WorldWideScience

Sample records for unitary transformation method

  1. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  2. Unitary Transformation in Quantum Teleportation

    International Nuclear Information System (INIS)

    Wang Zhengchuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  3. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  4. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  5. Optimal quantum learning of a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; Chiribella, Giulio; D'Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo

    2010-01-01

    We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.

  6. A unitary correlation operator method

    International Nuclear Information System (INIS)

    Feldmeier, H.; Neff, T.; Roth, R.; Schnack, J.

    1997-09-01

    The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the repulsive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy-and mass-number-independent correlated two-body Hamiltonian reproduces all ''exact'' many-body calculations surprisingly well. (orig.)

  7. Unitary Transformations in 3 D Vector Representation of Qutrit States

    Science.gov (United States)

    2018-03-12

    ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector Representation of Qutrit States by...return it to the originator. ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector...2018 2. REPORT TYPE Technical Report 3. DATES COVERED June–December 2017 4. TITLE AND SUBTITLE Unitary Transformations in 3- D Vector

  8. Equivalence of quantum states under local unitary transformations

    International Nuclear Information System (INIS)

    Fei Shaoming; Jing Naihuan

    2005-01-01

    In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented

  9. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  10. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  11. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-10-14

    The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.

  12. Fast Unitary Transforms - Benefits and Restrictions.

    Science.gov (United States)

    1980-04-01

    transformation kernel, and u assumes values in the range 0, 1, ... , N-i. Similarly, the inverse transform is given by the relation N-1 f(x) E T(u)h(x...function to obtain T(u,v). Similar comments hold for the inverse transform if h(x,y,u,v) is separable. If the kernel g(xy,u,v) is separable and symmetric...the forward transform can be used directly to obtain the inverse transform simply by multiplying the result of the algorithm by N. 12 The forward and

  13. Information-disturbance tradeoff in estimating a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio

    2010-01-01

    We address the problem of the information-disturbance tradeoff associated to the estimation of a quantum transformation and show how the extraction of information about a black box causes a perturbation of the corresponding input-output evolution. In the case of a black box performing a unitary transformation, randomly distributed according to the invariant measure, we give a complete solution of the problem, deriving the optimal tradeoff curve and presenting an explicit construction of the optimal quantum network.

  14. A Unitary-Transformative Nursing Science: From Angst to Appreciation.

    Science.gov (United States)

    Cowling, W Richard

    2017-10-01

    The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.

  15. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  16. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  17. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  18. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  19. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)

  20. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges

  1. Configurable unitary transformations and linear logic gates using quantum memories.

    Science.gov (United States)

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  2. Point transformations and renormalization in the unitary gauge. III. Renormalization effects

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-06-01

    An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ

  3. Continuous unitary transformation approach to pairing interactions in statistical physics

    Directory of Open Access Journals (Sweden)

    T.Domański

    2008-06-01

    Full Text Available We apply the flow equation method to the study of the fermion systems with pairing interactions which lead to the BCS instability signalled by the appearance of the off-diagonal order parameter. For this purpose we rederive the continuous Bogoliubov transformation in a fashion of renormalization group procedure where the low and high energy sectors are treated subsequently. We further generalize this procedure to the case of fermions interacting with the discrete boson mode. Andreev-type interactions are responsible for developing a gap in the excitation spectrum. However, the long-range coherence is destroyed due to strong quantum fluctuations.

  4. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  5. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    International Nuclear Information System (INIS)

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-01-01

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  6. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  7. Discrimination of unitary transformations in the Deutsch-Jozsa algorithm: Implications for thermal-equilibrium-ensemble implementations

    International Nuclear Information System (INIS)

    Collins, David

    2010-01-01

    A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds ∼10 5 .

  8. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    International Nuclear Information System (INIS)

    Gottschalk, Hanno; Hack, Thomas-Paul

    2009-12-01

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  9. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  10. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  11. Invariance of the Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator

    International Nuclear Information System (INIS)

    Kobe, D.H.

    1989-01-01

    The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)

  12. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and its Application to Data Representation

    Directory of Open Access Journals (Sweden)

    Tomas eVeloz

    2015-11-01

    Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  13. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation.

    Science.gov (United States)

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  14. Spatial Block Codes Based on Unitary Transformations Derived from Orthonormal Polynomial Sets

    Directory of Open Access Journals (Sweden)

    Mandyam Giridhar D

    2002-01-01

    Full Text Available Recent work in the development of diversity transformations for wireless systems has produced a theoretical framework for space-time block codes. Such codes are beneficial in that they may be easily concatenated with interleaved trellis codes and yet still may be decoded separately. In this paper, a theoretical framework is provided for the generation of spatial block codes of arbitrary dimensionality through the use of orthonormal polynomial sets. While these codes cannot maximize theoretical diversity performance for given dimensionality, they still provide performance improvements over the single-antenna case. In particular, their application to closed-loop transmit diversity systems is proposed, as the bandwidth necessary for feedback using these types of codes is fixed regardless of the number of antennas used. Simulation data is provided demonstrating these types of codes′ performance under this implementation as compared not only to the single-antenna case but also to the two-antenna code derived from the Radon-Hurwitz construction.

  15. Determining the best forecasting method to estimate unitary charges price indexes of PFI data in central region Peninsular Malaysia

    Science.gov (United States)

    Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan

    2013-04-01

    The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.

  16. On random unitary channels

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2008-01-01

    In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal

  17. Evenly distributed unitaries: On the structure of unitary designs

    International Nuclear Information System (INIS)

    Gross, D.; Audenaert, K.; Eisert, J.

    2007-01-01

    We clarify the mathematical structure underlying unitary t-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement

  18. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    International Nuclear Information System (INIS)

    Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both in the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed

  19. Transformative Mixed Methods Research

    Science.gov (United States)

    Mertens, Donna M.

    2010-01-01

    Paradigms serve as metaphysical frameworks that guide researchers in the identification and clarification of their beliefs with regard to ethics, reality, knowledge, and methodology. The transformative paradigm is explained and illustrated as a framework for researchers who place a priority on social justice and the furtherance of human rights.…

  20. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  1. Analysis of SPECTROX method of multigroup spectra calculation in unitary reactor cells

    International Nuclear Information System (INIS)

    Leite, Sergio de Q. Bogado

    2005-01-01

    The thermal neutron spectrum in a lattice cell is strongly space-dependent. In addition, in many situations, as for example in core design calculations, a more precise energetic and spatial representation of the flux is needed, which cannot be provided by few group diffusion theory. In such cases, the well-known SPECTROX method, employing diffusion theory in the moderator, where it is supposed sufficiently accurate, and collision probability theory in the fuel, together with appropriate interface current relations for assuring neutron conservation, has been widely used by WIMS as well as other codes. In this work, the approximations leading to the SPECTROX equations are reviewed and the calculated average fluxes in the fuel are compared with accurate values obtained from the solution of the transport equation by the FN method. (author)

  2. Unitary field theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1980-01-01

    A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion

  3. Probabilistic implementation of Hadamard and unitary gates

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    We show that the Hadamard and unitary gates could be implemented by a unitary evolution together with a measurement for any unknown state chosen from a set A={ vertical bar Ψi>, vertical bar Ψ-bar i>} (i=1,2) if and only if vertical bar Ψ1>, vertical bar Ψ2>, vertical bar Ψ-bar 1>, vertical bar Ψ-bar 2> are linearly independent. We also derive the best transformation efficiencies

  4. Primary fields in a unitary representation of Virasoro algebras

    International Nuclear Information System (INIS)

    Sasaki, R.; Yamanaka, I.

    1985-08-01

    A unitary representation of Virasoro algebras with the central charge c = 1 - 6/(N + 1)(N + 2) is constructed explicitly in terms of a colored (two color) coset space (the complex projective space CP sup(N-1)) quark model. By utilizing the explicit forms of the Virasoro generators Lsub(m), we derive a general method of constructing the primary fields (fields with well-defined conformal transformation properties) of the above Virasoro algebras. (author)

  5. Leptonic unitary triangles and boomerangs

    International Nuclear Information System (INIS)

    Dueck, Alexander; Rodejohann, Werner; Petcov, Serguey T.

    2010-01-01

    We review the idea of leptonic unitary triangles and extend the concept of the recently proposed unitary boomerangs to the lepton sector. Using a convenient parametrization of the lepton mixing, we provide approximate expressions for the side lengths and the angles of the six different triangles and give examples of leptonic unitary boomerangs. Possible applications of the leptonic unitary boomerangs are also briefly discussed.

  6. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  7. Unitary representations of basic classical Lie superalgebras

    International Nuclear Information System (INIS)

    Gould, M.D.; Zhang, R.B.

    1990-01-01

    We have obtained all the finite-dimensional unitary irreps of gl(mvertical stroken) and C(n), which also exhaust such irreps of all the basic classical Lie superalgebras. The lowest weights of such irreps are worked out explicitly. It is also shown that the contravariant and covariant tensor irreps of gl(mvertical stroken) are unitary irreps of type (1) and type (2) respectively, explaining the applicability of the Young diagram method to these two types of tensor irreps. (orig.)

  8. 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array.

    Science.gov (United States)

    Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng

    2013-03-28

    A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.

  9. Unitary unified field theories

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1976-01-01

    This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)

  10. Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

    Science.gov (United States)

    Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia

    2017-05-01

    In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.

  11. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  12. General method for designing wave shape transformers.

    Science.gov (United States)

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-12-22

    An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.

  13. Fourier Transform Methods. Chapter 4

    Science.gov (United States)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  14. Deformations of polyhedra and polygons by the unitary group

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)

    2013-12-15

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in

  15. Remarks on unitary representations of Poincare group

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    In this paper the elementary review of methods and notions using in the theory of unitary representations of Poincare group is included. The Poincare group is a basic group for relativistic quantum mechanics. Our aim is to introduce the reader into some problems of quantum physics, which are difficult approachable for beginners. (author)

  16. DISCUSSION METHODS: MODIFICATION AND TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Abbasova, A.A.

    2016-03-01

    Full Text Available This article is about how to the importance of selecting the optimal methods of stimulation and motivation to learn. In modern conditions it is very important that the teacher gave the students ready knowledge, and pointed the way for the acquisition of knowledge, taught to acquire knowledge. This requires the selection of effective forms of language and literature work with texts of different types and styles of speech, listening, speaking. In this regard, special attention should be given lessons of speech development. There is a special group of methods to stimulate the development of communicative competence. Among them, and the method of discussion, which is increasingly being used in the classroom in the Russian language

  17. DISCUSSION METHODS: MODIFICATION AND TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    A A Abbasova

    2015-12-01

    Full Text Available The article is devoted to the importance of selecting the optimal methods of stimulation and motivation for learning. In modern conditions it is very important that the teacher did not give the students ready knowledge, but pointed out the way for the acquisition of knowledge, taught them to gain knowledge. This demands from the philologist the choice of effective forms of working with texts of different types and styles of speech, listening, speaking. In this connection a special attention should be paid to the lessons of speech development. There is a special group of methods to stimulate the development of communicative competence. Among them, the method of discussion, which is increasingly being used during the Russian language lessons. The specificity of using this method in class for teaching Russian as a foreign language, its basic functions (teaching, developing, educating are considered. The key rules for conducting a discussion at the Russian language classes, the main and additional functions-roles of the teacher, the participants, the minute-taker are analyzed. The advantages of the discussion in Russian in comparison to the discussion in the students’ native language are summarized.

  18. Comparing transformation methods for DNA microarray data

    Directory of Open Access Journals (Sweden)

    Zwinderman Aeilko H

    2004-06-01

    Full Text Available Abstract Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects, and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  19. Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2004-01-01

    We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.

  20. Utility of an unitary-shredding method to evaluate the conditions and selection of constructional features during grinding

    Directory of Open Access Journals (Sweden)

    Macko Marek

    2018-01-01

    Full Text Available In order to evaluate and improve the efficiency of the process of grinding, various investigations are conducted, based on the relevant research methodology. One of them is the method in which the crushed sample is subjected to single stroke loads. On this basis, the influence of the geometric features of the chipper system and the dynamic process on the efficiency of the grinding is determined. Charpy hammers instrument were used to perform these modifications so that the momentary force of the resistance could be recorded with varying sample alignment, blade geometry changes and others. In addition, it was proposed to use a super fast camera (up to 1200 fps to record the deformation of the sample and its destruction, in order to interpretation the burdens there. Under such idealized conditions, a range of variables has been identified that significantly affect the reduction of energy demand during grinding.

  1. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vukadin, Z.

    1999-01-01

    The exact method of solving radioactive transformations is presented. Nonsingular Bateman coefficients, which can be computed using recurrence formulas, greatly reduce computational time and eliminate singularities that often arise in problems involving nuclide transmutations. Depletion function power series expansion enables high accuracy of the performed calculations, specially in a case of a decay constants with closely spaced values. Generality and simplicity of the method make the method useful for many practical applications. (author)

  2. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vudakin, Z.

    1999-01-01

    Analytical method for solving radioactive transformations is presented in this paper. High accuracy series expansion of the depletion function and nonsingular Bateman coefficients are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Generality and simplicity of the method are found to be useful in evaluating nuclide chains with one hundred or more nuclides in the chain. Method enables evaluation of complete chain, without elimination of short-lives nuclides. It is efficient and accurate

  3. Urban Transformations in the After-Unity Capitals: Turin, Florence, Rome Trasformazioni urbane nelle capitali post-unitarie: Torino, Firenze, Roma

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzeo

    2011-04-01

    Full Text Available

    The Italian political unification is a process starting in 1861. The next ten years, until the freeing of Rome, are a period of strong changes because the the new nation starts by heavier backwardness conditions compared to other European nations.

    The basic conditionings that bound the new nation are summarized in some causes: an underdeveloped economic system where there are areas of industrial development; a significant shortage of mineral and energy resources; and an urban structure that is still that of the sixteenth century, the last brightness period of the Italian cities. The same internal communication system is composed of a basic road network which is still one of Roman origin and of isolated sections of rail network, with few links among the pre-unity nations.

    Particular attention should be paid on the impact of the economic processes on the cities: they have a strong impact on European cities since the early nineteenth century, but their impact on Italian cities (beginning from the main northern cities, Milan and Turin is more limited, if compared with the transformations concerning other continental cities.

    The unification starting from 1861 imposes additional critical elements, because the Italian urban structure is not ready to the event, particularly for the choice of the capital city. A city that can rightfully define itself as capital exists, and it is Turin; but it is peripheral to the rest of the Italian territory. Furthermore there is an in pectore capital city, Rome, that is the symbolic centre of the Italian history. But the city has to wait another ten years to join to the rest of Italy. The solution is to temporarily move the capitol to Florence, even if nobody explicitly says it to Florentines! The step from Turin to Florence, and from Florence to Rome sets in motion a complex organizational mechanism and a significant money‘s amount, invested in the effort to bring the two cities to the new role

  4. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  5. Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac's symbolic method

    Science.gov (United States)

    Fan, Hong-yi; Hu, Li-yun

    2012-06-01

    By virtue of the new technique of performing integration over Dirac's ket-bra operators, we explore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel-Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, deriving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel operator (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".

  6. About the unitary discretizations of Heisenberg equations of motion

    International Nuclear Information System (INIS)

    Vazquez, L.

    1986-01-01

    In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)

  7. The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle

    NARCIS (Netherlands)

    Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz

    2003-01-01

    The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced

  8. Transform and filtration methods in fluctuation analysis

    International Nuclear Information System (INIS)

    Saxe, R.F.

    1976-01-01

    Digitized fluctuation signals from an ex-core ion-chamber of a PWR were analysed to produce a Power Spectral Density, (PSD), curve by two means: (1) by digital filter techniques and (2) by a Fast Fourier Transform program. For both these methods, the effects of the precision of the input data were investigated and it is shown that reasonably good PSD curves may be obtained using very poor input precision. (author)

  9. Classical Optical Transforms Studied in the Context of Quantum Optics via the Route of Developing Dirac's Symbolic Method

    Science.gov (United States)

    Fan, Hong-Yi; Lu, Hai-Liang

    Via the route of developing Dirac's symbolic method and following Dirac's assertion: "⋯ for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory", we find the generalized Fresnel operator (GFO) corresponding to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in quantum optics. With the aid of entangled state representation the entangled Fresnel transform is proposed; new eigenfunctions of the complex fractional Fourier transform and fractional Hankel transform are obtained; the two-variable Hermite eigenmodes of light propagation are used in studying the Talbot effect in quadratic-index media; the complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Moreover, quantum optical version of classical z-transforms is obtained on the basis of the eigenvector of creation operator. Throughout our discussions, the coherent state, squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used.

  10. A method for energy and exergy analyses of product transformation processes in industry

    International Nuclear Information System (INIS)

    Abou Khalil, B.

    2008-12-01

    After a literature survey enabling the determination of the advantages and drawbacks of existing methods of assessment of the potential energy gains of an industrial site, this research report presents a newly developed method, named Energy and Exergy Analysis of Transformation Processes (or AEEP for Analyse energetique et exergetique des procedes de transformation), while dealing with actual industrial operations, in order to demonstrate the systematic character of this method. The different steps of the method are presented and detailed, one of them, the process analysis, being critical for the application of the developed method. This particular step is then applied to several industrial unitary operations in order to be a base for future energy audits in the concerned industry sectors, as well as to demonstrate its generic and systematic character. The method is the then applied in a global manner to a cheese manufacturing plant, all the different steps of the AEEP being applied. The author demonstrates that AEEP is a systematic method and can be applied to all energy audit levels, moreover to the lowest levels which have a relatively low cost

  11. Piaget's Egocentrism: A Unitary Construct?

    Science.gov (United States)

    Ruthven, Avis J.; Cunningham, William L.

    In order to determine whether egocentrism can be conceptualized as a unitary construct, 100 children (51 four-year-olds, 37 five-year-olds, and 12 six-year-olds) were administered a visual/spatial perspective task, a cognitive/communicative task, and an affective task. All tasks were designed to measure different facets of egocentrism. The 50…

  12. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  13. Hough transform methods used for object detection

    International Nuclear Information System (INIS)

    Qussay A Salih; Abdul Rahman Ramli; Md Mahmud Hassan Prakash

    2001-01-01

    The Hough transform (HT) is a robust parameter estimator of multi-dimensional features in images. The HT is an established technique which evidences a shape by mapping image edge points into a parameter space. The HT is technique which is used to isolate curves of a give shape in an image. The classical HT requires that the curve be specified in some parametric from and, hence is most commonly used in the detection of regular curves. The HT has been generalized so that it is capable of detecting arbitrary curved shapes. The main advantage of this transform technique is that it is very tolerant of gaps in the actual object boundaries the classical HT for the detection of line , we will indicate how it can be applied to the detection of arbitrary shapes. Sometimes the straight line HT is efficient enough to detect features such as artificial curves. The HT is an established technique for extracting geometric shapes based on the duality definition of the points on a curve and their parameters. This technique has been developed for extracting simple geometric shapes such as lines, circles and ellipses as well as arbitrary shapes. The HT provides robustness against discontinuous or missing features, points or edges are mapped into a partitioned parameter of Hough space as individual votes where peaks denote the feature of interest represented in a non-analytically tabular form. The main drawback of the HT technique is the computational requirement which has an exponential growth of memory space and processing time as the number of parameters used to represent a primitive increases. For this reason most of the research on the HT has focused on reducing the computational burden for extracting of arbitrary shapes under more general transformations include a overview of describing the methods for the detection image processing programs are frequently required to detect and particle classification in an industrial setting, a standard algorithms for this detection lines

  14. Unitary Housing Regimes in Transition

    DEFF Research Database (Denmark)

    Bengtsson, Bo; Jensen, Lotte

    2013-01-01

    Path dependence is strong in housing institutions and policy. In both Denmark and Sweden, today’s universal and ‘unitary’ (Kemeny) housing regimes can be traced back to institutions that were introduced fifty years back in history or more. Recently, universal and unitary housing systems...... in Scandinavia, and elsewhere, are under challenge from strong political and economic forces. These challenges can be summarized as economic cutbacks, privatization and Europeanization. Although both the Danish and the Swedish housing system are universal and unitary in character, they differ considerably...... in institutional detail. Both systems have corporatist features, however in Denmark public housing is based on local tenant democracy and control, and in Sweden on companies owned and controlled by the municipalities, combined with a centralized system of rent negotiations. In the paper the present challenges...

  15. Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, V. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Department of Theoretical Physics, National Research Nuclear University MEPhI,Kashirskoe shosse 31, 115409 Moscow (Russian Federation)

    2015-02-10

    We continue to study minimal Liouville gravity (MLG) using a dual approach based on the idea that the MLG partition function is related to the tau function of the A{sub q} integrable hierarchy via the resonance transformations, which are in turn fixed by conformal selection rules. One of the main problems in this approach is to choose the solution of the Douglas string equation that is relevant for MLG. The appropriate solution was recently found using connection with the Frobenius manifolds. We use this solution to investigate three- and four-point correlators in the unitary MLG models. We find an agreement with the results of the original approach in the region of the parameters where both methods are applicable. In addition, we find that only part of the selection rules can be satisfied using the resonance transformations. The physical meaning of the nonzero correlators, which before coupling to Liouville gravity are forbidden by the selection rules, and also the modification of the dual formulation that takes this effect into account remains to be found.

  16. Non-unitary boson mapping and its application to nuclear collective motions

    International Nuclear Information System (INIS)

    Takada, Kenjiro

    2001-01-01

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a a 'static' boson mapping, the Dyson-type non-unitary self-consistent-collective-coordinate method is discussed. The latter is, so to speak, a 'dynamical' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom self-consistently.Thus all of the Dyson-type non-unitary boson

  17. Unitary Application of the Quantum Error Correction Codes

    International Nuclear Information System (INIS)

    You Bo; Xu Ke; Wu Xiaohua

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  18. Transformative, Mixed Methods Checklist for Psychological Research with Mexican Americans

    Science.gov (United States)

    Canales, Genevieve

    2013-01-01

    This is a description of the creation of a research methods tool, the "Transformative, Mixed Methods Checklist for Psychological Research With Mexican Americans." For conducting literature reviews of and planning mixed methods studies with Mexican Americans, it contains evaluative criteria calling for transformative mixed methods, perspectives…

  19. Linking the Unitary Paradigm to Policy through a Synthesis of Caring Science and Integrative Nursing.

    Science.gov (United States)

    Koithan, Mary S; Kreitzer, Mary Jo; Watson, Jean

    2017-07-01

    The principles of integrative nursing and caring science align with the unitary paradigm in a way that can inform and shape nursing knowledge, patient care delivery across populations and settings, and new healthcare policy. The proposed policies may transform the healthcare system in a way that supports nursing praxis and honors the discipline's unitary paradigm. This call to action provides a distinct and hopeful vision of a healthcare system that is accessible, equitable, safe, patient-centered, and affordable. In these challenging times, it is the unitary paradigm and nursing wisdom that offer a clear path forward.

  20. Methods for genetic transformation in Dendrobium.

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Dobránszki, Judit; Cardoso, Jean Carlos; Chandler, Stephen F; Zeng, Songjun

    2016-03-01

    The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.

  1. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    Science.gov (United States)

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  2. Maximum-likelihood method for numerical inversion of Mellin transform

    International Nuclear Information System (INIS)

    Iqbal, M.

    1997-01-01

    A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to Laplace transform, then the maximum-likelihood regularization method is used to recover the original function of the Mellin transform. The performance of the method is illustrated by the inversion of the test functions available in the literature (J. Inst. Math. Appl., 20 (1977) 73; Math. Comput., 53 (1989) 589). Effectiveness of the method is shown by results obtained through demonstration by means of tables and diagrams

  3. Comparing transformation methods for DNA microarray data

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2004-01-01

    Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include

  4. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  5. Unitary symmetry, combinatorics, and special functions

    Energy Technology Data Exchange (ETDEWEB)

    Louck, J.D.

    1996-12-31

    From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.

  6. Soft computing methods for geoidal height transformation

    Science.gov (United States)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  7. Methods of evaluating market transformation programmes: experience in Sweden

    International Nuclear Information System (INIS)

    Neij, L.

    2001-01-01

    The evaluation of market transformation programmes requires the development of new methods, relative to methods used for the evaluation of traditional energy efficiency programmes. In this paper, a model for the evaluation of market transformation programmes is proposed, based in part on evaluation methods discussed in the literature. The proposed model entails an extensive evaluation process, including the evaluation of market transformation effects, the impact of these effects, and the evaluation of the outline of the programme. Furthermore, evaluations of Swedish market transformation programmes have been analysed in relation to the proposed model. The analysis shows that not all of the evaluations have been focused on market transformation, and those that have, are only partly consistent with the evaluation model proposed here. It is concluded that future evaluations of Swedish market transformation programmes should be extended and improved in accordance with the proposed model. (author)

  8. A highly efficient method for Agrobacterium mediated transformation ...

    African Journals Online (AJOL)

    An Agrobacterium mediated transformation method was developed for the Thai rice variety, Pathumthani 1 (PT1), and the Indian rice variety, Pokkali (PKL). Various aspects of the transformation method, including callus induction, callus age, Agrobacterium concentration and co-cultivation period were examined, in order to ...

  9. A New Method Presentation for Fault Location in Power Transformers

    OpenAIRE

    Hossein Mohammadpour; Rahman Dashti

    2011-01-01

    Power transformers are among the most important and expensive equipments in the electric power systems. Consequently the transformer protection is an essential part of the system protection. This paper presents a new method for locating transformer winding faults such as turn-to-turn, turn-to-core, turn-totransformer body, turn-to-earth, and high voltage winding to low voltage winding. In this study the current and voltage signals of input and output terminals of the tran...

  10. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation

    Directory of Open Access Journals (Sweden)

    Gray John C

    2006-11-01

    Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.

  11. Generalized differential transform method to differential-difference equation

    International Nuclear Information System (INIS)

    Zou Li; Wang Zhen; Zong Zhi

    2009-01-01

    In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Pade technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.

  12. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  13. Method of studying polymorphic transformations in melts of metals

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    This paper presents a method used to study the dynamics of the change in the electrical properties of specimens during melting and crystallization and to quite accurately determine the phase transformation temperatures in melts. A block diagram of the unit for measuring the magnetoresistive effect in melts of metals is shown. The authors found that the strength of the magnetic field affects the magnitude of the jumps associated with the anomalies rather than the temperature range of the polymorphic transformations. The method described accurately determines the transformation temperatures for first- and second-order phase transformations; it does not require the use of complicated and expensive equipment. The measurement time is much shorter and the amount of material needed for studies is much smaller than with the use of any other method. The proposed method can be used to study melts of metals and construct phase deagrams of alloys

  14. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  15. The unitary space of particle internal states

    International Nuclear Information System (INIS)

    Perjes, Z.

    1978-09-01

    A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)

  16. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...

  17. Quantum unitary dynamics in cosmological spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Mena Marugán, Guillermo A.; Velhinho, José M.

    2015-01-01

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  18. Quantum unitary dynamics in cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2015-12-15

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  19. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  20. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  1. Data transformation methods for multiplexed assays

    Science.gov (United States)

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  2. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  3. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  4. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  5. Theory of the Anderson impurity model: The Schrieffer endash Wolff transformation reexamined

    International Nuclear Information System (INIS)

    Kehrein, S.K.; Mielke, A.

    1996-01-01

    We test the method of infinitesimal unitary transformations recently introduced by Wegner on the Anderson single impurity model. It is demonstrated that infinitesimal unitary transformations in contrast to the Schrieffer endash Wolff transformation allow the construction of an effective Kondo Hamiltonian consistent with the established results in this well understood model. The main reason for this is the intrinsic energy scale separation of Wegner close-quote s approach with respect to arbitrary energy differences coupled by matrix elements. This allows the construction of an effective Hamiltonian without facing a vanishing energy denominator problem. Similar energy denominator problems are troublesome in many models. Infinitesimal unitary transformations have the potential to provide a general framework for the systematic derivation of effective Hamiltonians without such problems. Copyright copyright 1996 Academic Press, Inc

  6. Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Takemae, Seiji

    2000-01-01

    We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...

  7. A New Method of Improving Transformer Restricted Earth Fault Protection

    Directory of Open Access Journals (Sweden)

    KRSTIVOJEVIC, J. P.

    2014-08-01

    Full Text Available A new method of avoiding malfunctioning of the transformer restricted earth fault (REF protection is presented. Application of the proposed method would eliminate unnecessary operation of REF protection in the cases of faults outside protected zone of a transformer or a magnetizing inrush accompanied by current transformer (CT saturation. On the basis of laboratory measurements and simulations the paper presents a detailed performance assessment of the proposed method which is based on digital phase comparator. The obtained results show that the new method was stable and precise for all tested faults and that its application would allow making a clear and precise difference between an internal fault and: (i external fault or (ii magnetizing inrush. The proposed method would improve performance of REF protection and reduce probability of maloperation due to CT saturation. The new method is robust and characterized by high speed of operation and high reliability and security.

  8. Transforming han: a correlational method for psychology and religion.

    Science.gov (United States)

    Oh, Whachul

    2015-06-01

    Han is a destructive feeling in Korea. Although Korea accomplished significant exterior growth, Korean society is still experiencing the dark aspects of transforming han as evidenced by having the highest suicide rate in Asia. Some reasons for this may be the fragmentation between North and South Korea. If we can transform han then it can become constructive. I was challenged to think of possibilities for transforming han internally; this brings me to the correlational method through psychological and religious interpretation. This study is to challenge and encourage many han-ridden people in Korean society. Through the psychological and religious understanding of han, people suffering can positively transform their han. They can relate to han more subjectively, and this means the han-ridden psyche has an innate sacredness of potential to transform.

  9. Random unitary operations and quantum Darwinism

    International Nuclear Information System (INIS)

    Balaneskovic, Nenad

    2016-01-01

    We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding

  10. A simple transformation independent method for outlier definition.

    Science.gov (United States)

    Johansen, Martin Berg; Christensen, Peter Astrup

    2018-04-10

    Definition and elimination of outliers is a key element for medical laboratories establishing or verifying reference intervals (RIs). Especially as inclusion of just a few outlying observations may seriously affect the determination of the reference limits. Many methods have been developed for definition of outliers. Several of these methods are developed for the normal distribution and often data require transformation before outlier elimination. We have developed a non-parametric transformation independent outlier definition. The new method relies on drawing reproducible histograms. This is done by using defined bin sizes above and below the median. The method is compared to the method recommended by CLSI/IFCC, which uses Box-Cox transformation (BCT) and Tukey's fences for outlier definition. The comparison is done on eight simulated distributions and an indirect clinical datasets. The comparison on simulated distributions shows that without outliers added the recommended method in general defines fewer outliers. However, when outliers are added on one side the proposed method often produces better results. With outliers on both sides the methods are equally good. Furthermore, it is found that the presence of outliers affects the BCT, and subsequently affects the determined limits of current recommended methods. This is especially seen in skewed distributions. The proposed outlier definition reproduced current RI limits on clinical data containing outliers. We find our simple transformation independent outlier detection method as good as or better than the currently recommended methods.

  11. Glass bead transformation method for gram-positive bacteria

    OpenAIRE

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-01-01

    A simple, inexpensive and reproducible transformation method was developed for Gram-positive bacteria. It was based on agitation of bacterial protoplasts with glass beads in the presence of DNA and polyethylene glycol. By using this method, introduction of pGK12 into protoplasts of several strains of Gram-positive bacteria was achieved.

  12. The variation of the unitary stresses occurring in the working part in relation to the type of soil, using the finite element method

    Science.gov (United States)

    Chiorescu, E.; Chiorescu, D.

    2017-08-01

    Agriculture brings a major contribution to the sustainable development of the economy, providing food to people. Because of the continuous growth of the population, there is an ever increasing need of food worldwide. For this reason, it is necessary to study the contact between the soil and the active tool of the cultivators, in relation to the type of soil and its parameters. The physical-mechanical characteristics of the soils are influenced by the moving velocity of the working part, as well as by the humidity of the soil. The humidity triggers the change of the friction coefficient at the soil-steel contact, being of significant importance for the decrease of the working resistance of the working tools and responsible for increasing exploitation costs. The model used for the soil has a non-linear plastic behavior of the Drucker Prager type, being different from the Mises model. The programming software Ansys was used for the simulation with the finite element method, allowing the study of the behavior of the active working part, the normal stress being analyzed in real conditions, at various depths and velocities for a soil with a clay-sandy texture.

  13. Tail modeling in a stretched magnetosphere 1. Methods and transformations

    International Nuclear Information System (INIS)

    Stern, D.P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because delxB = 0 must be maintained,such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional ''stretch transformation'' along the x axis, a generalization of a method introduced by Voigt. The transformation is concisely represented by the ''stretch function'' f(x), which is also a convenient tool for representing features of the substorm cycle. Onedimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is next shown that distortion transformations can be viewed as mappings of field lines from one pattern to another: Euler potentials are used in the derivation, but the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are then derived,and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered. copyrightAmerican Geophysical Union 1987

  14. A new method of converter transformer protection without commutation failure

    Science.gov (United States)

    Zhang, Jiayu; Kong, Bo; Liu, Mingchang; Zhang, Jun; Guo, Jianhong; Jing, Xu

    2018-01-01

    With the development of AC / DC hybrid transmission technology, converter transformer as nodes of AC and DC conversion of HVDC transmission technology, its reliable safe and stable operation plays an important role in the DC transmission. As a common problem of DC transmission, commutation failure poses a serious threat to the safe and stable operation of power grid. According to the commutation relation between the AC bus voltage of converter station and the output DC voltage of converter, the generalized transformation ratio is defined, and a new method of converter transformer protection based on generalized transformation ratio is put forward. The method uses generalized ratio to realize the on-line monitoring of the fault or abnormal commutation components, and the use of valve side of converter transformer bushing CT current characteristics of converter transformer fault accurately, and is not influenced by the presence of commutation failure. Through the fault analysis and EMTDC/PSCAD simulation, the protection can be operated correctly under the condition of various faults of the converter.

  15. ANNSVM: A Novel Method for Graph-Type Classification by Utilization of Fourier Transformation, Wavelet Transformation, and Hough Transformation

    Directory of Open Access Journals (Sweden)

    Sarunya Kanjanawattana

    2017-07-01

    Full Text Available Image classification plays a vital role in many areas of study, such as data mining and image processing; however, serious problems collectively referred to as the course of dimensionality have been encountered in previous studies as factors that reduce system performance. Furthermore, we also confront the problem of different graph characteristics even if graphs belong to same types. In this study, we propose a novel method of graph-type classification. Using our approach, we open up a new solution of high-dimensional images and address problems of different characteristics by converting graph images to one dimension with a discrete Fourier transformation and creating numeric datasets using wavelet and Hough transformations. Moreover, we introduce a new classifier, which is a combination between artificial neuron networks (ANNs and support vector machines (SVMs, which we call ANNSVM, to enhance accuracy. The objectives of our study are to propose an effective graph-type classification method that includes finding a new data representative used for classification instead of two-dimensional images and to investigate what features make our data separable. To evaluate the method of our study, we conducted five experiments with different methods and datasets. The input dataset we focused on was a numeric dataset containing wavelet coefficients and outputs of a Hough transformation. From our experimental results, we observed that the highest accuracy was provided using our method with Coiflet 1, which achieved a 0.91 accuracy.

  16. A remark on the unitary group of a tensor product of n finite ...

    Indian Academy of Sciences (India)

    By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...

  17. Solution of fractional differential equations by using differential transform method

    International Nuclear Information System (INIS)

    Arikoglu, Aytac; Ozkol, Ibrahim

    2007-01-01

    In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply

  18. Solution of fractional differential equations by using differential transform method

    Energy Technology Data Exchange (ETDEWEB)

    Arikoglu, Aytac [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey); Ozkol, Ibrahim [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey)]. E-mail: ozkol@itu.edu.tr

    2007-12-15

    In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply.

  19. J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2006-01-01

    We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.

  20. Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization

    International Nuclear Information System (INIS)

    Novitsky, Andrey; Qiu, C-W; Zouhdi, Said

    2009-01-01

    Based on the concept of the cloak generating function, we propose an implicit transformation-independent method for the required parameters of spherical cloaks without knowing the needed coordinate transformation beforehand. A non-ideal discrete model is used to calculate and optimize the total scattering cross-sections of different profiles of the generating function. A bell-shaped quadratic spherical cloak is found to be the best candidate, which is further optimized by controlling the design parameters involved. Such improved invisibility is steady even when the model is highly discretized.

  1. Modified Differential Transform Method for Two Singular Boundary Values Problems

    Directory of Open Access Journals (Sweden)

    Yinwei Lin

    2014-01-01

    Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.

  2. On Solving the Lorenz System by Differential Transformation Method

    International Nuclear Information System (INIS)

    Al-Sawalha, M. Mossa; Noorani, M. S. M.

    2008-01-01

    The differential transformation method (DTM) is employed to solve a nonlinear differential equation, namely the Lorenz system. Numerical results are compared to those obtained by the Runge–Kutta method to illustrate the preciseness and effectiveness of the proposed method. In particular, we examine the accuracy of the (DTM) as the Lorenz system changes from a non-chaotic system to a chaotic one. It is shown that the (DTM) is robust, accurate and easy to apply

  3. Multiple multicontrol unitary operations: Implementation and applications

    Science.gov (United States)

    Lin, Qing

    2018-04-01

    The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.

  4. Method for Calculation of Steam-Compression Heat Transformers

    Directory of Open Access Journals (Sweden)

    S. V. Zditovetckaya

    2012-01-01

    Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.

  5. The Fourier transform method for infinite medium resonance absorption problems

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1978-01-01

    A new method, using Fourier transforms, is developed for solving the integral equation of slowing down of neutrons in the resonance region. The transformations replace the slowing down equation with a discontinuous kernel by an integral equation with a continuous kernel over the interval (-infinity, infinity). Further the Doppler broadened line shape functions have simple analytical representations in the transform variable. In the limit of zero temperature, the integral equation reduces to a second order differential equation. Accurate expressions for the zero temperature resonance integrals are derived, using the WKB method. In general, the integral equation is seen to be amenable to solution by Ganss-Hermite quadrature formule. Doppler coefficients of 238 U resonances are given and compared with Monte Carlo calculations. The method is extended to include the effect of interference between neighbouring resonances of an absorber. For the case of two interfering resonances the slowing down equation is transformed to the coupled integral equations that are amenable to solution by methods indicated earlier. Numerical results presented for the low lying thorium-232 doublet show that the Doppler coefficients of the resonances are reduced considerably because of the overlap between them. (author)

  6. Application of laplace transform method in heavy ion reaction research

    International Nuclear Information System (INIS)

    Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua

    1993-01-01

    Laplace transform method (LTM) is applied to investigate the effects of different spectroscopy amplifiers parameters on identification of the light charged particles (LCP) emitted from 12 C(46,7 MeV/u) + 58 Ni reaction. The significance of application of LTM in heavy ion experimental nuclear physics is also discussed

  7. Jim Gray on eScience: A Transformed Scientific Method

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 8. Jim Gray on eScience: A Transformed Scientific Method. Classics Volume 21 Issue 8 August 2016 pp 749-763. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/021/08/0749-0763. Abstract ...

  8. Discrete linear canonical transform computation by adaptive method.

    Science.gov (United States)

    Zhang, Feng; Tao, Ran; Wang, Yue

    2013-07-29

    The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.

  9. Process identification method based on the Z transformation

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1968-01-01

    A simple method is described for identifying the transfer function of a linear retard-less system, based on the inversion of the Z transformation of the transmittance using a computer. It is assumed in this study that the signals at the entrance and at the exit of the circuit considered are of the deterministic type. The study includes: the theoretical principle of the inversion of the Z transformation, details about programming simulation, and identification of filters whose degrees vary from the first to the fifth order. (authors) [fr

  10. A New Shape Description Method Using Angular Radial Transform

    Science.gov (United States)

    Lee, Jong-Min; Kim, Whoi-Yul

    Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.

  11. Unitary relation for the time-dependent SU(1,1) systems

    International Nuclear Information System (INIS)

    Song, Dae-Yup

    2003-01-01

    The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary relation is described by the classical solutions of a time-dependent (harmonic) oscillator. Making use of the relation, the wave functions satisfying the Schroedinger equation are given, for a general unitary representation, in terms of the matrix elements of a finite group transformation (Bargmann function). The wave functions of the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete series of SU(1,1)

  12. Multiqubit Clifford groups are unitary 3-designs

    Science.gov (United States)

    Zhu, Huangjun

    2017-12-01

    Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.

  13. Generalized unitaries and the Picard group

    Indian Academy of Sciences (India)

    some explicit calculations of that type.) So the range of this .... when we restrict our attention to generalized unitaries and full modules, that is, to modules. E for which BE = B. For every ..... without dividing out equivalence classes. But there is no ...

  14. Unitary information ether and its possible applications

    International Nuclear Information System (INIS)

    Horodecki, R.

    1991-01-01

    The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)

  15. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    Science.gov (United States)

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  16. A dynamic integrated fault diagnosis method for power transformers.

    Science.gov (United States)

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  17. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    Science.gov (United States)

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  18. The gridding method for image reconstruction by Fourier transformation

    International Nuclear Information System (INIS)

    Schomberg, H.; Timmer, J.

    1995-01-01

    This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform

  19. Improving the local wavenumber method by automatic DEXP transformation

    Science.gov (United States)

    Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni

    2014-12-01

    In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.

  20. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei; Ivanov, Yurii P.; Kosel, Jü rgen; Chuvilin, Andrey

    2015-01-01

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  1. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  2. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    Science.gov (United States)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  3. Hybrid SN Laplace Transform Method For Slab Lattice Calculations

    International Nuclear Information System (INIS)

    Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.

    2008-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)

  4. A Laplace transform method for energy multigroup hybrid discrete ordinates

    International Nuclear Information System (INIS)

    Segatto, C.F.; Vilhena, M.T.; Barros, R.C.

    2010-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.

  5. Unitary Representations of Gauge Groups

    Science.gov (United States)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  6. Canonical transformations method in the potential scattering problem

    International Nuclear Information System (INIS)

    Pavlenko, Yu.G.

    1984-01-01

    Canonical formalism of the first order is used in the present paper to solve the problem of scattering and other problems of quantum mechanics. The theory of canonical transformations (CT) being the basis of hamiltonian approach permits to develop several methods of integration being beyond the scope of the standard theory of perturbations. In this case it is essential for numerical counting that the theory permits to obtain algorithm for plotting highest approximations

  7. HEART ABNORMALITY CLASSIFICATIONS USING FOURIER TRANSFORMS METHOD AND NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Endah Purwanti

    2014-05-01

    Full Text Available Health problems with cardiovascular system disorder are still ranked high globally. One way to detect abnormalities in the cardiovascular system especially in the heart is through the electrocardiogram (ECG reading. However, reading ECG recording needs experience and expertise, software-based neural networks has designed to help identify any abnormalities ofthe heart through electrocardiogram digital image. This image is processed using image processing methods to obtain ordinate chart which representing the heart’s electrical potential. Feature extraction using Fourier transforms which are divided into several numbers of coefficients. As the software input, Fourier transforms coefficient have been normalized. Output of this software is divided into three classes, namely heart with atrial fibrillation, coronary heart disease and normal. Maximum accuracy rate ofthis software is 95.45%, with the distribution of the Fourier transform coefficients 1/8 and number of nodes 5, while minimum accuracy rate of this software at least 68.18% by distribution of the Fourier transform coefficients 1/32 and the number of nodes 32. Overall result accuracy rate of this software has an average of86.05% and standard deviation of7.82.

  8. Analytical method of polychlorinated biphenyls(PCBs) in transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.K. [National Institute of Environmental Research, Incheon (Korea); Kim, H.J.; Chung, D.; Kim, K.S.; Kim, J.K.; Chung, Y.H.; Chung, I.R.

    2004-09-15

    Polychlorinated biphenyls (PCBs) is a chlorinated biphenyl compound with the general formula C{sub 12}H{sub 10-n}/Cl{sub n}. PCBs generally occur as mixtures, where n can vary from 1 to 10. The 10 sites available for possible chlorine substitution result in 209 possible PCB congeners. There is now considerable concern regarding; the presence of PCB congeners in insulating oils used within large-scale electrical supply systems. Due to its outstanding chemical and thermal stabilities and electrical insulation properties, the commercial and industrial products of polychlorinated biphenyls (PCBs), such as Aroclors, Kaneclors, Clophens, Phenaclors etc., had been widely used as thermal oil and transformer oil from 1930s until the 1970s. PCBs from a group of persistent organic pollutants of the environment, especially dangerous to living organisms due to high toxicity, persistency, and bio-concentration in adipose tissue. Despite of this fact, PCB-contaminated oils are still commonly encountered partly because PCBs used as dielectric liquids in transformer and condenser. The source of PCBs in environments can range from used transformer oils or dielectric liquids to liquid wastes, and some PCBs contamination is occurred due to the re-use of incompletely reconditioned oil. The current action plan of Republic of Korea dictates that organizations with electrical equipment contaminated with more than 2 mg/L PCBs will need to treat as PCBs-containing wastes, and 50mg/L of PCBs or PCBs equivalent to be treated as a pure PCB preparation. In this study, transformer oils analyzed based on guideline for PCBs analytical method of transformer oil in Korea.

  9. Optimal unitary dilation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.

    2011-01-01

    A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.

  10. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  11. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  12. A method for decoding the neurophysiological spike-response transform.

    Science.gov (United States)

    Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir

    2009-11-15

    Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.

  13. Unitary evolution between pure and mixed states

    International Nuclear Information System (INIS)

    Reznik, B.

    1996-01-01

    We propose an extended quantum mechanical formalism that is based on a wave operator d, which is related to the ordinary density matrix via ρ=dd degree . This formalism allows a (generalized) unitary evolution between pure and mixed states. It also preserves much of the connection between symmetries and conservation laws. The new formalism is illustrated for the case of a two-level system. copyright 1996 The American Physical Society

  14. Biased Monte Carlo algorithms on unitary groups

    International Nuclear Information System (INIS)

    Creutz, M.; Gausterer, H.; Sanielevici, S.

    1989-01-01

    We introduce a general updating scheme for the simulation of physical systems defined on unitary groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements. The essence is to work directly with group elements for the stochastic noise. Particular cases of the scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally corrected Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory

  15. Qubit transport model for unitary black hole evaporation without firewalls*

    Science.gov (United States)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  16. Process identification method based on the Z transformation; Methode d'identification de processus par la transformation en Z

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A simple method is described for identifying the transfer function of a linear retard-less system, based on the inversion of the Z transformation of the transmittance using a computer. It is assumed in this study that the signals at the entrance and at the exit of the circuit considered are of the deterministic type. The study includes: the theoretical principle of the inversion of the Z transformation, details about programming simulation, and identification of filters whose degrees vary from the first to the fifth order. (authors) [French] On decrit une methode simple d'identification de fonction de transfert d'un systeme lineaire sans retard, qui repose sur l'inversion de la transformee en Z de la transmittance a l'aide d'un calculateur. On suppose dans cette etude, que les signaux a l'entree et a la sortie du circuit considere sont de type deterministe. L'etude comporte: le principe theorique de l'inversion de la transformation en Z, les details de la programmation, la simulation et l'identification de filtres dont le degre varie du premier au cinquieme ordre. (auteurs)

  17. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations.

    Directory of Open Access Journals (Sweden)

    Miha Amon

    Full Text Available Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping, thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB. As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3 classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The

  18. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  19. Mechanic-electrical transformations in the Kelvin method

    Energy Technology Data Exchange (ETDEWEB)

    Zharkikh, Yu. S., E-mail: yurzhar@gmail.com [Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine); Lysochenko, S.V., E-mail: lys@univ.kiev.ua [Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine)

    2017-04-01

    Highlights: • Used in Kelvin method dynamic capacitor is a mechanic-electrical transformer. • The oscillations of its plate are source of extraneous forces which cause the appearance of an electric current. • The signal is caused not by the contact potential difference, but by oscillation in the screening conditions of charge in the dynamic capacitor gap. • Combining the Kelvin method with electron emission methods to determine the work function may lead to incorrectness. - Abstract: To explain the initiation mechanism of alternating current in an electric circuit containing the dynamic capacitor a model of mechanic- electrical transformation is suggested to use. In such a model, electric charges disposed between the capacitor plates serve as a cause of measured signal in contrast to the contact potential difference, which is considered as the main base in the Kelvin’s model. If one of the plates moves periodically, then the conditions of the charges screening are changed and thereby the capacitor recharging current is arise. The measuring is based on compensation of the recharging current by current, which generated by a source of electromotive force (EMF). The compensation voltage depends on both the distribution of ions or dipoles over the studied surface and the charges creating the surface potential barrier. This voltage is independent on the bulk electro-physical characteristics of a solid.

  20. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  1. The numerical method of inverse Laplace transform for calculation of overvoltages in power transformers and test results

    Directory of Open Access Journals (Sweden)

    Mikulović Jovan Č.

    2014-01-01

    Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020

  2. The transformation of urban industrial land use: A quantitative method

    Directory of Open Access Journals (Sweden)

    Rongxu Qiu

    2015-06-01

    Full Text Available A large number of cities around the world today owe their land use growth to the rapid development of industrial areas. The spatial structure of industrial distribution in cities shape urban spatial morphology linking with land use, transportation, economic activities, and housing. Meanwhile, growth and expansion of city population and land use reconfigure the spatial structure of industrial distribution. Research into urban industrial spatial distribution and its transformation process may help urban planners and decision makers understand the land use and population dynamics of a city. Genetic algorithms are believed to be one kind of the promising methods to simulate this dynamic process. In this paper, we propose a novel method to simulate urban industrial spatial distribution and its transformation process in Shanghai, China. The results show that along with increasing urban land price over time, industries are going to move outward from the city center. However, the maximum profit of a firm tends to decrease, which could lead industrial factories to move beyond city boundary. The analysis of the current industrial spatial distribution in Shanghai indicates that, when land price in a city rises above a specific threshold, new government policies and other competitive advantages need to be enacted if the city wants to retain industrial firms within the city boundary.

  3. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  4. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  5. Husserlian phenomenology and nursing in a unitary-transformative paradigm

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    1996-01-01

    . The phenomenological methodology according to Spiegelberg is described, and exemplified through the author's ongoing study. Different critiques of phenomenology and phenomenological reports are mentioned, and the phenomenological description is illustrated as the metaphor «using a handful of colors». The metaphor...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...

  6. Universal Superspace Unitary Operator and Nilpotent (Anti-)Dual-BRST Symmetries: Superfield Formalism

    International Nuclear Information System (INIS)

    Malik, R. P.; Srinivas, N.; Bhanja, T.

    2016-01-01

    We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP) dual unitary operator and its Hermitian conjugate and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual-BRST symmetry transformations for a set of interesting models of the Abelian 1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor and modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show the universality of the SUSP dual unitary operator and its Hermitian conjugate in the cases of all the Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual horizontality condition (DHC) and dual gauge invariant restrictions (DGIRs) of the superfield formalism. The derivations of the dual unitary operators and corresponding (anti-)dual-BRST symmetries are completely novel results in our present investigation.

  7. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  8. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-01-01

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  9. Optimal PMU placement using topology transformation method in power systems

    Directory of Open Access Journals (Sweden)

    Nadia H.A. Rahman

    2016-09-01

    Full Text Available Optimal phasor measurement units (PMUs placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP. The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  10. Optimal PMU placement using topology transformation method in power systems.

    Science.gov (United States)

    Rahman, Nadia H A; Zobaa, Ahmed F

    2016-09-01

    Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  11. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    International Nuclear Information System (INIS)

    Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam

    2013-01-01

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure

  12. Back-transformation of treatment differences - an approximate method

    DEFF Research Database (Denmark)

    Laursen, Rikke Pilmann; Dalskov, Stine-Mathilde; Damsgaard, Camilla Trab

    2014-01-01

    Background/Objectives:Transformation of outcomes is frequently used in the analysis of studies in clinical nutrition. However, back-transformation of estimated treatment means and differences is complicated by the nonlinear nature of the transformations. It is not straightforward to obtain an est...... publication, 11 December 2013; doi:10.1038/ejcn.2013.259....

  13. Transformation

    DEFF Research Database (Denmark)

    Bock, Lars Nicolai

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  14. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  15. Meditations on the unitary rhythm of dying-grieving.

    Science.gov (United States)

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  16. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  17. Random unitary maps for quantum state reconstruction

    International Nuclear Information System (INIS)

    Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.

    2010-01-01

    We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.

  18. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems

    International Nuclear Information System (INIS)

    Abdel-Halim Hassan, I.H.

    2008-01-01

    In this paper, we will compare the differential transformation method DTM and Adomian decomposition method ADM to solve partial differential equations (PDEs). The definition and operations of differential transform method was introduced by Zhou [Zhou JK. Differential transformation and its application for electrical circuits. Wuuhahn, China: Huarjung University Press; 1986 [in Chinese

  19. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  20. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  1. Fast inverse nonlinear Fourier transformation using exponential one-step methods : Darboux transformation

    NARCIS (Netherlands)

    Vaibhav, V.K.

    2017-01-01

    This paper considers the non-Hermitian Zakharov-Shabat (ZS) scattering problem which forms the basis for defining the SU(2) nonlinear Fourier transformation (NFT). The theoretical underpinnings of this generalization of the conventional Fourier transformation are quite well established in the

  2. Integral transform method for solving time fractional systems and fractional heat equation

    Directory of Open Access Journals (Sweden)

    Arman Aghili

    2014-01-01

    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  3. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  4. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  5. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  6. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  7. Unitary pole approximations and expansions in few-body systems

    International Nuclear Information System (INIS)

    Casel, A.; Haberzettl, H.; Sandhas, W.

    1982-01-01

    The unitary pole approximations or expansions of the two-body subsystem operators are well known, and particularly efficient and practical, methods to reduce the three-body problem to an effective two-body theory. In the present investigation we develop generalizations of these approximation techniques to the subsystem amplitudes of problems with higher particle numbers. They are based on the expansion of effective potentials which, in contrast to the genuine two-body interactions, are now energy dependent. Despite this feature our generalizations require only energy independent form factors, thus preserving one of the essential advantages of the genuine two-body approach. The application of these techniques to the four-body case is discussed in detail

  8. A Design Method for Graded Insulation of Transformers by Transient Electric Field Intensity Analysis

    OpenAIRE

    Yamashita, Hideo; Cingoski, Vlatko; Namera, Akihiro; Nakamae, Eihachiro; Kitamura, Hideo

    2000-01-01

    In this paper, a calculation method for transient electric field distribution inside a transformer impressed with voltage is proposed: The concentrated electric network for the transformer is constructed by dividing transformer windings into several blocks, and the transient voltage and electric field intensity distributions inside the transformer are calculated by using the axisymmetrical finite element method. Moreover, an animated display of the distributions is realized: The visualization...

  9. Genetic transformation of Eucalyptus camaldulensis by agrobalistic method

    Directory of Open Access Journals (Sweden)

    Evânia Galvão Mendonça

    2013-06-01

    Full Text Available Eucalyptus stands in the setting of worldwide forestry due to its adaptability, rapid growth, production of high-quality and low cost of wood pulp fibers. The eucalyptus convetional breeding is impaired mainlly by the long life cycle making the genetic transformation systems an important tool for this purpose. However, this system requires in vitro eficient protocols for plant induction, regeneration and seletion, that allow to obtain transgenic plants from the transformed cell groups. The aim of this work was to evaluate the callus formation and to optimize the leaves and callus genetic transformation protocol by using the Agrobacterium tumefaciens system. Concerning callus formation, two different culture media were evaluated: MS medium supplemented with auxin, cytokinin (M1 and the MS medium with reduced nitrogen concentration and supplemented with auxin, cytokinin coconut water (M2. To establish the leave genetic transformation, those were exposed to agrobiolistics technique (gene gun, to tissue injury, and A. tumesfasciens EHA 105 contening the vetor pCambia 3301 (35S::GUS::NOS, for gene transference and to establish the callus transformation thoses were exposed only to A. tumefasciens. For both experiments, the influence of different infection periods was evaluated. The M2 medium provided the best values for callus sizea and fresh and dry weight. The leaves genetic transformation using the agrobiolistics technique was effective, the gus gene transient expression could be observed. No significant differences were obtained in the infection periods (4, 6 and 8 minutes. The callus genetic transformation with A. tumefaciens also promotend the gus gene transient expression on the callus co-cultiveted for 15 e 30 minutes. The transformed callus was transfered to a regeneration and selection medium and transformed plants were obtained.

  10. Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)

    2012-08-15

    The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)

  11. Methods for performing fast discrete curvelet transforms of data

    Science.gov (United States)

    Candes, Emmanuel; Donoho, David; Demanet, Laurent

    2010-11-23

    Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.

  12. Methods of Weyl representation of the phase space and canonical transformations

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1986-01-01

    The author studies nonlinear canonical transformations realized in the space of Weyl symbols of quantum operators. The kernels of the transformations, the symbol of the intertwining operator of the group of inhomogeneous point transformations, an the group characters are constructed. The group of PL transformations, which is the free produce of the group of point, p, and linear, L, transformations is considered. The simplest PL complexes relating problems with different potentials, in particular, containing a general Darboux transformation of the factorization method, are constructed. The kernel of an arbitrary element of the group PL is found

  13. Transformation Matrix for Time Discretization Based on Tustin’s Method

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2014-01-01

    Full Text Available This paper studies rules in transformation of transfer function through time discretization. A method of using transformation matrix to realize bilinear transform (also known as Tustin’s method is presented. This method can be described as the conversion between the coefficients of transfer functions, which are expressed as transform by certain matrix. For a polynomial of degree n, the corresponding transformation matrix of order n exists and is unique. Furthermore, the transformation matrix can be decomposed into an upper triangular matrix multiplied with another lower triangular matrix. And both have obvious regularity. The proposed method can achieve rapid bilinear transform used in automatic design of digital filter. The result of numerical simulation verifies the correctness of the theoretical results. Moreover, it also can be extended to other similar problems. Example in the last throws light on this point.

  14. Escherichia coli can be transformed by a liposome-mediated lipofection method.

    Science.gov (United States)

    Kawata, Yoshikazu; Yano, Shin-ichi; Kojima, Hiroyuki

    2003-05-01

    Transformation of Escherichia coli is a basic technique for genetic engineering. We used a liposome-mediated lipofection method to transform electrocompetent E. coli cells which has little natural competence of foreign DNA without electroporation treatment, and got transformants with simple and quick treatment by a plasmid or a transposon and transposase complex.

  15. The unitary-group formulation of quantum chemistry

    International Nuclear Information System (INIS)

    Campbell, L.L.

    1990-01-01

    The major part of this dissertation establishes group theoretical techniques that are applicable to the quantum-mechanical many-body atomic and molecular problems. Several matrix element evaluation methods for many-body states are developed. The generator commutation method using generator states is presented for the first time as a complete algorithm, and a computer implementation of the method is developed. A major result of this work is the development of a new method of calculation called the freeon tensor product (FTP) method. This method is much simpler and for many purposes superior to the GUGA procedure (graphical unitary group approach), widely used in configuration interaction calculations. This dissertation is also concerned with the prediction of atomic spectra. In principle spectra can be computed by the methods of ab initio quantum chemistry. In practice these computations are difficult, expensive, time consuming, and not uniformly successful. In this dissertation, the author employs a semi-empirical group theoretical analysis of discrete spectra is the exact analog of the Fourier analysis of continuous functions. In particular, he focuses on the spectra of atoms with incomplete p, d, and f shells. The formulas and techniques are derived in a fashion that apply equally well for more complex systems, as well as the isofreeon model of spherical nuclei

  16. Unitary 4-point correlators from classical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Bombini, Alessandro; Galliani, Andrea; Giusto, Stefano [Universita di Padova, Dipartimento di Fisica ed Astronomia ' ' Galileo Galilei' ' , Padua (Italy); I.N.F.N. Sezione di Padova, Padua (Italy); Moscato, Emanuele; Russo, Rodolfo [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom)

    2018-01-15

    We compute correlators of two heavy and two light operators in the strong coupling and large c limit of the D1D5 CFT which is dual to weakly coupled AdS{sub 3} gravity. The light operators have dimension two and are scalar descendants of the chiral primaries considered in arXiv:1705.09250, while the heavy operators belong to an ensemble of Ramond-Ramond ground states. We derive a general expression for these correlators when the heavy states in the ensemble are close to the maximally spinning ground state. For a particular family of heavy states we also provide a result valid for any value of the spin. In all cases we find that the correlators depend non-trivially on the CFT moduli and are not determined by the symmetries of the theory; however, they have the properties expected for correlators among pure states in a unitary theory, in particular they do not decay at large Lorentzian times. (orig.)

  17. A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Murat Osmanoglu

    2013-01-01

    Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.

  18. The use of Fourier eigen transform to the boundary element method for transient elastodynamic problems

    International Nuclear Information System (INIS)

    Ji, X.; Chen, Y.M.

    1989-01-01

    The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes

  19. Fourier transformation methods in the field of gamma spectrometry

    Indian Academy of Sciences (India)

    The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.

  20. Radiation method of sulfide compound transformation in petroleum products

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Zajkin, Yu.A.; Mamonova, T.B.; Bakirova, S.F.

    1997-01-01

    Processes of sulphuric compounds transformation for petroleum and heavy residuals under radiation and thermal treatment action are studied. It is shown that sulphuric compounds are concentrated in heavy fractions as a result of radiation processing. Heavy petroleum products irradiation provokes considerable decrease in the content of mercaptans, disulphides and sulphides, which transfer to sulphoxides and sulphones appearing during radiation-induced oxidation process. (author)

  1. Constructing a unitary title regime for the European Patent System

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2011-01-01

    The European Patent System without any unitary title allows Member States to retain institutional arrangements within their borders and to prevent any moves to delegate responsibility outside the national sphere. This intergovernmental patent regime suffers from fragmentation due to national

  2. Elegant Coercion and Iran: Beyond the Unitary Actor Model

    National Research Council Canada - National Science Library

    Moss, J. C

    2005-01-01

    .... At its core, then, coercion is about state decision-making. Most theories of coercion describe states as if they were unitary actors whose decision-making results from purely rational cost-benefit calculations...

  3. Discrimination Between Inrush and Short Circuit Currents in Differential Protection of Power Transformer Based on Correlation Method Using the Wavelet Transform

    OpenAIRE

    M. Rasoulpoor; M. Banejad; A. Ahmadyfard

    2011-01-01

    This paper presents a novel technique for transformer differential protection to prevent incorrect operation due to inrush current. The proposed method in this paper is based on time-frequency transform known as the Wavelet transform. The discrete Wavelet transform is used for analysis the differential current signals in time and frequency domains. The investigation on the energy distribution of the signal on the discrete Wavelet transform components shows the difference distribution between ...

  4. Theory of the unitary representations of compact groups

    International Nuclear Information System (INIS)

    Burzynski, A.; Burzynska, M.

    1979-01-01

    An introduction contains some basic notions used in group theory, Lie group, Lie algebras and unitary representations. Then we are dealing with compact groups. For these groups we show the problem of reduction of unitary representation of Wigner's projection operators, Clebsch-Gordan coefficients and Wigner-Eckart theorem. We show (this is a new approach) the representations reduction formalism by using superoperators in Hilbert-Schmidt space. (author)

  5. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    Science.gov (United States)

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  6. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  7. Interdisciplinary Approaches and Methods for Sustainable Transformation and Innovation

    Directory of Open Access Journals (Sweden)

    Sangkyun Kim

    2015-04-01

    Full Text Available To increase the likelihood of success and sustainability, organizations must fundamentally reposition themselves and try to change current processes or create new products and services. One of the most effective approaches to find a solution for transformation and innovation is to learn from other domains where a solution for similar problems is already available. This paper briefly introduces the definition of and approaches to convergence of academic disciplines and industries, and overviews several representative convergence cases focusing on gamification for sustainable education, environments, and business managements.

  8. Canonical Transform Method for Treating Strongly Anisotropy Magnets

    DEFF Research Database (Denmark)

    Cooke, J. F.; Lindgård, Per-Anker

    1977-01-01

    An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...

  9. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    Science.gov (United States)

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  10. Application of differential transformation method for solving dengue transmission mathematical model

    Science.gov (United States)

    Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.

    2018-03-01

    The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.

  11. Biorthogonal projected energies of a Gutzwiller similarity transformed Hamiltonian.

    Science.gov (United States)

    Wahlen-Strothman, J M; Scuseria, G E

    2016-12-07

    We present a method incorporating biorthogonal orbital-optimization, symmetry projection, and double-occupancy screening with a non-unitary similarity transformation generated by the Gutzwiller factor [Formula: see text], and apply it to the Hubbard model. Energies are calculated with mean-field computational scaling with high-quality results comparable to coupled cluster singles and doubles. This builds on previous work performing similarity transformations with more general, two-body Jastrow-style correlators. The theory is tested on 2D lattices ranging from small systems into the thermodynamic limit and is compared to available reference data.

  12. A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics

    Directory of Open Access Journals (Sweden)

    Saleh Alsuhaibani

    2016-10-01

    Full Text Available Power transformers play a critical role in electric power networks. Such transformers can suffer failures due to multiple stresses and aging. Thus, assessment of condition and diagnostic techniques are of great importance for improving power network reliability and service continuity. Several techniques are available to diagnose the faults within the power transformer. Frequency response analysis (FRA method is a powerful technique for diagnosing transformer winding deformation and several other types of problems that are caused during manufacture, transportation, installation and/or service life. This paper provides a comprehensive review on FRA methods and their applications in diagnostics and fault identification for power transformers. The paper discusses theory and applications of FRA methods as well as various issues and challenges faced in the application of this method.

  13. Operator Spreading in Random Unitary Circuits

    Science.gov (United States)

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2018-04-01

    Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be

  14. Unitary Evolution as a Uniqueness Criterion

    Science.gov (United States)

    Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M.

    2015-01-01

    It is well known that the process of quantizing field theories is plagued with ambiguities. First, there is ambiguity in the choice of basic variables describing the system. Second, once a choice of field variables has been made, there is ambiguity concerning the selection of a quantum representation of the corresponding canonical commutation relations. The natural strategy to remove these ambiguities is to demand positivity of energy and to invoke symmetries, namely by requiring that classical symmetries become unitarily implemented in the quantum realm. The success of this strategy depends, however, on the existence of a sufficiently large group of symmetries, usually including time-translation invariance. These criteria are therefore generally insufficient in non-stationary situations, as is typical for free fields in curved spacetimes. Recently, the criterion of unitary implementation of the dynamics has been proposed in order to select a unique quantization in the context of manifestly non-stationary systems. Specifically, the unitarity criterion, together with the requirement of invariance under spatial symmetries, has been successfully employed to remove the ambiguities in the quantization of linearly polarized Gowdy models as well as in the quantization of a scalar field with time varying mass, propagating in a static background whose spatial topology is either of a d-sphere (with d = 1, 2, 3) or a three torus. Following Ref. 3, we will see here that the symmetry and unitarity criteria allows for a complete removal of the ambiguities in the quantization of scalar fields propagating in static spacetimes with compact spatial sections, obeying field equations with an explicitly time-dependent mass, of the form ddot φ - Δ φ + s(t)φ = 0 . These results apply in particular to free fields in spacetimes which, like e.g. in the closed FRW models, are conformal to a static spacetime, by means of an exclusively time-dependent conformal factor. In fact, in such

  15. Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Hassan A. Zedan

    2012-01-01

    Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.

  16. Generalization of the quantized Bogoliubov-Valatin transformation and relation to the method of the vector coherent state: The case of U(3)

    International Nuclear Information System (INIS)

    Klein, A.; Walet, N.R.

    1990-01-01

    The idea of vector coherent state has been applied recently to the problem of deriving matrix representations of Lie algebras. Central to the application of this concept is a mapping onto a space that is the direct product of a collective (boson) space and of an intrinsic space. In this paper, it is suggested that for applications to nuclear physics, a natural realization of the intrinsic space is in terms of quasifermions that are required to be kinematically independent of the bosons. This requirement leads to operator constraints that modify the anticommutation relations of the quasifermions, but otherwise leave their algebraic relations indistinguishable from those of ordinary fermions. The various concepts as well as the relations among them are illustrated by a nuclear model with the symmetry of the unitary algebra U(n). Full calculations are carried through only for n=3 by an algebraic method, that we have also utilized previously. For the mapping of the group generators, this technique is fully equivalent to the direct use of the vector coherent state. Here it is applied as well to the problem of mapping individual fermion operators, which is a major step toward obtaining the matrices of all shell-model tensors, reduced with respect to the collective algebra. Such a mapping of fermion operators first appeared in the literature for the case of SU(2), where it is known as the quantized Bogoliubov-Valatin transformation. (orig.)

  17. A Systematic Hardware Sharing Method for Unified Architecture Design of H.264 Transforms

    Directory of Open Access Journals (Sweden)

    Po-Hung Chen

    2015-01-01

    Full Text Available Multitransform techniques have been widely used in modern video coding and have better compression efficiency than the single transform technique that is used conventionally. However, every transform needs a corresponding hardware implementation, which results in a high hardware cost for multiple transforms. A novel method that includes a five-step operation sharing synthesis and architecture-unification techniques is proposed to systematically share the hardware and reduce the cost of multitransform coding. In order to demonstrate the effectiveness of the method, a unified architecture is designed using the method for all of the six transforms involved in the H.264 video codec: 2D 4 × 4 forward and inverse integer transforms, 2D 4 × 4 and 2 × 2 Hadamard transforms, and 1D 8 × 8 forward and inverse integer transforms. Firstly, the six H.264 transform architectures are designed at a low cost using the proposed five-step operation sharing synthesis technique. Secondly, the proposed architecture-unification technique further unifies these six transform architectures into a low cost hardware-unified architecture. The unified architecture requires only 28 adders, 16 subtractors, 40 shifters, and a proposed mux-based routing network, and the gate count is only 16308. The unified architecture processes 8 pixels/clock-cycle, up to 275 MHz, which is equal to 707 Full-HD 1080 p frames/second.

  18. Description of the electron-hydrogen collision by the Coulomb Fourier transform method

    International Nuclear Information System (INIS)

    Levin, S.B.

    2005-01-01

    A recently developed Coulomb Fourier Transform method is applied to the system containing one heavy ion and two electrons. The transformed Hamiltonian is described with a controlled accuracy in an effective finite basis set as a finite dimensional operator matrix. The kernels of interaction are formulated in terms of the so called Nordsieck integrals

  19. Unitary tridiagonalization in M(4, C)

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Abstract. A question of interest in linear algebra is whether all n × n complex matrices can be unitarily ... passing, we also provide another elementary proof for the n = 3 case. 2. Some Lemmas. We need ... also use the letter A to denote the unique linear transformation determined by the matrix. A = [aij ] (satisfying Aej = ∑n.

  20. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  1. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  2. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    Science.gov (United States)

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4

  3. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    Science.gov (United States)

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  4. A reversible transform for seismic data processing

    International Nuclear Information System (INIS)

    Burnett, William A; Ferguson, Robert J

    2011-01-01

    We use the nonstationary equivalent of the Fourier shift theorem to derive a general one-dimensional integral transform for the application and removal of certain seismic data processing steps. This transform comes from the observation that many seismic data processing steps can be viewed as nonstationary shifts. The continuous form of the transform is exactly reversible, and the discrete form provides a general framework for unitary and pseudounitary imaging operators. Any processing step which can be viewed as a nonstationary shift in any domain is a special case of this transform. Nonstationary shifts generally produce coordinate distortions between input and output domains, and those that preserve amplitudes do not conserve the energy of the input signal. The nonstationary frequency distortions, time distortions and nonphysical energy changes inherent to such operations are predicted and quantified by this transform. Processing steps of this type are conventionally implemented using interpolation operators to map discrete data values between input and output coordinate frames. Although not explicitly derived to perform interpolation, the transform here assumes the Fourier basis to predict values of the input signal between sampling locations. We demonstrate how interpolants commonly used in seismic data processing and imaging approximate the proposed method. We find that our transform is equivalent to the conventional sinc interpolant with no truncation. Once the transform is developed, we demonstrate its numerical implementation by matrix–vector multiplication. As an example, we use our transform to apply and remove normal moveout

  5. Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems

    Directory of Open Access Journals (Sweden)

    Guo Zheng-Hong

    2016-01-01

    Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.

  6. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.; Kim, I.; Lee, H.; Sheen, D.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely

  7. A fresh method of DNA transformation to the seeds irradiated by Co ...

    African Journals Online (AJOL)

    Jane

    2011-06-29

    Jun 29, 2011 ... To find out a simpler method that can directly transfer the aim gene into plant ... Key words: DNA transformation, irradiated seeds, purple medic, salt screening. ..... characterization of a maize mitochondrial plasmid-like DNA.

  8. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  9. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  10. Phase difference estimation method based on data extension and Hilbert transform

    International Nuclear Information System (INIS)

    Shen, Yan-lin; Tu, Ya-qing; Chen, Lin-jun; Shen, Ting-ao

    2015-01-01

    To improve the precision and anti-interference performance of phase difference estimation for non-integer periods of sampling signals, a phase difference estimation method based on data extension and Hilbert transform is proposed. Estimated phase difference is obtained by means of data extension, Hilbert transform, cross-correlation, auto-correlation, and weighted phase average. Theoretical analysis shows that the proposed method suppresses the end effects of Hilbert transform effectively. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of phase difference estimation and has better performance of phase difference estimation than the correlation, Hilbert transform, and data extension-based correlation methods, which contribute to improving the measurement precision of the Coriolis mass flowmeter. (paper)

  11. Consciousness, intentionality, and community: Unitary perspectives and research.

    Science.gov (United States)

    Zahourek, Rothlyn P; Larkin, Dorothy M

    2009-01-01

    Consciousness and intentionality often have been related and studied together. These concepts also are readily viewed and understood for practice, research, and education in a unitary paradigm. How these ideas relate to community is less known. Considering the expansion of our capacity for communication through the World Wide Web and other technologic advances and appreciating recent research on the nonlocal character of intentionality and consciousness, it is more apparent how concepts of community can be seen in the same unitary context. The authors address these issues and review relevant nursing research.

  12. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  13. TRANSFORMATION OF INNOVATIVE AND METHODICAL ACTIVITY LIBRARY OF THE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    О. О. Скаченко

    2015-09-01

    Full Text Available The purpose of our article is the analysis of innovative and methodical activity of university libraries which develop as information centers today. The subject of research is methodical, publishing and innovative activity of Scientific Library of the Kiev national university of culture and arts. We observe process of introduction of technological innovations in library service that allows improving quality of the services provided to the reader by library. New actual projects are developed, cultural and educational and information services extend, work methods improve. Also, the structure of library is improved – there are new sectors. The main finding of the work consists in systematization of various aspects and the directions of innovative activity of library. The research findings have the practical value for library workers, teachers of university, students, library users, and also for anyone who is interested in library science.

  14. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

    Science.gov (United States)

    Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong

    2014-01-01

    Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. A New Identification Method of Both Magnetization Characteristic and Parameters of an Unloaded Transformer

    Directory of Open Access Journals (Sweden)

    Petr Orsag

    2008-01-01

    Full Text Available In this paper a new method of identification of both the magnetization characteristic and the instantaneous parameters G(t and K(t of a single-phase transformer under a sinusoidal supply voltage is proposed. The instantaneous conductance G(t and inverse inductance K(t of the transformer cross section are determined by the scalar product of time functions. The magnetization characteristic is derived by means of the inverse inductance K(t. The method is practically applied to an isolating transformer.

  16. Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport

    International Nuclear Information System (INIS)

    McKinley, M S; Brooks III, E D; Daffin, F

    2004-01-01

    Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations

  17. On Solution of a Fractional Diffusion Equation by Homotopy Transform Method

    International Nuclear Information System (INIS)

    Salah, A.; Hassan, S.S.A.

    2012-01-01

    The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.

  18. Classification of delocalization power of global unitary operations in terms of LOCC one-piece relocalization

    Directory of Open Access Journals (Sweden)

    Akihito Soeda

    2010-06-01

    Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.

  19. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    Science.gov (United States)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  20. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    Science.gov (United States)

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  1. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-01-01

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203

  2. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    Directory of Open Access Journals (Sweden)

    Bailing Liu

    2016-02-01

    Full Text Available Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  3. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    Science.gov (United States)

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  4. A geometric quantization of the Kostant-Sekiguchi correpondence for scalar type unitary highest weight representations

    DEFF Research Database (Denmark)

    Möllers, Jan

    2013-01-01

    (\\pi)\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$. The associated variety $Ass(\\pi)$ is the closure of a single nilpotent $K_{\\mathbb{C}}$-orbit $\\mathcal{O}^{K_{\\mathbb{C}}}\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$ which corresponds by the Kostant-Sekiguchi correspondence to a nilpotent coadjoint $G$-orbit $\\mathcal{O}^G\\subseteq\\mathfrak{g}^*$. The known Schr\\"odinger...... model of $\\pi$ is a realization on $L^2(\\mathcal{O})$, where $\\mathcal{O}\\subseteq\\mathcal{O}^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schr\\"odinger model to the new Fock model, the generalized Segal-Bargmann transform, which gives a geometric quantization...... and as integral kernel of the Segal-Bargmann transform. As a corollary to our construction we also obtain the integral kernel of the unitary inversion operator in the Schr\\"odinger model in terms of a multivariable $J$-Bessel function....

  5. A new Laplace transformation method for dynamic testing of solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Perers, Bengt; Fan, Jianhua

    2015-01-01

    A new dynamic method for solar collector testing is developed. It is characterized by using the Laplace transformation technique to solve the differential governing equation. The new method was inspired by the so called New Dynamic Method (NDM) (Amer E. et al (1999) [1]) but totally different....... By integration of the Laplace transformation technique with the Quasi Dynamic Test (QDT) model (Fischer S. et al (2004) [2]), the Laplace – QDT (L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding method which needs to shield and un-shield solar collector continuously...

  6. The Method of Measured Electrical Resistivity in Studying Phase Transformations in Zr1Nb Alloy

    International Nuclear Information System (INIS)

    Gritsina, V.M.; Klimenko, S.P.; Chernyaeva, T.P.

    2006-01-01

    The paper systematically arranges and analyzes the data on the methods of research into α ↔ β transformation process in zirconium alloys, as well as capabilities and information provided by each method. A special emphasis is put on the method of measured electrical resistivity. The authors also present the results of their own research into α ↔ β transformation process in Zr1Nb alloy (in the material of Zr+1% Nb tubing produced in Ukraine from calciothermal zirconium). The ρ →T curve was used to define the maximum and minimum values for transformation temperatures. Combined processing of the phase data on Zr+1% Nb found in literature and obtained from measured resistivity suggests that transformation process happens in several stages. The maximum value on the ρ → T curve corresponds to the beginning of stage 3, whereas the minimum - to its completion; as suggested by the pooled data, accounts for over 95% of the total volume of the material

  7. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    Science.gov (United States)

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    Science.gov (United States)

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  9. Optimization of an Efficient Non-Tissue Culture Transformation Method for Brassica Juncea

    International Nuclear Information System (INIS)

    Naeem, I.; Munir, I.; Iqbal, A.; Ullah, F.

    2016-01-01

    The major hurdles in successful in vitro transformation of Brassica juncea through standard tissue culture (STC) method are: culture contamination, somaclonal variations, and lack of expertise. Moreover, the current STC method is time consuming and needs continuous electricity. In the present study, the in planta transformation method through floral dip with or without vacuum infiltration was optimized for successful transformation of B. juncea. The B. juncea CV RAYA Anmol was used for transformation through Agrobacterium tumefaciens strain GV3101 harboring the binary vector plasmid pBinGlyBar4-EADcT. Based on the resistance reaction to the herbicide Basta, 20 and 40 resistant seedlings were obtained from 2000 seed germinated from the plants transformed through floral dip and vacuum infiltration methods, respectively. The PCR analyses further confirmed the presence of transgene in 3 floral dipped plants without vacuum infiltration and 17 floral dipped plants with vacuum infiltration, giving the transformation frequencies of 1.5*10/sup -3/ and 8.5*10/sup -3/, respectively. This method, which avoids tissue culture, will reduce the somaclonal variation accompanying prolonged culture of cells in a dedifferentiated state, will facilitate functional genomics and improvement of Brassica juncea with novel desirable traits while reducing time and expense. (author)

  10. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  11. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...

  12. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S.; Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...

  13. A new derivation of the highest-weight polynomial of a unitary lie algebra

    International Nuclear Information System (INIS)

    P Chau, Huu-Tai; P Van, Isacker

    2000-01-01

    A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)

  14. Power Transformer Operating State Prediction Method Based on an LSTM Network

    Directory of Open Access Journals (Sweden)

    Hui Song

    2018-04-01

    Full Text Available The state of transformer equipment is usually manifested through a variety of information. The characteristic information will change with different types of equipment defects/faults, location, severity, and other factors. For transformer operating state prediction and fault warning, the key influencing factors of the transformer panorama information are analyzed. The degree of relative deterioration is used to characterize the deterioration of the transformer state. The membership relationship between the relative deterioration degree of each indicator and the transformer state is obtained through fuzzy processing. Through the long short-term memory (LSTM network, the evolution of the transformer status is extracted, and a data-driven state prediction model is constructed to realize preliminary warning of a potential fault of the equipment. Through the LSTM network, the quantitative index and qualitative index are organically combined in order to perceive the corresponding relationship between the characteristic parameters and the operating state of the transformer. The results of different time-scale prediction cases show that the proposed method can effectively predict the operation status of power transformers and accurately reflect their status.

  15. DU and UD-invariants of unitary groups

    International Nuclear Information System (INIS)

    Aguilera-Navarro, M.C.K.

    1977-01-01

    Four distint ways of obtaining the eigenvalues of unitary groups, in any irreducible representation, are presented. The invariants are defined according to two different contraction conventions. Their eigenvalue can be given in terms of two classes of special partial hooks associated with the young diagram characterizing the irreducible representation considered

  16. A remark on the unitary part of contractions

    International Nuclear Information System (INIS)

    Duggal, B.P.

    1992-07-01

    Considering operators on a complex infinite dimensional Hilbert space H and denoting by T * a construction with C .O completely non-unitary part, it is proved that A T is projection which commutes with T and H (u) T = A T H. 3 refs

  17. Establishing the Unitary Classroom: Organizational Change and School Culture.

    Science.gov (United States)

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  18. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  19. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens.

    Science.gov (United States)

    Norzagaray-Valenzuela, Claudia D; Germán-Báez, Lourdes J; Valdez-Flores, Marco A; Hernández-Verdugo, Sergio; Shelton, Luke M; Valdez-Ortiz, Angel

    2018-05-16

    Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD 600  = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  1. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  2. Novel Plasmid Transformation Method Mediated by Chrysotile, Sliding Friction, and Elastic Body Exposure

    Directory of Open Access Journals (Sweden)

    Naoto Yoshida

    2007-01-01

    Full Text Available Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture. Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotileplasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.

  3. Implementation of the SFRA method as valuable tool for detection of power transformer active part deformation

    Directory of Open Access Journals (Sweden)

    Milić Saša D.

    2014-01-01

    Full Text Available The paper presents the SFRA (Sweep Frequency Response Analysis-SFRA method for analyzing frequency response of transformer windings in order to identify potential defects in the geometry of the core and winding. The most frequent problems (recognized by SFRA are: core shift, shorted or open winding, unwanted contact between core and mass, etc. Comparative analysis of this method with conventional methods is carried out in situ transformer in real hard industrial conditions. Benefits of SFRA method are great reliability and repeatability of the measurements. This method belongs to the non-invasive category. Due to the high reliability and repeatability of the measurements it is very suitable for detection of changes in the geometry of the coil and the core during prophylactic field testing, or after transporting the transformer.

  4. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    Science.gov (United States)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  5. Tikhonov regularization method for the numerical inversion of Mellin transforms using splines

    International Nuclear Information System (INIS)

    Iqbal, M.

    2005-01-01

    Mellin transform is an ill-posed problem. These problems arise in many branches of science and engineering. In the typical situation one is interested in recovering the original function, given a finite number of noisy measurements of data. In this paper, we shall convert Mellin transform to Laplace transform and then an integral equation of the first kind of convolution type. We solve the integral equation using Tikhonov regularization with splines as basis function. The method is applied to various test examples in the literature and results are shown in the table

  6. Continuous surveillance of transformers using artificial intelligence methods; Surveillance continue des transformateurs: application des methodes d'intelligence artificielle

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, A.; Germond, A. [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Boss, P.; Lorin, P. [ABB Secheron SA, Geneve (Switzerland)

    2000-07-01

    The article describes a new method for the continuous surveillance of power transformers based on the application of artificial intelligence (AI) techniques. An experimental pilot project on a specially equipped, strategically important power transformer is described. Traditional surveillance methods and the use of mathematical models for the prediction of faults are described. The article describes the monitoring equipment used in the pilot project and the AI principles such as self-organising maps that are applied. The results obtained from the pilot project and methods for their graphical representation are discussed.

  7. The Analytical Solution of Some Fractional Ordinary Differential Equations by the Sumudu Transform Method

    Directory of Open Access Journals (Sweden)

    Hasan Bulut

    2013-01-01

    Full Text Available We introduce the rudiments of fractional calculus and the consequent applications of the Sumudu transform on fractional derivatives. Once this connection is firmly established in the general setting, we turn to the application of the Sumudu transform method (STM to some interesting nonhomogeneous fractional ordinary differential equations (FODEs. Finally, we use the solutions to form two-dimensional (2D graphs, by using the symbolic algebra package Mathematica Program 7.

  8. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  9. Methods of compression of digital holograms, based on 1-level wavelet transform

    International Nuclear Information System (INIS)

    Kurbatova, E A; Cheremkhin, P A; Evtikhiev, N N

    2016-01-01

    To reduce the size of memory required for storing information about 3D-scenes and to decrease the rate of hologram transmission, digital hologram compression can be used. Compression of digital holograms by wavelet transforms is among most powerful methods. In the paper the most popular wavelet transforms are considered and applied to the digital hologram compression. Obtained values of reconstruction quality and hologram's diffraction efficiencies are compared. (paper)

  10. A Laplace transform certified reduced basis method; application to the heat equation and wave equation

    OpenAIRE

    Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong

    2010-01-01

    We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...

  11. Application of the Analog Method to Modelling Heat Waves: A Case Study with Power Transformers

    Science.gov (United States)

    2017-04-21

    UNCLASSIFIED Massachusetts Institute of Technology Lincoln Laboratory APPLICATION OF THE ANALOG METHOD TO MODELLING HEAT WAVES: A CASE STUDY WITH...18 2 Calibration and validation statistics with the use of five atmospheric vari- ables to construct analogue diagnostics for JJA of transformer T2...electrical grid as a series of nodes (transformers) and edges (transmission lines) so that basic mathematical anal- ysis can be performed. The mathematics

  12. An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol

    Directory of Open Access Journals (Sweden)

    Ülker Bekir

    2006-10-01

    Full Text Available Abstract Background The Agrobacterium vacuum (Bechtold et al 1993 and floral-dip (Clough and Bent 1998 are very efficient methods for generating transgenic Arabidopsis plants. These methods allow plant transformation without the need for tissue culture. Large volumes of bacterial cultures grown in liquid media are necessary for both of these transformation methods. This limits the number of transformations that can be done at a given time due to the need for expensive large shakers and limited space on them. Additionally, the bacterial colonies derived from solid media necessary for starting these liquid cultures often fail to grow in such large volumes. Therefore the optimum stage of plant material for transformation is often missed and new plant material needs to be grown. Results To avoid problems associated with large bacterial liquid cultures, we investigated whether bacteria grown on plates are also suitable for plant transformation. We demonstrate here that bacteria grown on plates can be used with similar efficiency for transforming plants even after one week of storage at 4°C. This makes it much easier to synchronize Agrobacterium and plants for transformation. DNA gel blot analysis was carried out on the T1 plants surviving the herbicide selection and demonstrated that the surviving plants are indeed transgenic. Conclusion The simplified method works as efficiently as the previously reported protocols and significantly reduces the workload, cost and time. Additionally, the protocol reduces the risk of large scale contaminations involving GMOs. Most importantly, many more independent transformations per day can be performed using this modified protocol.

  13. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  14. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  15. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH23]8Si8Mg6O12(OH4, for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×10(2 transformants/µg DNA, second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.

  16. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    Science.gov (United States)

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  17. On the algebra of local unitary invariants of pure and mixed quantum states

    International Nuclear Information System (INIS)

    Vrana, Peter

    2011-01-01

    We study the structure of the inverse limit of the graded algebras of local unitary invariant polynomials using its Hilbert series. For k subsystems, we show that the inverse limit is a free algebra and the number of algebraically independent generators with homogenous degree 2m equals the number of conjugacy classes of index m subgroups in a free group on k - 1 generators. Similarly, we show that the inverse limit in the case of k-partite mixed state invariants is free and the number of algebraically independent generators with homogenous degree m equals the number of conjugacy classes of index m subgroups in a free group on k generators. The two statements are shown to be equivalent. To illustrate the equivalence, using the representation theory of the unitary groups, we obtain all invariants in the m = 2 graded parts and express them in a simple form both in the case of mixed and pure states. The transformation between the two forms is also derived. Analogous invariants of higher degree are also introduced.

  18. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Directory of Open Access Journals (Sweden)

    Abdalla Ahmed Abdel-Ghaly

    2016-06-01

    Full Text Available This paper suggests the use of the conditional probability integral transformation (CPIT method as a goodness of fit (GOF technique in the field of accelerated life testing (ALT, specifically for validating the underlying distributional assumption in accelerated failure time (AFT model. The method is based on transforming the data into independent and identically distributed (i.i.d Uniform (0, 1 random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.

  19. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    Science.gov (United States)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  20. In planta transformation method for T-DNA transfer in orchids

    Science.gov (United States)

    Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko

    2014-03-01

    Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.

  1. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  2. Knowledge Transmission versus Social Transformation: A Critical Analysis of Purpose in Elementary Social Studies Methods Textbooks

    Science.gov (United States)

    Butler, Brandon M.; Suh, Yonghee; Scott, Wendy

    2015-01-01

    In this article, the authors investigate the extent to which 9 elementary social studies methods textbooks present the purpose of teaching and learning social studies. Using Stanley's three perspectives of teaching social studies for knowledge transmission, method of intelligence, and social transformation; we analyze how these texts prepare…

  3. A new method for high yield purification of type beta transforming growth factor from human platelets

    NARCIS (Netherlands)

    Eijnden-van Raaij, A.J.M. van den; Koornneef, I.; Zoelen, E.J.J. van

    1988-01-01

    A new method was developed for the purification of type beta transforming growth factor from human platelets. This method is a three-step procedure including gel filtration, weak cation exchange HPLC and reverse phase HPLC. All steps are carried out at low pH using exclusively volatile acidic buffer

  4. Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2012-01-01

    Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.

  5. Detection of inter-turn faults in transformer winding using the capacitor discharge method

    Science.gov (United States)

    Michna, Michał; Wilk, Andrzej; Ziółko, Michał; Wołoszyk, Marek; Swędrowski, Leon; Szwangruber, Piotr

    2017-12-01

    The paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet circuits, a measurement and diagnostic system is currently under development at Gdansk University of Technology (GUT). Appropriate measurements and simulations of the special transformer system were performed to verify the proposed diagnostic method. In order to take into account the nonlinearity and hysteresis of the magnetic yoke, a novel mathematical model of the transformer was developed. A special test bench was constructed to emulate the inter-turn faults within transformer windings.

  6. A direct method to transform between expansions in the configuration state function and Slater determinant bases

    International Nuclear Information System (INIS)

    Olsen, Jeppe

    2014-01-01

    A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10 6 coefficients in the CSF basis is obtained from the 150 × 10 6 coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require

  7. Detection of inter-turn faults in transformer winding using the capacitor discharge method

    Directory of Open Access Journals (Sweden)

    Michna Michał

    2017-12-01

    Full Text Available The paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet circuits, a measurement and diagnostic system is currently under development at Gdansk University of Technology (GUT. Appropriate measurements and simulations of the special transformer system were performed to verify the proposed diagnostic method. In order to take into account the nonlinearity and hysteresis of the magnetic yoke, a novel mathematical model of the transformer was developed. A special test bench was constructed to emulate the inter-turn faults within transformer windings.

  8. Reconstruction of on-axis lensless Fourier transform digital hologram with the screen division method

    Science.gov (United States)

    Jiang, Hongzhen; Liu, Xu; Liu, Yong; Li, Dong; Chen, Zhu; Zheng, Fanglan; Yu, Deqiang

    2017-10-01

    An effective approach for reconstructing on-axis lensless Fourier Transform digital hologram by using the screen division method is proposed. Firstly, the on-axis Fourier Transform digital hologram is divided into sub-holograms. Then the reconstruction result of every sub-hologram is obtained according to the position of corresponding sub-hologram in the hologram reconstruction plane with Fourier transform operation. Finally, the reconstruction image of on-axis Fourier Transform digital hologram can be acquired by the superposition of the reconstruction result of sub-holograms. Compared with the traditional reconstruction method with the phase shifting technology, in which multiple digital holograms are required to record for obtaining the reconstruction image, this method can obtain the reconstruction image with only one digital hologram and therefore greatly simplify the recording and reconstruction process of on-axis lensless Fourier Transform digital holography. The effectiveness of the proposed method is well proved with the experimental results and it will have potential application foreground in the holographic measurement and display field.

  9. A method based on IHS cylindrical transform model for quality assessment of image fusion

    Science.gov (United States)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  10. Generalized Fourier transforms Fk,a

    DEFF Research Database (Denmark)

    Salem, Ben Said; Kobayashi, Toshiyuki; Ørsted, Bent

    2009-01-01

    We construct a two-parameter family of actions ωk,a of the Lie algebra by differential-difference operators on . Here, k is a multiplicity-function for the Dunkl operators, and a>0 arises from the interpolation of the Weil representation and the minimal unitary representation of the conformal gro...... of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms , which includes the Dunkl transform ( a=2 ) and a new unitary operator ( a=1 ) as a Dunkl-type generalization of the classical Hankel transform....

  11. Solution methods for compartment models of transport through the environment using numerical inversion of Laplace transforms

    International Nuclear Information System (INIS)

    Garratt, T.J.

    1989-05-01

    Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)

  12. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  13. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    Science.gov (United States)

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  14. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  15. A Combined Fault Diagnosis Method for Power Transformer in Big Data Environment

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available The fault diagnosis method based on dissolved gas analysis (DGA is of great significance to detect the potential faults of the transformer and improve the security of the power system. The DGA data of transformer in smart grid have the characteristics of large quantity, multiple types, and low value density. In view of DGA big data’s characteristics, the paper first proposes a new combined fault diagnosis method for transformer, in which a variety of fault diagnosis models are used to make a preliminary diagnosis, and then the support vector machine is used to make the second diagnosis. The method adopts the intelligent complementary and blending thought, which overcomes the shortcomings of single diagnosis model in transformer fault diagnosis, and improves the diagnostic accuracy and the scope of application of the model. Then, the training and deployment strategy of the combined diagnosis model is designed based on Storm and Spark platform, which provides a solution for the transformer fault diagnosis in big data environment.

  16. An improved yeast transformation method for the generation of very large human antibody libraries.

    Science.gov (United States)

    Benatuil, Lorenzo; Perez, Jennifer M; Belk, Jonathan; Hsieh, Chung-Ming

    2010-04-01

    Antibody library selection by yeast display technology is an efficient and highly sensitive method to identify binders to target antigens. This powerful selection tool, however, is often hampered by the typically modest size of yeast libraries (approximately 10(7)) due to the limited yeast transformation efficiency, and the full potential of the yeast display technology for antibody discovery and engineering can only be realized if it can be coupled with a mean to generate very large yeast libraries. We describe here a yeast transformation method by electroporation that allows for the efficient generation of large antibody libraries up to 10(10) in size. Multiple components and conditions including CaCl(2), MgCl(2), sucrose, sorbitol, lithium acetate, dithiothreitol, electroporation voltage, DNA input and cell volume have been tested to identify the best combination. By applying this developed protocol, we have constructed a 1.4 x 10(10) human spleen antibody library essentially in 1 day with a transformation efficiency of 1-1.5 x 10(8) transformants/microg vector DNA. Taken together, we have developed a highly efficient yeast transformation method that enables the generation of very large and productive human antibody libraries for antibody discovery, and we are now routinely making 10(9) libraries in a day for antibody engineering purposes.

  17. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  18. Optimal Operation of Distribution Electronic Power Transformer Using Linear Quadratic Regulator Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Rezaei

    2011-10-01

    Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage flicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.

  19. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  20. Unitary group representations in Fock spaces with generalized exchange properties

    International Nuclear Information System (INIS)

    Liguori, A.

    1994-09-01

    The notion of second R-quantization is investigated, - a suitable deformation of the standard second quantization which properly takes into account the non-trivial exchange properties characterizing generalized statistics. The R-quantization of a class of unitary one-particle representations relevant for the description of symmetries is also performed. The Euclidean covariance of anyons is analyzed in this context. (author). 11 refs

  1. Prenominal and postnominal reduced relative clauses: arguments against unitary analyses

    Directory of Open Access Journals (Sweden)

    Petra Sleeman

    2007-01-01

    Full Text Available These last years, several analyses have been proposed in which prenominal and postnominal reduced relatives are merged in the same position. Kayne (1994 claims that both types of reduced relative clauses are the complement of the determiner. More recently, Cinque (2005 has proposed that both types are merged in the functional projections of the noun, at the left edge of the modifier system. In this paper, I argue against a unitary analysis of prenominal and postnominal participial reduced relatives.

  2. Effective hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Blokhin, A.L.

    1989-01-01

    Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs

  3. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  4. Complex projection of unitary dynamics of quaternionic pure states

    International Nuclear Information System (INIS)

    Asorey, M.; Scolarici, G.; Solombrino, L.

    2007-01-01

    Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out

  5. Efficient learning algorithm for quantum perceptron unitary weights

    OpenAIRE

    Seow, Kok-Leong; Behrman, Elizabeth; Steck, James

    2015-01-01

    For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that past implementat...

  6. Unitary evolution and uniqueness of the Fock quantization in flat cosmologies

    International Nuclear Information System (INIS)

    Marugán, G A Mena; Błas, D Martín-de; Gomar, L Castelló

    2013-01-01

    We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. The proof is generalizable to any compact spatial topology in three or less dimensions, though we focus on the case of the three-torus owing to the especially relevant implications.

  7. A gravitational wave burst search method based on the S transform

    International Nuclear Information System (INIS)

    Clapson, Andre-Claude; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelberg, Stephane; Varvella, Monica

    2005-01-01

    The detection of burst-type events in the output of ground gravitational wave observatories is particularly challenging due to the expected variety of astrophysical waveforms and the issue of discriminating them from instrumental noise. Robust methods, that achieve reasonable detection performances over a wide range of signals, would be most useful. We present a burst-detection pipeline based on a time-frequency transform, the S transform. This transform offers good time-frequency localization of energy without requiring prior knowledge of the event structure. We set a simple (and robust) event extraction chain. Results are provided for a variety of signals injected in simulated Gaussian statistics data (from the LIGO-Virgo joint working group). Indications are that detection is robust with respect to event type and that efficiency compares reasonably with reference methods. The time-frequency representation is shown to be affected by spectral features such as resonant lines. This emphasizes the role of pre-processing

  8. A gravitational wave burst search method based on the S transform

    Energy Technology Data Exchange (ETDEWEB)

    Clapson, Andre-Claude; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelberg, Stephane; Varvella, Monica [Groupe Virgo, LAL, Universite Paris-Sud, Batiment 208, BP 34, F-91898 Orsay Cedex (France)

    2005-09-21

    The detection of burst-type events in the output of ground gravitational wave observatories is particularly challenging due to the expected variety of astrophysical waveforms and the issue of discriminating them from instrumental noise. Robust methods, that achieve reasonable detection performances over a wide range of signals, would be most useful. We present a burst-detection pipeline based on a time-frequency transform, the S transform. This transform offers good time-frequency localization of energy without requiring prior knowledge of the event structure. We set a simple (and robust) event extraction chain. Results are provided for a variety of signals injected in simulated Gaussian statistics data (from the LIGO-Virgo joint working group). Indications are that detection is robust with respect to event type and that efficiency compares reasonably with reference methods. The time-frequency representation is shown to be affected by spectral features such as resonant lines. This emphasizes the role of pre-processing.

  9. Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain

    Science.gov (United States)

    Tischler, N.; Rockstuhl, C.; Słowik, K.

    2018-04-01

    Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994), 10.1103/PhysRevLett.73.58] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.

  10. Applications of unitary symmetry and combinatorics

    CERN Document Server

    Louck, James D

    2011-01-01

    This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrice

  11. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  12. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  13. A standard form for generalized CP transformations

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.; Neufeld, H.

    1987-01-01

    The investigation of general CP transformations leads to transformations of the form U → W T UW with unitary matrices U, W. It is shown that a basis for weak eigenstates can always be chosen such that W T UW has a certain real standard form. (Author)

  14. Mix ratio measurements of pozzolanic blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.

    1992-07-01

    The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends

  15. Different methods for modeling absorption heat transformer powered by solar pond

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kizilkan, Onder; Bezir, Nalan C.; Kalogirou, Soteris A.

    2007-01-01

    Solar ponds are a type of solar collector used for storing solar energy at temperature below 90 o C. Absorption heat transformers (AHTs) are devices used to increase the temperature of moderately warm fluid to a more useful temperature level. In this study, a theoretical modelling of an absorption heat transformer for the temperature range obtained from an experimental solar pond with dimensions 3.5 x 3.5 x 2 m is presented. The working fluid pair in the absorption heat transformer is aqueous ternary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5' rules, decision table and back propagation neural network (BPNN) are used for modelling the absorption heat transformer. The best results were obtained by the back propagation neural network model. A new formulation based on the BPNN is presented to determine the flow ratio (FR) and the coefficient of performance (COP) of the absorption heat transformer. The BPNN procedure is more accurate and requires significantly less computation time than the other methods

  16. Verification of Transformer Restricted Earth Fault Protection by using the Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    KRSTIVOJEVIC, J. P.

    2015-08-01

    Full Text Available The results of a comprehensive investigation of the influence of current transformer (CT saturation on restricted earth fault (REF protection during power transformer magnetization inrush are presented. Since the inrush current during switch-on of unloaded power transformer is stochastic, its values are obtained by: (i laboratory measurements and (ii calculations based on the input data obtained by the Monte Carlo (MC simulation. To make a detailed assessment of the current transformer performance the uncertain input data for the CT model were obtained by applying the MC method. In this way, different levels of remanent flux in CT core are taken into consideration. By the generated CT secondary currents, the algorithm for REF protection based on phase comparison in time domain is tested. On the basis of the obtained results, a method of adjustment of the triggering threshold in order to ensure safe operation during transients, and thereby improve the algorithm security, has been proposed. The obtained results indicate that power transformer REF protection would be enhanced by using the proposed adjustment of triggering threshold in the algorithm which is based on phase comparison in time domain.

  17. The Threat of Unexamined Secondary Data: A Critical Race Transformative Convergent Mixed Methods

    Science.gov (United States)

    Garcia, Nichole M.; Mayorga, Oscar J.

    2018-01-01

    This article uses a critical race theory framework to conceptualize a Critical Race Transformative Convergent Mixed Methods (CRTCMM) in education. CRTCMM is a methodology that challenges normative educational research practices by acknowledging that racism permeates educational institutions and marginalizes Communities of Color. The focus of this…

  18. Transformation of 3-chloroallyl alcohol in water-saturated subsoil studied with a column method

    NARCIS (Netherlands)

    Beltman, W.H.J.; Leistra, M.; Matser, A.M.

    1996-01-01

    The performance of a newly developed column method for pesticide transformation rate measurements in the subsoil was tested using (Z)- and (E)-3-chloroallyl alcohol as model compounds. The subsoil columns were filled in situ. In the column experiment the half-life ranged from 0.5-5.2 d for

  19. Scattering of the (p - 3H) system with the Lorentz integral transform method

    International Nuclear Information System (INIS)

    Marchisio, M.A.; Leidemann, W.; Orlandini, G.; Barnea, N.

    2003-01-01

    It was shown how the Lorentz integral transform method (LIT), which in recent years has revealed to be a powerful tool in few-body calculations, can be applied to calculate the T matrix in (p- 3 H) scattering also for energies above the three-body breakup threshold. Refs. 7 (nevyjel)

  20. On the method of inverse scattering problem and Baecklund transformations for supersymmetric equations

    International Nuclear Information System (INIS)

    Chaichian, M.; Kulish, P. P.

    1978-04-01

    Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)

  1. Reduced differential transform method for partial differential equations within local fractional derivative operators

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2016-04-01

    Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

  2. One-dimensional treatment of polyatomic crystals by the Laplace transform method

    International Nuclear Information System (INIS)

    Rosato, A.; Santana, P.H.A.

    1976-01-01

    The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt

  3. Research on Electronic Transformer Data Synchronization Based on Interpolation Methods and Their Error Analysis

    Directory of Open Access Journals (Sweden)

    Pang Fubin

    2015-09-01

    Full Text Available In this paper the origin problem of data synchronization is analyzed first, and then three common interpolation methods are introduced to solve the problem. Allowing for the most general situation, the paper divides the interpolation error into harmonic and transient interpolation error components, and the error expression of each method is derived and analyzed. Besides, the interpolation errors of linear, quadratic and cubic methods are computed at different sampling rates, harmonic orders and transient components. Further, the interpolation accuracy and calculation amount of each method are compared. The research results provide theoretical guidance for selecting the interpolation method in the data synchronization application of electronic transformer.

  4. A New Method Based on Laplace Transform and Its Application to Stability of Pipe Conveying Fluid

    Directory of Open Access Journals (Sweden)

    H. B. Wen

    2017-01-01

    Full Text Available A new differential transformation method is developed in this paper and is applied for free vibration problem of pipes conveying fluid. The natural frequencies, critical flow velocities, and vibration mode functions of such pipes with several typical boundary conditions are obtained and compared with the results predicted by Galerkin method and finite element method (FEM and with other results archived. The results show that the present method is of high precision and can serve as an analytical method for the vibration of pipes conveying fluid.

  5. Uniqueness theorems for variational problems by the method of transformation groups

    CERN Document Server

    Reichel, Wolfgang

    2004-01-01

    A classical problem in the calculus of variations is the investigation of critical points of functionals {\\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\\cal L} and the underlying space V does {\\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.

  6. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  7. Valence band structures of InAs/GaAs quantum rings using the Fourier transform method

    International Nuclear Information System (INIS)

    Jia Boyong; Yu Zhongyuan; Liu Yumin

    2009-01-01

    The valence band structures of strained InAs/GaAs quantum rings are calculated, with the four-band k · p model, in the framework of effective-mass envelope function theory. When determining the Hamiltonian matrix elements, we develop the Fourier transform method instead of the widely used analytical integral method. Using Fourier transform, we have investigated the energy levels as functions of the geometrical parameters of the rings and compared our results with those obtained by the analytical integral method. The results show that the energy levels in the quantum rings change dramatically with the inner radius, outer radius, average radius, width, height of the ring and the distance between two adjacent rings. Our method can be adopted in low-dimensional structures with arbitrary shape. Our results are consistent with those in the literature and should be helpful for studying and fabricating optoelectronic devices

  8. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  9. THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS

    International Nuclear Information System (INIS)

    Gu Junhua; Xu Haiguang; Wang Jingying; Chen Wen; An Tao

    2013-01-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time

  10. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    Science.gov (United States)

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  11. Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2013-01-01

    Full Text Available The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.

  12. A new general method for transform canonically a Hamiltonian in another one of a given form

    International Nuclear Information System (INIS)

    Gomez T, A.

    2002-01-01

    The more general method to perform a canonical transformation of a Hamiltonian into another one of a given form is based on the repeated use of the Hamilton-Jacobi equation. This is usually a tedious technique which leads to some particular solutions of the problem. We present a new general method which does not rely on the Hamilton-Jacobi equation and moreover it gives all the possible solutions. (Author)

  13. A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

    Science.gov (United States)

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  14. A Novel Interference Detection Method of STAP Based on Simplified TT Transform

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2017-01-01

    Full Text Available Training samples contaminated by target-like signals is one of the major reasons for inhomogeneous clutter environment. In such environment, clutter covariance matrix in STAP (space-time adaptive processing is estimated inaccurately, which finally leads to detection performance reduction. In terms of this problem, a STAP interference detection method based on simplified TT (time-time transform is proposed in this letter. Considering the sparse physical property of clutter in the space-time plane, data on each range cell is first converted into a discrete slow time series. Then, the expression of simplified TT transform about sample data is derived step by step. Thirdly, the energy of each training sample is focalized and extracted by simplified TT transform from energy-variant difference between the unpolluted and polluted stage, and the physical significance of discarding the contaminated samples is analyzed. Lastly, the contaminated samples are picked out in light of the simplified TT transform-spectrum difference. The result on Monte Carlo simulation indicates that when training samples are contaminated by large power target-like signals, the proposed method is more effective in getting rid of the contaminated samples, reduces the computational complexity significantly, and promotes the target detection performance compared with the method of GIP (generalized inner product.

  15. A new method to determinate phase transformation in shape memory alloys: infrared thermography

    International Nuclear Information System (INIS)

    Bubulinca, C.; Balandraud, X.; Grediac, M.; Plaiasu, G. A.; Abrudeanu, M.; Stanciu, S.

    2013-01-01

    In this article it is presented a shape memory alloy case, based on copper, namely Cu-Zn-Al, which is subjected to periodic mechanical traction. Traction is performed in conditions of normal temperature and pressure. The purpose of this article it is to study stress induced phase transformation. All tests are performed in same conditions. Transformation on which is based this effect occurs in two ways: by applying a stress or temperature variation. In this article it is studied stress induced phase transformation. The method to analyze the microstructure of an shape memory alloy (SMA) is relatively new and it is based on tracking the evolution of temperature. After thermal analysis we can decide in which state is one alloy without any other supplier measures (differential scanning calorimetric or electrical resistivity). If our specimen will producing thermal energy when specimen is tensile he is austenitic. If absorbing heat during the first deformation is in martensitic state. (authors)

  16. Transformation-cost time-series method for analyzing irregularly sampled data.

    Science.gov (United States)

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  17. Transformation-cost time-series method for analyzing irregularly sampled data

    Science.gov (United States)

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  18. Cognitive Artificial Intelligence Method for Interpreting Transformer Condition Based on Maintenance Data

    Directory of Open Access Journals (Sweden)

    Karel Octavianus Bachri

    2017-07-01

    Full Text Available A3S(Arwin-Adang-Aciek-Sembiring is a method of information fusion at a single observation and OMA3S(Observation Multi-time A3S is a method of information fusion for time-series data. This paper proposes OMA3S-based Cognitive Artificial-Intelligence method for interpreting Transformer Condition, which is calculated based on maintenance data from Indonesia National Electric Company (PLN. First, the proposed method is tested using the previously published data, and then followed by implementation on maintenance data. Maintenance data are fused to obtain part condition, and part conditions are fused to obtain transformer condition. Result shows proposed method is valid for DGA fault identification with the average accuracy of 91.1%. The proposed method not only can interpret the major fault, it can also identify the minor fault occurring along with the major fault, allowing early warning feature. Result also shows part conditions can be interpreted using information fusion on maintenance data, and the transformer condition can be interpreted using information fusion on part conditions. The future works on this research is to gather more data, to elaborate more factors to be fused, and to design a cognitive processor that can be used to implement this concept of intelligent instrumentation.

  19. Analytical method of CIM to PIM transformation in Model Driven Architecture (MDA

    Directory of Open Access Journals (Sweden)

    Martin Kardos

    2010-06-01

    Full Text Available Information system’s models on higher level of abstraction have become a daily routine in many software companies. The concept of Model Driven Architecture (MDA published by standardization body OMG1 since 2001 has become a concept for creation of software applications and information systems. MDA specifies four levels of abstraction: top three levels are created as graphical models and the last one as implementation code model. Many research works of MDA are focusing on the lower levels and transformations between each other. The top level of abstraction, called Computation Independent Model (CIM and its transformation to the lower level called Platform Independent Model (PIM is not so extensive research topic. Considering to a great importance and usability of this level in practice of IS2Keywords: transformation, MDA, CIM, PIM, UML, DFD. development now our research activity is focused to this highest level of abstraction – CIM and its possible transformation to the lower PIM level. In this article we are presenting a possible solution of CIM modeling and its analytic method of transformation to PIM.

  20. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  1. A kinetic Monte Carlo method for the simulation of massive phase transformations

    International Nuclear Information System (INIS)

    Bos, C.; Sommer, F.; Mittemeijer, E.J.

    2004-01-01

    A multi-lattice kinetic Monte Carlo method has been developed for the atomistic simulation of massive phase transformations. Beside sites on the crystal lattices of the parent and product phase, randomly placed sites are incorporated as possible positions. These random sites allow the atoms to take favourable intermediate positions, essential for a realistic description of transformation interfaces. The transformation from fcc to bcc starting from a flat interface with the fcc(1 1 1)//bcc(1 1 0) and fcc[1 1 1-bar]//bcc[0 0 1-bar] orientation in a single component system has been simulated. Growth occurs in two different modes depending on the chosen values of the bond energies. For larger fcc-bcc energy differences, continuous growth is observed with a rough transformation front. For smaller energy differences, plane-by-plane growth is observed. In this growth mode two-dimensional nucleation is required in the next fcc plane after completion of the transformation of the previous fcc plane

  2. Design parameter based method of partial discharge detection and location in power transformers

    Directory of Open Access Journals (Sweden)

    Kumar Santosh Annadurai

    2009-01-01

    Full Text Available Insulation defect detection in time ensures higher operational reliability of power system assets. Power transformers are the most critical unit of power systems both from economical and operational front. Hence it becomes necessary to have knowledge of the actual insulation condition of transformer to increase dependability of the system. The performance and ageing of the transformer insulation is mainly affected by Partial discharges (PD. Proper diagnosis in terms of amplitude and location of partial discharge in a power transformer enables us to predict well in advance, with much confidence, the defect in insulation system, which avoids large catastrophic failures. In this work a 20kVA, 230/50kV single phase core type transformer is used for evaluation of the transfer function-based partial discharge detection and location using modeling of the winding, using design data. The simulation of capturing on-line PD pulses across the bushing tap capacitor is done for various tap positions. Standard PD source model is used to inject PD pulse signal at 10 tap locations in the winding and corresponding response signatures are captured at the bushing tap end (across 1000pF. The equivalent high frequency model of the winding is derived from the design parameters using analytical calculations and simulations in packages such as MAGNET and ANSOFT. The test conditions are simulated using ORCAD-9 and the results are evaluated for location accuracy using design parameter based PD monitoring method. .

  3. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    Science.gov (United States)

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  4. Using futures methods to create transformative spaces: visions of a good Anthropocene in southern Africa

    Directory of Open Access Journals (Sweden)

    Laura M. Pereira

    2018-03-01

    Full Text Available The unique challenges posed by the Anthropocene require creative ways of engaging with the future and bringing about transformative change. Envisioning positive futures is a first step in creating a shared understanding and commitment that enables radical transformations toward sustainability in a world defined by complexity, diversity, and uncertainty. However, to create a transformative space in which truly unknowable futures can be explored, new experimental approaches are needed that go beyond merely extrapolating from the present into archetypal scenarios of the future. Here, we present a process of creative visioning where participatory methods and tools from the field of futures studies were combined in a novel way to create and facilitate a transformative space, with the aim of generating positive narrative visions for southern Africa. We convened a diverse group of participants in a workshop designed to develop radically different scenarios of good Anthropocenes, based on existing "seeds" of the future in the present. These seeds are innovative initiatives, practices, and ideas that are present in the world today, but are not currently widespread or dominant. As a result of a carefully facilitated process that encouraged a multiplicity of perspectives, creative immersion, and grappling with deeply held assumptions, four radical visions for southern Africa were produced. Although these futures are highly innovative and exploratory, they still link back to current real-world initiatives and contexts. The key learning that arose from this experience was the importance of the imagination for transformative thinking, the need to capitalize on diversity to push boundaries, and finally, the importance of creating a space that enables participants to engage with emotions, beliefs, and complexity. This method of engagement with the future has the potential to create transformative spaces that inspire and empower people to act toward positive

  5. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mano

    Full Text Available The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium. We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP. Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholinoethanesulfonic acid (MES buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max and pea (Pisum sativum. The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.

  6. 3-D spherical harmonics code FFT3 by the finite Fourier transformation method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1997-01-01

    In the odd order spherical harmonics method, the rigorous boundary condition at the material interfaces is that the even moments of the angular flux and the normal components of the even order moments of current vectors must be continuous. However, it is difficult to derive spatial discretized equations by the finite difference or finite element methods, which satisfy this material interface condition. It is shown that using the finite Fourier transformation method, space discretized equations which satisfy this interface condition can be easily derived. The discrepancies of the flux distribution near void region between spherical harmonics method codes may be due to the difference of application of the material interface condition. (author)

  7. The Telegraph Equation and Its Solution by Reduced Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Vineet K. Srivastava

    2013-01-01

    Full Text Available One-dimensional second-order hyperbolic telegraph equation was formulated using Ohm’s law and solved by a recent and reliable semianalytic method, namely, the reduced differential transform method (RDTM. Using this method, it is possible to find the exact solution or a closed approximate solution of a differential equation. Three numerical examples have been carried out in order to check the effectiveness, the accuracy, and convergence of the method. The RDTM is a powerful mathematical technique for solving wide range of problems arising in science and engineering fields.

  8. A NEW FRACTIONAL MODEL OF SINGLE DEGREE OF FREEDOM SYSTEM, BY USING GENERALIZED DIFFERENTIAL TRANSFORM METHOD

    Directory of Open Access Journals (Sweden)

    HASHEM SABERI NAJAFI

    2016-07-01

    Full Text Available Generalized differential transform method (GDTM is a powerful method to solve the fractional differential equations. In this paper, a new fractional model for systems with single degree of freedom (SDOF is presented, by using the GDTM. The advantage of this method compared with some other numerical methods has been shown. The analysis of new approximations, damping and acceleration of systems are also described. Finally, by reducing damping and analysis of the errors, in one of the fractional cases, we have shown that in addition to having a suitable solution for the displacement close to the exact one, the system enjoys acceleration once crossing the equilibrium point.

  9. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  10. Method to eliminate flux linkage DC component in load transformer for static transfer switch.

    Science.gov (United States)

    He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.

  11. Decision making with consonant belief functions: Discrepancy resulting with the probability transformation method used

    Directory of Open Access Journals (Sweden)

    Cinicioglu Esma Nur

    2014-01-01

    Full Text Available Dempster−Shafer belief function theory can address a wider class of uncertainty than the standard probability theory does, and this fact appeals the researchers in operations research society for potential application areas. However, the lack of a decision theory of belief functions gives rise to the need to use the probability transformation methods for decision making. For representation of statistical evidence, the class of consonant belief functions is used which is not closed under Dempster’s rule of combination but is closed under Walley’s rule of combination. In this research, it is shown that the outcomes obtained using both Dempster’s and Walley’s rules do result in different probability distributions when pignistic transformation is used. However, when plausibility transformation is used, they do result in the same probability distribution. This result shows that the choice of the combination rule and probability transformation method may have a significant effect on decision making since it may change the choice of the decision alternative selected. This result is illustrated via an example of missile type identification.

  12. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    International Nuclear Information System (INIS)

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-01-01

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time

  13. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hui, E-mail: corinna@seu.edu.cn [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210000 (China); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China); Tong, Dan; Dong Bao, Xu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Dillenseger, Jean-Louis [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China)

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  14. High-capacity method for hiding data in the discrete cosine transform domain

    Science.gov (United States)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  15. Introduction to orthogonal, symplectic and unitary representations of finite groups

    CERN Document Server

    Riehm, Carl R

    2011-01-01

    Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea

  16. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  17. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  18. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  19. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  20. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  1. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  2. Ab initio pair potentials for FCC metals: An application of the method of Moebius transform

    International Nuclear Information System (INIS)

    Mookerjee, A.; Chen Nanxian; Kumar, V.; Satter, M.A.

    1991-10-01

    We use the method of Moebius transform introduced by one of us (Chen, Phys. Rev. Lett. 64, 1193 (1990)) to obtain pair potentials for fcc metals from first principles total energy calculations. The derivation is exact for radial potentials and it converges much faster than the earlier reported method of Carlsson-Gelatt-Ehrenreich. We have tested this formulation for Cu using the tight binding representation of the linear muffin tin orbital method. Our results agree with those obtained by Carlsson et al. and qualitatively with the other Morse-type pair potentials derived from effective medium theories. (author). 18 refs, 3 figs, 3 tabs

  3. Numerical proceessing of radioimmunoassay results using logit-log transformation method

    International Nuclear Information System (INIS)

    Textoris, R.

    1983-01-01

    The mathematical model and algorithm are described of the numerical processing of the results of a radioimmunoassay by the logit-log transformation method and by linear regression with weight factors. The limiting value of the curve for zero concentration is optimized with regard to the residual sum by the iterative method by multiple repeats of the linear regression. Typical examples are presented of the approximation of calibration curves. The method proved suitable for all hitherto used RIA sets and is well suited for small computers with internal memory of min. 8 Kbyte. (author)

  4. Application of Classical and Lie Transform Methods to Zonal Perturbation in the Artificial Satellite

    Science.gov (United States)

    San-Juan, J. F.; San-Martin, M.; Perez, I.; Lopez-Ochoa, L. M.

    2013-08-01

    A scalable second-order analytical orbit propagator program is being carried out. This analytical orbit propagator combines modern perturbation methods, based on the canonical frame of the Lie transform, and classical perturbation methods in function of orbit types or the requirements needed for a space mission, such as catalog maintenance operations, long period evolution, and so on. As a first step on the validation of part of our orbit propagator, in this work we only consider the perturbation produced by zonal harmonic coefficients in the Earth's gravity potential, so that it is possible to analyze the behaviour of the perturbation methods involved in the corresponding analytical theories.

  5. New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology

    International Nuclear Information System (INIS)

    Khader, M. M.; Kumar, Sunil; Abbasbandy, S.

    2013-01-01

    We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential—difference equations. The proposed method is based on the Laplace transform with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained

  6. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem

    Directory of Open Access Journals (Sweden)

    Liu Chun-Feng

    2013-01-01

    Full Text Available A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.

  7. Prediction of periodically correlated processes by wavelet transform and multivariate methods with applications to climatological data

    Science.gov (United States)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2015-05-01

    This article studies the prediction of periodically correlated process using wavelet transform and multivariate methods with applications to climatological data. Periodically correlated processes can be reformulated as multivariate stationary processes. Considering this fact, two new prediction methods are proposed. In the first method, we use stepwise regression between the principal components of the multivariate stationary process and past wavelet coefficients of the process to get a prediction. In the second method, we propose its multivariate version without principal component analysis a priori. Also, we study a generalization of the prediction methods dealing with a deterministic trend using exponential smoothing. Finally, we illustrate the performance of the proposed methods on simulated and real climatological data (ozone amounts, flows of a river, solar radiation, and sea levels) compared with the multivariate autoregressive model. The proposed methods give good results as we expected.

  8. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  9. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation

    International Nuclear Information System (INIS)

    Ma Wenxiu; Lee, J.-H.

    2009-01-01

    A direct approach to exact solutions of nonlinear partial differential equations is proposed, by using rational function transformations. The new method provides a more systematical and convenient handling of the solution process of nonlinear equations, unifying the tanh-function type methods, the homogeneous balance method, the exp-function method, the mapping method, and the F-expansion type methods. Its key point is to search for rational solutions to variable-coefficient ordinary differential equations transformed from given partial differential equations. As an application, the construction problem of exact solutions to the 3+1 dimensional Jimbo-Miwa equation is treated, together with a Baecklund transformation.

  10. A Novel Medical Freehand Sketch 3D Model Retrieval Method by Dimensionality Reduction and Feature Vector Transformation

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2016-01-01

    Full Text Available To assist physicians to quickly find the required 3D model from the mass medical model, we propose a novel retrieval method, called DRFVT, which combines the characteristics of dimensionality reduction (DR and feature vector transformation (FVT method. The DR method reduces the dimensionality of feature vector; only the top M low frequency Discrete Fourier Transform coefficients are retained. The FVT method does the transformation of the original feature vector and generates a new feature vector to solve the problem of noise sensitivity. The experiment results demonstrate that the DRFVT method achieves more effective and efficient retrieval results than other proposed methods.

  11. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    Science.gov (United States)

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  12. Method of local pointed function reduction of original shape in Fourier transformation

    International Nuclear Information System (INIS)

    Dosch, H.; Slavyanov, S.Yu.

    2002-01-01

    The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images [ru

  13. Talbot's method for the numerical inversion of Laplace transforms: an implementation for personal computers

    International Nuclear Information System (INIS)

    Garratt, T.J.

    1989-05-01

    Safety assessments of radioactive waste disposal require efficient computer models for the important processes. The present paper is based on an efficient computational technique which can be used to solve a wide variety of safety assessment models. It involves the numerical inversion of analytical solutions to the Laplace-transformed differential equations using a method proposed by Talbot. This method has been implemented on a personal computer in a user-friendly manner. The steps required to implement a particular transform and run the program are outlined. Four examples are described which illustrate the flexibility, accuracy and efficiency of the program. The improvements in computational efficiency described in this paper have application to the probabilistic safety assessment codes ESCORT and MASCOT which are currently under development. Also, it is hoped that the present work will form the basis of software for personal computers which could be used to demonstrate safety assessment procedures to a wide audience. (author)

  14. A Method for Transforming Existing Web Service Descriptions into an Enhanced Semantic Web Service Framework

    Science.gov (United States)

    Du, Xiaofeng; Song, William; Munro, Malcolm

    Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.

  15. The general 2-D moments via integral transform method for acoustic radiation and scattering

    Science.gov (United States)

    Smith, Jerry R.; Mirotznik, Mark S.

    2004-05-01

    The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.

  16. A prediction method based on wavelet transform and multiple models fusion for chaotic time series

    International Nuclear Information System (INIS)

    Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha

    2017-01-01

    In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.

  17. Research on Methods of Infrared and Color Image Fusion Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Zhao Rentao

    2014-06-01

    Full Text Available There is significant difference in the imaging features of infrared image and color image, but their fusion images also have very good complementary information. In this paper, based on the characteristics of infrared image and color image, first of all, wavelet transform is applied to the luminance component of the infrared image and color image. In multi resolution the relevant regional variance is regarded as the activity measure, relevant regional variance ratio as the matching measure, and the fusion image is enhanced in the process of integration, thus getting the fused images by final synthesis module and multi-resolution inverse transform. The experimental results show that the fusion image obtained by the method proposed in this paper is better than the other methods in keeping the useful information of the original infrared image and the color information of the original color image. In addition, the fusion image has stronger adaptability and better visual effect.

  18. Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1989-01-01

    We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage

  19. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Science.gov (United States)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  20. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2009-09-07

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  1. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    Science.gov (United States)

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  2. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    International Nuclear Information System (INIS)

    Wei, H.L.; Billings, S.A.

    2009-01-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  3. Establishment of an Indirect Genetic Transformation Method for Arabidopsis thaliana ecotype Bangladesh

    Directory of Open Access Journals (Sweden)

    Bulbul AHMED

    2011-11-01

    Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.

  4. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  5. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  6. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.

    Science.gov (United States)

    Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang

    2017-01-01

    Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.

  7. A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

    Directory of Open Access Journals (Sweden)

    Karim Salahshoor

    2014-07-01

    Full Text Available This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT and extended Kalman filter (EKF. Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter for the final state estimation. The recent data are recursively utilized to apply wavelet transform and extract the variance of the updated data, which makes it suitable to be applied to both static and dynamic systems corrupted by noisy environments. The method has suitable performance in state estimation in comparison with the other alternative algorithms. A three-tank benchmark system has been adopted to comparatively demonstrate the performance merits of the method compared to a known algorithm in terms of efficiently satisfying signal-tonoise (SNR and minimum square error (MSE criteria.

  8. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.

    Science.gov (United States)

    Li, Caifeng; Zhang, Haiyan; Wang, Xiurong; Liao, Hong

    2014-11-01

    Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean. An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

  9. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  10. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  11. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    Science.gov (United States)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  12. A systematic model identification method for chemical transformation pathways – the case of heroin biomarkers in wastewater

    DEFF Research Database (Denmark)

    Ramin, Pedram; Valverde Pérez, Borja; Polesel, Fabio

    2017-01-01

    This study presents a novel statistical approach for identifying sequenced chemical transformation pathways in combination with reaction kinetics models. The proposed method relies on sound uncertainty propagation by considering parameter ranges and associated probability distribution obtained...... at any given transformation pathway levels as priors for parameter estimation at any subsequent transformation levels. The method was applied to calibrate a model predicting the transformation in untreated wastewater of six biomarkers, excreted following human metabolism of heroin and codeine. The method....... Results obtained suggest that the method developed has the potential to outperform conventional approaches in terms of prediction accuracy, transformation pathway identification and parameter identifiability. This method can be used in conjunction with optimal experimental designs to effectively identify...

  13. First unitary, then divided: the temporal dynamics of dividing attention.

    Science.gov (United States)

    Jefferies, Lisa N; Witt, Joseph B

    2018-04-24

    Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

  14. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  15. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  16. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    Science.gov (United States)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  17. A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm

    International Nuclear Information System (INIS)

    Gauss, J.; Heller, E.J.

    1991-01-01

    A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D

  18. Exact and approximate interior corner problem in neutron diffusion by integral transform methods

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.

    1976-09-01

    The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem

  19. Homotopy perturbation transform method for pricing under pure diffusion models with affine coefficients

    Directory of Open Access Journals (Sweden)

    Claude Rodrigue Bambe Moutsinga

    2018-01-01

    Full Text Available Most existing multivariate models in finance are based on diffusion models. These models typically lead to the need of solving systems of Riccati differential equations. In this paper, we introduce an efficient method for solving systems of stiff Riccati differential equations. In this technique, a combination of Laplace transform and homotopy perturbation methods is considered as an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is applied to solving stiff diffusion model problems that include interest rates models as well as two and three-factor stochastic volatility models. We show that the present approach is relatively easy, efficient and highly accurate.

  20. Laplace transform homotopy perturbation method for the approximation of variational problems.

    Science.gov (United States)

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  1. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  2. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.

  3. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  4. A coordinate transform method for one-speed neutron transport in composite slabs

    International Nuclear Information System (INIS)

    Haidar, N.H.S.

    1988-01-01

    The optical path transformation is applied to reduce the one-speed neutron transport equation for a class of composite subcritical slabs to single-region problems. The class idealises, within the uncertainty of the one-speed model, a variety of practical situations such as U-D 2 O-C-Zr-Pb or Pu-U-Na-Fe symmetric reactor assemblies; which may possibly contain a symmetrically anisotropic neutron source. A closed form double series solution, which turns out to be quite convenient for design and optimisation purposes, has been obtained, in terms of discontinuous functions for the multi-regional angular flux by application of a double finite Legendre transform. Disadvantage factor evaluations for a U-C lattice cell resulting from a low-order P 0 P 1 approximation of this method are found to be in full agreement with hybrid diffusion-transport estimates. (author)

  5. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  6. Local non-similarity method through the Crocco's transformation in boundary layer problem

    International Nuclear Information System (INIS)

    Jardim, R.G.M.

    1981-04-01

    The coordinate transformation developed by L. Crocco to obtain the solution of the compressible fluid flows over isotermal flat plates is originally employed in the present work, with the purpose of adding its inherent advantage to the Non-Similarity Method idealized by E.M. Sparrow, in the solution of the incompressible non-similar boundary layers. The Crocco's transformation is applied to the conservation equation for forced convection, laminar, constant properties and two-dimensional flows over solids. Two non-similar problems arisen from freestream velocity distribution, the cylinder in crossflow and the Howarth's retarded flow, are solved with a view to illustrating the new procedure. In those solutions the effect of frictional heat is also considered. The results of hydrodynamic and thermal problems are compared with available published information and good agreement was observed. (Author) [pt

  7. [A method for genetic transformation of maize for resistance to viral diseases].

    Science.gov (United States)

    Valdez, Marta; Madriz, Kenneth; Ramírez, Pilar

    2004-09-01

    A system for the genetic transformation of maize was developed for two Costa Rican varieties: CR-7 and Diamantes 8843, that can allow the subsequent transfer of viral-derived genes in order to confer resistance to the disease caused by maize rayado fino virus (MRFV). The method is based on particle bombardment of organogenic calli derived from shoot tips. On the other hand, the molecular construction pRFcp-bar, containing the coat protein gene of MRFV and the marker gene bar, was elaborated. For the visual selection of the transformed material was used also the plasmid pDM803 that contains the reporter gene uidA (GUS). The results indicate that devices evaluated: the PIG ("Particle Inflow Gun") and the Bio-Rad are both enough efficient to transfer foreign genes to the genome of the maize.

  8. Wavelet transform and real-time learning method for myoelectric signal in motion discrimination

    International Nuclear Information System (INIS)

    Liu Haihua; Chen Xinhao; Chen Yaguang

    2005-01-01

    This paper discusses the applicability of the Wavelet transform for analyzing an EMG signal and discriminating motion classes. In many previous works, researchers have dealt with steady EMG and have proposed suitable analyzing methods for the EMG, for example FFT and STFT. Therefore, it is difficult for the previous approaches to discriminate motions from the EMG in the different phases of muscle activity, i.e., pre-activity, in activity, postactivity phases, as well as the period of motion transition from one to another. In this paper, we introduce the Wavelet transform using the Coiflet mother wavelet into our real-time EMG prosthetic hand controller for discriminating motions from steady and unsteady EMG. A preliminary experiment to discriminate three hand motions from four channel EMG in the initial pre-activity and in activity phase is carried out to show the effectiveness of the approach. However, future research efforts are necessary to discriminate more motions much precisely

  9. A novel method for computation of the discrete Fourier transform over characteristic two finite field of even extension degree

    OpenAIRE

    Fedorenko, Sergei V.

    2011-01-01

    A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.

  10. Connecting the dots and merging meaning: using mixed methods to study primary care delivery transformation.

    Science.gov (United States)

    Scammon, Debra L; Tomoaia-Cotisel, Andrada; Day, Rachel L; Day, Julie; Kim, Jaewhan; Waitzman, Norman J; Farrell, Timothy W; Magill, Michael K

    2013-12-01

    To demonstrate the value of mixed methods in the study of practice transformation and illustrate procedures for connecting methods and for merging findings to enhance the meaning derived. An integrated network of university-owned, primary care practices at the University of Utah (Community Clinics or CCs). CC has adopted Care by Design, its version of the Patient Centered Medical Home. Convergent case study mixed methods design. Analysis of archival documents, internal operational reports, in-clinic observations, chart audits, surveys, semistructured interviews, focus groups, Centers for Medicare and Medicaid Services database, and the Utah All Payer Claims Database. Each data source enriched our understanding of the change process and understanding of reasons that certain changes were more difficult than others both in general and for particular clinics. Mixed methods enabled generation and testing of hypotheses about change and led to a comprehensive understanding of practice change. Mixed methods are useful in studying practice transformation. Challenges exist but can be overcome with careful planning and persistence. © Health Research and Educational Trust.

  11. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  12. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    Science.gov (United States)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  13. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  14. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    Science.gov (United States)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  15. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    International Nuclear Information System (INIS)

    Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-01-01

    In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  16. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    International Nuclear Information System (INIS)

    Fink, Reinhold F.

    2009-01-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH 2 , SiH 2 , and NH 2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster

  17. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  18. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  19. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    Science.gov (United States)

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  20. SUPERPIXEL BASED FACTOR ANALYSIS AND TARGET TRANSFORMATION METHOD FOR MARTIAN MINERALS DETECTION

    Directory of Open Access Journals (Sweden)

    X. Wu

    2018-04-01

    Full Text Available The Factor analysis and target transformation (FATT is an effective method to test for the presence of particular mineral on Martian surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES and near-infrared (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC algorithm was used to partition the CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our experimental results indicate that the proposed method work well both in simulated and real data sets.

  1. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  2. AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L.

    Science.gov (United States)

    Tsuboyama, Shoko; Kodama, Yutaka

    2014-01-01

    The liverwort Marchantia polymorpha L. is being developed as an emerging model plant, and several transformation techniques were recently reported. Examples are biolistic- and Agrobacterium-mediated transformation methods. Here, we report a simplified method for Agrobacterium-mediated transformation of sporelings, and it is termed Agar-utilized Transformation with Pouring Solutions (AgarTrap). The procedure of the AgarTrap was carried out by simply exchanging appropriate solutions in a Petri dish, and completed within a week, successfully yielding sufficient numbers of independent transformants for molecular analysis (e.g. characterization of gene/protein function) in a single experiment. The AgarTrap method will promote future molecular biological study in M. polymorpha.

  3. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    Science.gov (United States)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  4. Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation

    International Nuclear Information System (INIS)

    Liu, C-M; Chen, L-W; Wang, C-C

    2006-01-01

    A digital nano-moire method with wavelet transformation is explored to measure nanoscale in-plane displacement fields. By applying e-beam lithography, a periodic PMMA nanostructure array is fabricated directly on the specimen and used as the specimen grating. Moire patterns are generated by overlapping the images of the PMMA specimen grating obtained from AFM scanning and the virtual reference grating produced by a digital image generating process. Then, the overlapped images are filtered by the 2D wavelet transformation (WT) to capture the target moire patterns. Existing methods, by overlapping the monitor-generated scanning lines with the image of the specimen grating, cause a mismatch problem. Previously, the carrier moire method was explored with the aim of curing the mismatch problem. Unfortunately, the carrier moire method, in addition to suffering from increased complexity of mathematical calculations, is incapable of directly obtaining the displacement field. Thus, the mismatch problem will result in inconveniences and restrictions in the practical application. Instead of using monitor-generated scanning lines, the proposed method applies the virtual reference grating, and thus puts the mismatch problem to rest. Nevertheless, the resultant moire image suffers from low contrast which, if left untreated, might distort the measurement result. Therefore, the WT, known for its sharpened abilities of characteristic and edge detection, is used to capture the target moire patterns and improve the measurement accuracy. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for nanoscale displacement measurement

  5. An Informal Overview of the Unitary Group Approach

    International Nuclear Information System (INIS)

    Sonnad, V.; Escher, J.; Kruse, M.; Baker, R.

    2016-01-01

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  6. The SNARC effect is not a unitary phenomenon.

    Science.gov (United States)

    Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone

    2018-04-01

    Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

  7. Construction of unitary matrices from observable transition probabilities

    International Nuclear Information System (INIS)

    Peres, A.

    1989-01-01

    An ideal measuring apparatus defines an orthonormal basis vertical strokeu m ) in Hilbert space. Another apparatus defines another basis vertical strokeυ μ ). Both apparatuses together allow to measure the transition probabilities P mμ =vertical stroke(u m vertical strokeυ μ )vertical stroke 2 . The problem is: Given all the elements of a doubly stochastic matrix P mμ , find a unitary matrix U mμ such that P mμ =vertical strokeU mμ vertical stroke 2 . The number of unknown nontrivial phases is equal to the number of independent equations to satisfy. The problem can therefore be solved provided that the values of the P mμ satisfy some inequalities. (orig.)

  8. The Science of Unitary Human Beings in a Creative Perspective.

    Science.gov (United States)

    Caratao-Mojica, Rhea

    2015-10-01

    In moving into a new kind of world, nurses are encouraged to look ahead and be innovative by transcending to new ways of using nursing knowledge while embracing a new worldview. "We need to recognize that we're going to have to use our imagination more and more" (Rogers, 1994). On that note, the author in this paper explicates Rogers' science of unitary human beings in a creative way relating it to painting. In addition, the author also explores works derived from Rogers' science such as Butcher's (1993) and Cowling's (1997), which are here discussed in light of an artwork. A painting is presented with the unpredictability, creativity, and the "dance of color and light" (Butcher, 1993) is appreciated through comprehending essence, pandimensionality, and wholeness. © The Author(s) 2015.

  9. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    Science.gov (United States)

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  10. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  11. Territory in the Constitutional Standards of Unitary States

    Directory of Open Access Journals (Sweden)

    Marina V. Markhgeym

    2017-06-01

    Full Text Available The article is based on the analysis of the constitutions of seven European countries (Albania, Hungary, Greece, Spain, Malta, Poland, Sweden. The research allows to reveal general and specific approaches to consolidation of norms on territories in a state and give the characteristic of the corresponding constitutional norms. Given the authors ' comprehensive approach to the definition of the territory of the state declared constitutional norms were assessed from the perspective of the fundamental principles and constituent elements of the territory. Considering the specifics of the constitutional types of state territories authors suggest typical and variative models and determine the constitutions of unitary states, distinguished by their originality in the declared group of legal relations. The original constitutional language areas associated with the introduction at the state level, these types of areas that are not typical for other countries.

  12. Quantization of the Lee static model by the Bogolyubov transformation method

    International Nuclear Information System (INIS)

    Bornyakov, V.G.

    1984-01-01

    The Lee static strong-coupling model is studied. The model permits to find an exact solution for the state vector of the system and for the scattering matrix in the first permanent order of expansion in the inverse value of the coupling constant. The Bogolyubov method has been applied to quantize the Lee model with a hamiltonian, provided a high classical constituent of a boson field exists. Ground state of the system and scattering matrix from the obtained bound state are found. The way to avoid additional zero modes arising at Bogolyubov transformation for creation and annihilation operators is shown

  13. Electromagnetic reactions of few-body systems with the Lorentz integral transform method

    International Nuclear Information System (INIS)

    Leidemann, W.

    2007-01-01

    Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three-nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the 4 He photodisintegration are studied: investigation of a tetrahedrical symmetry of 4 He and a test of non-local nuclear force models via the induced two-body currents

  14. An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers

    OpenAIRE

    Ahmet Y. Arabul; Ibrahim Senol; Fatma Keskin Arabul; Mustafa G. Aydeniz; Yasemin Oner; Gokhan Kalkan

    2016-01-01

    In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which ar...

  15. Transform methods for precision continuum and control models of flexible space structures

    Science.gov (United States)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  16. Nested sparse grid collocation method with delay and transformation for subsurface flow and transport problems

    Science.gov (United States)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-06-01

    In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.

  17. A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws

    Energy Technology Data Exchange (ETDEWEB)

    Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com [Universidade Federal de São Paulo, Depto. Ciências Exatas e da Terra, Rua Prof. Arthur Riedel, 275, Jd. Eldorado, CEP 09972-270 Diadema, SP (Brazil)

    2014-12-10

    Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In this work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).

  18. Seismic data two-step recovery approach combining sparsity-promoting and hyperbolic Radon transform methods

    International Nuclear Information System (INIS)

    Wang, Hanchuang; Chen, Shengchang; Ren, Haoran; Liang, Donghui; Zhou, Huamin; She, Deping

    2015-01-01

    In current research of seismic data recovery problems, the sparsity-promoting method usually produces an insufficient recovery result at the locations of null traces. The HRT (hyperbolic Radon transform) method can be applied to problems of seismic data recovery with approximately hyperbolic events. Influenced by deviations of hyperbolic characteristics between real and ideal travel-time curves, some spurious events are usually introduced and the recovery effect of intermediate and far-offset traces is worse than that of near-offset traces. Sparsity-promoting recovery is primarily dependent on the sparsity of seismic data in the sparse transform domain (i.e. on the local waveform characteristics), whereas HRT recovery is severely affected by the global characteristics of the seismic events. Inspired by the above conclusion, a two-step recovery approach combining sparsity-promoting and time-invariant HRT methods is proposed, which is based on both local and global characteristics of the seismic data. Two implementation strategies are presented in detail, and the selection criteria of the relevant strategies is also discussed. Numerical examples of synthetic and real data verify that the new approach can achieve a better recovery effect by simultaneously overcoming the shortcomings of sparsity-promoting recovery and HRT recovery. (paper)

  19. Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-11-01

    Full Text Available Reflectance Transformation Imaging (RTI is increasingly being used for art documentation and analysis and it can be successful also for the examination of features on the order of hundreds of microns. This paper evaluates some macro scale photography methods specifically for RTI employing the Highlights method for documenting sub-millimeter details. This RTI technique consists in including one reflective sphere in the scene photographed so that the processing software can calculate for each photo the direction of the light source from its reflection on the sphere. RTI documentation can be performed also with an RTI dome, but the Highlights method is preferred because is more mobile and more affordable. This technique is demonstrated in the documentation of some prints ranging from the XV to the XX century from to the Ingels collection in Sweden. The images are here examined and discussed, showing the application of macro RTI for identifying features of prints.

  20. Suppressing carrier removal error in the Fourier transform method for interferogram analysis

    International Nuclear Information System (INIS)

    Fan, Qi; Yang, Hongru; Li, Gaoping; Zhao, Jianlin

    2010-01-01

    A new carrier removal method for interferogram analysis using the Fourier transform is presented. The proposed method can be used to suppress the carrier removal error as well as the spectral leakage error. First, the carrier frequencies are estimated with the spectral centroid of the up sidelobe of the apodized interferogram, and then the up sidelobe can be shifted to the origin in the frequency domain by multiplying the original interferogram by a constructed plane reference wave. The influence of the carrier frequencies without an integer multiple of the frequency interval and the window function for apodization of the interferogram can be avoided in our work. The simulation and experimental results show that this method is effective for phase measurement with a high accuracy from a single interferogram

  1. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    Science.gov (United States)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  2. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  3. Improved sensitivity testing of explosives using transformed Up-Down methods

    International Nuclear Information System (INIS)

    Brown, Geoffrey W

    2014-01-01

    Sensitivity tests provide data that help establish guidelines for the safe handling of explosives. Any sensitivity test is based on assumptions to simplify the method or reduce the number of individual sample evaluations. Two common assumptions that are not typically checked after testing are 1) explosive response follows a normal distribution as a function of the applied stimulus levels and 2) the chosen test level spacing is close to the standard deviation of the explosive response function (for Bruceton Up-Down testing for example). These assumptions and other limitations of traditional explosive sensitivity testing can be addressed using Transformed Up-Down (TUD) test methods. TUD methods have been developed extensively for psychometric testing over the past 50 years and generally use multiple tests at a given level to determine how to adjust the applied stimulus. In the context of explosive sensitivity we can use TUD methods that concentrate testing around useful probability levels. Here, these methods are explained and compared to Bruceton Up-Down testing using computer simulation. The results show that the TUD methods are more useful for many cases but that they do require more tests as a consequence. For non-normal distributions, however, the TUD methods may be the only accurate assessment method.

  4. Method for the determination of Clebsch-Gordan coefficients of finite magnetic groups

    NARCIS (Netherlands)

    van den Broek, P.M.; Horowitz, L.P.; Ne'eman, Y.

    1980-01-01

    A recent method for the determination of Clebsch-Gordan coefficients of finite magnetic groups is generalised to magnetic groups. Discussion is restricted to unitary-anti-unitary representations of type I.

  5. A New Green Method for the Quantitative Analysis of Enrofloxacin by Fourier-Transform Infrared Spectroscopy.

    Science.gov (United States)

    Rebouças, Camila Tavares; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-05-18

    Background: A green analytical chemistry method was developed for quantification of enrofloxacin in tablets. The drug, a second-generation fluoroquinolone, was first introduced in veterinary medicine for the treatment of various bacterial species. Objective: This study proposed to develop, validate, and apply a reliable, low-cost, fast, and simple IR spectroscopy method for quantitative routine determination of enrofloxacin in tablets. Methods: The method was completely validated according to the International Conference on Harmonisation guidelines, showing accuracy, precision, selectivity, robustness, and linearity. Results: It was linear over the concentration range of 1.0-3.0 mg with correlation coefficients >0.9999 and LOD and LOQ of 0.12 and 0.36 mg, respectively. Conclusions: Now that this IR method has met performance qualifications, it can be adopted and applied for the analysis of enrofloxacin tablets for production process control. The validated method can also be utilized to quantify enrofloxacin in tablets and thus is an environmentally friendly alternative for the routine analysis of enrofloxacin in quality control. Highlights: A new green method for the quantitative analysis of enrofloxacin by Fourier-Transform Infrared spectroscopy was validated. It is a fast, clean and low-cost alternative for the evaluation of enrofloxacin tablets.

  6. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    Science.gov (United States)

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise

  7. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  8. Proposed Suitable Methods to Detect Transient Regime Switching to Improve Power Quality with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Javad Safaee Kuchaksaraee

    2016-10-01

    Full Text Available The increasing consumption of electrical energy and the use of non-linear loads that create transient regime states in distribution networks is increasing day by day. This is the only reason due to which the analysis of power quality for energy sustainability in power networks has become more important. Transients are often created by energy injection through switching or lightning and make changes in voltage and nominal current. Sudden increase or decrease in voltage or current makes characteristics of the transient regime. This paper shed some lights on the capacitor bank switching, which is one of the main causes for oscillatory transient regime states in the distribution network, using wavelet transform. The identification of the switching current of capacitor bank and the internal fault current of the transformer to prevent the unnecessary outage of the differential relay, it propose a new smart method. The accurate performance of this method is shown by simulation in EMTP and MATLAB (matrix laboratory software.

  9. A Hilbert transform method for parameter identification of time-varying structures with observer techniques

    International Nuclear Information System (INIS)

    Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da

    2012-01-01

    This paper presents a recursive Hilbert transform method for the time-varying property identification of large-scale shear-type buildings with limited sensor deployments. An observer technique is introduced to estimate the building responses from limited available measurements. For an n-story shear-type building with l measurements (l ≤ n), the responses of other stories without measurements can be estimated based on the first r mode shapes (r ≤ l) as-built conditions and l measurements. Both the measured responses and evaluated responses and their Hilbert transforms are then used to track any variation of structural parameters of a multi-story building over time. Given floor masses, both the stiffness and damping coefficients of the building are identified one-by-one from the top to the bottom story. When variations of parameters are detected, a new developed branch-and-bound technique can be used to update the first r mode shapes with the identified parameters. A 60-story shear building with abruptly varying stiffness at different floors is simulated as an example. The numerical results indicate that the proposed method can detect variations of the parameters of large-scale shear-type buildings with limited sensor deployments at appropriate locations. (paper)

  10. Laplace transform series expansion method for solving the local fractional heat-transfer equation defined on Cantor sets

    Directory of Open Access Journals (Sweden)

    Sun Huan

    2016-01-01

    Full Text Available In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.

  11. The calculation of site-dependent earthquake motions -3. The method of fast fourier transform

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-10-01

    The method of Fast Fourier transform (FFT) is applied to the problem of the determination of site-dependent earthquake motions, which takes account of local geological effects. A program, VELAY 1, which uses the FFT method has been written and is described in this report. The assumptions of horizontally stratified, homogeneous, isotropic, linearly viscoelastic layers and a normally incident plane seismic wave are made. Several examples are given, using VELAY 1, of modified surface acceleration-time histories obtained using a selected input acceleration-time history and a representative system of soil layers. There is a discussion concerning the soil properties that need to be measured in order to use VELAY 1 (and similar programs described in previous reports) and hence generate site-dependent ground motions suitable for aseismic design of a nuclear power plant at a given site. (author)

  12. Semiclassical quantization of vibrational systems using fast-Fourier transform methods: Application to HDO stretches

    International Nuclear Information System (INIS)

    Pickett, T.J.; Shirts, R.B.

    1991-01-01

    Based on work by Martens and Ezra and partially developed independently by Eaker, we apply an improved method of approximating the quantum energy levels of a system of coupled oscillators using the fast-Fourier transform of classical coordinates and momenta to find quantizing trajectories. Application is made to a two-dimensional system modeling the stretching motions of the HDO molecule. The results are in excellent agreement with quantum calculations. This method is useful because: (1) it gives results which are independent of any separability of the Hamiltonian, (2) it is not limited in the number of degrees of freedom that can be handled, and (3) no zero-order approximation to the system is necessary. Results are equally valid inside and outside of resonance zones

  13. Accuracy improvement of the laplace transformation method for determination of the bremsstrahlung spectra in clinical accelerators

    International Nuclear Information System (INIS)

    Scheithauer, M.; Schwedas, M.; Wiezorek, T.; Wendt, T.

    2003-01-01

    The present study focused on the reconstruction of the bremsstrahlung spectrum of a clinical linear accelerator from the measured transmission curve, with the aim of improving the accuracy of this method. The essence of the method was the analytic inverse Laplace transform of a parameter function fitted to the measured transmission curve. We tested known fitting functions, however they resulted in considerable fitting inaccuracy, leading to inaccuracies of the bremsstrahlung spectrum. In order to minimise the fitting errors, we employed a linear combination of n equations with 2n-1 parameters. The fitting errors are now considerably smaller. The measurement of the transmission function requires that the energy-dependent detector response is taken into account. We analysed the underlying physical context and developed a function that corrects for the energy-dependent detector response. The factors of this function were experimentally determined or calculated from tabulated values. (orig.) [de

  14. The Coordinate Transformations Method Combined with AutoLisp to the Archimedean Spiral Representation in Autocad

    Directory of Open Access Journals (Sweden)

    Sorin Cristian ALBU

    2015-12-01

    Full Text Available The purpose of this paper is to make the geometric model to the Archimedean spiral, curve often used in practice. Although it is a widely used, in AutoCAD there is no command with which to represent the Archimedean spiral. The method used for determining the mathematical relationships that define the spiral is the coordinate transformation, and for the calculation of the points which define it, is use AutoLISP, representation being made in AutoCAD. The result of this work is to develop an AutoLISP program which can represent the Archimedean spiral, presented a method that can be applied to the representation of any curves used in the technique.

  15. A two-step Hilbert transform method for 2D image reconstruction

    International Nuclear Information System (INIS)

    Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D

    2004-01-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained

  16. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  17. Parallelizing the spectral transform method: A comparison of alternative parallel algorithms

    International Nuclear Information System (INIS)

    Foster, I.; Worley, P.H.

    1993-01-01

    The spectral transform method is a standard numerical technique for solving partial differential equations on the sphere and is widely used in global climate modeling. In this paper, we outline different approaches to parallelizing the method and describe experiments that we are conducting to evaluate the efficiency of these approaches on parallel computers. The experiments are conducted using a testbed code that solves the nonlinear shallow water equations on a sphere, but are designed to permit evaluation in the context of a global model. They allow us to evaluate the relative merits of the approaches as a function of problem size and number of processors. The results of this study are guiding ongoing work on PCCM2, a parallel implementation of the Community Climate Model developed at the National Center for Atmospheric Research

  18. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform

    Science.gov (United States)

    Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-06-01

    Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.

  19. W-transform method for feature-oriented multiresolution image retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, M.K.; Lin, B. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    Image database management is important in the development of multimedia technology. Since an enormous amount of digital images is likely to be generated within the next few decades in order to integrate computers, television, VCR, cables, telephone and various imaging devices. Effective image indexing and retrieval systems are urgently needed so that images can be easily organized, searched, transmitted, and presented. Here, the authors present a local-feature-oriented image indexing and retrieval method based on Kwong, and Tang`s W-transform. Multiresolution histogram comparison is an effective method for content-based image indexing and retrieval. However, most recent approaches perform multiresolution analysis for whole images but do not exploit the local features present in the images. Since W-transform is featured by its ability to handle images of arbitrary size, with no periodicity assumptions, it provides a natural tool for analyzing local image features and building indexing systems based on such features. In this approach, the histograms of the local features of images are used in the indexing, system. The system not only can retrieve images that are similar or identical to the query images but also can retrieve images that contain features specified in the query images, even if the retrieved images as a whole might be very different from the query images. The local-feature-oriented method also provides a speed advantage over the global multiresolution histogram comparison method. The feature-oriented approach is expected to be applicable in managing large-scale image systems such as video databases and medical image databases.

  20. Fourier transform methods for calculating action variables and semiclassical eigenvalues for coupled oscillator systems

    International Nuclear Information System (INIS)

    Eaker, C.W.; Schatz, G.C.; De Leon, N.; Heller, E.J.

    1984-01-01

    Two methods for calculating the good action variables and semiclassical eigenvalues for coupled oscillator systems are presented, both of which relate the actions to the coefficients appearing in the Fourier representation of the normal coordinates and momenta. The two methods differ in that one is based on the exact expression for the actions together with the EBK semiclassical quantization condition while the other is derived from the Sorbie--Handy (SH) approximation to the actions. However, they are also very similar in that the actions in both methods are related to the same set of Fourier coefficients and both require determining the perturbed frequencies in calculating actions. These frequencies are also determined from the Fourier representations, which means that the actions in both methods are determined from information entirely contained in the Fourier expansion of the coordinates and momenta. We show how these expansions can very conveniently be obtained from fast Fourier transform (FFT) methods and that numerical filtering methods can be used to remove spurious Fourier components associated with the finite trajectory integration duration. In the case of the SH based method, we find that the use of filtering enables us to relax the usual periodicity requirement on the calculated trajectory. Application to two standard Henon--Heiles models is considered and both are shown to give semiclassical eigenvalues in good agreement with previous calculations for nondegenerate and 1:1 resonant systems. In comparing the two methods, we find that although the exact method is quite general in its ability to be used for systems exhibiting complex resonant behavior, it converges more slowly with increasing trajectory integration duration and is more sensitive to the algorithm for choosing perturbed frequencies than the SH based method

  1. Local unitary versus local Clifford equivalence of stabilizer and graph states

    International Nuclear Information System (INIS)

    Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.

    2007-01-01

    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates

  2. Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pourreza

    2009-03-01

    Full Text Available Introduction: Diabetic retinopathy (DR is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA in color fundus images, which plays a key role in computer-assisted early diagnosis of diabetic retinopathy. Materials and Methods: The algorithm can be divided into three main steps. The purpose of the first step or pre-processing is background normalization and contrast enhancement of the images. The second step aims to detect candidates, i.e., all patterns possibly corresponding to MA, which is achieved using a local radon transform, Then, features are extracted, which are used in the last step to automatically classify the candidates into real MA or other objects using the SVM method. A database of 100 annotated images was used to test the algorithm. The algorithm was compared to manually obtained gradings of these images. Results: The sensitivity of diagnosis for DR was 100%, with specificity of 90% and the sensitivity of precise MA localization was 97%, at an average number of 5 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using the local radon transform in this algorithm eliminates the noise sensitivity for MA detection in retinal image analysis.

  3. Verification and Validation of a Coordinate Transformation Method in Axisymmetric Transient Magnetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ashcraft, C. Chace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Niederhaus, John Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, Allen C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-29

    We present a verification and validation analysis of a coordinate-transformation-based numerical solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and Simkin, yields an equation set perfectly suited for linear finite elements and for problems with large jumps in material conductivity near the axis. The verification analysis examines transient magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an approximate analytic solution using perturbation theory. This approach for generating a reference solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact solution is then used to demonstrate second-order convergence under spatial refinement and tem- poral refinement. For this new implementation, a significant improvement relative to previously available formulations is observed. Benefits in accuracy for computed current density and Joule heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests. The new implementation matches the accuracy of the existing formulation, with both formulations capturing the experimental burst time and action to within approximately 2%.

  4. Transformation method for the MIRD absorbed fractions as applied to various physiques

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi

    1978-01-01

    This study concerns with the transformation method of the MIRD absorbed fraction (AF) to the AF corresponding to an individual having the dimensions different from those of the MIRD standard man. The absorbed dose of a target organ T from a source organs S, received by the administration of a radiopharmaceutical agent is expressed with the equilibrium absorbed dose constant, the cumulative activity in the S, and the specific absorbed fraction (SAF). It is dealt only with how the MIRD SAF data can be modified for estimating individual SAF values. The SAF for individuals is given for penetrating and non-penetrating radiations. In case of the penetrating radiation, the SAF is given from the corresponding MIRD SAF by using a transformation coefficient for the MIRD SAF, when the MIRD standard man is transfigured to a corresponding phantom of an individual by the scale factors selected separately for the head section, trunk section and leg section of the MIRD standard man. The obtained results were compared with the ORNL results, and showed good agreement. (Kato, T.)

  5. An AC Resistance Optimization Method Applicable for Inductor and Transformer Windings with Full Layers and Partial Layers

    DEFF Research Database (Denmark)

    Shen, Zhan; Li, Zhiguang; Jin, Long

    2017-01-01

    This paper proposes an ac resistance optimization method applicable for both inductor and transformer windings with full layers and partial layers. The proposed method treats the number of layers of the windings as a design variable instead of as a predefined parameter, compared to existing methods...

  6. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    International Nuclear Information System (INIS)

    Borges, Lucas R.; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C.; Bakic, Predrag R.; Maidment, Andrew D. A.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  7. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C. [Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590 (Brazil); Bakic, Predrag R.; Maidment, Andrew D. A. [Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104 (United States)

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  8. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  9. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    Science.gov (United States)

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  10. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  11. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  12. A unitary model of the black hole evaporation

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  13. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  14. Conditional mutual information of bipartite unitaries and scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dawei; Hayden, Patrick; Walter, Michael [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-12-28

    One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Rényi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.

  15. Method of using of the Box-Cox transformation at the application of the xbar and s chart

    Directory of Open Access Journals (Sweden)

    Eftimie Nicolae

    2017-01-01

    Full Text Available The application of the most statistical process control techniques is based on the assumption that the distribution of the measurements is normal. However, there are many situations in practice when the process data distribution is not normal. In certain cases, the Box-Cox transformation can be used for converting the process data distribution into a normal distribution. Considering these aspects, the paper presents a method of application for the xbar and s chart that can be used in the case when the measurements distribution is not normal. The proposed method consists of the following stages: the testing of normality of the process data, the application of the Box-Cox transformation and the testing of normality of the transformed data. In the case when the distribution of the transformed data is normal, they are used at the application of the xbar and s control chart.

  16. Unitary embedding for data hiding with the SVD

    Science.gov (United States)

    Bergman, Clifford; Davidson, Jennifer

    2005-03-01

    Steganography is the study of data hiding for the purpose of covert communication. A secret message is inserted into a cover file so that the very existence of the message is not apparent. Most current steganography algorithms insert data in the spatial or transform domains; common transforms include the discrete cosine transform, the discrete Fourier transform, and discrete wavelet transform. In this paper, we present a data-hiding algorithm that exploits a decomposition representation of the data instead of a frequency-based transformation of the data. The decomposition transform used is the singular value decomposition (SVD). The SVD of a matrix A is a decomposition A= USV' in which S is a nonnegative diagonal matrix and U and V are orthogonal matrices. We show how to use the orthogonal matrices in the SVD as a vessel in which to embed information. Several challenges were presented in order to accomplish this, and we give effective information-hiding using the SVD can be just as effective as using transform-based techniques. Furthermore, different problems arise when using the SVD than using a transform-based technique. We have applied the SVD to image data, but the technique can be formulated for other data types such as audio and video.

  17. A stochastic Galerkin method for the Euler equations with Roe variable transformation

    KAUST Repository

    Pettersson, Per; Iaccarino, Gianluca; Nordströ m, Jan

    2014-01-01

    The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.In previous formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables, resulting in an unambiguous problem formulation.The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. For certain stochastic basis functions, the proposed method can be made more effective and well-conditioned. This leads to increased robustness for both choices of variables. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy. © 2013 Elsevier Inc.

  18. A combined compensation method for the output voltage of an insulated core transformer power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  19. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  20. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    International Nuclear Information System (INIS)

    Akibue, Seiseki; Murao, Mio

    2014-01-01

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder

  1. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    Science.gov (United States)

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  2. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    Science.gov (United States)

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  3. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    International Nuclear Information System (INIS)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M.

    2014-01-01

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  4. A NOVEL WRAPPING CURVELET TRANSFORMATION BASED ANGULAR TEXTURE PATTERN (WCTATP EXTRACTION METHOD FOR WEED IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    D. Ashok Kumar

    2016-02-01

    Full Text Available Apparently weed is a major menace in crop production as it competes with crop for nutrients, moisture, space and light which resulting in poor growth and development of the crop and finally yield. Yield loss accounts for even more than 70% when crops are frown under unweeded condition with severe weed infestation. Weed management is the most significant process in the agricultural applications to improve the crop productivity rate and reduce the herbicide application cost. Existing weed detection techniques does not yield better performance due to the complex background, illumination variation and crop and weed overlapping in the agricultural field image. Hence, there arises a need for the development of effective weed identification technique. To overcome this drawback, this paper proposes a novel Wrapping Curvelet Transformation Based Angular Texture Pattern Extraction Method (WCTATP for weed identification. In our proposed work, Global Histogram Equalization (GHE is used improve the quality of the image and Adaptive Median Filter (AMF is used for filtering the impulse noise from the image. Plant image identification is performed using green pixel extraction and k-means clustering. Wrapping Curvelet transform is applied to the plant image. Feature extraction is performed to extract the angular texture pattern of the plant image. Particle Swarm Optimization (PSO based Differential Evolution Feature Selection (DEFS approach is applied to select the optimal features. Then, the selected features are learned and passed through an RVM based classifier to find out the weed. Edge detection and contouring is performed to identify the weed in the plant image. The Fuzzy rule-based approach is applied to detect the low, medium and high levels of the weed patchiness. From the experimental results, it is clearly observed that the accuracy of the proposed approach is higher than the existing Support Vector Machine (SVM based approaches. The proposed approach

  5. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  6. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  7. On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices

    Science.gov (United States)

    Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.

    2008-02-01

    Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).

  8. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team.

    Science.gov (United States)

    Sala, Roberto; Malacarne, Mara; Tosi, Fabio; Benzi, Manuela; Solaro, Nadia; Tamorri, Stefano; Spataro, Antonio; Pagani, Massimo; Lucini, Daniela

    2017-12-01

    Long term endurance training, as occurring in elite athletes, is associated to cardiac neural remodeling in favor of cardioprotective vagal mechanisms, resulting in resting bradycardia and augmented contribution of cardiac parasympathetic nerve activity. Autonomic assessment can be performed by way of heart rate variability. This technique however provides multiple indices, and there is not yet complete agreement on their specific significance. Purpose of the study was to assess whether a rank transformation and radar plot could provide a unitary autonomic index, capable to show a correlation between intensity of individual work and quality of autonomic regulation. We studied 711 (23.6±6.2 years) elite athletes that took part in the selection procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee (CONI). Indices from Heart Rate Variability HRV obtained at rest, during standing up and during recovery from an exercise test were used to compute a percent ranked unitary autonomic index for sport (ANSIs), taken as proxy of quality of autonomic regulation. Within the observed wide range of energy expenditure, the unitary autonomic index ANSIs appears significantly correlated to individual and discipline specific training workloads (r=0.25, P<0.001 and r=0.78, P<0.001, respectively), correcting for possible age and gender bias. ANSIs also positively correlates to lipid profile. Estimated intensity of physical activity correlates with quality of cardiac autonomic regulation, as expressed by a novel unitary index of cardiac autonomic regulation. ANSIs could provide a novel and convenient approach to individual autonomic evaluation in athletes.

  9. Positive-definite functions and unitary representations of locally compact groups in a Hilbert space

    International Nuclear Information System (INIS)

    Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.

    1977-08-01

    It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology

  10. A quasiparticle-based multi-reference coupled-cluster method.

    Science.gov (United States)

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  11. Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method

    Directory of Open Access Journals (Sweden)

    A Bakhshipour Ziaratgahi

    2017-05-01

    Full Text Available Introduction Sugar beet (Beta vulgaris L. as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques. Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT. Materials and Methods Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing. Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images. A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four

  12. Optimization of PET-MR Registrations for Nonhuman Primates Using Mutual Information Measures: A Multi-Transform Method (MTM)

    Science.gov (United States)

    Sandiego, Christine M.; Weinzimmer, David; Carson, Richard E.

    2012-01-01

    An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies. PMID:22926293

  13. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    International Nuclear Information System (INIS)

    Pan, X.; Metz, C.E.

    1995-01-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction

  14. An improved method for determining the continuous cooling transformation diagram of C-Mn steels

    Energy Technology Data Exchange (ETDEWEB)

    Mesplont, C.; Cooman, B.C. de [Ghent Univ. (Belgium). Lab. for Iron and Steelmaking; Zhao, J.Z.; Vandeputte, S. [Ocas, Zelzate (Belgium)

    2001-07-01

    Dilatometry is often used to study the decomposition of austenite in steels, but the analysis of dilatometric data is often limited to the determination of transformation temperatures. The well-known lever rule is not applicable when more than one phase transformation occurs. A model accounting for the carbon partitioning effects was developed to extract the phase transformation kinetics of a C-Mn steel cooled using a wide range of cooling rates. The model is shown to be suitable to analyze the phase transformations in C-Mn steels and it can be used to obtain a detailed CCT diagram for those steels. (orig.)

  15. Methods of Weyl representation of the phase space and canonical transformations. 1

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1984-01-01

    The kernel structure of canonical transformation and differential equation for the intertwining operator is found. The Weyl symbol of operators producing linear canonical transformations is associated with the Cayley transformation of classical canonical transformation. Due to the invariance of the Weyl formalism a complete study of singularity and factorization of these symbols is manageable. In particular, one can study the symbols of Green functions and elements of Lie groups and find the spectra of arbitrary stationary quadratic Hamiltonians with the help of the known classification of the spectra of classical systems

  16. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  17. On New Families of Integrals in Analytical Studies of Superconductors within the Conformal Transformation Method

    Directory of Open Access Journals (Sweden)

    Ryszard Gonczarek

    2015-01-01

    Full Text Available We show that, by applying the conformal transformation method, strongly correlated superconducting systems can be discussed in terms of the Fermi liquid with a variable density of states function. Within this approach, it is possible to formulate and carry out purely analytical study based on a set of fundamental equations. After presenting the mathematical structure of the s-wave superconducting gap and other quantitative characteristics of superconductors, we evaluate and discuss integrals inherent in fundamental equations describing superconducting systems. The results presented here extend the approach formulated by Abrikosov and Maki, which was restricted to the first-order expansion. A few infinite families of integrals are derived and allow us to express the fundamental equations by means of analytical formulas. They can be then exploited in order to find quantitative characteristics of superconducting systems by the method of successive approximations. We show that the results can be applied in studies of high-Tc superconductors and other superconducting materials of the new generation.

  18. An Effective Transform Unit Size Decision Method for High Efficiency Video Coding

    Directory of Open Access Journals (Sweden)

    Chou-Chen Wang

    2014-01-01

    Full Text Available High efficiency video coding (HEVC is the latest video coding standard. HEVC can achieve higher compression performance than previous standards, such as MPEG-4, H.263, and H.264/AVC. However, HEVC requires enormous computational complexity in encoding process due to quadtree structure. In order to reduce the computational burden of HEVC encoder, an early transform unit (TU decision algorithm (ETDA is adopted to pruning the residual quadtree (RQT at early stage based on the number of nonzero DCT coefficients (called NNZ-EDTA to accelerate the encoding process. However, the NNZ-ETDA cannot effectively reduce the computational load for sequences with active motion or rich texture. Therefore, in order to further improve the performance of NNZ-ETDA, we propose an adaptive RQT-depth decision for NNZ-ETDA (called ARD-NNZ-ETDA by exploiting the characteristics of high temporal-spatial correlation that exist in nature video sequences. Simulation results show that the proposed method can achieve time improving ratio (TIR about 61.26%~81.48% when compared to the HEVC test model 8.1 (HM 8.1 with insignificant loss of image quality. Compared with the NNZ-ETDA, the proposed method can further achieve an average TIR about 8.29%~17.92%.

  19. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries.

    Science.gov (United States)

    Tan, Zhi-Zhong

    2015-05-01

    We develop a general recursion-transform (R-T) method for a two-dimensional resistor network with a zero resistor boundary. As applications of the R-T method, we consider a significant example to illuminate the usefulness for calculating resistance of a rectangular m×n resistor network with a null resistor and three arbitrary boundaries, a problem never solved before, since Green's function techniques and Laplacian matrix approaches are invalid in this case. Looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of an arbitrary boundary since the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain several general formulas of resistance between any two nodes in a nonregular m×n resistor network in both finite and infinite cases. In particular, 12 special cases are given by reducing one of the general formulas to understand its applications and meanings, and an integral identity is found when we compare the equivalent resistance of two different structures of the same problem in a resistor network.

  20. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided