WorldWideScience

Sample records for unitary modular categories

  1. Modular categories and 3-manifold invariants

    International Nuclear Information System (INIS)

    Tureav, V.G.

    1992-01-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds

  2. Lectures on tensor categories and modular functors

    CERN Document Server

    Bakalov, Bojko

    2000-01-01

    This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some pro...

  3. On the complete classification of unitary N=2 minimal superconformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Oliver

    2009-08-03

    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  4. On the complete classification of unitary N=2 minimal superconformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Oliver

    2009-08-03

    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  5. On the complete classification of unitary N=2 minimal superconformal field theories

    International Nuclear Information System (INIS)

    Gray, Oliver

    2009-01-01

    Aiming at a complete classi cation of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  6. Evenly distributed unitaries: On the structure of unitary designs

    International Nuclear Information System (INIS)

    Gross, D.; Audenaert, K.; Eisert, J.

    2007-01-01

    We clarify the mathematical structure underlying unitary t-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement

  7. Modular structure of the local algebras associated with the free massless scalar field theory

    International Nuclear Information System (INIS)

    Hislop, P.D.; Longo, R.

    1982-01-01

    The modular structure of the von Neuman algebra of local observables associated with a double cone in the vacuum representation of the free massless scalar field theory of any number of dimensions is described. The modular automorphism group is induced by the unitary implementation of a family of generalized fractional linear transformations on Minkowski space and is a subgroup of the conformal group. The modular conjugation operator is the anti-unitary impementation of a product of time reversal and relativistic ray inversion. The group generated by the modular conjugation operators for the local algebras associated with the family of double cone regions is the group of proper conformal transformations. A theorem is presented asserting the unitary equivalence of local algebras associated with lightcones, double cones and wedge regions. For the double cone algebras, this provides an explicitly realization of spacelike duality and establishes the known type III 1 factor property. It is shown that the timelike duality property of the lightcone algebras does not hold for the double cone algebras. A different definition of the von Neumann algebras associated with a region is introduced which agrees with the standard one for a lightcone or a double cone region but which allows the timelike duality property for the double cone algebras. In the case of one spatial dimension, the standard local algebras associated with the double cone regions satisfy both specelike and timelike duality. (orig.)

  8. Modularity beyond Perception: Evidence from the PRP Paradigm

    Science.gov (United States)

    Magen, Hagit; Cohen, Asher

    2010-01-01

    The Dimension Action (DA) model asserts that the visual system is modular, and that each task involves multiple-response mechanisms rather than a unitary-response selection mechanism. The model has been supported by evidence from single-task interference paradigms. We use the psychological refractory period paradigm and show that dual-task…

  9. Unitary information ether and its possible applications

    International Nuclear Information System (INIS)

    Horodecki, R.

    1991-01-01

    The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)

  10. Unitary field theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1980-01-01

    A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion

  11. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    Science.gov (United States)

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  12. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  13. Field algebras in quantum theory with indefinite metric. III. Spectrum of modular operator and Tomita's fundamental theorem

    International Nuclear Information System (INIS)

    Dadashyan, K.Yu.; Khoruzhii, S.S.

    1987-01-01

    The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved

  14. Modular design in fahion industry

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2018-03-01

    Full Text Available "Modular design" is a kind of design mode that not only can made clothing more interesting, makes the wearer can participate in choices, increase the possibility of clothing style .but also can extend the service cycle of clothing. In this "fast fashion" run market, the design idea of modular design can be a breakthrough point, help us find the way to balance the low-carbon and environmentally-friendly need and fashion. The article will combine the existing examples put the modular design summarized into three categories: component modular design and geometric modular design and compounded modular design.

  15. Leptonic unitary triangles and boomerangs

    International Nuclear Information System (INIS)

    Dueck, Alexander; Rodejohann, Werner; Petcov, Serguey T.

    2010-01-01

    We review the idea of leptonic unitary triangles and extend the concept of the recently proposed unitary boomerangs to the lepton sector. Using a convenient parametrization of the lepton mixing, we provide approximate expressions for the side lengths and the angles of the six different triangles and give examples of leptonic unitary boomerangs. Possible applications of the leptonic unitary boomerangs are also briefly discussed.

  16. Unitary Transformation in Quantum Teleportation

    International Nuclear Information System (INIS)

    Wang Zhengchuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  17. Tensor categories and the mathematics of rational and logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Huang, Yi-Zhi; Lepowsky, James

    2013-01-01

    We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)

  18. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  19. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  20. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  1. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  2. Alternative pseudodifferential analysis with an application to modular forms

    CERN Document Server

    Unterberger, André

    2008-01-01

    This volume introduces an entirely new pseudodifferential analysis on the line, the opposition of which to the usual (Weyl-type) analysis can be said to reflect that, in representation theory, between the representations from the discrete and from the (full, non-unitary) series, or that between modular forms of the holomorphic and substitute for the usual Moyal-type brackets. This pseudodifferential analysis relies on the one-dimensional case of the recently introduced anaplectic representation and analysis, a competitor of the metaplectic representation and usual analysis. Besides researchers and graduate students interested in pseudodifferential analysis and in modular forms, the book may also appeal to analysts and physicists, for its concepts making possible the transformation of creation-annihilation operators into automorphisms, simultaneously changing the usual scalar product into an indefinite but still non-degenerate one.

  3. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  4. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  5. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  6. Optimal quantum learning of a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; Chiribella, Giulio; D'Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo

    2010-01-01

    We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.

  7. Random unitary operations and quantum Darwinism

    International Nuclear Information System (INIS)

    Balaneskovic, Nenad

    2016-01-01

    We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding

  8. More modular invariant anomalous U(1) breaking

    International Nuclear Information System (INIS)

    Gaillard, Mary K.; Giedt, Joel

    2002-01-01

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kaehler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated out of the theory at the tree-level. We also address how our formalism may be extended to describe the generalized Green-Schwarz mechanism for multiple anomalous U(1)'s that occur in four-dimensional Type I and Type IIB string constructions

  9. Quantum unitary dynamics in cosmological spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Mena Marugán, Guillermo A.; Velhinho, José M.

    2015-01-01

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  10. Quantum unitary dynamics in cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2015-12-15

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  11. Conformal covariance, modular structure, and duality for local algebras in free massless quantum field theories

    International Nuclear Information System (INIS)

    Hislop, P.D.

    1988-01-01

    The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc

  12. On random unitary channels

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2008-01-01

    In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal

  13. Meditations on the unitary rhythm of dying-grieving.

    Science.gov (United States)

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  14. The unitary space of particle internal states

    International Nuclear Information System (INIS)

    Perjes, Z.

    1978-09-01

    A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)

  15. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    Science.gov (United States)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  16. Unitary unified field theories

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1976-01-01

    This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)

  17. Unitary symmetry, combinatorics, and special functions

    Energy Technology Data Exchange (ETDEWEB)

    Louck, J.D.

    1996-12-31

    From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.

  18. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  19. Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)

    2012-08-15

    The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)

  20. Multiqubit Clifford groups are unitary 3-designs

    Science.gov (United States)

    Zhu, Huangjun

    2017-12-01

    Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.

  1. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  2. Defining Modules, Modularity and Modularization

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization.......The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization....

  3. About the unitary discretizations of Heisenberg equations of motion

    International Nuclear Information System (INIS)

    Vazquez, L.

    1986-01-01

    In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)

  4. Equivalence of quantum states under local unitary transformations

    International Nuclear Information System (INIS)

    Fei Shaoming; Jing Naihuan

    2005-01-01

    In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented

  5. Modular structure of functional networks in olfactory memory.

    Science.gov (United States)

    Meunier, David; Fonlupt, Pierre; Saive, Anne-Lise; Plailly, Jane; Ravel, Nadine; Royet, Jean-Pierre

    2014-07-15

    Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory has been widely applied to characterize the overall structure of data sets in the social, technological, and biological sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks whose components are gathered in the same module and work together closely, while working weakly with components from other modules. This processing is of interest for studying memory, a cognitive process that is widely distributed. We propose a new method to identify modular structure in task-related functional magnetic resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients and thus retained information about both signs and weights. The method was applied to functional data acquired during a yes-no odor recognition memory task performed by young and elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a function of response categories and age groups and calculated condition-based weighted correlation matrices. Overall, condition-based modular partitions were more homogeneous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity values were negatively correlated with memory scores in the Hit condition and positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-correlated areas

  6. Unitary Transformations in 3 D Vector Representation of Qutrit States

    Science.gov (United States)

    2018-03-12

    ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector Representation of Qutrit States by...return it to the originator. ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector...2018 2. REPORT TYPE Technical Report 3. DATES COVERED June–December 2017 4. TITLE AND SUBTITLE Unitary Transformations in 3- D Vector

  7. Cohomology and deformation theory of monoidal 2-categories I

    OpenAIRE

    Elgueta, Josep

    2004-01-01

    We define a cohomology for an arbitrary $K$-linear semistrict semigroupal 2-category $(\\mathfrak{C},\\otimes)$ (called in the paper a Gray semigroup) and show that its first order (unitary) deformations, up to the suitable notion of equivalence, are in one-one correspondence with the elements of the second cohomology group. Fundamental to the construction is a double complex, similar to Gerstenhaber-Schack's double complex for bialgebras. We also identify the cohomologies describing separately...

  8. Probabilistic implementation of Hadamard and unitary gates

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    We show that the Hadamard and unitary gates could be implemented by a unitary evolution together with a measurement for any unknown state chosen from a set A={ vertical bar Ψi>, vertical bar Ψ-bar i>} (i=1,2) if and only if vertical bar Ψ1>, vertical bar Ψ2>, vertical bar Ψ-bar 1>, vertical bar Ψ-bar 2> are linearly independent. We also derive the best transformation efficiencies

  9. Monoidal categories and topological field theory

    CERN Document Server

    Turaev, Vladimir

    2017-01-01

    This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...

  10. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  11. Unitary representations of basic classical Lie superalgebras

    International Nuclear Information System (INIS)

    Gould, M.D.; Zhang, R.B.

    1990-01-01

    We have obtained all the finite-dimensional unitary irreps of gl(mvertical stroken) and C(n), which also exhaust such irreps of all the basic classical Lie superalgebras. The lowest weights of such irreps are worked out explicitly. It is also shown that the contravariant and covariant tensor irreps of gl(mvertical stroken) are unitary irreps of type (1) and type (2) respectively, explaining the applicability of the Young diagram method to these two types of tensor irreps. (orig.)

  12. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  13. Theory of the unitary representations of compact groups

    International Nuclear Information System (INIS)

    Burzynski, A.; Burzynska, M.

    1979-01-01

    An introduction contains some basic notions used in group theory, Lie group, Lie algebras and unitary representations. Then we are dealing with compact groups. For these groups we show the problem of reduction of unitary representation of Wigner's projection operators, Clebsch-Gordan coefficients and Wigner-Eckart theorem. We show (this is a new approach) the representations reduction formalism by using superoperators in Hilbert-Schmidt space. (author)

  14. Unitary Housing Regimes in Transition

    DEFF Research Database (Denmark)

    Bengtsson, Bo; Jensen, Lotte

    2013-01-01

    Path dependence is strong in housing institutions and policy. In both Denmark and Sweden, today’s universal and ‘unitary’ (Kemeny) housing regimes can be traced back to institutions that were introduced fifty years back in history or more. Recently, universal and unitary housing systems...... in Scandinavia, and elsewhere, are under challenge from strong political and economic forces. These challenges can be summarized as economic cutbacks, privatization and Europeanization. Although both the Danish and the Swedish housing system are universal and unitary in character, they differ considerably...... in institutional detail. Both systems have corporatist features, however in Denmark public housing is based on local tenant democracy and control, and in Sweden on companies owned and controlled by the municipalities, combined with a centralized system of rent negotiations. In the paper the present challenges...

  15. Probing non-unitary CP violation effects in neutrino oscillation experiments

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    In the present work, we have considered minimal unitarity violation scheme to obtain the general expression for ν _{μ }→ ν _{τ } oscillation probability in vacuum and matter. For this channel, we have investigated the sensitivities of short baseline experiments to non-unitary parameters |ρ _{μ τ }| and ω _{μ τ } for normal as well as inverted hierarchical neutrino masses and θ _{23} being above or below maximality. We find that for normal hierarchy, the 3σ sensitivity of |ρ _{μ τ }| is maximum for non-unitary phase ω _{μ τ }=0 whereas it is minimum for ω _{μ τ }=± π . For inverted hierarchy, the sensitivity is minimum at ω _{μ τ }=0 and maximum for ω _{μ τ }=± π . We observe that the sensitivity to measure non-unitarity remains unaffected for unitary CP phase δ =0 or δ =π /2 . We have, also, explored wide spectrum of L/E ratio to investigate the possibilities to observe CP-violation due to unitary (δ ) and non-unitary (ω _{μ τ } ) phases. We find that the both phases can be disentangled, in principle, from each other for L/E<200 km/GeV.

  16. Multiple multicontrol unitary operations: Implementation and applications

    Science.gov (United States)

    Lin, Qing

    2018-04-01

    The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.

  17. Presheaves of symmetric tensor categories and nets of C*-algebras

    OpenAIRE

    Vasselli, Ezio

    2012-01-01

    Motivated by algebraic quantum field theory, we study presheaves of symmetric tensor categories defined over the base of a space, intended as a spacetime. Any section of a presheaf (that is, any "superselection sector", in the applications that we have in mind) defines a holonomy representation whose triviality is measured by Cheeger-Chern-Simons characteristic classes, and a non-abelian unitary cocycle defining a Lie group gerbe. We show that, given an embedding in a presheaf of full subcate...

  18. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  19. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  20. Classification of delocalization power of global unitary operations in terms of LOCC one-piece relocalization

    Directory of Open Access Journals (Sweden)

    Akihito Soeda

    2010-06-01

    Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.

  1. Modular structure of local algebras associated with massless free quantum fields

    International Nuclear Information System (INIS)

    Hislop, P.D.

    1984-01-01

    The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation SU(2,2), a covering group of the conformal group. An irreducible set of standard linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. Using the results of Bisognano and Wichmann, the modular operators for these algebras are obtained in explicit form as conformal transformations and the duality property is proved. In the bose case, it is shown that the double-cone algebras constructed from any irreducible set of linear fields not including the standard fields do not satisfy duality and that any non-standard linear fields are not conformally covariant. A simple proof of duality, independent of the Tomita-Takesaki theory, for the double-cone algebras in the scalar case is also presented

  2. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  3. Consciousness, intentionality, and community: Unitary perspectives and research.

    Science.gov (United States)

    Zahourek, Rothlyn P; Larkin, Dorothy M

    2009-01-01

    Consciousness and intentionality often have been related and studied together. These concepts also are readily viewed and understood for practice, research, and education in a unitary paradigm. How these ideas relate to community is less known. Considering the expansion of our capacity for communication through the World Wide Web and other technologic advances and appreciating recent research on the nonlocal character of intentionality and consciousness, it is more apparent how concepts of community can be seen in the same unitary context. The authors address these issues and review relevant nursing research.

  4. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  5. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  6. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  7. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  8. Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups

    International Nuclear Information System (INIS)

    Gunaydin, Murat; Pavlyk, Oleksandr

    2005-01-01

    We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E 8(-24) in SU*(8) as well as SU(6,2) covariant bases. E 8(-24) has E 7 x SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E 8(8) of the maximal supergravity theory the minimal realization was given. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E 8(-24) and E 8(8) . By further truncation one can obtain the minimal unitary realizations of all the groups of the 'Magic Triangle'. We give explicitly the minimal unitary realizations of the exceptional subgroups of E 8(-24) as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups. (author)

  9. Piaget's Egocentrism: A Unitary Construct?

    Science.gov (United States)

    Ruthven, Avis J.; Cunningham, William L.

    In order to determine whether egocentrism can be conceptualized as a unitary construct, 100 children (51 four-year-olds, 37 five-year-olds, and 12 six-year-olds) were administered a visual/spatial perspective task, a cognitive/communicative task, and an affective task. All tasks were designed to measure different facets of egocentrism. The 50…

  10. Generalized unitaries and the Picard group

    Indian Academy of Sciences (India)

    some explicit calculations of that type.) So the range of this .... when we restrict our attention to generalized unitaries and full modules, that is, to modules. E for which BE = B. For every ..... without dividing out equivalence classes. But there is no ...

  11. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  12. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...

  13. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    Science.gov (United States)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  14. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  15. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  16. Unitary relation for the time-dependent SU(1,1) systems

    International Nuclear Information System (INIS)

    Song, Dae-Yup

    2003-01-01

    The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary relation is described by the classical solutions of a time-dependent (harmonic) oscillator. Making use of the relation, the wave functions satisfying the Schroedinger equation are given, for a general unitary representation, in terms of the matrix elements of a finite group transformation (Bargmann function). The wave functions of the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete series of SU(1,1)

  17. Optimal unitary dilation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.

    2011-01-01

    A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.

  18. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  19. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    International Nuclear Information System (INIS)

    Akibue, Seiseki; Murao, Mio

    2014-01-01

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder

  20. Universal Superspace Unitary Operator and Nilpotent (Anti-)Dual-BRST Symmetries: Superfield Formalism

    International Nuclear Information System (INIS)

    Malik, R. P.; Srinivas, N.; Bhanja, T.

    2016-01-01

    We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP) dual unitary operator and its Hermitian conjugate and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual-BRST symmetry transformations for a set of interesting models of the Abelian 1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor and modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show the universality of the SUSP dual unitary operator and its Hermitian conjugate in the cases of all the Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual horizontality condition (DHC) and dual gauge invariant restrictions (DGIRs) of the superfield formalism. The derivations of the dual unitary operators and corresponding (anti-)dual-BRST symmetries are completely novel results in our present investigation.

  1. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  2. Applying modular concepts to process and authorization basis issues for plutonium residue stabilization

    International Nuclear Information System (INIS)

    Hildner, R.A.; Zygmunt, S.J.

    1996-01-01

    A recent study completed for the Rocky Flats Environmental Technology Site proved that it is feasible to use modular, skid-mounted processes for disposition of Category 1 quantities of nuclear materials. This would allow personnel to assemble, test, and authorize the processes outside of the nuclear material management area. Besides having cost and schedule advantages, this technology reduces the uncertainty and risk in applications involving disposition of materials and facilities. This paper explains the previous research into modular skid-mounted processes and suggests various future applications of the technology

  3. On sub-modularization and morphological heterogeneity in modular robotics

    DEFF Research Database (Denmark)

    Lyder, A. H.; Stoy, K.; Garciá, R. F. M.

    2012-01-01

    Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous....... In this paper we introduce two contributing factors to heterogeneity namely morphological heterogeneity and sub-functional modularization. Respectively, the ideas are to create modules with significantly different morphologies and to spread sub-functionality across modules. Based on these principles we design...... and implement the Thor robot and evaluate it by participating in the ICRA Planetary Robotic Contingency Challenge. The Thor robot demonstrates that sub-functional modularity and morphological heterogeneity may increase the versatility of modular robots while reducing the complexity of individual modules, which...

  4. ELABORATION OF NOT LARGE MOBILE MODULAR INSTALLATION ''AQUA - EXPRESS'' (300 L/H) FOR LRW CLEANING

    International Nuclear Information System (INIS)

    Karlin, Yurii; Dmitriev, Sergey; Iljin, Vadim; Ojovan, Mihail; Burcl, Rudolf

    2003-01-01

    Mobile modular installation ''Aqua-Express'' is a liquid low level and intermediate level radioactive waste (LL and ILRW) treatment facility, intended for not large research centers and other organizations, which activity causes the formation of a few quantity (up to 500 m3/year) of low and intermediate level radioactive waste water. Mobile modular installation ''Aqua-Express'' has the following features: (1) filtration, sorption and ultrafiltration units are used for LL and ILRW purification; (2) installation ''Aqua-Express'' consists of a cascade of three autonomous aqueous liquid waste-purifying installations; (3) installation ''Aqua-Express'' is a mobile installation; the installation can be transported by car, train, ship, or plane, as well as placed in a standard transport (sea or railway) container; (4) installation ''Aqua-Express'' does not includes any technological equipment for conditioning the secondary radioactive waste. Productivity of the installation ''Aqua-Express'' by purified water depends on composition of the initial liquid waste and makes up to 300 l/h. In present report is described the design of installation ''Aqua-Express'', theory of LRW purification in the installation ''Aqua-Express'' and some results of its use at cleaning real radioactive waters at State unitary enterprise - MosNPO ''Radon''

  5. A unified approach to the minimal unitary realizations of noncompact groups and supergroups

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Pavlyk, Oleksandr

    2006-01-01

    We study the minimal unitary representations of non-compact groups and supergroups obtained by quantization of their geometric realizations as quasi-conformal groups and supergroups. The quasi-conformal groups G leave generalized light-cones defined by a quartic norm invariant and have maximal rank subgroups of the form H x SL(2, R) such that G/H x SL(2, R) are para-quaternionic symmetric spaces. We give a unified formulation of the minimal unitary representations of simple non-compact groups of type A 2 , G 2 , D 4 , F 4 , E 6 , E 7 , E 8 and Sp(2n, R). The minimal unitary representations of Sp(2n, R) are simply the singleton representations and correspond to a degenerate limit of the unified construction. The minimal unitary representations of the other noncompact groups SU(m, n), SO(m, n), SO*(2n) and SL(m, R) are also given explicitly. We extend our formalism to define and construct the corresponding minimal representations of non-compact supergroups G whose even subgroups are of the form H x SL(2, R). If H is noncompact then the supergroup G does not admit any unitary representations, in general. The unified construction with H simple or Abelian leads to the minimal representations of G(3), F(4) and O Sp(n|2, R) (in the degenerate limit). The minimal unitary representations of O Sp(n|2, R) with even subgroups SO(n) x SL(2, R) are the singleton representations. We also give the minimal realization of the one parameter family of Lie superalgebras D(2, 1; σ)

  6. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  7. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)

  8. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges

  9. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  10. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    Science.gov (United States)

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  11. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...... in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse...

  12. Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2004-01-01

    We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.

  13. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, paranoid personality disorder diagnosis: a unitary or a two-dimensional construct?

    Science.gov (United States)

    Falkum, Erik; Pedersen, Geir; Karterud, Sigmund

    2009-01-01

    This article examines reliability and validity aspects of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) paranoid personality disorder (PPD) diagnosis. Patients with personality disorders (n = 930) from the Norwegian network of psychotherapeutic day hospitals, of which 114 had PPD, were included in the study. Frequency distribution, chi(2), correlations, reliability statistics, exploratory, and confirmatory factor analyses were performed. The distribution of PPD criteria revealed no distinct boundary between patients with and without PPD. Diagnostic category membership was obtained in 37 of 64 theoretically possible ways. The PPD criteria formed a separate factor in a principal component analysis, whereas a confirmatory factor analysis indicated that the DSM-IV PPD construct consists of 2 separate dimensions as follows: suspiciousness and hostility. The reliability of the unitary PPD scale was only 0.70, probably partly due to the apparent 2-dimensionality of the construct. Persistent unwarranted doubts about the loyalty of friends had the highest diagnostic efficiency, whereas unwarranted accusations of infidelity of partner had particularly poor indicator properties. The reliability and validity of the unitary PPD construct may be questioned. The 2-dimensional PPD model should be further explored.

  14. DU and UD-invariants of unitary groups

    International Nuclear Information System (INIS)

    Aguilera-Navarro, M.C.K.

    1977-01-01

    Four distint ways of obtaining the eigenvalues of unitary groups, in any irreducible representation, are presented. The invariants are defined according to two different contraction conventions. Their eigenvalue can be given in terms of two classes of special partial hooks associated with the young diagram characterizing the irreducible representation considered

  15. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  16. Remarks on unitary representations of Poincare group

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    In this paper the elementary review of methods and notions using in the theory of unitary representations of Poincare group is included. The Poincare group is a basic group for relativistic quantum mechanics. Our aim is to introduce the reader into some problems of quantum physics, which are difficult approachable for beginners. (author)

  17. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance to the organ......This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...... to the organization of economic activities, including greater adaptability and evolvability than systems that lack modular properties. We draw extensively on our original 1996 paper on modularity and subsequent research to suggest broad theoretical implications of modularity for (i) firms' product strategies...... markets. We also discuss an evolutionary perspective on modularity as an emergent phenomenon in firms and industries. We explain how modularity as a relatively new field of strategy and economic research may provide a new theoretical perspective on economic organizing that has significant potential...

  18. Duality and modular invariance in rational conformal field theories

    International Nuclear Information System (INIS)

    Li Miao.

    1990-03-01

    We investigate the polynomial equations which should be satisfied by the duality data for a rational conformal field theory. We show that by these duality data we can construct some vector spaces which are isomorphic to the spaces of conformal blocks. One can construct explicitly the inner product for the former if one deals with a unitary theory. These vector spaces endowed with an inner product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons theory. As by-products, we show that the polynomial equations involving the modular transformations for the one-point blocks on the torus are not independent. And along the way, we discuss the reconstruction of the quantum group in a rational conformal theory. Finally, we discuss the solution of structure constants for a physical theory. Making some assumption, we obtain a neat solution. And this solution in turn implies that the quantum groups of the left sector and of the right sector must be the same, although the chiral algebras need not to be the same. Some examples are given. (orig.)

  19. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    Science.gov (United States)

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  20. Elegant Coercion and Iran: Beyond the Unitary Actor Model

    National Research Council Canada - National Science Library

    Moss, J. C

    2005-01-01

    .... At its core, then, coercion is about state decision-making. Most theories of coercion describe states as if they were unitary actors whose decision-making results from purely rational cost-benefit calculations...

  1. Non-unitary boson mapping and its application to nuclear collective motions

    International Nuclear Information System (INIS)

    Takada, Kenjiro

    2001-01-01

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a a 'static' boson mapping, the Dyson-type non-unitary self-consistent-collective-coordinate method is discussed. The latter is, so to speak, a 'dynamical' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom self-consistently.Thus all of the Dyson-type non-unitary boson

  2. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    Modularity has gained an increasing popularity as a central concept for exploring product structure, process structure, organization structure and supply chain structure. With the offset in system theory the predominant understanding of modularity however faces difficulties in explaining the social...... dimension of modularity like irrational behaviors, cultural differences, learning processes, social organization and institutional influences on modularity. The paper addresses this gab offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  3. Lectures on Hilbert modular varieties and modular forms

    CERN Document Server

    Goren, Eyal Z

    2001-01-01

    This book is devoted to certain aspects of the theory of p-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of p-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelian varieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of p-adic Hilbert modular forms and the geometry of moduli spaces of abelian varieties are related. This relation is used to study q-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-exper...

  4. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  5. A remark on the unitary part of contractions

    International Nuclear Information System (INIS)

    Duggal, B.P.

    1992-07-01

    Considering operators on a complex infinite dimensional Hilbert space H and denoting by T * a construction with C .O completely non-unitary part, it is proved that A T is projection which commutes with T and H (u) T = A T H. 3 refs

  6. A remark on the unitary group of a tensor product of n finite ...

    Indian Academy of Sciences (India)

    By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...

  7. Linking the Unitary Paradigm to Policy through a Synthesis of Caring Science and Integrative Nursing.

    Science.gov (United States)

    Koithan, Mary S; Kreitzer, Mary Jo; Watson, Jean

    2017-07-01

    The principles of integrative nursing and caring science align with the unitary paradigm in a way that can inform and shape nursing knowledge, patient care delivery across populations and settings, and new healthcare policy. The proposed policies may transform the healthcare system in a way that supports nursing praxis and honors the discipline's unitary paradigm. This call to action provides a distinct and hopeful vision of a healthcare system that is accessible, equitable, safe, patient-centered, and affordable. In these challenging times, it is the unitary paradigm and nursing wisdom that offer a clear path forward.

  8. Modular implicits

    Directory of Open Access Journals (Sweden)

    Leo White

    2015-12-01

    Full Text Available We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit module parameters, and elaborate straightforwardly into OCaml's first-class functors. Basing the design on OCaml's modules leads to a system that naturally supports many features from other languages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor classes and associated types.

  9. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  10. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    International Nuclear Information System (INIS)

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-01-01

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  11. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...

  12. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  13. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  14. From spin groups and modular P1CT symmetry to covariant representations and the spin-statistics theorem

    International Nuclear Information System (INIS)

    Lorenzen, R.

    2007-03-01

    Starting from the assumption of modular P 1 CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P 1 CT symmetry constitutes no loss of generality because it is a consequence of

  15. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we...... have developed a framework to support the heuristic and iterative process of planning and realizing modularization benefits....

  16. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    Science.gov (United States)

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  17. Exploring Modularity in Services

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2017-01-01

    the effects of modularity and integrality on a range of different analytical levels in service architectures. Taking a holistic approach, the authors synthesize and empirically deploy a framework comprised of the three most prevalent themes in modularity and service design literature: Offering (service...... insights on the mirroring hypothesis of modularity theory to services. Originality/value The paper provides a conceptualization of service architectures drawing on service design, modularity, and market relationships. The study enriches service design literature with elements from modularity theory...

  18. Unitary evolution between pure and mixed states

    International Nuclear Information System (INIS)

    Reznik, B.

    1996-01-01

    We propose an extended quantum mechanical formalism that is based on a wave operator d, which is related to the ordinary density matrix via ρ=dd degree . This formalism allows a (generalized) unitary evolution between pure and mixed states. It also preserves much of the connection between symmetries and conservation laws. The new formalism is illustrated for the case of a two-level system. copyright 1996 The American Physical Society

  19. The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle

    NARCIS (Netherlands)

    Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz

    2003-01-01

    The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced

  20. From spin groups and modular P{sub 1}CT symmetry to covariant representations and the spin-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, R.

    2007-03-15

    Starting from the assumption of modular P{sub 1}CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P{sub 1}CT symmetry constitutes no loss of generality because it is a

  1. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko; Fuller, George M.; Grohs, Evan B.; Kunieda, Satoshi

    2014-01-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9 B compound nuclear system in the resonant destruction of 7 Li during primordial nucleosynthesis. We have studied reactions in the 9 B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6 Li( 3 He, 3 He) 6 Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6 Li( 3 He,p) 8 Be* and from 0.4 to 5.0 MeV for the 6 Li( 3 He,γ) 7 Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6 Li( 3 He,γ) 9 B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  2. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  3. Service Modularity and Architecture

    DEFF Research Database (Denmark)

    Brax, Saara A.; Bask, Anu; Hsuan, Juliana

    2017-01-01

    , platform-based and mass-customized service business models, comparative research designs, customer perspectives and service experience, performance in context of modular services, empirical evidence of benefits and challenges, architectural innovation in services, modularization in multi-provider contexts......Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots...... of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design...

  4. Establishing the Unitary Classroom: Organizational Change and School Culture.

    Science.gov (United States)

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  5. 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array.

    Science.gov (United States)

    Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng

    2013-03-28

    A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.

  6. Biased Monte Carlo algorithms on unitary groups

    International Nuclear Information System (INIS)

    Creutz, M.; Gausterer, H.; Sanielevici, S.

    1989-01-01

    We introduce a general updating scheme for the simulation of physical systems defined on unitary groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements. The essence is to work directly with group elements for the stochastic noise. Particular cases of the scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally corrected Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory

  7. Modular forms

    NARCIS (Netherlands)

    Edixhoven, B.; van der Geer, G.; Moonen, B.; Edixhoven, B.; van der Geer, G.; Moonen, B.

    2008-01-01

    Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the

  8. Dynamic burstiness of word-occurrence and network modularity in textbook systems

    Science.gov (United States)

    Cui, Xue-Mei; Yoon, Chang No; Youn, Hyejin; Lee, Sang Hoon; Jung, Jean S.; Han, Seung Kee

    2017-12-01

    We show that the dynamic burstiness of word occurrence in textbook systems is attributed to the modularity of the word association networks. At first, a measure of dynamic burstiness is introduced to quantify burstiness of word occurrence in a textbook. The advantage of this measure is that the dynamic burstiness is decomposable into two contributions: one coming from the inter-event variance and the other from the memory effects. Comparing network structures of physics textbook systems with those of surrogate random textbooks without the memory or variance effects are absent, we show that the network modularity increases systematically with the dynamic burstiness. The intra-connectivity of individual word representing the strength of a tie with which a node is bound to a module accordingly increases with the dynamic burstiness, suggesting individual words with high burstiness are strongly bound to one module. Based on the frequency and dynamic burstiness, physics terminology is classified into four categories: fundamental words, topical words, special words, and common words. In addition, we test the correlation between the dynamic burstiness of word occurrence and network modularity using a two-state model of burst generation.

  9. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko, E-mail: mparis@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Fuller, George M.; Grohs, Evan B. [Department of Physics, University of California, San Diego, La Jolla, CA (United States); Kunieda, Satoshi [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibaraki (Japan)

    2014-07-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the {sup 9}B compound nuclear system in the resonant destruction of {sup 7}Li during primordial nucleosynthesis. We have studied reactions in the {sup 9}B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 6}Li({sup 3}He,{sup 3}He){sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be* and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,γ){sup 7}Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,γ){sup 9}B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  10. [Modular enteral nutrition in pediatrics].

    Science.gov (United States)

    Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D

    1991-01-01

    Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.

  11. Experimental implementation of optimal linear-optical controlled-unitary gates

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan

    2015-01-01

    Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015

  12. Constructing a unitary title regime for the European Patent System

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2011-01-01

    The European Patent System without any unitary title allows Member States to retain institutional arrangements within their borders and to prevent any moves to delegate responsibility outside the national sphere. This intergovernmental patent regime suffers from fragmentation due to national

  13. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry

    International Nuclear Information System (INIS)

    Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.

    2014-01-01

    We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.

  14. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  15. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  16. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  17. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  18. From modular invariants to graphs: the modular splitting method

    International Nuclear Information System (INIS)

    Isasi, E; Schieber, G

    2007-01-01

    We start with a given modular invariant M of a two-dimensional su-hat(n) k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction (1) the generalized partition functions corresponding to the introduction of boundary conditions and defect lines; (2) the quantum symmetries of the higher ADE graph G associated with the initial modular invariant M. Note that one does not suppose here that the graph G is already known, since it appears as a by-product of the calculations. We analyse several su-hat(3) k exceptional cases at levels 5 and 9

  19. Evolution of Modularity Literature

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2017-01-01

    Purpose The purpose of this paper is to review and analyze the modularity literature to identify the established and emerging perspectives. Design/methodology/approach A systematic literature search and review was conducted through the use of bibliometrics and network analysis. The analysis...... identified structure within the literature, which revealed how the research area evolved between 1990 and 2015. Based on this search, the paper establishes the basis for analyzing the structure of modularity literature. Findings Factors were identified within the literature, demonstrating how it has evolved...... from a primary focus on the modularity of products to a broader view of the applicability of modularity. Within the last decade, numerous research areas have emerged within the broader area of modularity. Through core-periphery analysis, eight emerging sub-research areas are identified, of which one...

  20. Modularization of Industrial Service Processes

    DEFF Research Database (Denmark)

    Frandsen, Thomas; Hsuan, Juliana

    In this paper we examine how complex service processes can be dealt with through the lenses of modularization strategies. Through an illustrative case study of a manufacturer of industrial equipment for process industries we propose the use of the service modularity function to conceptualize...... and assess the service modularity of service offerings. The measured degree of modularity would allow us to sharpen our understanding of modularity in the context of industrial services, such as the role of standardization and component reuse on architecture flexibility. It would also provide a foundation...

  1. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  2. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  3. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games....... Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled...... children who often could be prevented from using and taking benefits from modern technologies. The objective is to get any children moving, exchanging, experimenting and having fun, regardless of their cognitive or physical ability levels. The paper describes two prototype systems developed as modular...

  4. RoboMusic with modular playware

    DEFF Research Database (Denmark)

    Falkenberg, Kasper; Bærendsen, Niels Kristian; Nielsen, Jacob

    2011-01-01

    Based on the concepts of RoboMusic and modular playware, we developed a system composed of modular playware devices which allow any user to perform music in a simple, interactive manner. The key features exploited in the modular playware approach are modularity, fl exibility, construction......, immediate feedback to stimulate engagement, creative exploration of play activities, and in some cases activity design by end-users (e.g., DJs). We exemplify the approach with the development of 11 rock genres and 6 pop music pieces for modular I-BLOCKS, which are exhibited and in daily use at the Rock Me...

  5. RoboMusic with Modular Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Bærendsen, Niels Kristian; Nielsen, Jacob

    2010-01-01

    Based on the concepts of RoboMusic and Modular Playware, we developed a system composed of modular playware devices, which allow any user to perform music in a simple, interactive manner. The key features exploited from the Modular Playware approach are modularity, flexibility, and construction......, immediate feedback to stimulate engagement, creative exploration of play activities, and in some cases activity design by end-users (e.g. DJ’s). We exemplify the approach with the development of 11 rock genres and 6 pop music pieces for modular I-BLOCKS, which are exhibited and in daily use at the Rock Me...

  6. Portable modular detection system

    Science.gov (United States)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  7. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    International Nuclear Information System (INIS)

    Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam

    2013-01-01

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure

  8. Deformations of polyhedra and polygons by the unitary group

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)

    2013-12-15

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in

  9. Proposal of 'modular heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo.

    1993-11-01

    A new modular helical configuration named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  10. Proposal of 'Modular Heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo

    1994-01-01

    A new modular helical system named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  11. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  12. Random unitary maps for quantum state reconstruction

    International Nuclear Information System (INIS)

    Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.

    2010-01-01

    We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.

  13. Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

    Science.gov (United States)

    Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia

    2017-05-01

    In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.

  14. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-01-01

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  15. Unitary Application of the Quantum Error Correction Codes

    International Nuclear Information System (INIS)

    You Bo; Xu Ke; Wu Xiaohua

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  16. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...

  17. Unitary assessment of economical efficiency of the energy resources for electricity production in Romania

    International Nuclear Information System (INIS)

    Luca, Gheorghe

    2004-01-01

    In our country, within the studies, on which the development strategies of power output are based on, the assessment of the economical efficiency of the use of two main energetic resources, the fuel used in cogeneration thermal power plants and the water used in hydropower plants respectively, was made in compliance with non-unitary specific norms. In contradiction with the degree of utilization of hydroelectric resources, realized all over the world in the developed countries (80-90%) resulted that in our country, where the degree of utilization is only 40%, the use of hydroelectric potential is not yet justified from technical-economical point of view. This anomaly was determined by the cause of non-unitary assessment of the economic efficiency for the cogeneration thermo-power plants and hydropower plants. This paper presents comparatively the elements, which were to the basis of the assessment of the economic efficiency for two types of electrical power plants, and one presents a proposal in the aim to perform a unitary assessment of the economical efficiency by applying efficiently the laws in force. (author)

  18. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  19. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  20. Modularization and Flexibilization.

    Science.gov (United States)

    Van Meel, R. M.

    Publications in the fields of educational science, organization theory, and project management were analyzed to identify the possibilities that modularization offers to institutions of higher professional education and to obtain background information for use in developing a method for modularization in higher professional education. It was…

  1. Self-organized modularization in evolutionary algorithms.

    Science.gov (United States)

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  2. Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo

    2009-01-01

    After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)

  3. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  4. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  5. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  6. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  7. Comparison of the unitary pole and Adhikari-Sloan expansions in the three nucleon system

    International Nuclear Information System (INIS)

    Afnan, I.R.; Birrell, N.D.

    1977-01-01

    The binding energy of 3 H, percentage S-, S'- and D-state probability, and charge form factor of 3 He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of 3 H and the charge form factor of 3 He, even at large momentum transfer (K 2 -2 ). (Author)

  8. Information-disturbance tradeoff in estimating a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio

    2010-01-01

    We address the problem of the information-disturbance tradeoff associated to the estimation of a quantum transformation and show how the extraction of information about a black box causes a perturbation of the corresponding input-output evolution. In the case of a black box performing a unitary transformation, randomly distributed according to the invariant measure, we give a complete solution of the problem, deriving the optimal tradeoff curve and presenting an explicit construction of the optimal quantum network.

  9. Efficient learning algorithm for quantum perceptron unitary weights

    OpenAIRE

    Seow, Kok-Leong; Behrman, Elizabeth; Steck, James

    2015-01-01

    For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that past implementat...

  10. Unitary eikonal formalism for multiproduction of isovector mesons at high energy

    CERN Document Server

    Redei, L B

    1973-01-01

    Unitary eikonal models for multiproduction of isovector mesons are discussed in general terms. A closed analytic expression is derived for the partial production cross sections and for the meson multiplicity moments. A simple class of models is discussed in more detail. (11 refs).

  11. RSA and its Correctness through Modular Arithmetic

    Science.gov (United States)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  12. A Modularized Counselor-Education Program.

    Science.gov (United States)

    Miller, Thomas V.; Dimattia, Dominic J.

    1978-01-01

    Counselor-education programs may be enriched through the use of modularized learning experiences. This article notes several recent articles on competency-based counselor education, the concepts of simulation and modularization, and describes the process of developing a modularized master's program at the University of Bridgeport in Connecticut.…

  13. Robotic hand with modular extensions

    Science.gov (United States)

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  14. Licensing process characteristics of Small Modular Reactors and spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Söderholm, Kristiina, E-mail: kristiina.soderholm@fortum.com [Fortum Power (Finland); Tuunanen, Jari, E-mail: jari.tuunanen@fortum.com [Fortum Power (Finland); Amaba, Ben, E-mail: baamaba@us.ibm.com [IBM Complex Systems (United States); Bergqvist, Sofia, E-mail: sofia.bergqvist@se.ibm.com [IBM Rational Software (Sweden); Lusardi, Paul, E-mail: plusardi@nuscalepower.com [NuScale Power (United States)

    2014-09-15

    Highlights: • We examine the licensing process challenges of modular nuclear facilities. • We compare the features of Small Modular Reactors and spent nuclear fuel repository. • We present the need of nuclear licensing simplification. • Part of the licensing is proposed to be internationally applicable. • Systems engineering and requirements engineering benefits are presented. - Abstract: This paper aims to increase the understanding of the licensing processes characteristics of Small Modular Reactors (SMR) compared with licensing of spent nuclear fuel repository. The basis of the SMR licensing process development lies in licensing processes used in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their various licensing processes and recent actions in the new NPP construction. Certain aspects of the aviation industry licensing process have also been studied and selected practices have been investigated as possibly suitable for use in nuclear licensing. Suitable features for SMR licensing are emphasized and suggested. The licensing features of the spent nuclear fuel deep repository along with similar features of SMR licensing are discussed. Since there are similar types of challenges of lengthy licensing time frames, as well as modular features to be taken into account in licensing, these two different nuclear industry fields can be compared. The main SMR features to take into account in licensing are: • Standardization of the design. • Modularity. • Mass production. • Serial construction. Modularity can be divided into two different categories: the first category is simply a single power plant unit constructed of independently engineered modules (e.g. construction process for Westinghouse AP-1000 NPP) and the second one a power plant composed of many reactor modules, which are manufactured in factories and installed as needed (e.g. NuScale Power SMR design). The deep underground repository

  15. Modular organization and hospital performance.

    Science.gov (United States)

    Kuntz, Ludwig; Vera, Antonio

    2007-02-01

    The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms.

  16. Solution of problem of determining spin properties of molecules in unitary formalism of quantum chemistry

    International Nuclear Information System (INIS)

    Klimko, G.T.; Luzanov, A.V.

    1988-01-01

    An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism

  17. A self-consistency check for unitary propagation of Hawking quanta

    Science.gov (United States)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  18. A unitary correlation operator method

    International Nuclear Information System (INIS)

    Feldmeier, H.; Neff, T.; Roth, R.; Schnack, J.

    1997-09-01

    The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the repulsive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy-and mass-number-independent correlated two-body Hamiltonian reproduces all ''exact'' many-body calculations surprisingly well. (orig.)

  19. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  20. Effective hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Blokhin, A.L.

    1989-01-01

    Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs

  1. Modular Design in Treaty Verification Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Macarthur, Duncan Whittemore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Benz, Jacob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tolk, Keith [Milagro Consulting, Albuquerque, NM (United States); Weber, Tom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffs described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.

  2. Modular Robotics in an African Context

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2011-01-01

    In this paper, we review the concept, development and use of modular robotic devices for education, health improvements, and business in Africa. The modular robotics inspired technology has the advantage of allowing any user easy access to a physical construction of new and advanced technology. We...... conceptualized several educational tools inspired by modular robotics for contextualized IT education in Tanzania, leading to a novel IT degree program and the development of East Africa’s first science and business park in Iringa, Tanzania. The prototypes inspired by modular robotics were developed in the local......, rural context and tested by local users in hospitals and rehabilitation centres. In this paper, we review the development of both modular building blocks for education and modular robotic tiles for rehabilitation in Tanzania....

  3. Modular interdependency in complex dynamical systems.

    Science.gov (United States)

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  4. The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    International Nuclear Information System (INIS)

    Qin Fang; Chen Jisheng

    2010-01-01

    We utilize the fractional exclusion statistics of the Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behaviour, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behaviour of the isochore heat capacity for a trapped unitary Fermi gas is also analysed.

  5. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  6. Theoretical Analysis of the Relationships Between Modularity in Design and Modularity in Production

    DEFF Research Database (Denmark)

    Kubota, Flávio Issao; Hsuan, Juliana; Cauchick-Miguel, Paulo Augusto

    2017-01-01

    This paper investigates the relationships between modularity in design (MID) and modularity in production (MIP) in the automotive industry in terms of how automotive companies obtain benefits and/or drawbacks through MID/MIP relationships. A literature analysis was conducted in order to identify...... the possible relationships between MID and MIP as well as the concepts behind these connections. Sixty-one papers were identified to portray relationships between modular product architecture and modular production systems. Results show a representation of MID and MIP relationships by illustrating that many...... propositions are offered for future field research. Finally, relationships between MID and MIP might be connected with modularity’s maturity level in companies. This is a literature review paper; therefore, empirical evidence is needed to further support current findings. Future studies could analyze...

  7. (Automated) software modularization using community detection

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Manikas, Konstantinos

    2015-01-01

    The modularity of a software system is known to have an effect on, among other, development effort, change impact, and technical debt. Modularizing a specific system and evaluating this modularization is, however, challenging. In this paper, we apply community detection methods to the graph...... of class dependencies in software systems to find optimal modularizations through communities. We evaluate this approach through a study of 111 Java systems contained in the Qualitas Corpus. We found that using the modularity function of Newman with an Erdős-Rényi null-model and using the community...... detection algorithm of Reichardt and Bornholdt improved community quality for all systems, that coupling decreased for 99 of the systems, and that coherence increased for 102 of the systems. Furthermore, the modularity function correlates with existing metrics for coupling and coherence....

  8. Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model

    International Nuclear Information System (INIS)

    Malinsky, Michal; Ohlsson, Tommy; Xing, Zhi-zhong; Zhang He

    2009-01-01

    We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This 'minimal' inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.

  9. Unitary group representations in Fock spaces with generalized exchange properties

    International Nuclear Information System (INIS)

    Liguori, A.

    1994-09-01

    The notion of second R-quantization is investigated, - a suitable deformation of the standard second quantization which properly takes into account the non-trivial exchange properties characterizing generalized statistics. The R-quantization of a class of unitary one-particle representations relevant for the description of symmetries is also performed. The Euclidean covariance of anyons is analyzed in this context. (author). 11 refs

  10. Complex projection of unitary dynamics of quaternionic pure states

    International Nuclear Information System (INIS)

    Asorey, M.; Scolarici, G.; Solombrino, L.

    2007-01-01

    Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out

  11. Primary fields in a unitary representation of Virasoro algebras

    International Nuclear Information System (INIS)

    Sasaki, R.; Yamanaka, I.

    1985-08-01

    A unitary representation of Virasoro algebras with the central charge c = 1 - 6/(N + 1)(N + 2) is constructed explicitly in terms of a colored (two color) coset space (the complex projective space CP sup(N-1)) quark model. By utilizing the explicit forms of the Virasoro generators Lsub(m), we derive a general method of constructing the primary fields (fields with well-defined conformal transformation properties) of the above Virasoro algebras. (author)

  12. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  13. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  14. Integrity and change in modular ontologies

    NARCIS (Netherlands)

    Stuckenschmidt, Heiner; Klein, Michel

    2003-01-01

    The benefits of modular representations arc well known from many areas of computer science. In this paper, we concentrate on the benefits of modular ontologies with respect to local containment of terminological reasoning. We define an architecture for modular ontologies that supports local

  15. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  16. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  17. The 16-Year Evolution of Proximal Modular Stem Design – Eliminating Failure of Modular Junction

    Directory of Open Access Journals (Sweden)

    Thomas Tkach

    2017-10-01

    Full Text Available Background: The complexity of hip reconstruction has been and continues to be a perplexing problem with restoring leg length, femoral offset, joint stability and overall hip implant fixation. These were contributing factors that lead to the development of a novel proximal femoral component design “Apex Modular Stem” (Omni, Raynham, MA. The basic stem geometry features a straight stem with a metaphyseal fit and fill cone, a medial triangle and a modular neck junction that allows for version and offset adjustment. In recent years, there has been great concern with the use of modularity in total hip arthroplasty. The goals of this study are (1 to identify complications with the use of a proximal modular design and (2 demonstrated factors that have eliminated those complications. Methods: This is a retrospective study of a single surgeon series (Design A and Design B of using the same cementless stem and proximal modular neck body (Apex Modular Stem and Omni Mod Hip Stem from 2000 to 2016 totaling 2,125 stems. 483 stems were the Design A and 1,642 stems, were of the Design B style. Results: Design A, 483 stems were implanted between 2000 and 2004. 31 alignment pins sheared resulting in a revision rate of 6.4%. Design B, 1,642 stems have been implanted between 2004 and 2016 all by the same surgeon, with no failures of the modular junction. Conclusion: All implant devices entail a multitude of risks and benefits. The Apex Modular Stem (Design A, provided excellent fixation, minimal risk of modular junction  corrosion, and simple control of anteversion and femoral offset. The limitation was found to be the risk of the alignment pin shearing (6.4%. The pin was enlarged to make it 225% stronger in torsional resistance, and in a subsequent series of over 1,600 femoral stems in a single surgeon series, there were no pin failures over a 12 year duration.

  18. Modular Power Standard for Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  19. Modular Rake of Pitot Probes

    Science.gov (United States)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  20. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    International Nuclear Information System (INIS)

    Lindesay, James V

    2002-01-01

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum

  1. The modularity of pollination networks

    DEFF Research Database (Denmark)

    Olesen, Jens Mogens; Bascompte, J.; Dupont, Yoko

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally...... consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including...... almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with

  2. Theory for the Emergence of Modularity in Complex Systems

    Science.gov (United States)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  3. Prospect of small modular reactor development

    International Nuclear Information System (INIS)

    Li Huailin; Zhu Qingyuan; Wang Suli; Xia Haihong

    2014-01-01

    Small modular reactor has the advantages of modular construction, enhanced safety/robustness from simplified designs, better ecomonic, clean and carbon free, compatible with the needs of smaller utilities and diversified application. In this paper, the prospect of small modular reactor is discussed from technology development status, constraints, economic. (authors)

  4. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Erik Hermann; Meseguer, José

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  5. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  6. Discrimination of unitary transformations in the Deutsch-Jozsa algorithm: Implications for thermal-equilibrium-ensemble implementations

    International Nuclear Information System (INIS)

    Collins, David

    2010-01-01

    A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds ∼10 5 .

  7. Renormalization of the Abelian–Higgs model in the Rξ and Unitary gauges and the physicality of its scalar potential

    Directory of Open Access Journals (Sweden)

    Nikos Irges

    2017-11-01

    Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.

  8. Bundling Products and Services Through Modularization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi

    2012-01-01

    Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....

  9. Implementing Modular A Levels.

    Science.gov (United States)

    Holding, Gordon

    This document, which is designed for curriculum managers at British further education (FE) colleges, presents basic information on the implementation and perceived benefits of the General Certificate of Education (GCE) modular A (Advanced) levels. The information was synthesized from a survey of 12 FE colleges that introduced the modular A levels…

  10. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  11. Topology of unitary groups and the prime orders of binomial coefficients

    Science.gov (United States)

    Duan, HaiBao; Lin, XianZu

    2017-09-01

    Let $c:SU(n)\\rightarrow PSU(n)=SU(n)/\\mathbb{Z}_{n}$ be the quotient map of the special unitary group $SU(n)$ by its center subgroup $\\mathbb{Z}_{n}$. We determine the induced homomorphism $c^{\\ast}:$ $H^{\\ast}(PSU(n))\\rightarrow H^{\\ast}(SU(n))$ on cohomologies by computing with the prime orders of binomial coefficients

  12. An Integral Representation of Standard Automorphic L Functions for Unitary Groups

    Directory of Open Access Journals (Sweden)

    Yujun Qin

    2007-01-01

    Full Text Available Let F be a number field, G a quasi-split unitary group of rank n. We show that given an irreducible cuspidal automorphic representation π of G(A, its (partial L function LS(s,π,σ can be represented by a Rankin-Selberg-type integral involving cusp forms of π, Eisenstein series, and theta series.

  13. Size reduction of complex networks preserving modularity

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  14. Modular Product Families and Assembly Systems

    DEFF Research Database (Denmark)

    Thyssen, Jesper

    2005-01-01

    This research centres on assembly systems designed for utilizing product modularization. Altogether, the task for companies has become an issue of managing the overall trade-off between the external market’s desire for variety and the internal efficiency and effectiveness. Product modularization...... a number of theoretical and managerial implications are identified. From a management point of view, the most im-portant finding is that modularization needs to be configured for the two competitive situations, i.e. 1) the volume flexible configuration focusing on generational product variety and 2......) the mix flexible con-figuration focusing on the simultaneous product variety. These two views are in particular different in respect to the understanding of product modularization. All in all, modularization needs to be, and can be, configured in regard to the specific task, which is believed constituting...

  15. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  16. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  17. Gaussian elimination in split unitary groups with an application to public-key cryptography

    Directory of Open Access Journals (Sweden)

    Ayan Mahalanobis

    2017-07-01

    Full Text Available Gaussian elimination is used in special linear groups to solve the word problem. In this paper, we extend Gaussian elimination to split unitary groups. These algorithms have an application in building a public-key cryptosystem, we demonstrate that.

  18. Decentralizing decision making in modularization strategies

    DEFF Research Database (Denmark)

    Israelsen, Poul; Jørgensen, Brian

    2011-01-01

    which distorts the economic effects of modularization at the level of the individual product. This has the implication that decisions on modularization can only be made by top management if decision authority and relevant information are to be aligned. To overcome this problem, we suggest a solution...... that aligns the descriptions of the economic consequences of modularization at the project and portfolio level which makes it possible to decentralize decision making while making sure that local goals are congruent with the global ones in order to avoid suboptimal behaviour. Keywords: Modularization......; Accounting; Cost allocation; Decision rule; Decentralization...

  19. Enablers & Barriers for Realizing Modularity Benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev; Thyssen, Jesper

    2012-01-01

    far less attention compared to the theories and methods concerning modularization of technical systems. Harvesting the full potential of modularization, particularly in relation to product development agility, depends on more than an optimal architecture. Key enablers in this context......Although modularization is becoming both a well-described domain in academia and a broadly applied concept in business, many of today’s firm still struggle to realize the promised benefits of this approach. Managing modularization is a complex matter, and in spite of this, a topic that has received...... are the organizational and systems related aspects. Recognizing the need for guidance to realize the benefits of modularity, the purpose of this study is through a literature study and a case study to improve the insight into the organizational and systems related enablers and barriers with regard to obtaining the full...

  20. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  1. Modular representation and analysis of fault trees

    Energy Technology Data Exchange (ETDEWEB)

    Olmos, J; Wolf, L [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Nuclear Engineering

    1978-08-01

    An analytical method to describe fault tree diagrams in terms of their modular compositions is developed. Fault tree structures are characterized by recursively relating the top tree event to all its basic component inputs through a set of equations defining each of the modulus for the fault tree. It is shown that such a modular description is an extremely valuable tool for making a quantitative analysis of fault trees. The modularization methodology has been implemented into the PL-MOD computer code, written in PL/1 language, which is capable of modularizing fault trees containing replicated components and replicated modular gates. PL-MOD in addition can handle mutually exclusive inputs and explicit higher order symmetric (k-out-of-n) gates. The step-by-step modularization of fault trees performed by PL-MOD is demonstrated and it is shown how this procedure is only made possible through an extensive use of the list processing tools available in PL/1. A number of nuclear reactor safety system fault trees were analyzed. PL-MOD performed the modularization and evaluation of the modular occurrence probabilities and Vesely-Fussell importance measures for these systems very efficiently. In particular its execution time for the modularization of a PWR High Pressure Injection System reduced fault tree was 25 times faster than that necessary to generate its equivalent minimal cut-set description using MOCUS, a code considered to be fast by present standards.

  2. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning

  3. Point transformations and renormalization in the unitary gauge. III. Renormalization effects

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-06-01

    An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ

  4. Modular robotics for playful physiotherapy

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2009-01-01

    We developed modular robotic tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We tested the modular robotic tiles for an extensive period of time (3 years) in daily use in a hospital rehabilitation unit e.......g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients in their private home. In all pilot test cases qualitative feedback indicate that the patients find the playful use of modular robotic tiles engaging and motivating for them to perform...

  5. Higher-order (non-)modularity

    DEFF Research Database (Denmark)

    Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting...... systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints....

  6. Reasoning and change management in modular ontologies

    NARCIS (Netherlands)

    Stuckenschmidt, Heiner; Klein, Michel

    2007-01-01

    The benefits of modular representations are well known from many areas of computer science. While in software engineering modularization is mainly a vehicle for supporting distributed development and re-use, in knowledge representation, the main goal of modularization is efficiency of reasoning. In

  7. Modular properties of 6d (DELL) systems

    Science.gov (United States)

    Aminov, G.; Mironov, A.; Morozov, A.

    2017-11-01

    If super-Yang-Mills theory possesses the exact conformal invariance, there is an additional modular invariance under the change of the complex bare charge [InlineMediaObject not available: see fulltext.]. The low-energy Seiberg-Witten prepotential ℱ( a), however, is not explicitly invariant, because the flat moduli also change a - → a D = ∂ℱ/∂ a. In result, the prepotential is not a modular form and depends also on the anomalous Eisenstein series E 2. This dependence is usually described by the universal MNW modular anomaly equation. We demonstrate that, in the 6 d SU( N) theory with two independent modular parameters τ and \\widehat{τ} , the modular anomaly equation changes, because the modular transform of τ is accompanied by an ( N -dependent!) shift of \\widehat{τ} and vice versa. This is a new peculiarity of double-elliptic systems, which deserves further investigation.

  8. Reconstitutable nuclear reactor fuel assembly with unitary removable top nozzle subassembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.

    1987-01-01

    A reconstitutable fuel assembly is described having at least one control rod guide thimble and a top nozzle, the guide thimble including an upper extension, the top nozzle including at least one hold-down spring, an upper hold-down plate and a lower adapter plate, an improved attaching structure removably mounting the top nozzle as a unitary subassembly on the guide thimble. The attaching structure comprises: (a) a coupling member interfitting the lower adapter plate, the upper hold-down plate and the hold-down spring disposed between the plates so as to capture and retain the plates and spring together as a unitary subassembly in which the upper plate is slidably moveable along the coupling member relative to the lower plate with the spring biasing the upper plate away from the lower plate. The coupling member has spaced apart upper and lower portions with a central passageway extending for slidably receiving the upper extension of the guide thimble in a nonattached relationship in which the coupling member is slidably movable relative to the guide thimble extension for respectively inserting and removing the coupling member on and from the guide thimble extension

  9. Specialization can drive the evolution of modularity.

    Directory of Open Access Journals (Sweden)

    Carlos Espinosa-Soto

    2010-03-01

    Full Text Available Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations.

  10. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei; Ivanov, Yurii P.; Kosel, Jü rgen; Chuvilin, Andrey

    2015-01-01

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  11. A Unitary-Transformative Nursing Science: From Angst to Appreciation.

    Science.gov (United States)

    Cowling, W Richard

    2017-10-01

    The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.

  12. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  13. Positive-definite functions and unitary representations of locally compact groups in a Hilbert space

    International Nuclear Information System (INIS)

    Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.

    1977-08-01

    It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology

  14. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  15. Modular thought in the circuit analysis

    Science.gov (United States)

    Wang, Feng

    2018-04-01

    Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.

  16. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  17. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    Science.gov (United States)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  18. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  19. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  20. Fable: Socially Interactive Modular Robot

    DEFF Research Database (Denmark)

    Magnússon, Arnþór; Pacheco, Moises; Moghadam, Mikael

    2013-01-01

    Modular robots have a significant potential as user-reconfigurable robotic playware, but often lack sufficient sensing for social interaction. We address this issue with the Fable modular robotic system by exploring the use of smart sensor modules that has a better ability to sense the behavior...

  1. Modular forms a classical approach

    CERN Document Server

    Cohen, Henri

    2017-01-01

    The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and "fun" subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin-Lehner-Li theory of newforms and including the theory of Eisenstein series, Rankin-Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacob...

  2. Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    Directory of Open Access Journals (Sweden)

    Nicholas eFurl

    2015-05-01

    Full Text Available Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be modules (with some degree of processing autonomy and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioural recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging.

  3. Modularity-like objective function in annotated networks

    Science.gov (United States)

    Xie, Jia-Rong; Wang, Bing-Hong

    2017-12-01

    We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.

  4. First unitary, then divided: the temporal dynamics of dividing attention.

    Science.gov (United States)

    Jefferies, Lisa N; Witt, Joseph B

    2018-04-24

    Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

  5. Modularization, inter-functional integration and operational performance

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth; Boer, Harry

    2014-01-01

    for firms to indeed use product modularity beneficially, in particular inter-functional integration between manufacturing and purchasing, design and sales, respectively. The purpose of the paper is to investigate the direct performance effects of modularization, as well as the mediating effects of the three...... forms of integration in the modularization-performance relationship....

  6. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  7. A Formal Theory for Modular ERDF Ontologies

    Science.gov (United States)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  8. Analysis of enabling factors in realizing modularization benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev

    2012-01-01

    Although modularization is becoming a welldescribed and broadly applied concept, many of today’s firms still struggle to realize the promised benefits of this approach. Managing modularization is a complex matter, and in spite of this, a topic that has received far less attention compared...... to theories and methods concerning modularization of technical systems.Recognizing the need for guidance to realize the benefits of modularity, the purpose of this study is through a literature study and a case study to improve the insight into the organizational and systems related enablers and barriers...... with regard to obtaining the full potential of modularization....

  9. A Comprehensive View On Benefits From Product Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2010-01-01

    In many cases the phenomenon of product modularization is presented in an inherently positive way. Based on the frequency of these positive cases it might be expected that product modularization is a universal cure for any competitive weaknesses experienced by manufacturing or service companies....... Definitely, the many various aspects of product modularization have demonstrated substantial potentials regarding improved and enhanced competitiveness, but our empirical studies illustrate that the efforts in regards to realizing specific product modularization benefits need to be managed carefully. Our...... studies illustrates that the expected and the realized benefits from a product modularization effort rarely match. In most cases the companies have only weak estimations about both the type and the magnitude of the potential benefits when planning the modularization project. This indicates a serious need...

  10. Prenominal and postnominal reduced relative clauses: arguments against unitary analyses

    Directory of Open Access Journals (Sweden)

    Petra Sleeman

    2007-01-01

    Full Text Available These last years, several analyses have been proposed in which prenominal and postnominal reduced relatives are merged in the same position. Kayne (1994 claims that both types of reduced relative clauses are the complement of the determiner. More recently, Cinque (2005 has proposed that both types are merged in the functional projections of the noun, at the left edge of the modifier system. In this paper, I argue against a unitary analysis of prenominal and postnominal participial reduced relatives.

  11. Modular low-voltage electron emitters

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2005-01-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates

  12. Modular low-voltage electron emitters

    Science.gov (United States)

    Berejka, Anthony J.

    2005-12-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates.

  13. Endomorphisms on half-sided modular inclusions

    International Nuclear Information System (INIS)

    Svegstrup, Rolf Dyre

    2006-01-01

    In algebraic quantum field theory we consider nets of von Neumann algebras indexed over regions of the space time. Wiesbrock [''Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras,'' Commun. Math. Phys. 158, 537-543 (1993)] has shown that strongly additive nets of von Neumann algebras on the circle are in correspondence with standard half-sided modular inclusions. We show that a finite index endomorphism on a half-sided modular inclusion extends to a finite index endomorphism on the corresponding net of von Neumann algebras on the circle. Moreover, we present another approach to encoding endomorphisms on nets of von Neumann algebras on the circle into half-sided modular inclusions. There is a natural way to associate a weight to a Moebius covariant endomorphism. The properties of this weight have been studied by Bertozzini et al. [''Covariant sectors with infinite dimension and positivity of the energy,'' Commun. Math. Phys. 193, 471-492 (1998)]. In this paper we show the converse, namely, how to associate a Moebius covariant endomorphism to a given weight under certain assumptions, thus obtaining a correspondence between a class of weights on a half-sided modular inclusion and a subclass of the Moebius covariant endomorphisms on the associated net of von Neumann algebras. This allows us to treat Moebius covariant endomorphisms in terms of weights on half-sided modular inclusions. As our aim is to provide a framework for treating endomorphisms on nets of von Neumann algebras in terms of the apparently simpler objects of weights on half-sided modular inclusions, we lastly give some basic results for manipulations with such weights

  14. Identification of drivers for modular production

    DEFF Research Database (Denmark)

    Brunoe, Thomas Ditlev; Bossen, Jacob; Nielsen, Kjeld

    2015-01-01

    Todays competitive environment in industry creates a need for companies to enhance their ability to introduce new products faster. To increase rampup speed reconfigurable manufacturing systems is a promising concept, however to implement this production platforms and modular manufacturing...... is required. This paper presents an analysis whether and which module drivers from general product development can be applied to the development process of a modular manufacturing system. The result is a compiled list of modular drivers for manufacturing and examples of their use....

  15. A Modular SOS for Action Notation - Revisited

    DEFF Research Database (Denmark)

    Mosses, Peter David

    A draft modular SOS for the new version of AN, referred to as AN-2, has been available since 2000. It is written in CASL and has been checked for well-formedness using CATS (CASL Tool Set). It appears to be significantly more accessible than the original SOS of AN-1. However, it now appears......-notation for the modular SOS rules. After discussing the issues, we look at some illustrative examples taken from an improved modular SOS of AN-2 (in preparation). We also look at the possibility of empirical testing of the modular SOS by a straightforward translation to Prolog....

  16. Contrasting platform thinking and product modularization

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth; Persson, Magnus

    2015-01-01

    Product modularization and platform thinking are both practices that seek to alleviate the negative impact of product customization and variety on internal operations by relying on economies of substitution. Through the use of a standardized pool of components and interfaces, these practices aim...... to create a broad spectrum of product choices. At first sight, product modularization and platform thinking are very similar. The difference between these practices can, however, be found in the manner in which they employ standardization. Where product modularization focuses on creating standardized...... variants. There is a general lack of research addressing the contingency factors that dictate the appropriateness of the use of product modularization and platform thinking in different contexts. To our knowledge, no large-scale empirical research has been reported in which the two concepts, contextual...

  17. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  18. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  19. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  20. Construction of unitary matrices from observable transition probabilities

    International Nuclear Information System (INIS)

    Peres, A.

    1989-01-01

    An ideal measuring apparatus defines an orthonormal basis vertical strokeu m ) in Hilbert space. Another apparatus defines another basis vertical strokeυ μ ). Both apparatuses together allow to measure the transition probabilities P mμ =vertical stroke(u m vertical strokeυ μ )vertical stroke 2 . The problem is: Given all the elements of a doubly stochastic matrix P mμ , find a unitary matrix U mμ such that P mμ =vertical strokeU mμ vertical stroke 2 . The number of unknown nontrivial phases is equal to the number of independent equations to satisfy. The problem can therefore be solved provided that the values of the P mμ satisfy some inequalities. (orig.)

  1. Modular invariance of N=2 minimal models

    International Nuclear Information System (INIS)

    Sidenius, J.

    1991-01-01

    We prove modular covariance of one-point functions at one loop in the diagonal N=2 minimal superconformal models. We use the recently derived general formalism for computing arbitrary conformal blocks in these models. Our result should be sufficient to guarantee modular covariance at arbitrary genus. It is thus an important check on the general formalism which is not manifestly modular covariant. (orig.)

  2. Duality ensures modular covariance

    International Nuclear Information System (INIS)

    Li Miao; Yu Ming

    1989-11-01

    We show that the modular transformations for one point functions on the torus, S(n), satisfy the polynomial equations derived by Moore and Seiberg, provided the duality property of the model is ensured. The formula for S(n) is derived by us previously and should be valid for any conformal field theory. As a consequence, the full consistency conditions for modular invariance at higher genus are completely guaranteed by duality of the theory on the sphere. (orig.)

  3. Modular Software-Defined Radio

    Directory of Open Access Journals (Sweden)

    Rhiemeier Arnd-Ragnar

    2005-01-01

    Full Text Available In view of the technical and commercial boundary conditions for software-defined radio (SDR, it is suggestive to reconsider the concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal processing algorithms themselves are the main focus of this work on modular software-defined radio. Modularity and flexibility are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into account previous findings as well as new results from system simulations presented here, the paper finally concludes with the utility of pipelining as a general design guideline for modular software-defined radio.

  4. The CPT-theorem in two-dimensional theories of local observables

    International Nuclear Information System (INIS)

    Borchers, H.J.

    1992-01-01

    Let M be a von Neumann algebra with cyclic and separating vector Ω, and let U(a) be a continuous unitary representation of R with positive generator and Ω as fixed point. If these unitaries induce for positive arguments endomorphisms of M then the modular group act as dilatations on the group of unitaries. Using this it will be shown that every theory of local observables in two dimensions, which is covariant under translations only, can be imbedded into a theory of local observables covariant under the whole Poincare group. This theory is also covariant under the CPT-transformation. (orig.)

  5. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    concepts could or should be subject to import and export in high-level Petri nets. In this paper, we formalise a minimal version of modular high-level Petri nets, which is based on the concepts of modular PNML. This shows that modular PNML can be formalised once a specific version of Petri net is fixed....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high-level...

  6. Problems in the theory of modular forms

    CERN Document Server

    Murty, M Ram; Graves, Hester

    2016-01-01

    This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field. .

  7. Summer School and Conference : Computations with Modular Forms

    CERN Document Server

    Wiese, Gabor

    2014-01-01

    This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, ...

  8. Towards a Formal Basis for Modular Safety Cases

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  9. Invariance of the Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator

    International Nuclear Information System (INIS)

    Kobe, D.H.

    1989-01-01

    The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)

  10. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    Science.gov (United States)

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  11. Modularity for Modulating Exercises and Levels

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Nielsen, Camilla Balslev

    2011-01-01

    The modular interactive tiles aim at engaging anybody (elderly, carer, hospital personnel, children) in performing playful and motivating physical activities. Inspired by modular robotics, each tile is a self-contained module with processing power and communication to neighbouring modules....... In this paper, we investigate the therapeutic use. We show how the tiles are tested extensively with cardiac patients, COLD patients and stroke patients in hospitals and in the private homes of patients and elderly. We find that therapists are using the modular aspect of the tiles for personalized training...

  12. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  13. Equacions de corbes modulars biel.líptiques

    OpenAIRE

    Ribes González, Jordi

    2013-01-01

    This thesis deals primarily with the question of finding equations for bielliptic modular curves of the type $X_{0}(N)$. After introducing the reader to some of the fundamental aspects on the theory modular curves, we discuss four different techniques for finding such models and give examples of their implementation in Sage.. Es tracta d'estudiar les corbes modulars biel.líptiques, determinades per F. Bars en l'article Bielliptic Modular curves [1999], amb l'objectiu de trobar equacions i, en...

  14. On the algebra of local unitary invariants of pure and mixed quantum states

    International Nuclear Information System (INIS)

    Vrana, Peter

    2011-01-01

    We study the structure of the inverse limit of the graded algebras of local unitary invariant polynomials using its Hilbert series. For k subsystems, we show that the inverse limit is a free algebra and the number of algebraically independent generators with homogenous degree 2m equals the number of conjugacy classes of index m subgroups in a free group on k - 1 generators. Similarly, we show that the inverse limit in the case of k-partite mixed state invariants is free and the number of algebraically independent generators with homogenous degree m equals the number of conjugacy classes of index m subgroups in a free group on k generators. The two statements are shown to be equivalent. To illustrate the equivalence, using the representation theory of the unitary groups, we obtain all invariants in the m = 2 graded parts and express them in a simple form both in the case of mixed and pure states. The transformation between the two forms is also derived. Analogous invariants of higher degree are also introduced.

  15. The virial equation of state for unitary fermion thermodynamics with non-Gaussian correlations

    International Nuclear Information System (INIS)

    Chen Jisheng; Li Jiarong; Wang Yanping; Xia Xiangjun

    2008-01-01

    We study the roles of the dynamical high order perturbation and statistically non-linear infrared fluctuation/correlation in the virial equation of state for the Fermi gas in the unitary limit. Incorporating the quantum level crossing rearrangement effects, the spontaneously generated entropy departing from the mean-field theory formalism leads to concise thermodynamical expressions. The dimensionless virial coefficients with complex non-local correlations are calculated up to the fourth order for the first time. The virial coefficients of unitary Fermi gas are found to be proportional to those of the ideal quantum gas with integer ratios through a general term formula. Counterintuitively, contrary to those of the ideal bosons (a (0) 2 =-(1/4√2)) or fermions (a (0) 2 =(1/4√2)), the second virial coefficient a 2 of Fermi gas at unitarity is found to be equal to zero. With the vanishing leading order quantum correction, the BCS–BEC crossover thermodynamics manifests the famous pure classical Boyle's law in the Boltzmann regime. The non-Gaussian correlation phenomena can be validated by studying the Joule–Thomson effect

  16. Model engineering in a modular PSA

    International Nuclear Information System (INIS)

    Friedlhuber, Thomas

    2014-01-01

    For the purpose of PSA (Probabilistic Safety Analysis) for complex industrial systems, often PSA models in the form of fault and event trees are developed to model the risk of unwanted situations (hazards). While the recent decades, PSA models have gained high acceptance and have been developed massively. This lead to an increase in model sizes and complexity. Today, PSA models are often difficult to understand and maintain. This manuscript presents the concept of a modular PSA. A modular PSA tries to cope with the increased complexity by the techniques of modularization and instantiation. Modularization targets to treat a model by smaller pieces (the 'modules') to regain control over models. Instantiation aims to configure a generic model to different contexts. Both try to reduce model complexity. A modular PSA proposes new functionality to manage PSA models. Current model management is rather limited and not efficient. This manuscript shows new methods to manage the evolutions (versions) and deviations (variants) of PSA models in a modular PSA. The concepts of version and variant management are presented in this thesis. In this context, a model comparison and fusion of PSA models is precised. Model comparison provides important feedback to model engineers and model fusion kind of combines the work from different model engineers (concurrent model engineering). Apart from model management, methods to understand the content of PSA models are presented. The methods focus to highlight the dependencies between modules rather than their contents. Dependencies are automatically derived from a model structure. They express relations between model objects (for example a fault tree may have dependencies to basic events). To visualize those dependencies (for example in form of a model cartography) can constitute a crucial aid to model engineers for understanding complex interrelations in PSA models. Within the scope of this thesis, a software named 'Andromeda' has been

  17. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  18. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  19. Introduction to orthogonal, symplectic and unitary representations of finite groups

    CERN Document Server

    Riehm, Carl R

    2011-01-01

    Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea

  20. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  1. Unitary-model-operator approach to Λ17O and lambda-nucleon effective interaction

    International Nuclear Information System (INIS)

    Fujii, Shinichiro; Okamoto, Ryoji; Suzuki, Kenji

    1998-01-01

    The unitary-model-operator approach (UMOA) is applied to Λ 17 O. A lambda-nucleon effective interaction is derived, taking the coupling of the sigma-nucleon channel into account. The lambda single-particle energies are calculated for the Os 1/2 , Op 3/2 and Op 1/2 states employing the Nijmegen soft-core potential. (author)

  2. Modularity and its effects on innovation

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth; Hansen, Poul H. Kyvsgård

    systematic work and management type of tasks, although it conflicts with the typical characteristics associated with the entrepreneur. If not managed properly, modularization can foster the modularity trap over time. At this stage intrapreneurial activities can help the organization stay ahead of the game...

  3. Generalized epidemic process on modular networks.

    Science.gov (United States)

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  4. Modular co-evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Yu Zhong-Hao

    2007-08-01

    Full Text Available Abstract Background The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. Results In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. Conclusion The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.

  5. Curiosities at c-effective = 1

    International Nuclear Information System (INIS)

    Flohr, M.A.I.

    1993-12-01

    The moduli space of all rational conformal quantum field theories with effective central charge c eff = 1 is considered. Whereas the space of unitary theories essentially forms a manifold, the non unitary ones form a fractal which lies dense in the parameter plane. Moreover, the points of this set are shown to be in one-to-one correspondence with the elements of the modular group for which an action on this set is defined. (orig.)

  6. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  7. Criteria for software modularization

    Science.gov (United States)

    Card, David N.; Page, Gerald T.; Mcgarry, Frank E.

    1985-01-01

    A central issue in programming practice involves determining the appropriate size and information content of a software module. This study attempted to determine the effectiveness of two widely used criteria for software modularization, strength and size, in reducing fault rate and development cost. Data from 453 FORTRAN modules developed by professional programmers were analyzed. The results indicated that module strength is a good criterion with respect to fault rate, whereas arbitrary module size limitations inhibit programmer productivity. This analysis is a first step toward defining empirically based standards for software modularization.

  8. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum

  9. Automatic Modeling and Simulation of Modular Robots

    Science.gov (United States)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  10. High-energy properties of a class of unitary eikonal models for multiproduction

    CERN Document Server

    Redei, L B

    1974-01-01

    The high-energy properties of a simple class of unitary, crossing- symmetric eikonal models of multiproduction are discussed on the basis of the general closed expression given for the S-matrix elements in a previous publication. In particular, the high-energy behaviour of the multiplicity moments is discussed and it is shown that the KNO scaling relation emerges in a very natural fashion in this class of models. (8 refs).

  11. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  12. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  13. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  14. Modular bootstrap in Liouville field theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Suchanek, Paulina

    2010-01-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  15. Modular bootstrap in Liouville field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek, E-mail: hadasz@th.if.uj.edu.p [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Jaskolski, Zbigniew, E-mail: jask@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland); Suchanek, Paulina, E-mail: paulina@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland)

    2010-02-22

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  16. Modular bootstrap in Liouville field theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2010-02-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  17. Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M

    2013-01-01

    We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)

  18. Universal and Deterministic Manipulation of the Quantum State of Harmonic Oscillators: A Route to Unitary Gates for Fock State Qubits

    International Nuclear Information System (INIS)

    Santos, Marcelo Franca

    2005-01-01

    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state

  19. Algebra and Arithmetic of Modular Forms

    DEFF Research Database (Denmark)

    Rustom, Nadim

    In [Rus14b] and [Rus14a], we study graded rings of modular forms over congruence subgroups, with coefficients in subrings A of C, and determine bounds of the weights of modular forms constituting a minimal set of generators, as well as on the degree of the generators of the ideal of relations...... between them. We give an algorithm that computes the structures of these rings, and formulate conjectures on the minimal generating weight for modular forms with coefficients in Z. We discuss questions of finiteness of systems of Hecke eigenvalues modulo pm, for a prime p and an integer m ≥ 2, in analogy...

  20. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  1. Modular invariance, chiral anomalies and contact terms

    International Nuclear Information System (INIS)

    Kutasov, D.

    1988-03-01

    The chiral anomaly in heterotic strings with full and partial modular invariance in D=2n+2 dimensions is calculated. The boundary terms which were present in previous calculations are shown to be cancelled in the modular invariant case by contact terms, which can be obtained by an appropriate analytic continuation. The relation to the low energy field theory is explained. In theories with partial modular invariance, an expression for the anomaly is obtained and shown to be non zero in general. (author)

  2. Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.

    Science.gov (United States)

    Kalsner, S; Abdali, S A

    2001-06-01

    1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.

  3. Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status

    Science.gov (United States)

    Smrekar, Claire

    2009-01-01

    This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…

  4. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  5. Hierarchy of modular graph identities

    International Nuclear Information System (INIS)

    D’Hoker, Eric; Kaidi, Justin

    2016-01-01

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  6. Modularity in New Market Formation

    DEFF Research Database (Denmark)

    Sanchez, Ron; Hang, Chang Chieh

    2017-01-01

    In this paper we appraise the ways in which use of closed-system proprietary product architectures versus open-system modular product architectures is likely to influence the dynamics and trajectory of new product market formation. We compare the evolutions of new markets in China for gas......-powered two-wheeled vehicles (G2WVs) based (initially) on closed-system proprietary architectures and for electric-powered two-wheeled vehicles (E2WVs) based on open-system modular architectures. We draw on this comparison to suggest ways in which the use of the two different kinds of architectures...... as the basis for new kinds of products may result in very different patterns and speeds of new market formation. We then suggest some key implications of the different dynamics of market formation associated with open-system modular architectures for both the competence-based strategic management (CBSM...

  7. Modular system design and evaluation

    CERN Document Server

    Levin, Mark Sh

    2015-01-01

    This book examines seven key combinatorial engineering frameworks (composite schemes consisting of algorithms and/or interactive procedures) for hierarchical modular (composite) systems. These frameworks are based on combinatorial optimization problems (e.g., knapsack problem, multiple choice problem, assignment problem, morphological clique problem), with the author’s version of morphological design approach – Hierarchical Morphological Multicritieria Design (HMMD) – providing a conceptual lens with which to elucidate the examples discussed. This approach is based on ordinal estimates of design alternatives for systems parts/components, however, the book also puts forward an original version of HMMD that is based on new interval multiset estimates for the design alternatives with special attention paid to the aggregation of modular solutions (system versions). The second part of ‘Modular System Design and Evaluation’ provides ten information technology case studies that enriches understanding of th...

  8. Configurable double-sided modular jet impingement assemblies for electronics cooling

    Science.gov (United States)

    Zhou, Feng; Dede, Ercan Mehmet

    2018-05-22

    A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.

  9. A modular interpretation of various cubic towers

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Bassa, Alp; Beelen, Peter

    2017-01-01

    In this article we give a Drinfeld modular interpretation for various towers of function fields meeting Zink's bound.......In this article we give a Drinfeld modular interpretation for various towers of function fields meeting Zink's bound....

  10. Configurable unitary transformations and linear logic gates using quantum memories.

    Science.gov (United States)

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  11. Failure of Emperion modular femoral stem with implant analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Stronach, MD, MS

    2016-03-01

    Full Text Available Modularity in total hip arthroplasty provides multiple benefits to the surgeon in restoring the appropriate alignment and position to a previously damaged hip joint. The vast majority of modern implants incorporate modularity into their design with some implants having multiple modular interfaces. There is the potential for failure at modular junctions because of fretting and crevice corrosion in combination with mechanical loading. This case report details the failure of an Emperion (Smith and Nephew, Memphis, TN femoral stem in a 67-year-old male patient 6 years after total hip replacement. Analysis of the implant revealed mechanically assisted crevice corrosion that likely accelerated fatigue crack initiation in the hip stem. The benefits of modularity come with the potential drawback of a combination of fretting and crevice corrosion at the modular junction, which may accelerate fatigue, crack initiation and ultimately reduce the hip longevity.

  12. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  13. Unitary pole approximations and expansions in few-body systems

    International Nuclear Information System (INIS)

    Casel, A.; Haberzettl, H.; Sandhas, W.

    1982-01-01

    The unitary pole approximations or expansions of the two-body subsystem operators are well known, and particularly efficient and practical, methods to reduce the three-body problem to an effective two-body theory. In the present investigation we develop generalizations of these approximation techniques to the subsystem amplitudes of problems with higher particle numbers. They are based on the expansion of effective potentials which, in contrast to the genuine two-body interactions, are now energy dependent. Despite this feature our generalizations require only energy independent form factors, thus preserving one of the essential advantages of the genuine two-body approach. The application of these techniques to the four-body case is discussed in detail

  14. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  15. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    -12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...... on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates....... If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory....

  16. Modularization Technology in Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-01-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  17. Measuring Modularity in Open Source Code Bases

    Directory of Open Access Journals (Sweden)

    Roberto Milev

    2009-03-01

    Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.

  18. Modularizing development

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Doucette, Jamie

    a deeper and wider understanding of Korea’s development experience with the hope that Korea’s past can offer lessons for developing countries in search of sustainable and broad‐based development" (KSP 2011). To do so, the KSP provides users with a modularized set of policy narratives that represent Korea...

  19. A Modular Approach to Redundant Robot Control

    International Nuclear Information System (INIS)

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be 'passive control laws', i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust

  20. Brain modularity controls the critical behavior of spontaneous activity.

    Science.gov (United States)

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  1. Unitary 4-point correlators from classical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Bombini, Alessandro; Galliani, Andrea; Giusto, Stefano [Universita di Padova, Dipartimento di Fisica ed Astronomia ' ' Galileo Galilei' ' , Padua (Italy); I.N.F.N. Sezione di Padova, Padua (Italy); Moscato, Emanuele; Russo, Rodolfo [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom)

    2018-01-15

    We compute correlators of two heavy and two light operators in the strong coupling and large c limit of the D1D5 CFT which is dual to weakly coupled AdS{sub 3} gravity. The light operators have dimension two and are scalar descendants of the chiral primaries considered in arXiv:1705.09250, while the heavy operators belong to an ensemble of Ramond-Ramond ground states. We derive a general expression for these correlators when the heavy states in the ensemble are close to the maximally spinning ground state. For a particular family of heavy states we also provide a result valid for any value of the spin. In all cases we find that the correlators depend non-trivially on the CFT moduli and are not determined by the symmetries of the theory; however, they have the properties expected for correlators among pure states in a unitary theory, in particular they do not decay at large Lorentzian times. (orig.)

  2. Modular invariance and stochastic quantization

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.

    1989-01-01

    In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed

  3. Modular assembly of optical nanocircuits

    Science.gov (United States)

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-01

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  4. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  5. Buying Modular Systems in Technology-Intensive Markets

    NARCIS (Netherlands)

    Frambach, R.T.; Stremersch, S.; Weiss, Allen M.; Dellaert, B.

    2003-01-01

    Technology-intensive markets consist of products that are often interdependent and operate together as a modular system. Although prior research has extensively addressed standardization and network externalities in such markets, it has not addressed the buying of modular systems. The authors

  6. Advantages of going modular in HTRs

    International Nuclear Information System (INIS)

    Reutler, H.; Lohnert, G.H.

    1984-01-01

    A multitude of problems that are encountered in large HTR power plans, constructively as well as concerning plant safety, can be related to the mere physical size of a large reactor core. In limiting the thermal power of an HTR-module to approximately 200 MW an inherent limitation of the fuel element temperature below critical values can be guaranteed for all possible core heat up accidents. Consequently, a significant failure rate of coated particles can be excluded and, hence, out of physical reasons, no intolerable fission product release from the core will ever have to be considered. The HTR-module is so qualified and very well suited for all possible plant sides which have to be taken into consideration for medium sized plants for the production of process steam and electricity. The cost investigations show considerable cost advantages for modular HTRs. For German conditions it was found that even a four-modular plant (800 MW/thermal) is competitive with a fossile-fueled plant of the same size, the specific plant costs were evaluated to be DM 4700/kW (electric). Moreover the investigations show that the increase of the power of the modular unit yields only small cost advantages, therefore in a modularized power plant it even would be possible to reduce the power of a modular unit below 200 MW without having to cope with severe economic penalties, if the distance from technological or safety limits is felt to be too small. (orig.)

  7. J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2006-01-01

    We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.

  8. An Incremental Approach to Support Realization of Modularization Benefits

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2010-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we studied 40 modularity cases. Then we develop a research framework with the purpose of uncovering the current state. Furthermore, we formulate a tentative model aiming at guiding the platform management...

  9. Calculation and modular properties of multi-loop superstring amplitudes

    International Nuclear Information System (INIS)

    Danilov, G S

    2012-01-01

    Multi-loop superstring amplitude is calculated in the conventional gauge where Grassmann moduli are carried by the 2D gravitino field. Generally, instead of the modular symmetry, the amplitudes hold the symmetry under modular transformations added by relevant transformations of the 2D local supersymmetry. If a number of loops are larger than 3, the integration measures are not modular forms. In this case the expression for the amplitude contains an integral over the bound of the fundamental region of the modular group. (paper)

  10. Modular Lego-Electronics

    KAUST Repository

    Shaikh, Sohail F.; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Khan, Sherjeel M.; Hussain, Muhammad Mustafa

    2017-01-01

    . Here, a generic manufacturable method of converting state-of-the-art complementary metal oxide semiconductor-based ICs into modular Lego-electronics is shown with unique geometry that is physically identifiable to ease manufacturing and enhance

  11. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  12. Modular envelopes, OSFT and nonsymmetric (non-$\\sum$) modular operads

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2016-01-01

    Roč. 10, č. 2 (2016), s. 775-809 ISSN 1661-6952 Institutional support: RVO:67985840 Keywords : open string * surface * modular completion Subject RIV: BA - General Mathematics Impact factor: 0.625, year: 2016 http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=10&iss=2&rank=12

  13. On Modularity in (V)Shorad Air Defense

    NARCIS (Netherlands)

    Veen, E.M. van der

    2001-01-01

    This paper addresses the concept of modularity in the context of (V)Shorads Air Defence. Modularity is a technical concept that provides improved operational flexibility to (V)Shorad systems. Such improved flexibility is specifically relevant to mobile crisis reaction forces. The discussion is

  14. Economics of the modular reactor as new-generation nuclear power

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1987-01-01

    This paper lists thirteen advantages which could be effectuated by modular reactors. These advantages are derived basically from the general attributes of modularization, i.e., continuity of production, smallness of size/capacity, ease of standardization, and built-in passive safety. This paper also suggests a general direction in which the development of modular reactors evolve, and a possible nuclear application where modular reactors be effectively utilized. (author)

  15. Balancing Modularity and Solution Space Freedom

    DEFF Research Database (Denmark)

    Vos, Maren A.; Raassens, Néomie; Van der Borgh, Michel

    2018-01-01

    that modularity reflects knowledge specialisation and solution space freedom reflects knowledge variety. Both of these dimensions affect organisational learning and, in turn, sustainable innovation. Second, we argue that the relationship between customisation and organisational learning is affected by supplier...... theory to provide insights into how TI firms can achieve ‘win-win’ situations where sustainable innovation is increased through customisation. First, we argue that customisation should be viewed two-dimensionally and identify both modularity and solution space freedom as important dimensions. We argue...... characteristics, specifically supplier sophistication. Survey data from 166 managers were used to empirically test the conceptual model and hypotheses. Polynomial response surface analysis confirms that customising by balancing high degrees of both modularity and solution space freedom results in superior...

  16. Feature-Based versus Category-Based Induction with Uncertain Categories

    Science.gov (United States)

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…

  17. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  18. Convergent evolution of modularity in metabolic networks through different community structures.

    Science.gov (United States)

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network

  19. An Informal Overview of the Unitary Group Approach

    International Nuclear Information System (INIS)

    Sonnad, V.; Escher, J.; Kruse, M.; Baker, R.

    2016-01-01

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  20. Territory in the Constitutional Standards of Unitary States

    Directory of Open Access Journals (Sweden)

    Marina V. Markhgeym

    2017-06-01

    Full Text Available The article is based on the analysis of the constitutions of seven European countries (Albania, Hungary, Greece, Spain, Malta, Poland, Sweden. The research allows to reveal general and specific approaches to consolidation of norms on territories in a state and give the characteristic of the corresponding constitutional norms. Given the authors ' comprehensive approach to the definition of the territory of the state declared constitutional norms were assessed from the perspective of the fundamental principles and constituent elements of the territory. Considering the specifics of the constitutional types of state territories authors suggest typical and variative models and determine the constitutions of unitary states, distinguished by their originality in the declared group of legal relations. The original constitutional language areas associated with the introduction at the state level, these types of areas that are not typical for other countries.

  1. Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System

    International Nuclear Information System (INIS)

    Hu Baolin; Di Yaomin

    2007-01-01

    The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.

  2. Modular Knowledge Representation and Reasoning in the Semantic Web

    Science.gov (United States)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  3. Determining the best forecasting method to estimate unitary charges price indexes of PFI data in central region Peninsular Malaysia

    Science.gov (United States)

    Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan

    2013-04-01

    The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.

  4. Modular nuclear fuel element, modular capsule for a such element and fabrication process for a modular capsule

    International Nuclear Information System (INIS)

    Chotard, A.

    1988-01-01

    The nuclear fuel rod is made by a tubular casing closed at both ends and containing a series of modular capsules with little play with the casing and made by a jacket closed by porous plugs at both ends and containing a stack of fuel pellets [fr

  5. Development of modularity in the neural activity of children's brains

    International Nuclear Information System (INIS)

    Chen, Man; Deem, Michael W

    2015-01-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease. (paper)

  6. Curriculum Development through YTS Modular Credit Accumulation.

    Science.gov (United States)

    Further Education Unit, London (England).

    This document reports the evaluation of the collaborately developed Modular Training Framework (MainFrame), a British curriculum development project, built around a commitment to a competency-based, modular credit accumulation program. The collaborators were three local education authorities (LEAs), those of Bedfordshire, Haringey, and Sheffield,…

  7. Emergent interfaces for feature modularization

    CERN Document Server

    Ribeiro, Márcio; Brabrand, Claus

    2014-01-01

    Developers frequently introduce errors into software systems when they fail to recognise module dependencies. Using forty-three software families and Software Product Lines (SPLs), where the majority are commonly used in industrial practice, the authors reports on the feature modularization problem and provides a study of how often it may occur in practice. To solve the problem they present the concept of emergent feature modularization which aims to establish contracts between features to prevent developers from breaking other features when performing a maintenance task.

  8. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  9. Modular invariants from simple currents. An explicit proof

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Yankielowicz, S.

    1989-01-01

    In a previous paper an orbifold construction was used to demonstrate that the existence of primary fields with simple fusion rules in a conformal field theory implies the existence of non-diagonal modular invariant partition functions. Here we present a direct and explicit proof of modular invariance, which also covers a few cases that could not be obtained with the orbifold method. We also give a very simple general formula for the modular matrix M. (orig.)

  10. Calculation and modular properties of multiloop superstring amplitudes

    International Nuclear Information System (INIS)

    Danilov, G. S.

    2013-01-01

    Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.

  11. Reliability and diagnostic of modular systems

    Directory of Open Access Journals (Sweden)

    J. Kohlas

    2014-01-01

    Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.

  12. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  13. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    International Nuclear Information System (INIS)

    Yao, Yao

    2015-01-01

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model

  14. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  15. Capital costs of modular HTR reactors

    International Nuclear Information System (INIS)

    Kugeler, K.; Froehling, W.

    1993-01-01

    A decisive factor in the introduction of a reactor line, in addition of its safety, which should exclude releases of radioactivity into the environment, is its economic development and, consequently, its competitiveness. The costs of the pressurized water reactor are used for comparison with the modular HTR reactor. If the measures proposed for evolutionary increases in safety of the PWR are taken, cost increases will have to be expected for that line. The modular HTR can now attain specific construction costs of 3000 deutschmarks per electric kilowatt. Mass production and the introduction of cost-reducing innovations can improve the economy of this line even further. In this way, the modular HTR concept offers the possibility to vendors and operators to set up new economic yardsticks in safety technology. (orig.) [de

  16. Theta function identities associated with Ramanujan's modular ...

    Indian Academy of Sciences (India)

    In Chapter 20 of his second notebook [6], Ramanujan recorded several theta function identities associated with modular equations of composite degree 15. These identities have previously been proved by Berndt in [3]. But he proved most of these theta function identities using modular equations. These identities can also ...

  17. The modularization construction of piping system installation in AP1000 plant

    International Nuclear Information System (INIS)

    Lu Song; Wang Yuan; Wei Junming

    2012-01-01

    Modularization construction is the main technique used in AP1000 plants, the piping Modularization installation will impact directly to the module construction as the important part of the Modularization construction. After the piping system has took the modularization design in AP1000 plants, some installation works of piping system has moved from the site to fabrication shop. With improving the construction quality and minimizing the time frame of project, the critical paths can be optimized. This paper has analyzed the risk and challenge that met during the modularization construction period of piping systems though introducing the characteristic of modularization construction for AP1000 piping systems, and get construction experiences from the First AP1000 plants in the world, then it will be the firmly basics for the wide application of modularization construction in the future. (authors)

  18. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  19. Modular Firewalls for Storage Areas

    Science.gov (United States)

    Fedor, O. H.; Owens, L. J.

    1986-01-01

    Giant honeycomb structures assembled in modular units. Flammable materials stored in cells. Walls insulated with firebrick to prevent spread of fire among cells. Portable, modular barrier withstands heat of combustion for limited time and confines combustion products horizontally to prevent fire from spreading. Barrier absorbs heat energy by ablation and not meant to be reused. Designed to keep fires from spreading among segments of solid rocket propellant in storage, barrier erected between storage units of other flammable or explosive materials; tanks of petroleum or liquid natural gas. Barrier adequate for most industrial purposes.

  20. An analytically solvable model for rapid evolution of modular structure.

    Directory of Open Access Journals (Sweden)

    Nadav Kashtan

    2009-04-01

    Full Text Available Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here, a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying goals.

  1. Design Requirements for Designing Responsive Modular Manufacturing Systems

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Madsen, Ole; Nielsen, Kjeld

    2011-01-01

    Customers demand the newest technologies, newest designs, the ability to customise, high quality, and all this at a low cost. These are trends which challenge the traditional way of operating manufacturing companies, especially in regard to product development and manufacturing. Research...... the needed flexibility and responsiveness, but such systems are not yet fully achieved. From related theory it is known that achieving modular benefits depend on the modular architecture; a modular architecture which must be developed according to the customer needs. This makes production needs a design...... requirement in order to achieve responsiveness and other benefits of modular manufacturing systems (MMS). Due to the complex and interrelated nature of a production system and its surroundings these production needs are complex to identify. This paper presents an analysis framework for identification...

  2. Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Takemae, Seiji

    2000-01-01

    We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...

  3. Modular remote radiation monitor

    International Nuclear Information System (INIS)

    Lacerda, Fabio; Farias, Marcos S.; Aghina, Mauricio A.C.; Oliveira, Mauro V.

    2013-01-01

    The Modular Remote Radiation Monitor (MRRM) is a novel radiation monitor suitable for monitoring environmental exposure to ionizing radiation. It is a portable compact-size low-power microprocessor-based electronic device which provides its monitoring data to other electronic systems, physically distant from it, by means of an electronic communication channel, which can be wired or wireless according to the requirements of each application. Besides its low-power highly-integrated circuit design, the Modular Remote Radiation Monitor is presented in a modular architecture, which promotes full compliance to the technical requirements of different applications while minimizing cost, size and power consumption. Its communication capability also supports the implementation of a network of multiple radiation monitors connected to a supervisory system, capable of remotely controlling each monitor independently as well as visualizing the radiation levels from all monitors. A prototype of the MRRM, functionally equivalent to the MRA-7027 radiation monitor, was implemented and connected to a wired MODBUS network of MRA-7027 monitors, responsible for monitoring ionizing radiation inside Argonauta reactor room at Instituto de Engenharia Nuclear. Based on the highly positive experimental results obtained, further design is currently underway in order to produce a consumer version of the MRRM. (author)

  4. Modular Cure Provision

    DEFF Research Database (Denmark)

    Winther-Hansen, Casper; Frandsen, Thomas

    facilitate co-creation through open platforms and service modularity. Based on data from two pharmaceuticals we explore issues of governance related to the relative openness of platforms and their completeness. Whereas some pharmaceuticals should cater to sophisticated needs of competent users through open...

  5. Modular chemiresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Maksudul M.; Sampathkumaran, Uma

    2018-02-20

    The present invention relates to a modular chemiresistive sensor. In particular, a modular chemiresistive sensor for hypergolic fuel and oxidizer leak detection, carbon dioxide monitoring and detection of disease biomarkers. The sensor preferably has two gold or platinum electrodes mounted on a silicon substrate where the electrodes are connected to a power source and are separated by a gap of 0.5 to 4.0 .mu.M. A polymer nanowire or carbon nanotube spans the gap between the electrodes and connects the electrodes electrically. The electrodes are further connected to a circuit board having a processor and data storage, where the processor can measure current and voltage values between the electrodes and compare the current and voltage values with current and voltage values stored in the data storage and assigned to particular concentrations of a pre-determined substance such as those listed above or a variety of other substances.

  6. Application and development analysis of nuclear power plant modular construction

    International Nuclear Information System (INIS)

    Fang Xiaopeng

    2015-01-01

    Modular Construction is currently one of the major development trends for the nuclear power plant construction technology worldwide. In the first-of-a-kind AP1000 Nuclear Power Project practiced in China, the large-scale structural modules and mechanical modules have been successfully fabricated, assembled and installed. However, in the construction practice of the project, some quality issues are identified with the assembly and installation process of large-scale structural modules in addition to the issue of incomplete supply of mechanical modules, which has failed to fully demonstrate the features and merits of modular construction. This paper collects and consolidates the issues of modular construction of AP1000 first of a kind reactor, providing root cause analysis in the aspects of process design, quality control, site construction logic, interface management in the process of module fabrication, assembly and installation; modular construction feasibility assessment index is proved based on the quantification and qualitative analysis of the impact element. Based on the modular construction feasibility, NPP modular construction improvement suggestions are provided in the aspect of modular assembly optimization definition, tolerance control during the fitting process and the construction logic adjustment. (author)

  7. The SNARC effect is not a unitary phenomenon.

    Science.gov (United States)

    Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone

    2018-04-01

    Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

  8. Procedural-Based Category Learning in Patients with Parkinson's Disease: Impact of Category Number and Category Continuity

    Directory of Open Access Journals (Sweden)

    J. Vincent eFiloteo

    2014-02-01

    Full Text Available Previously we found that Parkinson's disease (PD patients are impaired in procedural-based category learning when category membership is defined by a nonlinear relationship between stimulus dimensions, but these same patients are normal when the rule is defined by a linear relationship (Filoteo et al., 2005; Maddox & Filoteo, 2001. We suggested that PD patients' impairment was due to a deficit in recruiting ‘striatal units' to represent complex nonlinear rules. In the present study, we further examined the nature of PD patients' procedural-based deficit in two experiments designed to examine the impact of (1 the number of categories, and (2 category discontinuity on learning. Results indicated that PD patients were impaired only under discontinuous category conditions but were normal when the number of categories was increased from two to four. The lack of impairment in the four-category condition suggests normal integrity of striatal medium spiny cells involved in procedural-based category learning. In contrast, and consistent with our previous observation of a nonlinear deficit, the finding that PD patients were impaired in the discontinuous condition suggests that these patients are impaired when they have to associate perceptually distinct exemplars with the same category. Theoretically, this deficit might be related to dysfunctional communication among medium spiny neurons within the striatum, particularly given that these are cholinergic neurons and a cholinergic deficiency could underlie some of PD patients’ cognitive impairment.

  9. Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity

    International Nuclear Information System (INIS)

    Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen

    2010-01-01

    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement. (fast track communication)

  10. Fortran code for generating random probability vectors, unitaries, and quantum states

    Directory of Open Access Journals (Sweden)

    Jonas eMaziero

    2016-03-01

    Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.

  11. Scalar ΛN and ΛΛ interaction in a chiral unitary approach

    International Nuclear Information System (INIS)

    Sasaki, K.; Oset, E.; Vacas, M. J. Vicente

    2006-01-01

    We study the central part of the ΛN and ΛΛ potential by considering the correlated and uncorrelated two-meson exchange in addition to the ω exchange contribution. The correlated two-meson exchange is evaluated within a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential, which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases that is counterbalanced by the ω exchange contribution

  12. Modular biometric system

    Science.gov (United States)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  13. Contested Categories

    DEFF Research Database (Denmark)

    Drawing on social science perspectives, Contested Categories presents a series of empirical studies that engage with the often shifting and day-to-day realities of life sciences categories. In doing so, it shows how such categories remain contested and dynamic, and that the boundaries they create...

  14. Investigation of small and modular-sized fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Kawasaki, Nobuchika; Umetsu, Yoichiro; Akatsu, Minoru; Kasai, Shigeo; Konomura, Mamoru; Ichimiya, Masakazu

    2000-06-01

    In this paper, feasibility of the multipurpose small fast reactor, which could be used for requirements concerned with various utilization of electricity and energy and flexibility of power supply site, is discussed on the basis of examination of literatures of various small reactors. And also, a possibility of economic improvement by learning effect of fabrication cost is discussed for the modular-sized reactor which is expected to be a base load power supply system with lower initial investment. (1) Multipurpose small reactor (a) The small reactor with 10MWe-150MWe has a potential as a power source for large co-generation, a large island, a middle city, desalination and marine use. (b) Highly passive mechanism, long fuel exchange interval, and minimized maintenance activities are required for the multipurpose small reactor design. The reactor has a high potential for the long fuel exchange interval, since it is relatively easy for FR to obtain a long life core. (c) Current designs of small FRs in Japan and USA (NERI Project) are reviewed to obtain design requirements for the multipurpose small reactor. (2) Modular-sized reactor (a) In order that modular-sized reactor could be competitive to 3200MWe twin plant (two large monolithic reactor) with 200kyenWe, the target capital cost of FOAK is estimated to be 260kyen/yenWe for 800MWe modular, 280kyen/yenWe for 400MWe modular and 290kyen/yenWe for 200MWe by taking account of the leaning effect. (b) As the result of the review on the current designs of modular-sized FRs in Japan and USA (S-PRISM) from the viewpoint of economic improvement, since it only be necessary to make further effort for the target capital cost of FOAK, since the modular-sized FRs requires a large amount of material for shielding, vessels and heat exchangers essentially. (author)

  15. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    Science.gov (United States)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  16. Adaptive Modular Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Þorsteinsson, Arnar Tumi

    2011-01-01

    In this paper, we describe the concept of adaptive modular playware, where the playware adapts to the interaction of the individual user. We hypothesize that there are individual differences in user interaction capabilities and styles, and that adaptive playware may adapt to the individual user...

  17. The Impact of Product and Service Modularity on Business Performance

    DEFF Research Database (Denmark)

    Hsuan, Juliana; Frandsen, Thomas; Raja, Jawwad

    Modularity has been proposed as a powerful way of managing complexity. The emerging literature points to the importance of modularity of service architecture, with case based studies in logistics and healthcare. Little is known about the relationship between product and service modularity...... and their effects on business performance, both empirically and theoretically. This paper explores the relationship between product and service modularity and their effects on business performance based on a survey of Danish manufacturers. We provide empirical and theoretical insights into the emerging fields...

  18. Music, Language and Modularity Framed in Action

    Directory of Open Access Journals (Sweden)

    Isabelle Peretz

    2009-06-01

    Full Text Available Here, I examine to what extend music and speech share processing components by focusing on vocal production, that is, singing and speaking. In shaping my review, the modularity concept has been and continues to play a determinant role. Thus, I will first provide a brief background on the contemporary notion of modularity. Next, I will present evidence that musical abilities depend, in part, on modular processes. The evidence is coming mainly from neuropsychological dissociations. The relevance of findings of overlap in neuroimaging, of interference and domain-transfer effects between music and speech will also be addressed and discussed. Finally, I will contrast the modularity position with the resource-sharing framework proposed by Patel (2003, 2008a. This critical review should be viewed as an invitation to undertake future comparative research between music and language by focusing on the details of the functions that these mechanisms carry out, not only their specificity. Such comparative research is very important not only theoretically but also in practice because of their obvious clinical and educational implications.

  19. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  20. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  1. Harmonic Maass forms and mock modular forms

    CERN Document Server

    Bringmann, Kathrin; Ono, Ken

    2017-01-01

    Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10-15 years, this theory has been extended to certain non-holomorphic functions, the so-called "harmonic Maass forms". The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called "mock theta functions" which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

  2. Non-Archimedean L-functions and arithmetical Siegel modular forms

    CERN Document Server

    1991-01-01

    This book is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth (which were first introduced by Amice, Velu and Vishik in the elliptic modular case when they come from a good supersingular reduction of ellptic curves and abelian varieties). The given construction of these p-adic L-functions uses precise algebraic properties of the arihmetical Shimura differential operator. The book could be very useful for postgraduate students and for non-experts giving a quick access to a rapidly developping domain of algebraic number theory: ...

  3. Local modular Hamiltonians from the quantum null energy condition

    Science.gov (United States)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  4. Modular products: Smartphone design from a circular economy perspective

    OpenAIRE

    Schischke, Karsten; Proske, Marina; Nissen, Nils F.; Lang, Klaus-Dieter

    2016-01-01

    Currently a range of modular smartphones is emerging, including the Fairphone 2, Puzzlephone, Google's Project ARA, RePhone, LG's G5 and others. In an industry of perceived short product cycles a modular design concept might become crucial for longer product lifetimes. The paper provides an overview on latest product developments and assesses these against environmental criteria, including longevity, durability, upgradeability, repairability and Design for Recycling and Reuse. Modular product...

  5. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  6. A modular microfluidic architecture for integrated biochemical analysis.

    Science.gov (United States)

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  7. 47 CFR 65.102 - Petitions for exclusion from unitary treatment and for individual treatment in determining...

    Science.gov (United States)

    2010-10-01

    ... granted for a period of two years if the cost of capital for interstate exchange service is so low as to... required rate of return for interstate exchange access services. (b) A petition for exclusion from unitary... and for individual treatment in determining authorized return for interstate exchange access service...

  8. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    Science.gov (United States)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  9. Modularization of Courses.

    Science.gov (United States)

    Eastern Arizona Coll., Thatcher.

    Eastern Arizona College has developed a modularized system of instruction for five vocational and vocationally related courses--Introduction to Business, Business Mathematics, English, Drafting, and Electronics. Each course is divided into independent segments of instruction and students have open-entry and exit options. This document reviews the…

  10. Functional modularity in lake-dwelling characin fishes of Mexico

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Ornelas-García

    2017-09-01

    Full Text Available Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi, which are differentiated by their trophic habits. Two different datasets were analyzed: (1 skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2 a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi. Skull shape showed significant differences among species and sex (P < 0.001, where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body, being significant only for A. caballeroi.

  11. Modular robotics overview of the 'state of the art'

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Hamel, W.R.

    1996-08-01

    The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development

  12. Modular Robotic Vehicle

    Science.gov (United States)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  13. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team.

    Science.gov (United States)

    Sala, Roberto; Malacarne, Mara; Tosi, Fabio; Benzi, Manuela; Solaro, Nadia; Tamorri, Stefano; Spataro, Antonio; Pagani, Massimo; Lucini, Daniela

    2017-12-01

    Long term endurance training, as occurring in elite athletes, is associated to cardiac neural remodeling in favor of cardioprotective vagal mechanisms, resulting in resting bradycardia and augmented contribution of cardiac parasympathetic nerve activity. Autonomic assessment can be performed by way of heart rate variability. This technique however provides multiple indices, and there is not yet complete agreement on their specific significance. Purpose of the study was to assess whether a rank transformation and radar plot could provide a unitary autonomic index, capable to show a correlation between intensity of individual work and quality of autonomic regulation. We studied 711 (23.6±6.2 years) elite athletes that took part in the selection procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee (CONI). Indices from Heart Rate Variability HRV obtained at rest, during standing up and during recovery from an exercise test were used to compute a percent ranked unitary autonomic index for sport (ANSIs), taken as proxy of quality of autonomic regulation. Within the observed wide range of energy expenditure, the unitary autonomic index ANSIs appears significantly correlated to individual and discipline specific training workloads (r=0.25, P<0.001 and r=0.78, P<0.001, respectively), correcting for possible age and gender bias. ANSIs also positively correlates to lipid profile. Estimated intensity of physical activity correlates with quality of cardiac autonomic regulation, as expressed by a novel unitary index of cardiac autonomic regulation. ANSIs could provide a novel and convenient approach to individual autonomic evaluation in athletes.

  14. Understanding the Modularity of Socio-technical Production Systems

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff

    This paper seeks to contribute to the development of Configurational Theory by offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network Theory (ANT) in particular. By formulating modularity from an ANT perspective covering social...

  15. Modular action on the massive algebra

    International Nuclear Information System (INIS)

    Saffary, T.

    2005-12-01

    The subject of this thesis is the modular group of automorphisms (σ m t ) t element of R , m>0, acting on the massive algebra of local observables M m (O) having their support in O is contained in R 4 . After a compact introduction to micro-local analysis and the theory of one-parameter groups of automorphisms, which are used extensively throughout the investigation, we are concerned with modular theory and its consequences in mathematics, e.g., Connes' cocycle theorem and classification of type III factors and Jones' index theory, as well as in physics, e.g., the determination of local von Neumann algebras to be hyperfinite factors of type III 1 , the formulation of thermodynamic equilibrium states for infinite-dimensional quantum systems (KMS states) and the discovery of modular action as geometric transformations. However, our main focus are its applications in physics, in particular the modular action as Lorentz boosts on the Rindler wedge, as dilations on the forward light cone and as conformal mappings on the double cone. Subsequently, their most important implications in local quantum physics are discussed. The purpose of this thesis is to shed more light on the transition from the known massless modular action to the wanted massive one in the case of double cones. First of all the infinitesimal generatore δ m of the group (σ m t ) t element of R is investigated, especially some assumptions on its structure are verified explicitly for the first time for two concrete examples. Then, two strategies for the calculation of σ m t itself are discussed. Some formalisms and results from operator theory and the method of second quantisation used in this thesis are made available in the appendix. (orig.)

  16. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  17. On the reconstruction of a unitary matrix from its moduli. Existence of continuous ambiguities

    International Nuclear Information System (INIS)

    Auberson, G.

    1989-01-01

    It is shown that, for an n x n unitary matrix with n ≥ 4, the knowledge of the moduli of its elements is not always sufficient to determine this matrix up to 'trivial' or 'discrete' ambiguities. Using a parametrization a la Kobayashi-Maskawa in the case n=4, we exhibit various configurations of the moduli for which a continuous ambiguity appears (i.e., some non-trivial phase remains free). (orig.)

  18. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    Science.gov (United States)

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  19. Hydraulic Modular Dosaging Systems for Machine Drives

    Directory of Open Access Journals (Sweden)

    A. J. Kotlobai

    2005-01-01

    Full Text Available The justified principle of making modular dosaging systems for positive-displacement multimotor hydraulic drives used in running gear and technological equipment of mobile construction, road and agricultural machines makes it possible to synchronize motion of running parts. The examples of the realization of modular dosaging systems and an algorithm of their operation are given in the paper.

  20. Analytic properties of the Virasoro modular kernel

    Energy Technology Data Exchange (ETDEWEB)

    Nemkov, Nikita [Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); National University of Science and Technology MISIS, The Laboratory of Superconducting metamaterials, Moscow (Russian Federation)

    2017-06-15

    On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block. (orig.)

  1. Plant systems/components modularization study. Final report

    International Nuclear Information System (INIS)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort

  2. Application of Network Analysis for Characterizing Service Modularity

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2012-01-01

    The purpose of this paper is to explore the potential of the application of network analytical techniques to identify and characterize modularity of service processes. Services can be conceptualized as systems of interrelated components which can be decomposed in order to achieve a modular design...

  3. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  4. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  5. Modular cathode assemblies and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.; Willit, James L.

    2018-03-20

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  6. Emergency systems and protection equipment of modular steam generators for fast reactors

    International Nuclear Information System (INIS)

    Matal, O.

    The requirements are discussed for accident protection of modular steam generators for fast reactors. Accident protection is assessed for a modular through-flow steam generator and for a natural circulation modular steam generator. Benefits and constraints are shown and possible improvements are outlined for accident protection of liquid sodium fired modular steam generators. (Kr)

  7. Fast quantum modular exponentiation

    International Nuclear Information System (INIS)

    Meter, Rodney van; Itoh, Kohei M.

    2005-01-01

    We present a detailed analysis of the impact on quantum modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space trade-offs. We find that to exponentiate an n-bit number, for storage space 100n (20 times the minimum 5n), we can execute modular exponentiation 200-700 times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time, whereas non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices

  8. Multiple D3-Instantons and Mock Modular Forms II

    Science.gov (United States)

    Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris

    2018-03-01

    We analyze the modular properties of D3-brane instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In Part I, we found a necessary condition for the existence of an isometric action of S-duality on this moduli space: the generating function of DT invariants in the large volume attractor chamber must be a vector-valued mock modular form with specified modular properties. In this work, we prove that this condition is also sufficient at two-instanton order. This is achieved by producing a holomorphic action of {SL(2,Z)} on the twistor space which preserves the holomorphic contact structure. The key step is to cancel the anomalous modular variation of the Darboux coordinates by a local holomorphic contact transformation, which is generated by a suitable indefinite theta series. For this purpose we introduce a new family of theta series of signature (2, n - 2), find their modular completion, and conjecture sufficient conditions for their convergence, which may be of independent mathematical interest.

  9. Classical and modular methods applied to Diophantine equations

    NARCIS (Netherlands)

    Dahmen, S.R.

    2008-01-01

    Deep methods from the theory of elliptic curves and modular forms have been used to prove Fermat's last theorem and solve other Diophantine equations. These so-called modular methods can often benefit from information obtained by other, classical, methods from number theory; and vice versa. In our

  10. Hybrid green permeable pave with hexagonal modular pavement systems

    International Nuclear Information System (INIS)

    Rashid, M A; Abustan, I; Hamzah, M O

    2013-01-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  11. Multiple D3-Instantons and Mock Modular Forms I

    Science.gov (United States)

    Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris

    2017-07-01

    We study D3-instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In a previous work, consistency of D3-instantons with S-duality was established at first order in the instanton expansion, using the modular properties of the M5-brane elliptic genus. We extend this analysis to the two-instanton level, where wall-crossing phenomena start playing a role. We focus on the contact potential, an analogue of the Kähler potential which must transform as a modular form under S-duality. We show that it can be expressed in terms of a suitable modification of the partition function of D4-D2-D0 BPS black holes, constructed out of the generating function of MSW invariants (the latter coincide with Donaldson-Thomas invariants in a particular chamber). Modular invariance of the contact potential then requires that, in the case where the D3-brane wraps a reducible divisor, the generating function of MSW invariants must transform as a vector-valued mock modular form, with a specific modular completion built from the MSW invariants of the constituents. Physically, this gives a powerful constraint on the degeneracies of BPS black holes. Mathematically, our result gives a universal prediction for the modular properties of Donaldson-Thomas invariants of pure two-dimensional sheaves.

  12. Two-dimensional RCFT’s without Kac-Moody symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hampapura, Harsha R. [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India); Mukhi, Sunil [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India); Yukawa Institute of Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2016-07-28

    Using the method of modular-invariant differential equations, we classify a family of Rational Conformal Field Theories with two and three characters having no Kac-Moody algebra. In addition to unitary and non-unitary minimal models, we find “dual” theories whose characters obey bilinear relations with those of the minimal models to give the Moonshine Module. In some ways this relation is analogous to cosets of meromorphic CFT’s. The theory dual in this sense to the Ising model has central charge (47/2) and is related to the Baby Monster Module.

  13. Inherent controllability in modular ALMRs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Sevy, R.H.; Wei, T.Y.C.

    1989-01-01

    As part of recent development efforts on advanced reactor designs ANL has proposed the IFR (Integral Fast Reactor) concept. The IFR concept is currently being applied to modular sized reactors which would be built in multiple power paks together with an integrated fuel cycle facility. It has been amply demonstrated that the concept as applied to the modular designs has significant advantages in regard to ATWS transients. Attention is now being focussed on determining whether or not those advantages deriving from the traits of the IFR can be translated to the operational/DBA (design basis accident) class of transients. 5 refs., 3 figs., 3 tabs

  14. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  15. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  16. Cranial modularity and sequence heterochrony in mammals.

    Science.gov (United States)

    Goswami, Anjali

    2007-01-01

    Heterochrony, the temporal shifting of developmental events relative to each other, requires a degree of autonomy among those processes or structures. Modularity, the division of larger structures or processes into autonomous sets of internally integrated units, is often discussed in relation to the concept of heterochrony. However, the relationship between the developmental modules derived from studies of heterochrony and evolutionary modules, which should be of adaptive importance and relate to the genotype-phenotype map, has not been explicitly studied. I analyzed a series of sectioned and whole cleared-and-stained embryological and neonatal specimens, supplemented with published ontogenetic data, to test the hypothesis that bones within the same phenotypic modules, as determined by morphometric analysis, are developmentally integrated and will display coordinated heterochronic shifts across taxa. Modularity was analyzed in cranial bone ossification sequences of 12 therian mammals. A dataset of 12-18 developmental events was used to assess if modularity in developmental sequences corresponds to six phenotypic modules, derived from a recent morphometric analysis of cranial modularity in mammals. Kendall's tau was used to measure rank correlations, with randomization tests for significance. If modularity in developmental sequences corresponds to observed phenotypic modules, bones within a single phenotypic module should show integration of developmental timing, maintaining the same timing of ossification relative to each other, despite differences in overall ossification sequences across taxa. Analyses did not find any significant conservation of developmental timing within the six phenotypic modules, meaning that bones that are highly integrated in adult morphology are not significantly integrated in developmental timing.

  17. Dissociation of modular total hip arthroplasty at the neck-stem interface without dislocation.

    Science.gov (United States)

    Kouzelis, A; Georgiou, C S; Megas, P

    2012-12-01

    Modular femoral and acetabular components are now widely used, but only a few complications related to the modularity itself have been reported. We describe a case of dissociation of the modular total hip arthroplasty (THA) at the femoral neck-stem interface during walking. The possible causes of this dissociation are discussed. Successful treatment was provided with surgical revision and replacement of the modular neck components. Surgeons who use modular components in hip arthroplasties should be aware of possible early complications in which the modularity of the prostheses is the major factor of failure.

  18. The R-operator for a modular double

    International Nuclear Information System (INIS)

    Chicherin, D; Derkachov, S

    2014-01-01

    We construct the R-operator—the solution of the Yang–Baxter equation acting in the tensor product π s 1 ⊗π s 2 of two infinite-dimensional representations of Faddeev’s modular double. This R-operator intertwines the product of two L-operators associated with the modular double and it is built from three basic operators generating the permutation group of four parameters S 4 . (paper)

  19. MOBS - A modular on-board switching system

    Science.gov (United States)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  20. Environmental versatility promotes modularity in large scale metabolic networks

    OpenAIRE

    Samal A.; Wagner Andreas; Martin O.C.

    2011-01-01

    Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chem...

  1. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  2. Safety concerns related to modular/prefabricated building construction.

    Science.gov (United States)

    Fard, Maryam Mirhadi; Terouhid, Seyyed Amin; Kibert, Charles J; Hakim, Hamed

    2017-03-01

    The US construction industry annually experiences a relatively high rate of fatalities and injuries; therefore, improving safety practices should be considered a top priority for this industry. Modular/prefabricated building construction is a construction strategy that involves manufacturing of the whole building or some of its components off-site. This research focuses on the safety performance of the modular/prefabricated building construction sector during both manufacturing and on-site processes. This safety evaluation can serve as the starting point for improving the safety performance of this sector. Research was conducted based on Occupational Safety and Health Administration investigated accidents. The study found 125 accidents related to modular/prefabricated building construction. The details of each accident were closely examined to identify the types of injury and underlying causes. Out of 125 accidents, there were 48 fatalities (38.4%), 63 hospitalized injuries (50.4%), and 14 non-hospitalized injuries (11.2%). It was found that, the most common type of injury in modular/prefabricated construction was 'fracture', and the most common cause of accidents was 'fall'. The most frequent cause of cause (underlying and root cause) was 'unstable structure'. In this research, the accidents were also examined in terms of corresponding location, occupation, equipment as well as activities during which the accidents occurred. For improving safety records of the modular/prefabricated construction sector, this study recommends that future research be conducted on stabilizing structures during their lifting, storing, and permanent installation, securing fall protection systems during on-site assembly of components while working from heights, and developing training programmes and standards focused on modular/prefabricated construction.

  3. Modular co-ordination

    DEFF Research Database (Denmark)

    Blach, K.

    Notatet er på engelsk, idet det er lavet som et oplæg til den internationale standardiseringsorganisations (ISO) arbejde med målkoordinering i byggeriet. Materialet har også været forelagt ekspertgrupperne i CIB W24 og i International Modular Group. Det i notatet præsenterede materiale er blevet...

  4. Modularity and the spread of perturbations in complex dynamical systems.

    Science.gov (United States)

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  5. PLM system support for modular product development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik; Harlou, Ulf

    2015-01-01

    A modular design strategy both enables, but also demands, parallelism in design activities and collaboration between a diversity of disciplines in companies, which often involves supporting computer-based tools for enhancing interaction, design management, and communication. Product data management...... (PDM) and product lifecycle management (PLM) systems offer support by automating and managing some of the operational complexity of modular design activities. PLM system tools are used for handling a variety of product definitions, to manage workflow of development activities, and to measure relational...... properties such as cost and performance. Companies often use a PLM tool for management of CAD files, documents, and drawings, but they do not take advantage of the full potential of the PLM system to support the development activities of modular product designs. The key result of this paper...

  6. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks

    DEFF Research Database (Denmark)

    Schleuning, Matthias; Ingmann, Lili; Strauß, Rouven

    2014-01-01

    Modularity is a recurrent and important property of bipartite ecological networks. Although well-resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence-absence data. We employ a new...... algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed-dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis...... identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis...

  7. PL-MOD: a computer code for modular fault tree analysis and evaluation

    International Nuclear Information System (INIS)

    Olmos, J.; Wolf, L.

    1978-01-01

    The computer code PL-MOD has been developed to implement the modular methodology to fault tree analysis. In the modular approach, fault tree structures are characterized by recursively relating the top tree event to all basic event inputs through a set of equations, each defining an independent modular event for the tree. The advantages of tree modularization lie in that it is a more compact representation than the minimal cut-set description and in that it is well suited for fault tree quantification because of its recursive form. In its present version, PL-MOD modularizes fault trees and evaluates top and intermediate event failure probabilities, as well as basic component and modular event importance measures, in a very efficient way. Thus, its execution time for the modularization and quantification of a PWR High Pressure Injection System reduced fault tree was 25 times faster than that necessary to generate its equivalent minimal cut-set description using the computer code MOCUS

  8. Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements

    Science.gov (United States)

    Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.

    2017-01-01

    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to

  9. Ripple transport in a modular Helias

    International Nuclear Information System (INIS)

    Beidler, C.D.

    1989-01-01

    Neoclassical transport rates are determined for Helical-Axis Advanced Stellarators (Helias). Special emphasis is given to Wendelstein VII-X candidates, for which the magnetic field is produced by a large number of discrete non-planar coils. The investigation is concentrated on the long-mean-free-path regime where particles trapped in local ripple wells of the magnetic field make the dominant contribution to transport. For Wendelstein VII-X, such particles fall into two classes; those localized in the helical ripple common to all stellarator-type devices and those very-localized particles which are trapped in the modular ripples existing between the individual coils. Using analytical techniques it is shown that helical-ripple transport rates are substantially reduced for all Wendelstein VII-X candidates relative to classical stellarator/torsatron configurations. This reduction is most pronounced in the 1/ν regime - equivalent helical ripples of less than 1% lead to reduction factors of more than an order of magnitude - but is significant throughout the entire long-mean-free-path regime. Modular ripple transport in Wendelstein VII-X is calculated by analytically solving the appropriate bounce-averaged kinetic equation. This solution assumes a general magnetic field model and fully accounts for the deformation of modular ripples due to the presence of the other magnetic-field harmonics. Results indicate that 12 coils per field period are necessary if modular-ripple losses are to remain smaller than helical-ripple losses over the entire plasma cross section. (orig.)

  10. MUSIC, MODULARITY AND SYNTAX

    Directory of Open Access Journals (Sweden)

    Javier Valenzuela

    2007-06-01

    Full Text Available First generation cognitive science has always maintained that the mind/brain is a modular system. This has been especially apparent in linguistics, where the modularity thesis goes largely unquestioned by the linguistic mainstream. Cognitive linguists have long disputed the reality of modular architectures of grammar. Instead of conceiving syntax as a computational system of a relatively small set of formal principles and parameters, cognitive linguists take the notion of grammatical construction to be the basic unit of syntax: syntax is simply our repertoire of form-meaning pairings. On such a view, there is no a-priori reason to believe that semantics and phonology cannot affect syntax. In the present paper, we want to take things a step further and suggest, more generally, that language is not a module of cognition in any strict sense. We present preliminary results from research in progress concerning the effect of music on grammatical constructions. More specifically, our experiment compares reaction times between two grammatical constructions that differ in semantics and intonational curves but share lexical material. Our data so far suggests that subjects take less time reading the construction when the semantic bias and intonation match than in non-matching cases. This, we argue, suggests not only that semantics, phonology and syntax form an information bundle (i.e. a construction in the cognitive linguistic sense, but that perceived similarity of music can influence linguistic cognition.

  11. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  12. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    and verification of MSOS specifications, we have defined a mapping, named , from MSOS to rewriting logic (RWL), a logic which has been proposed as a logical and semantic framework. We have proven the correctness of and implemented it as a prototype, the MSOS-SL Interpreter, in the Maude system, a high......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  13. A modular control system

    International Nuclear Information System (INIS)

    Cruz, B.; Drexler, J.; Olcese, G.; Santome, D.

    1990-01-01

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author) [es

  14. Minimal unitary representation of D(2,1;λ) and its SU(2) deformations and d=1, N=4 superconformal models

    International Nuclear Information System (INIS)

    Govil, Karan; Gunaydin, Murat

    2013-01-01

    Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8 ⁎ |2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;λ) in one dimension. We find that SU(2) deformations can be achieved using n pair of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;λ) commute with the generators of a dual superalgebra OSp(2n ⁎ |2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;λ) deformed by a pair of bosons. This can be understood as a particular case of a general mapping between the spectra of quantum mechanical quaternionic Kähler sigma models with eight super symmetries and minreps of their isometry groups that descends from the precise mapping established between the 4d, N=2 sigma models coupled to supergravity and minreps of their isometry groups.

  15. Directional selection can drive the evolution of modularity in complex traits.

    Science.gov (United States)

    Melo, Diogo; Marroig, Gabriel

    2015-01-13

    Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.

  16. On modular properties of the AdS3 CFT

    International Nuclear Information System (INIS)

    Baron, Walter H.; Nunez, Carmen A.

    2011-01-01

    We study modular properties of the AdS 3 Wess-Zumino-Novikov-Witten model. Although the Euclidean partition function is modular invariant, the characters on the Euclidean torus diverge and the regularization proposed in the literature removes information on the spectrum and the usual one to one map between characters and representations of rational models is lost. Reconsidering the characters defined on the Lorentzian torus and focusing on their structure as distributions, we obtain expressions that recover those properties. We study their modular transformations and find a generalized S matrix, depending on the sign of the real modular parameters, which has two diagonal blocks and one off-diagonal block, mixing discrete and continuous representations, that we fully determine. We then explore the relations among the modular transformations, the fusion algebra and the boundary states. We explicitly construct Ishibashi states for the maximally symmetric D-branes and show that the generalized S matrix defines the one-point functions associated to pointlike and H 2 -branes as well as the fusion rules of the degenerate representations of sl(2,R) appearing in the open string spectrum of the pointlike D-branes, through a generalized Verlinde theorem.

  17. Domain organizations of modular extracellular matrix proteins and their evolution.

    Science.gov (United States)

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  18. Adopting Product Modularity in House Building to Support Mass Customisation

    Directory of Open Access Journals (Sweden)

    Cecília G. da Rocha

    2015-04-01

    Full Text Available Product modularity is a concept that can contribute to the improvement of product quality and production efficiency in house-building. However, there is a lack of consensus in the literature on the concepts that define product modularity. Furthermore, little attention has been given to the differences between building construction and manufacturing, for which product modularity was originally developed. This research aims to address that gap by adapting the conceptualization of product modularity so that it can effectively be used in the house-building industry. The methodological approach adopted in this study was Design Science Research, and two empirical studies were carried out on construction companies based in Brazil and in the U.K. Those studies are used to illustrate the applicability and utility of the proposed concepts and tools. Research findings indicate that the adoption of product modularity concepts results in benefits to both traditional construction technologies and pre-fabricated building systems.

  19. Novel relationships between superoscillations, weak values, and modular variables

    International Nuclear Information System (INIS)

    Tollaksen, Jeff

    2007-01-01

    We present several novel, unexpected relationships between superoscillations, weak values and modular variables. For example, we show how an uncertain phase, which characterizes the process of projecting a particle onto a superoscillatory region, can create the high-momentum associated with the super-oscillation. If an uncertain phase can localize the particle, then a definite phase can also localize it. This introduction of a relative phase corresponds to a nonlocal exchange of modular variables. We also present a new way to measure the nonlocality in the equation of motion for modular variables by using weak measurements

  20. Implications of an arithmetical symmetry of the commutant for modular invariants

    International Nuclear Information System (INIS)

    Ruelle, P.; Thiran, E.; Weyers, J.

    1993-01-01

    We point out the existence of an arithmetical symmetry for the commutant of the modular matrices S and T. This symmetry holds for all affine simple Lie algebras at all levels and implies the equality of certain coefficients in any modular invariant. Particularizing to SU(3) k , we classify the modular invariant partition functions when k+3 is an integer coprime with 6 and when it is a power of either 2 or 3. Our results imply that no detailed knowledge of the commutant is needed to undertake a classification of all modular invariants. (orig.)

  1. Comparing two K-category assignments by a K-category correlation coefficient

    DEFF Research Database (Denmark)

    Gorodkin, Jan

    2004-01-01

    Predicted assignments of biological sequences are often evaluated by Matthews correlation coefficient. However, Matthews correlation coefficient applies only to cases where the assignments belong to two categories, and cases with more than two categories are often artificially forced into two...... categories by considering what belongs and what does not belong to one of the categories, leading to the loss of information. Here, an extended correlation coefficient that applies to K-categories is proposed, and this measure is shown to be highly applicable for evaluating prediction of RNA secondary...

  2. Modularization in construction processes New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Martinez, I.; Cobos, A.; Herrera Ropero, D.

    2012-01-01

    The aim of this work is that it has the capacity and expertise to analyze the suitability of modular technology design and construction compared to conventional nuclear plants. It will define the criteria for selecting the areas of modularity and the impact on design and its interfaces with engineering, supply, including logistics and construction.

  3. Game Analysis of Determinants of Stability of Semiconductor Modular Production Networks

    Directory of Open Access Journals (Sweden)

    Wei He

    2014-07-01

    Full Text Available In today’s rapidly changing environment, semiconductor manufacturers compete more in the area of modular production networks. However, the instability of semiconductor modular production networks can to a large extent lead to the failure of these networks. The aim of this paper is to discuss the significance and explore the maintenance of the stability of these semiconductor modular production networks. Firstly, this paper qualitatively and quantitatively defines the stability of semiconductor modular production networks. Based on this, by establishing game models, this paper analyzes the influence mechanism of the main factors: external market fluctuation, the internal benefit allocation mechanism, and opportunism, which can jeopardize the stability of these networks. We find that: the greater the benefits a member enterprise derives from the common benefits, the more likely it is the member enterprise will not exit the modular production network; the adaptive ability of the networks to the external environment is closely related to the stability of the modular production networks; the supervision and punishment in networks can be substituted for each other and the level of supervision, punishment and trust can exert great influence on the stability of semiconductor modular production networks. Lastly, we propose some specific suggestions.

  4. Category-specific visual responses: an intracranial study comparing gamma, beta, alpha and ERP response selectivity

    Directory of Open Access Journals (Sweden)

    Juan R Vidal

    2010-11-01

    Full Text Available The specificity of neural responses to visual objects is a major topic in visual neuroscience. In humans, functional magnetic resonance imaging (fMRI studies have identified several regions of the occipital and temporal lobe that appear specific to faces, letter-strings, scenes, or tools. Direct electrophysiological recordings in the visual cortical areas of epileptic patients have largely confirmed this modular organization, using either single-neuron peri-stimulus time-histogram or intracerebral event-related potentials (iERP. In parallel, a new research stream has emerged using high-frequency gamma-band activity (50-150 Hz (GBR and low-frequency alpha/beta activity (8-24 Hz (ABR to map functional networks in humans. An obvious question is now whether the functional organization of the visual cortex revealed by fMRI, ERP, GBR, and ABR coincide. We used direct intracerebral recordings in 18 epileptic patients to directly compare GBR, ABR, and ERP elicited by the presentation of seven major visual object categories (faces, scenes, houses, consonants, pseudowords, tools, and animals, in relation to previous fMRI studies. Remarkably both GBR and iERP showed strong category-specificity that was in many cases sufficient to infer stimulus object category from the neural response at single-trial level. However, we also found a strong discrepancy between the selectivity of GBR, ABR, and ERP with less than 10% of spatial overlap between sites eliciting the same category-specificity. Overall, we found that selective neural responses to visual objects were broadly distributed in the brain with a prominent spatial cluster located in the posterior temporal cortex. Moreover, the different neural markers (GBR, ABR, and iERP that elicit selectivity towards specific visual object categories present little spatial overlap suggesting that the information content of each marker can uniquely characterize high-level visual information in the brain.

  5. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  6. What professionals consider when designing a modular service architecture

    NARCIS (Netherlands)

    Broekhuis, Manda; van Offenbeek, Marjolein; van der Laan, Monique

    2017-01-01

    Abstract Purpose: The paper explores how functional and appropriateness arguments influence the adoption of modularity principles during the design of a professional service architecture. Design: Action design research was conducted to examine the design process of a modular service architecture for

  7. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fernandez, Alisha R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modular hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.

  8. Product, Organizational and Performance Effects of Product Modularity

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth

    2014-01-01

    beyond these industries. To be able to establish whether firms not part of these industries would experience the same performance effects, survey research will be needed. To support future survey research, this paper proposes an operationalization of product modularity and details the link between...... product modularity and firm performance, to support the future development of measures and hypotheses....

  9. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  10. Volkswagen's new modular TDI {sup registered} generation; Die neue modulare TDI {sup registered} -Generation von Volkswagen

    Energy Technology Data Exchange (ETDEWEB)

    Neusser, Heinz-Jakob; Kahrstedt, Joern; Jelden, Hanno; Engler, Hermann-Josef; Dorenkamp, Richard; Jauns-Seyfried, Stefanie; Krause, Andreas [Volkswagen AG, Wolfsburg (Germany)

    2012-11-01

    The new generation of TDI {sup registered} engines is an extension of the Volkswagen brand's modular strategy. The power train development focused closely on engine properties, fuel consumption and performance. The modular design concept provides the foundation for meeting challenges of the future, including new legislation and regional and state requirements. The new and enhanced modules for this new engine generation are presented, together with component combinations and including the engine management functions developed specially for the purpose. (orig.)

  11. The Science of Unitary Human Beings in a Creative Perspective.

    Science.gov (United States)

    Caratao-Mojica, Rhea

    2015-10-01

    In moving into a new kind of world, nurses are encouraged to look ahead and be innovative by transcending to new ways of using nursing knowledge while embracing a new worldview. "We need to recognize that we're going to have to use our imagination more and more" (Rogers, 1994). On that note, the author in this paper explicates Rogers' science of unitary human beings in a creative way relating it to painting. In addition, the author also explores works derived from Rogers' science such as Butcher's (1993) and Cowling's (1997), which are here discussed in light of an artwork. A painting is presented with the unpredictability, creativity, and the "dance of color and light" (Butcher, 1993) is appreciated through comprehending essence, pandimensionality, and wholeness. © The Author(s) 2015.

  12. Interfaces in service modularity : A typology developed in modular health care provision

    NARCIS (Netherlands)

    de Blok, C.; Meijboom, B.R.; Luijkx, K.G.; Schols, J.M.G.A.; Schroeder, R.G.

    2014-01-01

    We conduct case research in a particular service context, i.e. the sector for elderly care, in order to explore characteristics of interfaces and the role they play in service customization. Even though the study of modularity in areas other than goods production is increasing, little is known about

  13. A unitary model of the black hole evaporation

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  14. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  15. Categories from scratch

    NARCIS (Netherlands)

    Poss, R.

    2014-01-01

    The concept of category from mathematics happens to be useful to computer programmers in many ways. Unfortunately, all "good" explanations of categories so far have been designed by mathematicians, or at least theoreticians with a strong background in mathematics, and this makes categories

  16. DESIGN AND MANUFACTURING OF MODULAR PARQUET FLOORING IN INDUSTRIAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ivan CISMARU

    2014-09-01

    Full Text Available The paper submits constructive options and methods to design and manufacture modular parquet flooring, as well as fastening methods in constructions. Likewise, it presents the branches of civil engineering where modular parquet flooring may be turned to profit – industrial buildings, company premises or residential premises. The turn towards the achievement of private constructions, such as individual houses, led to losing control of the modular system applied in defining the inner sizes of the constructions and implicitly to the apparition of dimensional incompatibilities between the parquet flooring and the built spaces. The paper sets out (to solve by an individualized design procedure to achieve modular parquet flooring in industrial system, in correspondence with the sizes of the inner spaces afferent to the constructions.

  17. Reduced modular symmetries of threshold corrections and gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)

    2015-04-01

    We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.

  18. Sound insulation design of modular construction housing

    OpenAIRE

    Yates, D. J.; Hughes, Lawrence; Campbell, A.

    2007-01-01

    This paper provides an insight into the acoustic issues of modular housing using the Verbus System of construction. The paper briefly summarises the history of the development of Verbus modular housing and the acoustic design considerations of the process. Results are presented from two sound insulation tests conducted during the course of the project. The results are discussed in terms of compliance with Approved Document E1 and increased performance standards such as EcoHomes2.

  19. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    Science.gov (United States)

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates

  20. Study on modular technology based on the reference nuclear power plant

    International Nuclear Information System (INIS)

    Lu Qinwu; Zhao Shuyu; Li Yi; Han Xiaoping; Chai Weidong; Zhang Shuxia

    2014-01-01

    As an important technology for shortening the construction period and reducing the cost of nuclear power project, modular technology has become one of the development orientations of the third generation nuclear power plant. Taking CPR1000 nuclear power reactor as reference plant and drawing on advanced foreign technology of modularization, the overall concept design has been completed with the help of the self-developed 3D modular design system. On this basis, a typical detailed design work has been carried out so as to verify the feasibility of technology. Besides, an analysis on implementation of modular technology has been made from two aspects (procurement and construction), and the feasibility of research results in actual project has been evaluated. It provides references for the promotion of self-reliant modular technology in nuclear power project in China. (authors)

  1. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  2. Supply Chain Management of a Modular Product with Returns

    DEFF Research Database (Denmark)

    Ulku, M. Ali; Hsuan, Juliana; Yu, Dennis

    Modularity and returns relate to sustainability. In a retailer-manufacturer setting and when the demand for a returnable product depends on both price and modularity level, we develop a profit-maximizing stochastic model. The solution includes optimal expressions for the price, and the order...

  3. Proving relations between modular graph functions

    International Nuclear Information System (INIS)

    Basu, Anirban

    2016-01-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links. (paper)

  4. Geometric modular action and transformation groups

    International Nuclear Information System (INIS)

    Summers, S.J.

    1996-01-01

    We study a weak form of geometric modular action, which is naturally associated with transformation groups of partially ordered sets and which provides these groups with projective representations. Under suitable conditions it is shown that these groups are implemented by point transformations of topological spaces serving as models for space-times, leading to groups which may be interpreted as symmetry groups of the space-times. As concrete examples, it is shown that the Poincare group and the de Sitter group can be derived from this condition of geometric modular action. Further consequences and examples are discussed. (orig.)

  5. Modular arrangement of regulatory RNA elements.

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  6. Deficits and Solutions in the Development of Modular Factory Systems

    OpenAIRE

    Achim Kampker; Peter Burggräf; Moritz Krunke; Hanno Voet

    2017-01-01

    As a reaction to current challenges in factory planning, many companies think about introducing factory standards to lower planning times and decrease planning costs. If these factory standards are set-up with a high level of modularity, they are defined as modular factory systems. This paper deals with the main current problems in the application of modular factory systems in practice and presents a solution approach with its basic models. The methodology is based on methods from factory pla...

  7. INFORMATION SECURITY IN MOBILE MODULAR MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. N. Tkhishev

    2017-01-01

    Full Text Available A special aspect of aircraft test is carrying out both flight evaluation and ground operation evaluation in a structure of flying aids and special tools equipment. The specific of flight and sea tests involve metering in offshore zone, which excludes the possibility of fixed geodetically related measuring tools. In this regard, the specific role is acquired by shipbased measurement systems, in particular the mobile modular measuring systems. Information processed in the mobile modular measurement systems is a critical resource having a high level of confidentiality. When carrying out their functions, it should be implemented a proper information control of the mobile modular measurement systems to ensure their protection from the risk of data leakage, modification or loss, i.e. to ensure a certain level of information security. Due to the specific of their application it is difficult to solve the problems of information security in such complexes. The intruder model, the threat model, the security requirements generated for fixed informatization objects are not applicable to mobile systems. It was concluded that the advanced mobile modular measuring systems designed for flight experiments monitoring and control should be created due to necessary information protection measures and means. The article contains a diagram of security requirements formation, starting with the data envelopment analysis and ending with the practical implementation. The information security probabilistic model applied to mobile modular measurement systems is developed. The list of current security threats based on the environment and specific of the mobile measurement system functioning is examined. The probabilistic model of the information security evaluation is given. The problems of vulnerabilities transformation of designed information system into the security targets with the subsequent formation of the functional and trust requirements list are examined.

  8. Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Pavlyk, Oleksandr

    2005-01-01

    We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the minkowskian spacetimes by an extra 'dilatonic' coordinate, whose rotation, Lorentz and conformal groups are SO(d-1), SO(d-1,1) x SO(1,1) and SO(d,2) x SO(2,1), respectively. The generalized spacetimes described by simple Jordan algebras of degree three correspond to extensions of minkowskian spacetimes in the critical dimensions (d = 3,4,6,10) by a dilatonic and extra commuting spinorial coordinates, respectively. Their rotation, Lorentz and conformal groups are those that occur in the first three rows of the Magic Square. The Freudenthal triple systems defined over these Jordan algebras describe conformally covariant phase spaces. Following hep-th/0008063, we give a unified geometric realization of the quasiconformal groups that act on their conformal phase spaces extended by an extra 'cocycle' coordinate. For the generic Jordan family the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are given. The minimal unitary representations of the quasiconformal groups F 4(4) , E 6(2) , E 7(-5) and E 8(-24) of the simple Jordan family were given in our earlier work

  9. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  10. Equivalence of the Weyl, Coulomb, unitary, and covariant gauges in the functional Schrodinger picture

    International Nuclear Information System (INIS)

    Namgung, W.

    1991-01-01

    The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter

  11. Activity-based costing as a method for assessing the economics of modularization

    DEFF Research Database (Denmark)

    Thyssen, Jesper; Israelsen, Poul; Jørgensen, Brian

    2006-01-01

    The paper accounts for an Activity-Based Costing (ABC) analysis supporting decision-making concerning product modularity. The ABC analysis carried out is communicated to decision-makers by telling how much higher the variable cost of the multi-purpose module can be compared to the average variable...... cost for the product-unique modules that it substitutes to break even in total cost. The analysis provides the platform for stating three general rules of cost efficiency of modularization, which in combination identify the highest profit potential of product modularization. Finally the analysis points...... to problems of using ABC in costing modularity, i.e. handling of R&D costs and identification of product profitability upon an enhanced modularization....

  12. Building Real Modularity Competence in Automotive Design, Development, Production, and After-service

    DEFF Research Database (Denmark)

    Sanchez, Ron

    2013-01-01

    the essential principles on which effective implementation of modular strategies depends in any industry. We illustrate these principles with examples of both effective and faulty modularity practice from the automotive and other industries. We then propose a modularity maturity model for assessing the degree...

  13. Mutation rules and the evolution of sparseness and modularity in biological systems.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    Full Text Available Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction of possible interactions between components actually occur; and modularity--the near decomposability of the system into modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances, including goals that vary in time such that they share the same subgoals (modularly varying goals, or when connections are costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are mutated by multiplying by random numbers--a better model for the effects of biological mutations--led to sparseness naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small.

  14. Modular construction approach for advanced nuclear plants

    International Nuclear Information System (INIS)

    Johnson, F.T.; Orr, R.S.; Boudreaux, C.P.

    1988-01-01

    Modular construction has been designated as one of the major features of the AP600 program, a small innovative 600-MW (electric) advanced light water reactor (ALWR) that is currently being developed by Westinghouse and its subcontractors. This program is sponsored by the US Department of Energy (DOE) in conjunction with several other DOE and Electric Power Research Institute ALWR programs. Two major objectives of the AP600 program are as follows: (1) to provide a cost of power competitive with other power generation alternatives; and (2) to provide a short construction schedule that can be met with a high degree of certainty. The AP600 plant addresses these objectives by providing a simplified plant design and an optimized plant arrangement that result in a significant reduction in the number and size of systems and components, minimizes the overall building volumes, and consequently reduces the required bulk quantities. However, only by adopting a modular construction approach for the AP600 can the full cost and schedule benefits be realized from the advances made in the plant systems design and plant arrangement. Modularization is instrumental in achieving both of the above objectives, but most of all, a total modularization approach is considered absolutely essential to ensure that an aggressive construction schedule can be met with a high degree of certainty

  15. Dynamics of modular expansion joints: The Martinus Nijhoff Bridge

    NARCIS (Netherlands)

    Zuada Coelho, B.A.; Vervuurt, A.H.J.M.; Peelen, W.H.A.; Leendertz, J.S.

    2013-01-01

    Modular expansion joints are structures that are submitted to severe fatigue load conditions. This may lead to unexpected premature damage of the structure which, besides the economic cost of repair, may limit the regular service of the bridge. To better understand the dynamic behaviour of modular

  16. 17 CFR 232.501 - Modular submissions and segmented filings.

    Science.gov (United States)

    2010-04-01

    ..., EDGAR will suspend the modular submission and notify the electronic filer by electronic mail. After six... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Edgar Functions § 232.501 Modular submissions and segmented filings. An electronic filer may use the following procedures to submit...

  17. Modularization of fault trees: a method to reduce the cost of analysis

    International Nuclear Information System (INIS)

    Chatterjee, P.

    1975-01-01

    The problem of analyzing large fault trees is considered. The concept of the finest modular representation of a fault tree is introduced and an algorithm is presented for finding this representation. The algorithm will also identify trees which cannot be modularized. Applications of such modularizations are discussed

  18. Realization of a unique time evolution unitary operator in Klein Gordon theory

    International Nuclear Information System (INIS)

    Balasubramanian, T.S.; Bhatia, S.Kr.

    1986-01-01

    The scattering theory for the Klein Gordon equation, with time-dependent potential and in a non-static space-time, is considered. Using the Klein Gordon equation formulated in the Hilbert space L 2 (R 3 ) and the Einstein's relativistic equation in the space L 2 (R 3 ,dx) and establishing the equivalence of the vacuum states of their linearized forms in the Hilbert space L 2 (R 3 ) with the help of unique symmetric symplectic operator, the time evolution unitary operator U(t) has been fixed for the Klein Gordon eqution, incorporating either the positive or negative frequencies, in the infinite dimensional Hilbert space L 2 (R 3 ). (author)

  19. Multiply-ionized atoms isolated at low energy in a unitary Penning trap

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Hoogerheide, Shannon Fogwell; Guise, Nicholas D.; Brewer, Samuel M.

    2015-01-01

    Ions extracted from the EBIT at NIST are slowed and captured in a Penning trap that is made very compact (< 150 cm 3 ) by a unitary architecture [1]. Measurements after 1 ms of ion storage indicate that the isolated ions are distributed with 5.5(5) eV of energy spread, which is roughly 2 orders of magnitude lower than expected in the ion source, without implementing any active cooling [2]. Some experiments are discussed. One goal is to produce one-electron ions in high angular momentum states for studying optical transitions between Rydberg states that could potentially enable new tests of quantum electrodynamics (QED) and determinations of fundamental constants [3

  20. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    International Nuclear Information System (INIS)

    Gottschalk, Hanno; Hack, Thomas-Paul

    2009-12-01

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  1. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  2. The Challenges of Modularization.

    Science.gov (United States)

    Brown, Sally; Saunders, Danny

    1995-01-01

    Discusses the movement towards credit accumulation and transfer in higher education institutions based on experiences at two universities in the United Kingdom, the University of Northumbria and the University of Glamorgan. Modularization, or unitization, and semesterization are considered, and three key areas are addressed: management, student…

  3. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  4. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  5. The universal modular platform

    International Nuclear Information System (INIS)

    North, R.B.

    1995-01-01

    A new and patented design for offshore wellhead platforms has been developed to meet a 'fast track' requirement for increased offshore production, from field locations not yet identified. The new design uses modular construction to allow for radical changes in the water depth of the final location and assembly line efficiency in fabrication. By utilizing high strength steels and structural support from the well conductors the new design accommodates all planned production requirements on a support structure significantly lighter and less expensive than the conventional design it replaces. Twenty two platforms based on the new design were ready for installation within 18 months of the project start. Installation of the new platforms began in 1992 for drilling support and 1993 for production support. The new design has become the Company standard for all future production platforms. Large saving and construction costs have been realized through its light weight, flexibility in both positioning and water depth, and its modular construction

  6. Modular training as technology of professional skills development of mechanical engineers

    OpenAIRE

    Shamshina Irina

    2016-01-01

    There are main provisions of modular training program by “Theory of Automatic Control” for students of technical universities is treating. Analyze of advantages and disadvantages of modular training system in comparison with the traditional system in the formation of future engineers’ professional skills. Detection of changes in the level of learning, basic skills and motivational sphere of students en-rolled in the modular training program.

  7. The unitary-group formulation of quantum chemistry

    International Nuclear Information System (INIS)

    Campbell, L.L.

    1990-01-01

    The major part of this dissertation establishes group theoretical techniques that are applicable to the quantum-mechanical many-body atomic and molecular problems. Several matrix element evaluation methods for many-body states are developed. The generator commutation method using generator states is presented for the first time as a complete algorithm, and a computer implementation of the method is developed. A major result of this work is the development of a new method of calculation called the freeon tensor product (FTP) method. This method is much simpler and for many purposes superior to the GUGA procedure (graphical unitary group approach), widely used in configuration interaction calculations. This dissertation is also concerned with the prediction of atomic spectra. In principle spectra can be computed by the methods of ab initio quantum chemistry. In practice these computations are difficult, expensive, time consuming, and not uniformly successful. In this dissertation, the author employs a semi-empirical group theoretical analysis of discrete spectra is the exact analog of the Fourier analysis of continuous functions. In particular, he focuses on the spectra of atoms with incomplete p, d, and f shells. The formulas and techniques are derived in a fashion that apply equally well for more complex systems, as well as the isofreeon model of spherical nuclei

  8. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  9. Modular helium reactor for non-electric applications

    International Nuclear Information System (INIS)

    Shenoy, A.

    1997-01-01

    The high temperature gas-cooled Modular Helium Reactor (MHR) is an advanced, high efficiency reactor system which can play a vital role in meeting the future energy needs of the world by contributing not only to the generation of electric power, but also the non-electric energy traditionally served by fossil fuels. This paper summarizes work done over 20 years, by several people at General Atomics, how the Modular Helium Reactor can be integrated to provide different non-electric applications during Process Steam/Cogeneration for industrial application, Process Heat for transportation fuel development and Hydrogen Production for various energy applications. The MHR integrates favorably into present petrochemical and primary metal process industries, heavy oil recovery, and future shale oil recovery and synfuel processes. The technical fit of the Process Steam/Cogeneration Modular Helium Reactor (PS/C-MHR) into these processes is excellent, since it can supply the required quantity and high quality of steam without fossil superheating. 12 refs, 25 figs, 2 tabs

  10. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  11. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  12. AP1000"T"M plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000"T"M plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  13. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  14. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  15. RAMS (Risk Analysis - Modular System) methodology

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  16. Weight bias internalization across weight categories among school-aged children. Validation of the Weight Bias Internalization Scale for Children.

    Science.gov (United States)

    Zuba, Anna; Warschburger, Petra

    2018-06-01

    Anti-fat bias is widespread and is linked to the internalization of weight bias and psychosocial problems. The purpose of this study was to examine the internalization of weight bias among children across weight categories and to evaluate the psychometric properties of the Weight Bias Internalization Scale for Children (WBIS-C). Data were collected from 1484 primary school children and their parents. WBIS-C demonstrated good internal consistency (α = .86) after exclusion of Item 1. The unitary factor structure was supported using exploratory and confirmatory factor analyses (factorial validity). Girls and overweight children reported higher WBIS-C scores in comparison to boys and non-overweight peers (known-groups validity). Convergent validity was shown by significant correlations with psychosocial problems. Internalization of weight bias explained additional variance in different indicators of psychosocial well-being. The results suggest that the WBIS-C is a psychometrically sound and informative tool to assess weight bias internalization among children. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Model-based Kinematics Generation for Modular Mechatronic Toolkits

    DEFF Research Database (Denmark)

    Bordignon, Mirko; Schultz, Ulrik Pagh; Støy, Kasper

    2011-01-01

    Modular robots are mechatronic devices that enable the construction of highly versatile and flexible robotic systems whose mechanical structure can be dynamically modified. The key feature that enables this dynamic modification is the capability of the individual modules to connect to each other...... in multiple ways and thus generate a number of different mechanical systems, in contrast with the monolithic, fixed structure of conventional robots. The mechatronic flexibility, however, complicates the development of models and programming abstractions for modular robots, since manually describing...... the Modular Mechatronics Modelling Language (M3L). M3L is a domain-specific language, which can model the kinematic structure of individual robot modules and declaratively describe their possible interconnections, rather than requiring the user to enumerate them in their entirety. From this description, the M...

  18. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A truly Lego®-like modular microfluidics platform

    Science.gov (United States)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  20. A truly Lego®-like modular microfluidics platform

    International Nuclear Information System (INIS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-01-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos ® and why Legos ® inspire many existing modular microfluidics platforms. In this paper, a truly Lego ® -like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego ® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego ® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail. (paper)