2006-01-01
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
A new derivation of the highest-weight polynomial of a unitary lie algebra
Energy Technology Data Exchange (ETDEWEB)
P Chau, Huu-Tai; P Van, Isacker [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2000-07-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
Institute of Scientific and Technical Information of China (English)
Gou Fu-Yan; Liu Cai; Liu Yang; Feng Xuan; Cui Fang-Zi
2014-01-01
In seismic prospecting,fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent high-precision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model andfi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.
Directory of Open Access Journals (Sweden)
Davide Barbieri
2016-12-01
Full Text Available This is a joint work with E. Hernández, J. Parcet and V. Paternostro. We will discuss the structure of bases and frames of unitary orbits of discrete groups in invariant subspaces of separable Hilbert spaces. These invariant spaces can be characterized, by means of Fourier intertwining operators, as modules whose rings of coefficients are given by the group von Neumann algebra, endowed with an unbounded operator valued pairing which defines a noncommutative Hilbert structure. Frames and bases obtained by countable families of orbits have noncommutative counterparts in these Hilbert modules, given by countable families of operators satisfying generalized reproducing conditions. These results extend key notions of Fourier and wavelet analysis to general unitary actions of discrete groups, such as crystallographic transformations on the Euclidean plane or discrete Heisenberg groups.
In planta transformation method for T-DNA transfer in orchids
Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko
2014-03-01
Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.
Eijnden-van Raaij, A.J.M. van den; Koornneef, I.; Zoelen, E.J.J. van
1988-01-01
A new method was developed for the purification of type beta transforming growth factor from human platelets. This method is a three-step procedure including gel filtration, weak cation exchange HPLC and reverse phase HPLC. All steps are carried out at low pH using exclusively volatile acidic buffer
DEFF Research Database (Denmark)
Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole
1996-01-01
Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...
Butler, Brandon M.; Suh, Yonghee; Scott, Wendy
2015-01-01
In this article, the authors investigate the extent to which 9 elementary social studies methods textbooks present the purpose of teaching and learning social studies. Using Stanley's three perspectives of teaching social studies for knowledge transmission, method of intelligence, and social transformation; we analyze how these texts prepare…
Butler, Brandon M.; Suh, Yonghee; Scott, Wendy
2015-01-01
In this article, the authors investigate the extent to which 9 elementary social studies methods textbooks present the purpose of teaching and learning social studies. Using Stanley's three perspectives of teaching social studies for knowledge transmission, method of intelligence, and social transformation; we analyze how these texts prepare…
A new rapid method for quantification of PCBs in transformer oil.
Takada, M; Toda, H; Uchida, R
2001-01-01
In order to improve the efficiency and cost-effectiveness of the PCB analysis, the DMSO partition and SPE extraction were applied to clean up the PCB-contaminated transformer oils and PCB level was determined by means of the quadrupole GC/MS. The analysis data obtained from this method were compared statistically to that from the standard method.
New Generalized Transformation Method and Its Application in Higher-Dimensional Soliton Equation
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new generalized transformation method is presented to find more exact solutions of nonlinear partial differential equation. As an application of the method, we choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
Data Compression in RCS Modeling by Using the Threshold Discrete Fourier Transform Method
Institute of Scientific and Technical Information of China (English)
SHENG Weixing; FANG Dagang; ZHUANG Jing; LIU T.J.; YANG Zhenglong
2001-01-01
A new data compression tech-nique, called the threshold discrete Fourier trans-form (TDFT) method, is proposed to efficiently com-press the scattered field data from complex targets.Compared with the matrix pencil (MP) method andCLEAN method, it is quite simple and time saving un-der the similar compression ratio and reconstructionerror. In TDFT and CLEAN methods, the optimizedsegmentation is found which results in high compres-sion ratio.
Two-Element Generation of Unitary Groups Over Finite Fields
2013-01-31
like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two
Universal Loss Dynamics in a Unitary Bose Gas
Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng
2016-04-01
The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.
Experimental Realization of Perfect Discrimination for Two Unitary Operations
Institute of Scientific and Technical Information of China (English)
LIU Jian-Jun; HONG Zhi
2008-01-01
We experimentally demonstrate perfect discrimination between two unitary operations by using the sequential scheme proposed by Duan et al.[Phys. Rev. Lett. 98 (2007) 100503] Also, we show how to understand the scheme and to calculate the parameters for two-dimensional operations in the picture of the Bloch sphere.
Unitary operator bases and q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1995-11-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.
Unitary operator bases and Q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galetti, D.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fisica Nuclear e Teorica e Fenomenologia de Particulas Elementares; Lunardi, J.T. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Matematica e Estatistica
1998-03-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)
An algebraic study of unitary one dimensional quantum cellular automata
Arrighi, P
2005-01-01
We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.
CONSTRUCTION OF AUTHENTICATION CODES WITH ARBITRATION FROM UNITARY GEOMETRY
Institute of Scientific and Technical Information of China (English)
LiRuihu; OuoLuobin
1999-01-01
A family of authentication codes with arbitration is constructed from unitary geome-try,the parameters and the probabilities of deceptions of the codes are also computed. In a spe-cial case a perfect authentication code with arbitration is ohtalned.
Establishing the Unitary Classroom: Organizational Change and School Culture.
Eddy, Elizabeth M.; True, Joan H.
1980-01-01
This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…
TDA method application to austenite transformation in nodular cast iron with carbides assessment
Directory of Open Access Journals (Sweden)
G. Gumienny
2011-07-01
Full Text Available In this paper the possibility of TDA method using to austenite transformation in nodular cast iron with carbides assessment is presented. Studies were conducted on cast iron with about 2% molybdenum and 0,70% to 4,50% nickel. On diagrams, where TDA curves are pre- sented, on time axis a logarithmic scale was applied. It has not been used up to now. It was found, that during cooling and crystallization of cast iron in TDA probe, on the derivative curve there is a slight thermal effect from austenite to upper bainite or martensite transformation. Depending on nickel concentration austeniteupper bainite transformation start temperature changed (Bus, while MS temperature was independent of it. An influence of nickel on eutectic transformation temperature in nodular cast iron with carbides was determined too.
A depth estimation method based on geometric transformation for stereo light microscope.
Fan, Shengli; Yu, Mei; Wang, Yigang; Jiang, Gangyi
2014-01-01
Stereo light microscopes (SLM) with narrow vision and shallow depth of field are widely used in micro-domain research. In this paper, we propose a depth estimation method of micro objects based on geometric transformation. By analyzing the optical imaging geometry, the definition of geometric transformation distance is given and the depth-distance relation express is obtained. The parameters of geometric transformation and express are calibrated with calibration board images captured in aid of precise motorized stage. The depth of micro object can be estimated by calculating the geometric transformation distance. The proposed depth-distance relation express is verified using an experiment in which the depth map of an Olanzapine tablet surface is reconstructed.
K-best sort method in multiple symbol differential unitary space-time systems%多符号差分酉空时系统下K-best的排序方法
Institute of Scientific and Technical Information of China (English)
金小萍; 应樱果; 金宁
2011-01-01
The K-best algorithm(also known as the M algorithm) is well appreciated not only for its lower complexity,but also for its fixed complexity and latency, so it is used to solve the problem of high complexity for Multiple Symbol Differential Detection(MSDD).However, at present, the K-best algorithm used in the MSDD reduces the complexity by reducing the branches of extensible nodes mostly,and the method of sorting on each layer is almost empty. To solve this problem,this article researches two sorting methods based on dynamic K-best algorithm, Batcher's sort merge sort and K cycles sort. The simulation analysis shows that Batcher merge sort method can reduce 70％ of the compare & swap(c&s) operations compared to the traditional bubble sort method, but also has the similar performance,and only the 0.25 dB difference at high SNR.K cycles sort scheme not only reduces about 90％ of complexity compared to the bubble sort method,but also nearly saves 85％ c&s compared to the Bateher's sorting method,while its performance is the best at high SNR.%K-best算法(即M算法)不但具有较低复杂度,而且还具有固定的复杂度和时延,因而被应用于解决多符号差分检测(MS-DD)高计算复杂度的问题.然而,当前K-best算法在MSDD中的应用大多仅通过减少节点的分支数来降低复杂度,而对每层排序方法的研究几乎是空白.鉴于此研究了基于动态K-best算法下的Batcher合并排序和K cycles排序.仿真得出Batcher合并排序方法比传统的冒泡排序在比较交换次数上可以减少70%,而性能在高信噪比时仅相差0.25 dB;K cycles排序在复杂度上比Batcher减少将近85%,比冒泡减少90%左右,而其性能在高信噪比时是最优的.
Study on Transformer Magnetic Biasing Control Method for AC Power Supplies
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the aero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.
Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura
2016-09-01
The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.
Research on Method of Character Recognition Based on Hough Transform and RBF Neural Network
Directory of Open Access Journals (Sweden)
Zhang Yin
2015-01-01
Full Text Available A method of character recognition based on Hough transform and RBF neural network is proposed through research on weight accumulation algorithm of Hough transform. According to the feature of characters’ structure by using the duality of point-line Hough transform was done. In this method, the number of the points on the same line in parameter space and the position coordinates of the elements in image mapping space were taken to RBF neural network recognition system as characteristic input vector. It reduced the dimension of character feature vector and reflected the overall distribution of character lattice and the essential feature of character shape. The simulation results indicated there were some merits in this improved method: capability of recognition is strong, the quantity of calculation is small, and the speed of calculation is quick.
Ntsama, Eloundou Pascal; Colince, Welba; Ele, Pierre
2016-01-01
In this article, we make a comparative study for a new approach compression between discrete cosine transform (DCT) and discrete wavelet transform (DWT). We seek the transform proper to vector quantization to compress the EMG signals. To do this, we initially associated vector quantization and DCT, then vector quantization and DWT. The coding phase is made by the SPIHT coding (set partitioning in hierarchical trees coding) associated with the arithmetic coding. The method is demonstrated and evaluated on actual EMG data. Objective performance evaluations metrics are presented: compression factor, percentage root mean square difference and signal to noise ratio. The results show that method based on the DWT is more efficient than the method based on the DCT.
Wang, Shouyu; Yan, Keding; Xue, Liang
2017-01-01
In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.
A new method of medical image fusion based on nonsubsampled contourlet transform
Xu, Xuebin; Zhang, Xinman; Zhang, Deyun
2008-12-01
To improve the normal medical image fusion algorithm in order to avoid the loss of the detailed information in the processes of medical image fusion, a multiscale medical image fusion method based on nonsubsampled contourlet transform(NSCT) is proposed in this paper. First, the source images(MRI and CT images) are decomposed by using nonsubsampled contourlet transform. Then, the details of contourlet coefficients are fused on each corresponding levels with a vision feature fusion operator. Finally, the fused image will be obtained by taking the inverse nonsubsampled contourlet transformation. The experimental results show that the effect of the nonsubsampled contourlet-based method is obviously improved, and the proposed method can effectively preserve the detailed information of the source images.
Simulations of Transformer Inrush Current by Using BDF-Based Numerical Methods
Directory of Open Access Journals (Sweden)
Amir Tokić
2013-01-01
Full Text Available This paper describes three different ways of transformer modeling for inrush current simulations. The developed transformer models are not dependent on an integration step, thus they can be incorporated in a state-space form of stiff differential equation systems. The eigenvalue propagations during simulation time cause very stiff equation systems. The state-space equation systems are solved by using A- and L-stable numerical differentiation formulas (NDF2 method. This method suppresses spurious numerical oscillations in the transient simulations. The comparisons between measured and simulated inrush and steady-state transformer currents are done for all three of the proposed models. The realized nonlinear inductor, nonlinear resistor, and hysteresis model can be incorporated in the EMTP-type programs by using a combination of existing trapezoidal and proposed NDF2 methods.
Directory of Open Access Journals (Sweden)
Min Wang
2015-01-01
Full Text Available This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD, with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts, with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with image rotations and the enhancement of the directional features: to filter the diagonal part, one needs first to rotate it 45 degrees and rotate it back after filtering. Finally, reconstruct the image from the low-frequency part and the filtered high-frequency parts by the inverse wavelet transform to get the final denoising image. Experiments show the effectiveness of this method, compared with relevant methods.
A method based on IHS cylindrical transform model for quality assessment of image fusion
Zhu, Xiaokun; Jia, Yonghong
2005-10-01
Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.
Directory of Open Access Journals (Sweden)
Shehu Maitama
2016-01-01
Full Text Available A hybrid analytical method for solving linear and nonlinear fractional partial differential equations is presented. The proposed analytical approach is an elegant combination of the Natural Transform Method (NTM and a well-known method, Homotopy Perturbation Method (HPM. In this analytical method, the fractional derivative is computed in Caputo sense and the nonlinear term is calculated using He’s polynomial. The proposed analytical method reduces the computational size and avoids round-off errors. Exact solution of linear and nonlinear fractional partial differential equations is successfully obtained using the analytical method.
Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea
Directory of Open Access Journals (Sweden)
Clemow Scott R
2011-12-01
Full Text Available Abstract Pea has lagged behind other model legumes in the molecular study of nodulation and mycorrhizae-formation because of the difficulty to transform its roots and its poor growth on agar plates. Here we describe for pea 1 a transformation technique which permits the complementation of two known non-nodulating pea mutants, 2 a rhizobial inoculation method which allows the study of early cellular events giving rise to nodule primordia, and 3 a targeted fungal inoculation method which allows us to study short segments of mycorrhizal roots assured to be infected. These tools are certain to advance our knowledge of pea root symbioses.
Directory of Open Access Journals (Sweden)
Lifeng Wang
2015-01-01
Full Text Available The method based on the continuous wavelet transformation to detect and characterize two-dimensional vortex is analyzed for a synthetic flow and applied to vortex detection of propeller wake. The characteristics of a vortex, such as center location, core radius, and circulation, are extracted based on the Lamb-Oseen and Rankine vortex models, the latter of which is a novel attempt. The effects of various factors such as the difference scheme, the grid and scale discretization, transform variable, and vortex model on vortex detection have been investigated thoroughly. The method is further applied to identify the tip vortex in a propeller wake.
Jarvis, P. D.
2014-05-01
We consider local unitary invariants and entanglement monotones for the mixed two qutrit system. Character methods for the local SU(3) × SU(3) transformation group are used to establish the count of algebraically independent polynomial invariants up to degree 5 in the components of the density operator. These are identified up to quartic degree in the standard basis of Gell-Mann matrices, with the help of the calculus of f and d coefficients. Next, investigating local measurement operations, we study a SLOCC qutrit group, which plays the role of a ‘relativistic’ transformation group analogous to that of the Lorentz group SL(2,{ {C}})_{ {R}}\\simeq SO(3,1) for the qubit case. This is the group SL(3,{ {C}})_{ {R}}, presented as a group of real 9 × 9 matrices acting linearly on the nine-dimensional space of projective coordinates for the qutrit density matrix. The counterpart, for qutrits, of the invariant 4 × 4 Minkowski metric of the qubit case, proves to be a certain 9 × 9 × 9 totally symmetric three-fold tensor generalizing the Gell-Mann d coefficient. Using this structure, we provide a count of the corresponding local special linear polynomial invariants using group character methods. Finally, we give an explicit construction of the lowest degree quantity (the cubic invariant) and its expansion in terms of SU(3) × SU(3) invariants, and we indicate how to construct higher degree analogues. These quantities are proven to yield entanglement monotones. This work generalizes and partly extends the paper of King et al (2007 J. Phys. A: Math. Theor. 40 10083) on the mixed two qubit system, which is reviewed in an appendix.
Research of on-line monitoring method for insulation condition of power transformer bushing
Xia, Jiuyun; Qian, Zheng; Yu, Hao; Yao, Junda
2016-01-01
The power transformer is the key equipment of the power system; its insulation condition will directly influence the security and reliability of the power system. Thus, the on-line monitoring of power transformer is urgently required in order to guarantee the normal operation of the power system. Moreover, the dielectric loss factor is a significant parameter reflecting the condition of transformer bushing, so the on-line measurement of dielectric loss factor is really important. In this paper, the phase-to-phase comparison method is selected as the on-line monitoring method based on the overall analysis and discussion of the existing on-line monitoring methods. At first, the harmonic analysis method is utilized to calculate the dielectric loss of each phase of the three-phase transformer bushing, and then the differences of dielectric loss between every two phases are calculated and analyzed. So the insulation condition of each bushing could be achieved based on the careful analysis of different phase-to-phase dielectric loss. The simulation results of phase-to-phase comparison method are carried out in this paper, and the validity is verified. At last, this method is utilized in an actual equipment of on-line monitoring.
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
A Combined Fault Diagnosis Method for Power Transformer in Big Data Environment
Directory of Open Access Journals (Sweden)
Yan Wang
2017-01-01
Full Text Available The fault diagnosis method based on dissolved gas analysis (DGA is of great significance to detect the potential faults of the transformer and improve the security of the power system. The DGA data of transformer in smart grid have the characteristics of large quantity, multiple types, and low value density. In view of DGA big data’s characteristics, the paper first proposes a new combined fault diagnosis method for transformer, in which a variety of fault diagnosis models are used to make a preliminary diagnosis, and then the support vector machine is used to make the second diagnosis. The method adopts the intelligent complementary and blending thought, which overcomes the shortcomings of single diagnosis model in transformer fault diagnosis, and improves the diagnostic accuracy and the scope of application of the model. Then, the training and deployment strategy of the combined diagnosis model is designed based on Storm and Spark platform, which provides a solution for the transformer fault diagnosis in big data environment.
Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method
Directory of Open Access Journals (Sweden)
Polyana Kelly Martins
2015-06-01
Full Text Available Setaria viridis was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements that make it suitable for use as a model plant. We report an alternative method of S. viridis transformation using floral dip to circumvent the necessity of tissue culture phase for transgenic plant regeneration. S. viridis spikes at boot stage were selected to be immersed in Agrobacterium suspension. T1 seeds could be identified in 1.5–2 months after floral dipping. We demonstrated through molecular analysis and RFP expression that seeds and resulting plants from dipped inflorescences were transformed. Our results suggest the feasibility of S. viridis floral dip transformation as a time-saving and cost-effective compared with traditional methods. To our knowledge, this is the first report using floral dip in S. viridis as an Agrobacterium-mediated transformation method.
WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS
RAJITHA PALETI; Y. Bhavani Kumar; T. Krishna Chaitanya
2013-01-01
Wavelet method of determining the atmospheric boundary layer (ABL) height from lidar signals is presented in this paper. The wavelet covariance transform (WCT) method employed determines the significant gradient in the measured lidar signals. Using this method, the accuracy of ABL height detection enhances with increased dilation length. The developed wavelet algorithm is coded in MATLAB software and has a provision to alter the dilation length in real-time for a given translation estimate.
A new method of choosing scales in wavelet transform for damping identification
Institute of Scientific and Technical Information of China (English)
HE Rui; LUO Wen-bo; WANG Ben-li
2008-01-01
A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by extending the range of scales, it is proved that using this method in small damping ratio and linear system,we can achieve better results in identification of the closely-spaced model.
Farshid Mirzaee; Mohammad Komak Yari
2016-01-01
In this paper, we introduce three-dimensional fuzzy differential transform method and we utilize it to solve fuzzy partial differential equations. This technique is a successful method because of reducing such problems to solve a system of algebraic equations; so, the problem can be solved directly. A considerable advantage of this method is to obtain the analytical solutions if the equation has an exact solution that is a polynomial function. Numerical examples are included to demonstrate th...
Directory of Open Access Journals (Sweden)
Mohammad Hosein Rezaei
2011-10-01
Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage ﬂicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.
[A method of object detection for remote sensing-imagery based on spectral space transformation].
Wu, Gui-Ping; Xiao, Peng-Feng; Feng, Xue-Zhi; Wang, Ke
2013-03-01
Object detection is an intermediate link for remote sensing image processing, which is an important guarantee of remote sensing application and services aspects. In view of the characteristics of remotely sensed imagery in frequency domain, a novel object detection algorithm based on spectral space transformation was proposed in the present paper. Firstly, the Fourier transformation method was applied to transform the image in spatial domain into frequency domain. Secondly, the wedge-shaped sample and overlay analysis methods for frequency energy were used to decompose signal into different frequency spectrum zones, and the center frequency values of object's features were acquired as detection marks in frequency domain. Finally, object information was detected with the matched Gabor filters which have direction and frequency selectivity. The results indicate that the proposed algorithm here performs better and it has good detection capability in specific direction as well.
Three-dimensional adaptive coordinate transformations for the Fourier modal method.
Küchenmeister, Jens
2014-01-27
The concepts of adaptive coordinates and adaptive spatial resolution have proved to be a valuable tool to improve the convergence characteristics of the Fourier Modal Method (FMM), especially for metallo-dielectric systems. Yet, only two-dimensional adaptive coordinates were used so far. This paper presents the first systematic construction of three-dimensional adaptive coordinate and adaptive spatial resolution transformations in the context of the FMM. For that, the construction of a three-dimensional mesh for a periodic system consisting of two layers of mutually rotated, metallic crosses is discussed. The main impact of this method is that it can be used with any classic FMM code that is able to solve the large FMM eigenproblem. Since the transformation starts and ends in a Cartesian mesh, only the transformed material tensors need to be computed and entered into an existing FMM code.
Directory of Open Access Journals (Sweden)
Mohsen Torabi
2013-01-01
Full Text Available Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using differential transformation method (DTM, which is a seminumerical-analytical solution technique that can be applied to various types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES. By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with previously obtained results using variational iteration method (VIM, Adomian decomposition method (ADM, homotopy analysis method (HAM, and numerical solution (NS in order to verify the accuracy of the proposed method. The findings reveal that both BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter, radiation sink temperature, heat generation, and thermal conductivity parameters.
Verification of Transformer Restricted Earth Fault Protection by using the Monte Carlo Method
Directory of Open Access Journals (Sweden)
KRSTIVOJEVIC, J. P.
2015-08-01
Full Text Available The results of a comprehensive investigation of the influence of current transformer (CT saturation on restricted earth fault (REF protection during power transformer magnetization inrush are presented. Since the inrush current during switch-on of unloaded power transformer is stochastic, its values are obtained by: (i laboratory measurements and (ii calculations based on the input data obtained by the Monte Carlo (MC simulation. To make a detailed assessment of the current transformer performance the uncertain input data for the CT model were obtained by applying the MC method. In this way, different levels of remanent flux in CT core are taken into consideration. By the generated CT secondary currents, the algorithm for REF protection based on phase comparison in time domain is tested. On the basis of the obtained results, a method of adjustment of the triggering threshold in order to ensure safe operation during transients, and thereby improve the algorithm security, has been proposed. The obtained results indicate that power transformer REF protection would be enhanced by using the proposed adjustment of triggering threshold in the algorithm which is based on phase comparison in time domain.
A Method to Determine End-Points ofStraight Lines Detected Using the Hough Transform
Directory of Open Access Journals (Sweden)
Gideon Kanji Damaryam
2016-01-01
Full Text Available The Hough transform is often used to detect lines in images, yielding the equations of lines found. It works by transforming a line in a given image to a point in a new transform image while accumulating a measure of the likelihood that a point in the new image corresponds to a line from the original image. The resulting equation of a line describes a line of unspecified length, with no information about the end-points of the actual lines in the image which informed the detection of the line of unspecified length. This paperpresents a method to determine the end-points of the actual lines in the image.The method tracks points from the original image whose transforms led to evidence of lines in the transform image. Consecutive points are then grouped into sub-lines according to whether or not there are enough of them in the group so that they constitute a significant sub-line, and all points in the group are far enough from any other points along the same line, that those other points should not be considered part of the same sub-line.Sample results are shown.
Bijaoui, A.
2013-03-01
The image restoration is today an important part of the astrophysical data analysis. The denoising and the deblurring can be efficiently performed using multiscale transforms. The multiresolution analysis constitutes the fundamental pillar for these transforms. The discrete wavelet transform is introduced from the theory of the approximation by translated functions. The continuous wavelet transform carries out a generalization of multiscale representations from translated and dilated wavelets. The à trous algorithm furnishes its discrete redundant transform. The image denoising is first considered without any hypothesis on the signal distribution, on the basis of the a contrario detection. Different softening functions are introduced. The introduction of a regularization constraint may improve the results. The application of Bayesian methods leads to an automated adaptation of the softening function to the signal distribution. The MAP principle leads to the basis pursuit, a sparse decomposition on redundant dictionaries. Nevertheless the posterior expectation minimizes, scale per scale, the quadratic error. The proposed deconvolution algorithm is based on a coupling of the wavelet denoising with an iterative inversion algorithm. The different methods are illustrated by numerical experiments on a simulated image similar to images of the deep sky. A white Gaussian stationary noise was added with three levels. In the conclusion different important connected problems are tackled.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Between the transformations, witch can transform the compressible wave equation to the incompressible flow, a kind of relativity character can be found, which have the almost equal character as Lorenz time and space relation. This result leads to a new inference: incompressible wave equation with time and space structure of sonic special relativity is only different description of approximate compressible flow. This conclusion can be extended to Euler equation, and arise the interest of "compressible expression" of Maxwell equation. To study the rule of compressibility and thermodynamic character of metastructure field, a try is made by the using KamanTsian virtual gas method, this would give the relation,similar as mass and energy of special relativity theory.At first searching a transformation, witch can transform the compressible wave equation to the incompressible flow, but it is almost equal Lorenz time and space relation, So arrive to the conclusion: incompressible wave equation with approximate Lorentz transformation is only different description of compressible flow. This conclusion is expected be used to Maxwell equation, because its wave equation is also perfectly equal form. To search the rule of electromagnet and gravity field, by the using of Kaman-Tsian virtual gas method, the relation of mass and energy of relativity theory is given.``
Fresnel-Transform's Quantum Correspondence and Quantum Optical ABCD Law
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; HU Li-Yun
2007-01-01
@@ Corresponding to the Fresnel transform there exists a unitary operator in quantum optics theory, which could be known the Fresnel operator (FO). We show that the multiplication rule of the FO naturally leads to the quantum optical ABCD law. The canonical operator methods as mapping of ray-transfer ABCD matrix is explicitly shown by the normally ordered expansion of the FO through the coherent state representation and the technique of integration within an ordered product of operators. We show that time evolution of the damping oscillator embodies the quantum optical ABCD law.
The unified transform method for the Sasa-Satsuma equation on the half-line.
Xu, Jian; Fan, Engui
2013-11-08
We implement the unified transform method to the initial-boundary value (IBV) problem of the Sasa-Satsuma equation on the half line. In addition to presenting the basic Riemann-Hilbert formalism, which linearizes this IBV problem, we also analyse the associated general Dirichlet to Neumann map using the so-called global relation.
The unified transform method for the Sasa–Satsuma equation on the half-line
Xu, Jian; Fan, Engui
2013-01-01
We implement the unified transform method to the initial-boundary value (IBV) problem of the Sasa–Satsuma equation on the half line. In addition to presenting the basic Riemann–Hilbert formalism, which linearizes this IBV problem, we also analyse the associated general Dirichlet to Neumann map using the so-called global relation. PMID:24204181
Directory of Open Access Journals (Sweden)
Yan Li-Mei
2013-01-01
Full Text Available The purpose of this paper is to extend the homotopy perturbation method to fractional heat transfer and porous media equations with the help of the Laplace transform. The fractional derivatives described in this paper are in the Caputo sense. The algorithm is demonstrated to be direct and straightforward, and can be used for many other non-linear fractional differential equations.
Chang, C.; Borgart, A.; Chen, A.; Hendriks, M.A.N.
2014-01-01
This paper proposes an efficient and reliable topology optimization method that can obtain a black and white solution with a low objective function value within a few tens of iterations. First of all, a transformation of variables technique is adopted to eliminate the constraints on the design varia
Institute of Scientific and Technical Information of China (English)
Wang Na; Zhang Li; Zhou Xiao'an; Jia Chuanying; Li Xia
2005-01-01
This letter exploits fundamental characteristics of a wavelet transform image to form a progressive octave-based spatial resolution. Each wavelet subband is coded based on zeroblock and quardtree partitioning ordering scheme with memory optimization technique. The method proposed in this letter is of low complexity and efficient for Internet plug-in software.
Palys, M.J.; Palys, Marcin; Korba, Tomas; Bos, M.; van der Linden, W.E.
1991-01-01
A method for extracting single peaks from complex linear sweep and cyclic voltamperograms is presented. Voltamperograms are transformed by means of semidifferentiation, then all undesired peaks are removed from the semiderivative curve and replaced by calculated baselines. The resulting curve is
Directory of Open Access Journals (Sweden)
Hossein Jafari
2016-04-01
Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.
Directory of Open Access Journals (Sweden)
Mridula Garg
2011-12-01
Full Text Available In the present paper, we use generalized differential transform method (GDTM to derive solutions of some linear and nonlinear space-time fractional Fokker–Planck equations (FPE in closed form. The space and time fractional derivatives are considered in Caputo sense and the solutions are obtained in terms of Mittag-Leffler functions.
Directory of Open Access Journals (Sweden)
Percival Almoro
1998-12-01
Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.
Solution to the one-dimensional Rayleigh-Plesset equation by the Differential Transform method
Narendranath, Aneet Dharmavaram
2016-01-01
The differential transform method (DTM) is a relatively new technique that may be used to find a series solution to differential equations (both linear and nonlinear) through an iterative process. This brief manuscript is an initial effort in applying the DTM to provide a series solution to the one-dimensional Rayleigh-Plesset equation (RPE).
Energy Technology Data Exchange (ETDEWEB)
Brooks, B.R.
1979-09-01
The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m/sup 5/) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2/sup 1/A' state of SO/sub 2/ with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables.
A method of image compression based on lifting wavelet transform and modified SPIHT
Lv, Shiliang; Wang, Xiaoqian; Liu, Jinguo
2016-11-01
In order to improve the efficiency of remote sensing image data storage and transmission we present a method of the image compression based on lifting scheme and modified SPIHT(set partitioning in hierarchical trees) by the design of FPGA program, which realized to improve SPIHT and enhance the wavelet transform image compression. The lifting Discrete Wavelet Transform (DWT) architecture has been selected for exploiting the correlation among the image pixels. In addition, we provide a study on what storage elements are required for the wavelet coefficients. We present lena's image using the 3/5 lifting scheme.
Tatulli, Eric
2013-04-01
This paper studies the effects on Zernike coefficients of aperture scaling, translation, and rotation, when a given aberrated wavefront is described on the Zernike polynomial basis. It proposes an analytical method for computing the matrix that enables the building of transformed Zernike coefficients from the original ones. The technique is based on the properties of Zernike polynomials and Fourier transform, and, in the case of a full aperture without central obstruction, the coefficients of the matrix are given in terms of integrals of Bessel functions. The integral formulas are exact and do not depend on any specific ordering of the polynomials.
Min Wang; Zhen Li; Xiangjun Duan; Wei Li
2015-01-01
This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD), with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts), with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with i...
Research of Adaptive Resolution Spectrum Sensing Method Based on Discrete Wavelet Packet Transform
Directory of Open Access Journals (Sweden)
Wei Naiqi
2013-09-01
Full Text Available Spectrum sensing is the precondition of the realization of cognitive radio. In order to achieve efficient multi-resolution spectrum sensing, and find the available spectrum hole quickly, it proposes a variable resolution adaptive frequency spectrum energy sensing method based on discrete wavelet packet transform (DWPT. The method applied hierarchical decomposition and threshold denoising characteristic of wavelet packet transform, and solved the problem of subband sort disorder in wavelet packet decomposition process; it can eliminate the influence of uncertainty noise on detection performance, effectively. It also can reduce the computational complexity according to demand of selection resolution and perception band. The simulation results and its analysis show that the proposed method has advantages of high precision, simple arithmetic and fine flexibility, etc. The method is adapted to fast sensing in the cognitive radio environment.
An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling
Directory of Open Access Journals (Sweden)
A. Iqbal
2014-12-01
Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.
Martensitic transformations in ZrO/sub 2/: numerical methods and applications
Energy Technology Data Exchange (ETDEWEB)
Huang, M.D.D.
1981-05-01
The strain energy formulation for systems undergoing phase transformations has, for the first time, been established by the finite element method. The primary advantages of this method over others are the removal of limitations based on elastic isotropy or homogeneity, and its applicability to all types of stress-free strain (including twinning). This method has been applied to study the strain energy changes associated with the phase transformation of a spherical inclusion. The strain energy of an inhomogeneous (m)-ZrO/sub 2/ precipitate embedded in the (c)-ZrO/sub 2/ matrix has, for the first time, been determined using the finite element method. It was found that the total strain energy can be decoupled into two parts, one contributed by the diagonal stress free strain and the other by the shear stress free strain. These two strain energies are additive for an isotropic system.
Random numbers from the tails of probability distributions using the transformation method
Fulger, Daniel; Germano, Guido
2009-01-01
The speed of many one-line transformation methods for the production of, for example, Levy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, for the class of decreasing probability densities fast rejection implementations like the Ziggurat by Marsaglia and Tsang promise a significant speed-up if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transform maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.
Improved Real-time Denoising Method Based on Lifting Wavelet Transform
Directory of Open Access Journals (Sweden)
Liu Zhaohua
2014-06-01
Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.
Institute of Scientific and Technical Information of China (English)
Gao Chao; Zhou Shanxue
2010-01-01
This letter investigates the wavelet transform,as well as the principle and the method of the noise reduction based on wavelet transform,it chooses the threshold noise reduction,and discusses in detail the principles,features and design steps of the threshold method. Rigrsure,heursure,sqtwolog and minimization four kinds of threshold selection method are compared qualitatively,and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that,when dealing with the actual pressure signal of the oil pipeline leakage,sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage,the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position,with the relative error of less than 1%.
The unitary ability of IQ and indexes in WAIS-IV
A. Orsini; Pezzuti, L.; Hulbert, S.
2015-01-01
Lichtenberger and Kaufman (2009, p. 167) defined unitary ability as ‘an ability […] that is represented by a cohesive set of scaled scores, each reflecting slightly different or unique aspects of the ability’. Flanagan and Kaufman (2009) and Lichtenberger and Kaufman (2012) used a difference of 23 IQ points between the highest score (Max) and the lowest score (Min) obtained by a subject in the four Indexes of the WAIS-IV to define unitarity of the total IQ score. A similar method has been use...
Kottwitz's nearby cycles conjecture for a class of unitary Shimura varieties
Rostami, Sean
2011-01-01
This paper proves that the nearby cycles complex on a certain family of PEL local models is central with respect to the convolution product of sheaves on the corresponding affine flag variety. As a corollary, the semisimple trace function defined using the action of Frobenius on that nearby cycles complex is, via the sheaf-function dictionary, in the center of the corresponding Iwahori-Hecke algebra. This is commonly referred to as Kottwitz's conjecture. The reductive groups associated to the PEL local models under consideration are unramified unitary similitude groups with even dimension. The proof follows the method of [Haines-Ngo 2002].
Gu, Junhua; Wang, Jingying; An, Tao; Chen, Wen
2013-01-01
We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.
A fault location method using Lamb waves and discrete wavelet transform
Souza, Pablo Rodrigo de; Nobrega, Eurípedes Guilherme de Oliveira
2012-01-01
Non-destructive evaluation methods and signal process techniques are important steps in structural health monitoring systems to assess the structure integrity. This paper presents a method for fault location in aluminum beams based on time of flight of Lamb waves. The dynamic response signal captured from the structure was processed using the discrete wavelet transform. The information accuracy obtained from the processed signal depends on the correct choice of the mother wavelet. The best mo...
A Subspace Embedding Method in L2 Norm via Fast Cauchy Transform
Directory of Open Access Journals (Sweden)
Xu Xiang
2013-01-01
Full Text Available We propose a subspace embedding method via Fast Cauchy Transform (FCT in L2 norm. It is motivated by and complements the work of the subspace embedding method in Lp norm, for all p∈[1,∞] except p = 2, by K. L. Clarkson (ACM-SIAM, 2013. Unlike the traditionally used orthogonal basis in Johnson-Lindenstrauss (JL embedding, we employ the well-conditioned basis in L2 norm to obtain concentration property of FCT in L2 norm.
Aboul-Enein, Y; BUNACIU, Andrei; Nita, Sultana; FLESCHIN, Serban; AYDOGMUS, Zeynep
2012-01-01
A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of oseltamivir phosphate (OP) in pharmaceutical formulations. Conventional KBr-spectra were compared for best determination of the active substance in pharmaceutical preparations. The Beer-Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were used in data processing. Key words: FT-IR analysis, oseltamivir, ...
Directory of Open Access Journals (Sweden)
Kedong Xu
Full Text Available Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Gomar, Laura Castelló; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M
2012-01-01
We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. Though the proof is generalizable to other compact spatial topologies in three or less dimensions, we focus on the case of the three-torus owing to its relevance in cosmology, paying a especial attention to the role played by the spatial isometries in the determination of the representatio...
Large Representation Recurrences in Large N Random Unitary Matrix Models
Karczmarek, Joanna L
2011-01-01
In a random unitary matrix model at large N, we study the properties of the expectation value of the character of the unitary matrix in the rank k symmetric tensor representation. We address the problem of whether the standard semiclassical technique for solving the model in the large N limit can be applied when the representation is very large, with k of order N. We find that the eigenvalues do indeed localize on an extremum of the effective potential; however, for finite but sufficiently large k/N, it is not possible to replace the discrete eigenvalue density with a continuous one. Nonetheless, the expectation value of the character has a well-defined large N limit, and when the discreteness of the eigenvalues is properly accounted for, it shows an intriguing approximate periodicity as a function of k/N.
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
On an average over the Gaussian Unitary Ensemble
Mezzadri, F
2009-01-01
We study the asymptotic limit for large matrix dimension N of the partition function of the unitary ensemble with weight exp(-z^2/2x^2 + t/x - x^2/2). We compute the leading order term of the partition function and of the coefficients of its Taylor expansion. Our results are valid in the range N^(-1/2) < z < N^(1/4). Such partition function contains all the information on a new statistics of the eigenvalues of matrices in the Gaussian Unitary Ensemble (GUE) that was introduced by Berry and Shukla (J. Phys. A: Math. Theor., Vol. 41 (2008), 385202, arXiv:0807.3474). It can also be interpreted as the moment generating function of a singular linear statistics.
Random unitary evolution model of quantum Darwinism with pure decoherence
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S- E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
All unitary cubic curvature gravities in D dimensions
Energy Technology Data Exchange (ETDEWEB)
Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-10-07
We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.
The Shear Viscosity in an Anisotropic Unitary Fermi Gas
Samanta, Rickmoy; Trivedi, Sandip P
2016-01-01
We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...
Design parameter based method of partial discharge detection and location in power transformers
Directory of Open Access Journals (Sweden)
Kumar Santosh Annadurai
2009-01-01
Full Text Available Insulation defect detection in time ensures higher operational reliability of power system assets. Power transformers are the most critical unit of power systems both from economical and operational front. Hence it becomes necessary to have knowledge of the actual insulation condition of transformer to increase dependability of the system. The performance and ageing of the transformer insulation is mainly affected by Partial discharges (PD. Proper diagnosis in terms of amplitude and location of partial discharge in a power transformer enables us to predict well in advance, with much confidence, the defect in insulation system, which avoids large catastrophic failures. In this work a 20kVA, 230/50kV single phase core type transformer is used for evaluation of the transfer function-based partial discharge detection and location using modeling of the winding, using design data. The simulation of capturing on-line PD pulses across the bushing tap capacitor is done for various tap positions. Standard PD source model is used to inject PD pulse signal at 10 tap locations in the winding and corresponding response signatures are captured at the bushing tap end (across 1000pF. The equivalent high frequency model of the winding is derived from the design parameters using analytical calculations and simulations in packages such as MAGNET and ANSOFT. The test conditions are simulated using ORCAD-9 and the results are evaluated for location accuracy using design parameter based PD monitoring method. .
Transformation-cost time-series method for analyzing irregularly sampled data.
Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen
2015-06-01
Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.
Directory of Open Access Journals (Sweden)
Jinbao Yao
2016-01-01
Full Text Available Shock pulse method is a widely used technique for condition monitoring of rolling bearing. However, it may cause erroneous diagnosis in the presence of strong background noise or other shock sources. Aiming at overcoming the shortcoming, a pulse adaptive time-frequency transform method is proposed to extract the fault features of the damaged rolling bearing. The method arranges the rolling bearing shock pulses extracted by shock pulse method in the order of time and takes the reciprocal of the time interval between the pulse at any moment and the other pulse as all instantaneous frequency components in the moment. And then it visually displays the changing rule of each instantaneous frequency after plane transformation of the instantaneous frequency components, realizes the time-frequency transform of shock pulse sequence through time-frequency domain amplitude relevancy processing, and highlights the fault feature frequencies by effective instantaneous frequency extraction, so as to extract the fault features of the damaged rolling bearing. The results of simulation and application show that the proposed method can suppress the noises well, highlight the fault feature frequencies, and avoid erroneous diagnosis, so it is an effective fault feature extraction method for the rolling bearing with high time-frequency resolution.
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
Directory of Open Access Journals (Sweden)
Hiroaki Mano
Full Text Available The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium. We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP. Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholinoethanesulfonic acid (MES buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max and pea (Pisum sativum. The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
ROTATION CONSTELLATION FOR DIFFERENTIAL UNITARY SPACE-TIME MODULATION
Institute of Scientific and Technical Information of China (English)
Li Jun; Cao Haiyan; Wei Gang
2006-01-01
A new constellation which is the multiplication of the rotation matrix and the diagonal matrix according to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Unitary representations of the fundamental group of orbifolds
Indian Academy of Sciences (India)
INDRANIL BISWAS; AMIT HOGADI
2016-10-01
Let $X$ be a smooth complex projective variety of dimension $n$ and $\\mathcal{L}$ an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles $E$ on $X$ with $c_{1}(E) = 0 = c_{2}(E) \\cdot c_{1} \\mathcal (L)^{n−2}$ and the equivalence classes of unitary representations of $\\pi_{1}(X)$. We show that this bijective correspondence extends to smooth orbifolds.
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Two Combinations of Unitary Operators and Frame Representations
Institute of Scientific and Technical Information of China (English)
李祚; 朱红鲜; 张慧; 杜鸿科
2005-01-01
In this paper, we prove that the norm closure of all linear combinations of two unitary operators is equal to the norm closure of all invertible operators in B(H). We apply the results to frame representations and give some simple and alternative proofs of the propositions in “P. G. Casazza, Every frame is a sum of three (but not two) orthonormal bases-and other frame representations, J. Fourier Anal. Appl., 4(6)(1998), 727-732.”
Wu, Changdong; Liu, Zhigang; Jiang, Hua
2017-05-01
The quality of image enhancement plays an important role in the catenary fault diagnosis system based on the image processing technique. It is necessary to enhance the low contrast image of catenary for better detecting the state of catenary part. The Non-subsampled Contourlet transform (NSCT) is the improved Contourlet transform (CT), which can effectively solve the problem of artifact phenomenon in the enhanced catenary image. Besides, choosing the enhancement function and the filter of the NSCT will directly influence the image enhancement effect. In this paper, the proposed method is implemented by combining the NSCT with the nonlinear enhancement function to enhance the catenary image. First, how to choose the filter of the NSCT is discussed. Second, the NSCT is used to decompose the image. Then, the chosen nonlinear enhancement function is used to process the decomposed coefficient of the NSCT. Finally, the NSCT is inversed to obtain the enhanced image. In this paper, we evaluate our algorithm using the lifting wavelet transform, retinex enhancement method, dark channel enhancement method, curvelet transform, and CT method as a comparison to enhance a group of randomly selected low contrast catenary images, respectively. The results of comparative experiments conducted show that the proposed method can effectively enhance the catenary image, the contrast of image is improved, the catenary parts are obvious, and the artifact phenomenon is effectively eliminated, where image details (edges, textures, or smooth areas) are also well preserved. Besides, the values (detail variance-background variance, signal-to-noise ratio, and edge preservation index) of measuring the image enhancement capacity are improved, while the mean squared error value is decreased when compared to the CT method. These indicate that the proposed method is an excellent catenary image enhancement approach.
Directory of Open Access Journals (Sweden)
HASHEM SABERI NAJAFI
2016-07-01
Full Text Available Generalized differential transform method (GDTM is a powerful method to solve the fractional differential equations. In this paper, a new fractional model for systems with single degree of freedom (SDOF is presented, by using the GDTM. The advantage of this method compared with some other numerical methods has been shown. The analysis of new approximations, damping and acceleration of systems are also described. Finally, by reducing damping and analysis of the errors, in one of the fractional cases, we have shown that in addition to having a suitable solution for the displacement close to the exact one, the system enjoys acceleration once crossing the equilibrium point.
Directory of Open Access Journals (Sweden)
Farshid Mirzaee
2016-06-01
Full Text Available In this paper, we introduce three-dimensional fuzzy differential transform method and we utilize it to solve fuzzy partial differential equations. This technique is a successful method because of reducing such problems to solve a system of algebraic equations; so, the problem can be solved directly. A considerable advantage of this method is to obtain the analytical solutions if the equation has an exact solution that is a polynomial function. Numerical examples are included to demonstrate the validity and applicability of the method.
The Telegraph Equation and Its Solution by Reduced Differential Transform Method
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2013-01-01
Full Text Available One-dimensional second-order hyperbolic telegraph equation was formulated using Ohm’s law and solved by a recent and reliable semianalytic method, namely, the reduced differential transform method (RDTM. Using this method, it is possible to find the exact solution or a closed approximate solution of a differential equation. Three numerical examples have been carried out in order to check the effectiveness, the accuracy, and convergence of the method. The RDTM is a powerful mathematical technique for solving wide range of problems arising in science and engineering fields.
Energy Technology Data Exchange (ETDEWEB)
Ravi Kanth, A.S.V. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)], E-mail: asvravikanth@yahoo.com; Aruna, K. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)
2008-11-17
In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.
Entanglement entropy of non-unitary integrable quantum field theory
Directory of Open Access Journals (Sweden)
Davide Bianchini
2015-07-01
Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3logℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.
Indian Academy of Sciences (India)
Rahmani Faramarz; Golshani Mehdi; Sarbishei Mohsen
2016-04-01
In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton–Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm’s original method in deriving Bohmian quantumpotential. We do not use any quantum mechanical postulates in this approach.
Locke, Jonathan; White, Paul R
2011-10-01
The analysis of cetacean vocalizations is considered using Fourier-based techniques that employ chirp functions in their decomposition. In particular, the paper considers a short-time methods based on the fractional Fourier transform for detecting frequency modulated narrow-band signals, such as dolphin whistles, and compares this to the classical short-time Fourier methods. The fractional Fourier technique explored computes transforms associated with a range of chirp rates and automatically selects the rate for the final analysis. This avoids the need for prior knowledge of signal's chirp rate. An analysis is presented that details the performance of both methods as signal detectors and allows one to determine their detection thresholds. These thresholds are then used to measure the detectability of synthetic signals. This principle is then extended to measure performance on a set of recordings of narrow-band vocalizations from a range of cetacean species.
Roychoudhury, Aryadeep; Basu, Supratim; Sengupta, Dibyendu N
2009-10-01
The efficiencies of different transformation methods of E. coli DH5Qalpha train, induced by several cations like Mg2+, Mn2+ Rb+ and especially Ca2+, with or without polyethylene glycol (PEG) and dimethyl sulfoxide (DMSO) were compared using the two commonly used plasmid vectors pCAMBIA1201 and pBI121. The widely used calcium chloride (CaCl2) method appeared to be the most efficient procedure, while rubidium chloride (RbCl) method was the least effective. The improvements in the classical CaCl2 method were found to further augment the transformation efficiency (TR)E for both the vectors like repeated alternate cycles of heat shock, followed by immediate cold, at least up to the third cycle; replacement of the heat shock step by a single microwave pulse and even more by double microwave treatment and administration of combined heat shock-microwave treatments. The pre-treatment of CaCl2-competent cells with 5% (v/v) ethanol, accompanied by single heat shock also triggered the (TR)E, which was further enhanced, when combined heat shock-microwave was applied. The minor alterations or improved approaches in CaCl2 method suggested in the present study may thus find use in more efficient E. coli transformation.
Induction motor rotor fault diagnosis method based on double PQ transformation
Institute of Scientific and Technical Information of China (English)
HUANG Jin; NIU Faliang; YANG Jiaqiang
2007-01-01
This Paper presents a new rotor fault diagnosis method for induction motors which is based on the double PQ transformation.We construct the PQ transformation matrix with the positive sequence fundamental voltage components and their Hilbert transformation as elements.The active power P and the reactive power Q are obtained through the PO transformation of the stator currents.As both P and Q are constant for a healthy motor,they are represented by a dot on the PQ plane.Whereas the P and Q for a rotor broken bar motor are represented by an ellipse because they comprise an additional frequency component 2sfs (s is the slip and js is the supply frequency).Thus,by distinguishing these two different patterns.the rotor broken bar fault is detected.We use the major radius of the ellipse as the fault indicator and the distance between the point of no-load condition and the center of the ellipse on the PQ plane as its normalization value.We thus arrive at the fault severity factor which is fairly independent of the load level and the inertia value of the induction motors.Experimental results have demonstrated that the proposed method is effective in identifying the rotor-broken-bars fault and at determining the severity of the fault.
Method to eliminate flux linkage DC component in load transformer for static transfer switch.
He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.
Directory of Open Access Journals (Sweden)
Cinicioglu Esma Nur
2014-01-01
Full Text Available Dempster−Shafer belief function theory can address a wider class of uncertainty than the standard probability theory does, and this fact appeals the researchers in operations research society for potential application areas. However, the lack of a decision theory of belief functions gives rise to the need to use the probability transformation methods for decision making. For representation of statistical evidence, the class of consonant belief functions is used which is not closed under Dempster’s rule of combination but is closed under Walley’s rule of combination. In this research, it is shown that the outcomes obtained using both Dempster’s and Walley’s rules do result in different probability distributions when pignistic transformation is used. However, when plausibility transformation is used, they do result in the same probability distribution. This result shows that the choice of the combination rule and probability transformation method may have a significant effect on decision making since it may change the choice of the decision alternative selected. This result is illustrated via an example of missile type identification.
Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch
Directory of Open Access Journals (Sweden)
Yu He
2014-01-01
Full Text Available Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Tang, Hui, E-mail: corinna@seu.edu.cn [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210000 (China); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China); Tong, Dan; Dong Bao, Xu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Dillenseger, Jean-Louis [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China)
2015-04-15
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Tang, Hui; Tong, Dan; Bao, Xudong; Dillenseger, Jean-Louis
2015-01-01
Purpose In digital X-ray radiography, an anti-scatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the anti-scatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods The method is as follows. The input image is first recursively decomposed into several smaller sub-images using a multi-scale 2D discrete wavelet transform (DWT). The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these sub-images using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected sub-images to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform (IDWT). Results The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1-dimensional Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time. PMID:25832061
Bhatnagar, Manav R
2012-01-01
In this paper, we derive a maximum likelihood (ML) decoder of the differential data in a decode-and-forward (DF) based cooperative communication system utilizing uncoded transmissions. This decoder is applicable to complex-valued unitary and non-unitary constellations suitable for differential modulation. The ML decoder helps in improving the diversity of the DF based differential cooperative system using an erroneous relaying node. We also derive a piecewise linear (PL) decoder of the differential data transmitted in the DF based cooperative system. The proposed PL decoder significantly reduces the decoding complexity as compared to the proposed ML decoder without any significant degradation in the receiver performance. Existing ML and PL decoders of the differentially modulated uncoded data in the DF based cooperative communication system are only applicable to binary modulated signals like binary phase shift keying (BPSK) and binary frequency shift keying (BFSK), whereas, the proposed decoders are applicab...
Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K
2016-08-08
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Trace projection transformation: a new method for measurement of debris flow surface velocity fields
Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang
2016-12-01
Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.
A model transformation method for transforming BPMN to JPDL%一种BPMN到JPDL的模型转换方法
Institute of Scientific and Technical Information of China (English)
张元青; 聂兰顺
2012-01-01
Model transformation plays a key role in MDA and MDD. In this study, the transformation between BPMN and JBPM is investigated. Firstly, the elelements in this two kinds of models are analyzed and compared. Secondly, transformation rules are estabilished in two levels, i.e. one is the transformation among elements, and the other is the transformation among the properties and semantics of the elements. Then, the format and syntax of transformation rule file is well defined. Finally, a depth-first algorithm for searching and executing rule is proposed for transforming BPMN model to JBPM model. A case from campus service domain is used to demonstrate the effectiveness of the approach.%模型转换是模型驱动体系结构和模型驱动软件开发的核心技术。以流程模型为研究对象，研究了BPMN模型与JBPM模型之间的转换方法。首先，分析了两种模型的构成；其次，从模型元素之间的转换和模型元素内属性、语义之间的转换两方面建立了 BPMN 与JBPM模型间的转换规则；再次，基于XML定义了转换规则文件的格式和语法；最后，提出了基于深度优先的转换规则搜索与执行算法，实现了BPMN模型到JBPM模型的正确转换。以校园服务领域的典型业务流程为例，验证了方法和算法的有效性。
Joint Unitary Triangularization for MIMO Networks
Khina, Anatoly; Erez, Uri
2010-01-01
This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the point-to-point distortions of the ...
Improved fuzzy identification method based on Hough transformation and fuzzy clustering
Institute of Scientific and Technical Information of China (English)
刘福才; 路平立; 潘江华; 裴润
2004-01-01
This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity and continuity of given input-output data, respectively. For the premise parts parameters identification, we use fuzzy-C-means clustering method. The consequent parameters are identified based on recursive least square. This method not only makes approximation more accurate, but also let computation be simpler and the procedure is realized more easily. Finally, it is shown that this method is useful for the identification of a fuzzy model by simulation.
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo
2010-01-01
In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator....... In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...... of DTM in solving nonlinear problems when a so accurate solution is required....
Directory of Open Access Journals (Sweden)
Burhan Ergen
2014-01-01
Full Text Available This paper proposes two edge detection methods for medical images by integrating the advantages of Gabor wavelet transform (GWT and unsupervised clustering algorithms. The GWT is used to enhance the edge information in an image while suppressing noise. Following this, the k-means and Fuzzy c-means (FCM clustering algorithms are used to convert a gray level image into a binary image. The proposed methods are tested using medical images obtained through Computed Tomography (CT and Magnetic Resonance Imaging (MRI devices, and a phantom image. The results prove that the proposed methods are successful for edge detection, even in noisy cases.
Ergen, Burhan
2014-01-01
This paper proposes two edge detection methods for medical images by integrating the advantages of Gabor wavelet transform (GWT) and unsupervised clustering algorithms. The GWT is used to enhance the edge information in an image while suppressing noise. Following this, the k-means and Fuzzy c-means (FCM) clustering algorithms are used to convert a gray level image into a binary image. The proposed methods are tested using medical images obtained through Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) devices, and a phantom image. The results prove that the proposed methods are successful for edge detection, even in noisy cases.
Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements
Lait, Leslie R.; Stanford, John L.
1988-01-01
A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.
Coordinate-Dependent N-Mode Squeezing Transformations
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; REN Gang; CHEN Xiang-Rong; SONG Tong-Qiang; CAI Ling-Cang; GOU Qing-Quan
2008-01-01
We introduce the coordinate-dependent N-mode squeezing transformation and show that it can be con-structed by the combination of two unitary transformations, a coordinate-dependent displacement followed by the stan-dard squeezed transformation. The properties of the corresponding N-mode squeezed states are also discussed.
A Fast Feature Extraction Method Based on Integer Wavelet Transform for Hyperspectral Images
Institute of Scientific and Technical Information of China (English)
GUYanfeng; ZHANGYe; YUShanshan
2004-01-01
Hyperspectral remote sensing provides high-resolution spectral data and the potential for remote discrimination between subtle differences in ground covers. However, the high-dimensional data space generated by the hyperspectral sensors creates a new challenge for conventional spectral data analysis techniques. A challenging problem in using hyperspectral data is to eliminate redundancy and preserve useful spectral information for applications. In this paper, a Fast feature extraction (FFE) method based on integer wavelet transform is proposed to extract useful features and reduce dimensionality of hyperspectral images. The FFE method can be directly used to extract useful features from spectral vector of each pixel resident in the hyperspectral images. The FFE method has two main merits: high computational efficiency and good ability to extract spectral features. In order to better testify the effectiveness and the performance of the proposed method, classification experiments of hyperspectral images are performed on two groups of AVIRIS (Airborne visible/infrared imaging spectrometer) data respectively. In addition, three existing methods for feature extraction of hyperspectral images, i.e. PCA, SPCT and Wavelet Transform, are performed on the same data for comparison with the proposed method. The experimental investigation shows that the efficiency of the FFE method for feature extraction outclasses those of the other three methods mentioned above.
[Decomposition and analysis of the natural source SLF spectrum using curvelet transform method].
Jiang, Hong-bo; Chen, Chao; Qin, Qi-ming
2012-02-01
Because natural source super low frequency (SLF) electromagnetic detection equipment receives wideband multi-source signal, how to decompose the signal to filter out the interference signal was a key factor for the application of natural source SLF electromagnetic detection technology. In the present article, the detection equipment developed by Peking University was used to survey the coal bed methane data in the Qinshui basin, Shanxi province, and the curvelet transform method was employed to decompose those data. The analysis results indicated that the high-frequency information coming from the decomposition is the interference signals mainly generated by lightning in the atmospheric and directly received by the detection equipment, while the low frequency signal mainly contains the target information. So the reconstructed curve based on the low-frequency information was more favorable for the interpretation of the target, compared with the original spectrum curve. But the curvelet transform method could not remove the artificial frequency signal.
Kaneko, Tak
2008-01-01
Context: Fourier transform (or lag) correlators in radio interferometers can serve as an efficient means of synthesising spectral channels. However aliasing corrupts the edge channels so they usually have to be excluded from the data set. In systems with around 10 channels, the loss in sensitivity can be significant. In addition, the low level of residual aliasing in the remaining channels may cause systematic errors. Moreover, delay errors have been widely reported in implementations of broadband analogue correlators and simulations have shown that delay errors exasperate the effects of aliasing. Aims: We describe a software-based approach that suppresses aliasing by oversampling the cross-correlation function. This method can be applied to interferometers with individually-tracking antennas equipped with a discrete path compensator system. It is based on the well-known property of interferometers where the drift scan response is the Fourier transform of the source's band-limited spectrum. Methods: In this p...
Method of local pointed function reduction of original shape in Fourier transformation
Dosch, H
2002-01-01
The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images
Directory of Open Access Journals (Sweden)
S. hajiaghasi
2014-07-01
Full Text Available In recent years with notice increase reliability in power system and Intelligent Systems and also notice that transformers are one of the main part of the transmission and distribution systems, online monitoring of these equipment in power system are require. In this paper, a new method for online interturn fault detection base on leakage flux in power transformer are propose. When an interturn fault occur the symmetry of flux destruction and leakage flux increase or decrease and for various location and severity of fault leakage flux is different and it can be used for fault detection. In this paper for measure these flux we using search coils that mounted on HV winding. To fault detection and classify we using probabilistic neural network. and for decrease the information volume PCA is used. The simulation results are compare and verified with experimental result and show that this propose method is very good.
Study of organic N transformation in red soils by 15N tracer method
Institute of Scientific and Technical Information of China (English)
YeQing－Fu; ZhangQin－Zheng; 等
1997-01-01
Uniformly 15N-labelled ryegrass was used to investigate NH4+-production,microbial transformation and humification of organic N in two types of red soils by incubating the soils amended with labelled material.The results showed that there was little significant difference in biomass N transformation in the tested solis between 15N tracer method and conventional method,but the amount of NH4++-N released form the ryegrass in the clayey soil than in the sandy soil at all sampling time .By 120d of incubation,humified N was less than 10% of the amount of the applied N in two types of red soils and the amount of residual N in the clayey red soil was obviously higher than that in the sandy red soil.
Institute of Scientific and Technical Information of China (English)
Duan Chendong; He Zhengjia; Jiang Hongkai
2004-01-01
A new time-domain analysis method that uses second generation wavelet transform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature, a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processing detail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, and extracting modulus maximum from each window, fault features in time-domain are highlighted. To make further analysis on the reason of the fault, wavelet package transform based on SGWT is used to process vibration data again. Calculating the energy of each frequency-band, the energy distribution features of the signal are attained. Then taking account of the fault features and the energy distribution, the reason of the fault is worked out. An early impact-rub fault caused by axis misalignment and rotor imbalance is successfully detected by using this method in an oil refinery.
Free vibration investigation of nano mass sensor using differential transformation method
Zarepour, Misagh; Hosseini, S. Amirhosein; Ghadiri, Majid
2017-03-01
In the present study, transverse vibration of nano-cantilever beam with attached mass and two rotational and transverse springs at its end is studied. Resonance frequency of vibrating system is influenced by changing mass particle and stiffness coefficients. Euler-Bernoulli beam theory, nonlocal constitutive equations of Eringen, and Hamilton's principle are used to develop equations of motion. Differential transformation method (DTM) is applied to solve the governing equations of the nanobeam with attached mass particle. Accurate results with minimum mathematical calculation are the advantages of DTM. A detailed parametric study is conducted to investigate the influences of nonlocal parameter. The results can be used in designing of nanoelectromechanical systems. To verify the results, some comparisons are presented between differential transform method results and open literature to show the accuracy of this new approach.
MULTIVARIATE FOURIER TRANSFORM METHODS OVER SIMPLEX AND SUPER-SIMPLEX DOMAINS
Institute of Scientific and Technical Information of China (English)
Jiachang Sun
2006-01-01
In this paper we propose the well-known Fourier method on some non-tensor product domains in Rd, including simplex and so-called super-simplex which consists of (d + 1)! simplices. As two examples, in 2-D and 3-D case a super-simplex is shown as a paralle lhexagon and a parallel quadrilateral dodecahedron, respectively. We have extended most of concepts and results of the traditional Fourier methods on multivariate cases, such as Fourier basis system, Fourier series, discrete Fourier transform (DFT) and its fast algorithm(FFT) on the super-simplex, as well as generalized sine and cosine transforms (DST, DCT) and related fast algorithms over a simplex. The relationship between the basic orthogonal system and eigen-functions of a Laplacian-like operator over these domains is explored.
Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing
2015-01-01
In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.
Directory of Open Access Journals (Sweden)
Bulbul AHMED
2011-11-01
Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.
Recognition Method of Aircraft Axis Direction Based on Morphological Skeleton and Hough Transform
Institute of Scientific and Technical Information of China (English)
WANG Hong-bo; ZHUANG Zhi-hong; ZHENG Hua-li; ZHANG Qing-tai; HE Hong-jun
2008-01-01
Because of the limit of angle of view(AOV) of IR imaging seeker during the approach of missile and target, the detector can only get the partial image sequence of aircraft nose after "lose point". Recognizing the axis direction on the basis of partial IR image sequence is a key issue of the advanced IR imaging guide air-to-air missile faced. In this paper, a recognition method was proposed based on the morphological skeleton and modified Hough transform, and this method can recognize correctly the axis direction of aircraft nose in different poses during missile-target encounter. Firstly, the morphological skeleton transform was used for the extraction of skeleton features. Secondly, the modified Hough transform was used for the straight-lines detection. Finally, According to the relations between aircraft nose and axis and invariant of nose features in high-speed IR image sequence, the axis direction can be detected and calculated. Experimental results indicate that the method is feasible and effective, and the precision of axis direction recognized can meet the requirement of accurate burst control of GIF fuze.
A Fourier transform method for powder diffraction based on the Debye scattering equation.
Thomas, Noel William
2011-11-01
A fast Fourier transform algorithm is introduced into the method recently defined for calculating powder diffraction patterns by means of the Debye scattering equation (DSE) [Thomas (2010). Acta Cryst. A66, 64-77]. For this purpose, conventionally used histograms of interatomic distances are replaced by compound transmittance functions. These may be Fourier transformed to partial diffraction patterns, which sum to give the complete diffraction pattern. They also lead to an alternative analytical expression for the DSE sum, which reveals its convergence behaviour. A means of embedding the DSE approach within the reciprocal-lattice-structure-factor method is indicated, with interpolation methods for deriving the peak profiles of nanocrystalline materials outlined. Efficient calculation of transmittance functions for larger crystallites requires the Patterson group symmetry of the crystals to be taken into account, as shown for α- and β-quartz. The capability of the transmittance functions to accommodate stacking disorder is demonstrated by reference to kaolinite, with a fully analytical treatment of disorder described. Areas of future work brought about by these developments are discussed, specifically the handling of anisotropic atomic displacement parameters, inverse Fourier transformation and the incorporation of instrumental (diffractometer) parameters.
Goudarzi, Alireza; Riahi, Mohammad Ali
2012-12-01
One of the most crucial challenges in seismic data processing is the reduction of the noise in the data or improving the signal-to-noise ratio. In this study, the 1D undecimated discrete wavelet transform (UDWT) has been acquired to attenuate random noise and ground roll. Wavelet domain ground roll analysis (WDGA) is applied to find the ground roll energy in the wavelet domain. The WDGA will be a substitute method for thresholding in seismic data processing. To compare the effectiveness of the WDGA method, we apply the 1D double density discrete wavelet transform (DDDWT) using soft thresholding in the random noise reduction and ground roll attenuation processes. Seismic signals intersect with ground roll in the time and frequency domains. Random noise and ground roll have many undesirable effects on pre-stack seismic data, and result in an inaccurate velocity analysis for NMO correction. In this paper, the UDWT by using the WDGA technique and DDDWT (using the soft thresholding technique) and the regular Fourier based method as f-k transform will be used and compared for seismic denoising.
A NEW METHOD OF BAD POINTS ELIMINATION BASED ON HOUGH TRANSFORM
Institute of Scientific and Technical Information of China (English)
Chen Su; Lin Jiayu
2010-01-01
In experimental tests,besides data in range of allowable error,the experimenters usually get some unexpected wrong data called bad points. In usual experimental data processing,the method of bad points exclusion based on automatic programming is seldom taken into consideration by researchers. This paper presents a new method to reject bad points based on Hough transform,which is modified to save computational and memory consumptions. It is fit for linear data processing and can be extended to process data that is possible to be transformed into and from linear form; curved lines,which can be effectively detected by Hough transform. In this paper,the premise is the distribution of data,such as linear distribution and exponential distribution,is predetermined. Steps of the algorithm start from searching for an approximate curve line that minimizes the sum of parameters of data points. The data points,whose parameters are above a self-adapting threshold,will be deleted. Simulation experiments have manifested that the method proposed in this paper performs efficiently and robustly.
Directory of Open Access Journals (Sweden)
Yasuhisa Fujiki
Full Text Available Functional fluorescence imaging has been widely applied to analyze spatio-temporal patterns of cellular dynamics in the brain and spinal cord. However, it is difficult to integrate spatial information obtained from imaging data in specific regions of interest across multiple samples, due to large variability in the size, shape and internal structure of samples. To solve this problem, we attempted to standardize transversely sectioned spinal cord images focusing on the laminar structure in the gray matter. We employed three standardization methods, the affine transformation (AT, the angle-dependent transformation (ADT and the combination of these two methods (AT+ADT. The ADT is a novel non-linear transformation method developed in this study to adjust an individual image onto the template image in the polar coordinate system. We next compared the accuracy of these three standardization methods. We evaluated two indices, i.e., the spatial distribution of pixels that are not categorized to any layer and the error ratio by the leave-one-out cross validation method. In this study, we used neuron-specific marker (NeuN-stained histological images of transversely sectioned cervical spinal cord slices (21 images obtained from 4 rats to create the standard atlas and also to serve for benchmark tests. We found that the AT+ADT outperformed other two methods, though the accuracy of each method varied depending on the layer. This novel image standardization technique would be applicable to optical recording such as voltage-sensitive dye imaging, and will enable statistical evaluations of neural activation across multiple samples.
Institute of Scientific and Technical Information of China (English)
Yu Dejie; Cheng Junsheng; Yang Yu
2005-01-01
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hailing [Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk [Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)
2012-02-27
The analytical solutions of nonlinear oscillators obtained from most perturbation or approximate methods usually have poor accuracy near homoclinic/heteroclinic (HH) orbits. In this Letter, we propose a nonlinear time transformation method to overcome such difficulty. In particular, we apply such method with Padé approximation to find analytical solutions of a generalized Duffing-harmonic oscillator having a rational form for the potential energy. For some parametric ranges, HH orbits exist in such an oscillator. For analytical approximation of periodic solution obtained from the present method, it is shown that the relative error of period with respect to the exact period tends to zero when the amplitude of periodic solution tends to either zero or infinity. The relative error is still very small even near to HH orbits. Furthermore, analytical approximate of HH orbits can also be obtained. From the illustrative examples, the phase portraits are in excellent agreement with the exact HH orbits. The results from the present method are compared with the exact solutions and that from the cubication method. -- Highlights: ► A nonlinear transformation is proposed for a generalized Duffing-harmonic oscillator. ► The relative error of period with respect to the exact one is always very small. ► Approximate solution of homoclinic/heteroclinic orbits can be obtained. ► Phase portraits are in excellent agreement even at homoclinic/heteroclinic orbits.
Directory of Open Access Journals (Sweden)
Heinz Toparkus
2014-04-01
Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.
Solution of the Duffing-van der Pol oscillator equation by a differential transform method
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Supriya [Department of Mathematics, Swami Vivekananda Institute for Science and Technology, South Gobindapur, P S - Sonarpur, Kolkata 700145, West Bengal (India); Roy, Banamali [Department of Mathematics, Bangabasi Evening College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal (India); Dutta, Sourav, E-mail: supriya_ju@yahoo.com, E-mail: banamaliroy@yahoo.co.in [Department of Electrical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India)
2011-01-15
In this paper, we have tried to implement a relatively new exact series method of solution, known as the differential transform method, for solving one of the widely studied and challenging equations in nonlinear dynamics, the Duffing-van der Pol oscillator equation. Chandrasekar et al (2004 J. Phys. A 37 4527) showed that the force-free Duffing-van der Pol oscillator is completely integrable for a specific parametric choice, and they derived a general solution for this parametric choice. The results of this paper are in sufficient agreement with those of Chandrasekar et al.
A model employing integral transform method to simulate pollutant dispersion in atmosphere
Directory of Open Access Journals (Sweden)
Davidson Martins Moreira
2013-12-01
Full Text Available An updated version of the semi-analytical model for describing the steady-state concentration in the atmospheric boundary layer is presented here. Two inversion methods of the Laplace transform are tested: the Gaussian Quadrature scheme and the Fixed-Talbot method. The model takes into account settling velocity, removal (wet and dry deposition, and first order chemical reactions. The capability of the model to accurately predict the ground-level concentration is demonstrated qualitative and quantitatively. The results are in good agreement with experimental data.
Exact and approximate interior corner problem in neutron diffusion by integral transform methods
Energy Technology Data Exchange (ETDEWEB)
Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.
1976-09-01
The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Yamamoto, Takashi; Noma, Yukio; Yasuhara, Akio; Sakai, Shin-ichi
2003-10-31
We present the first study on the analytical methods of phenyltin compounds (PTs) in polychlorinated biphenyl (PCB)-based transformer oil samples. Tetraphenyltin (TePhT) has been used as stabilizer for some kinds of PCBs-based transformer oil formulations. Monophenyltin (MPhT), diphenyltin (DPhT) and triphenyltin (TrPhT) could have been formed from TePhT during long-term use. TePhT was directly measured by gas chromatograph (GC) connected with three types of detectors, a mass spectrometer (MS), a flame photometric detector (FPD) and an atomic emission detector (AED) after dilution with hexane. MPhT, DPhT and TrPhT were propylated with Grignard reagent before measurement. The MS was the most sensitive of the detectors, with detection limits of phenyltin compounds of 30 ng/ml (MPhT), 9.8 ng/ml (DPhT), 5.5 ng/ml (TrPhT) and 0.60 ng/ml (TePhT), respectively. From the viewpoint of selectivity, MS was slightly worse than other detectors, but interference from PCBs matrices was not significant under ordinary analytical conditions. Two used transformer oil samples were analyzed using the analytical methods developed in this study. TePhT and TrPhT were found in both samples.
Jones, Cynthia G; Silverman, Joseph; Al-Sheikhly, Mohamad; Neta, Pedatsur; Poster, Dianne L
2003-12-15
Used electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.5 mmol L(-1) Cl) is completely dechlorinated by irradiation with 600 kGy after the addition of 10% triethylamine (TEA). Transformer oil containing >800,000 microg g(-1) PCB (17.7 mol L(-1) Cl) requires an additional solvent to prevent solidification. When this oil is diluted with 2-propanol (2-PrOH) and TEA (v/v/v, 1/79/20), complete dechlorination is achieved with a dose of 2500 kGy. Ultraviolet photolysis of the same oil/2-PrOH/TEA solutions led to 90% dechlorination after exposure for 120 h in our experimental setup. Such yields were obtained by radiolysis with a dose of 2000 kGy (300 h in our Gammacell). Replacing TEA with KOH in 2-PrOH solutions greatly increases the yield of dechlorination in both the radiolytic and the photolytic experiments, demonstrating that a chain reaction plays a role in both of these treatment methods and suggesting that both methods deserve further consideration for large-scale application.
Motion artifact reduction using hybrid Fourier transform with phase-shifting methods
Li, Beiwen; Liu, Ziping; Zhang, Song
2016-08-01
We propose to combine the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP) to reduce motion induced artifacts. The proposed method can be divided into three steps: Step 1 is to obtain a temporarily unwrapped absolute phase map of the entire scene using the FTP method, albeit the absolute phase map has motion introduced artifacts; Step 2 is to generate continuous relative phase maps without motion artifacts for each isolated object by spatially unwrapping each isolated phase map retrieved from the FTP method; and Step 3 is to determine the absolute phase map for each isolate region by referring to the temporally unwrapped phase using PSP method. Experimental results demonstrated success of the proposed method for measuring rapidly moving multiple isolated objects.
Sharma, Dinkar; Singh, Prince; Chauhan, Shubha
2016-01-01
In this paper, a combined form of the Laplace transform method with the homotopy perturbation method (HPTM) is applied to solve nonlinear systems of partial differential equations viz. the system of third order KdV Equations and the systems of coupled Burgers' equations in one- and two- dimensions. The nonlinear terms can be easily handled by the use of He's polynomials. The results shows that the HPTM is very efficient, simple and avoids the round-off errors. Four test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM) which shows that this method is a suitable method for solving systems of partial differential equations.
Cross-talk in phase encoded volume holographic memories employing unitary matrices
Zhang, X.; Berger, G.; Dietz, M.; Denz, C.
2006-12-01
The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.
Global unitary fixing and matrix-valued correlations in matrix models
Adler, S L; Horwitz, Lawrence P.
2003-01-01
We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions.